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Bike-sharing Systems (BSS)

Bike-sharing system: users can rent bicycles for trips between stations.

There are over 700 bike-sharing systems across the world.

Biggest systems worldwide: Wuhan and Hangzhou, with 90,000 and
60,600 bicycles respectively.

London Cycle Hire Scheme: over 11,000 bicycles and 750 stations.
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Smart BSS

Data-driven modelling of BSS for

Policy design: price, location of stations, etc.

Intelligent bike redistribution: optimal route for bike redistribution.

User journey planning: make predictions about trip feasibility in order
to enhance user experience.

Our work focuses on user journey planning.
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User Journey Planning

X (t + h): a rv denotes the number of available bikes/slots at a station at
a future time point t + h

Literature focuses on point estimates: E[X (t + h)]

It is more informative to provide Pr(X (t + h) > N)
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Markov Queueing Model

Idea: split a day into n slots, fix the bike arrival and pickup rates of a
station in a single slot, then a station can be modelled as a
time-inhomogeneous Markov queue M/M/1/k
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λ(t), µ(t): the time-dependent bike arrival and pickup rates of the station
at time t, can be learned from historical data.

Let Q(t) be the generator matrix of the CTMC at time t

Pr(y | x , t, h) = exp

(∫ h

0
Q(t + s)ds

)
x ,y
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Markov Queueing Model cont.

The Markov queueing model assumes the state of a particular station does
not depend on the state of the others, thus stations can be modelled in
isolation.

This assumption is generally not true in practice. For example, when a
station is empty, no bikes can depart from it, therefore the arrival rate at
other stations should be reduced.

A more realistic model should also capture the journey dynamics between
stations.

Hence, we propose a time-inhomogeneous Population CTMC model, which
captures the journey dynamics between stations.
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Time-inhomogeneous PCTMC

A stochastic process which can be expressed as a tuple P = (X, T , x0):

X = (x1, ..., xn) ∈ Zn
≥0 is an integer vector with the ith (1 ≤ i ≤ n)

component representing the current population of an agent type Si .

T = {τ1, ..., τm} is the set of transitions, of the form
τ = (rτ (X, t),dτ ), where:

1 rτ (X, t) ∈ R ≥ 0 is the time-dependent rate function.

2 dτ ∈ Zn is the update vector.

x0 ∈ Zn
≥0 is the initial state of the model.
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Moment approximation for PCTMCs

Transition rules can be expressed in the chemical reaction style, as

`1S1 + . . .+ `nSn −→τ `nS1 + . . .+ `nSn at rate rτ (X, t)

where the net change on the population of agent type Si due to transition
τ is given by d i

τ = `i − `i (1 ≤ i ≤ n).

The evolution of population moments of an arbitrary PCTMC model can
be approximated by the following system of ODEs

d

dt
E[M(X)] =

∑
τ∈T

E[(M(X + dτ )−M(X))rτ (X, t)]

where M(X) denotes the moment to be calculated.
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Moment Equations for PCTMCs

Replacing M(X) with xi , x
2
i , xixj , we get the moment equations for the

first moment, second moment and second-order joint moment:

d

dt
E[xi ] =

∑
τ∈T

d i
τE[rτ ]

d

dt
E[xi

2] = 2
∑
τ∈T

d i
τE[xi × rτ ] +

∑
τ∈T

d i
τ

2E[rτ ]

d

dt
E[xixj ] =

∑
τ∈T

d i
τE[xj × rτ ] +

∑
τ∈T

d j
τE[xi × rτ ] +

∑
τ∈T

d i
τ × d j

τE[rτ ]

The system of ODEs can be solved rather efficiently by numerical
simulation if the system is closed, otherwise moment-closure techniques
need to be applied to close the system before solving the ODEs.
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Model BSS as PCTMC

NB: Journey durations are fitted by Erlang distributions.

A naive PCTMC model for a BSS consisting of N stations:

∀i , j ∈ (1,N)

Bikei −→ Sloti + Journey ij @P1 at µi (t)pij (t)

Journey ij @Pl −→ Journey ij @Pl+1 at (P i
j /d

i
j ) #(Journey ij @Pl)

l ≥ 1 ∧ l < P i
j

Journey ij @PP i
j

+ Slotj −→ Bikej at (P i
j /d

i
j ) #(Journey ij @PP i

j
)

Journey ij @Pl : a bike agent which is currently on a journey from station i

to station j at phase l , 1 ≤ l ≤ P i
j .

Hillston et al. (University of Edinburgh) Moment analysis, model reduction and the London Bike Sharing Scheme



The Naive PCTMC model for BSS
Problems

∀i , j ∈ (1,N)

Bikei −→ Sloti + Journey ij @P1 at µi (t)pij (t)

Journey ij @Pl −→ Journey ij @Pl+1 at (P i
j /d

i
j ) #(Journey ij @Pl)

l ≥ 1 ∧ l < P i
j

Journey ij @PP i
j

+ Slotj −→ Bikej at (P i
j /d

i
j ) #(Journey ij @PP i

j
)

N is usually very large, derived system of ODEs are infeasible to solve.

Only make prediction for a single target station at a time.

Prune the PCTMC to a reduced one in which only stations with significant
journey flows to the target station are modelled explicitly.
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Prune PCTMC for BSS
general idea

Use contribution coefficient Cij to quantify the contribution of station
j to the journey flows to station i .

Regard station j as significant with respect to station i if the
contribution coefficient Cij is above a specific threshold.

Only model those significant stations explicitly in the reduced
PCTMC.
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Direct contribution coefficient

Contribution on journey flows of one station to another can be both direct
and indirect.

The definition of a direct contribution coefficient at time t is given by the
following simple formula:

cij(t) = λji (t)/λi (t)

λji (t): the bike arrival rate from station j to station i at time t.

λi (t) =
∑

j λ
j
i (t).
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Directed Contribution Graph

For an arbitrary time t, the directed contribution graph for a bike-sharing
system at time t is a graph in which nodes represent the stations in the
system, and there is a weighted directed edge from node i to node j if
cij > 0.
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Indirect contribution coefficient

Indirect contribution coefficient is quantified by a path dependent
coefficient cij ,γ , which is the product of the direct contribution coefficients
along an acyclic path γ from node i to node j :

cij ,γ =
∏
kl∈γ

ckl

The contribution coefficient of station j to station i is characterized by the
maximum of the path dependent coefficients:

Cij =

{
maxall paths γ cij ,γ if there exists a path from node i to node j

0, otherwise
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Derive significant station set

Given a target station v , then for i ∈ (1, 2, . . . ,N), we can infer:

i ∈ Θ(v) if Cvi > θ

i /∈ Θ(v) if Cvi ≤ θ

Θ(v): the set of bike stations in which all stations have a significant
contribution to the journey flows to a given target station v for bike
availability prediction.

θ ∈ (0, 1): a threshold value which can be used to control the extent of
model reduction. On average, more than 96% stations can be excluded if
θ is set to value 0.01 for London BSS.
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Derive significant stations set
cont.

Suppose θ = 0.2
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Derive significant stations set
cont.

Suppose θ = 0.2
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Derive significant stations set
cont.

Suppose θ = 0.2
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Derive significant stations set
cont.

Input: a target station v , current time t and prediction horizon h.

Output: Θ(v) = Θ(v , s1) ∪Θ(v , s2) ∪ . . . ∪Θ(v , sn) ∪ v .

(s1, s2, . . . , sn): the minimal set of time slots which covers [t, t + h].

Θ(v , si ): the set of significant stations for the target station in time slot si .
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The reduced PCTMC for BSS

Bikei −→ Sloti at µi (t)
( ∑

j /∈Θ(v)∨cji≤θ

pij (t)
)

∀i ∈ Θ(v)

Sloti −→ Bikei at
∑

j /∈Θ(v)∨cij≤θ

λji (t) ∀i ∈ Θ(v)

Hillston et al. (University of Edinburgh) Moment analysis, model reduction and the London Bike Sharing Scheme



The reduced PCTMC for BSS
cont.

Bikei −→ Sloti + Journey ij @P1 at µi (t)pij (t) ∀i , j ∈ Θ(v) ∧ cji > θ

Journey ij @Pl −→ Journey ij @Pl+1 at (P i
j /d

i
j ) #(Journey ij @Pl)

l ≥ 1 ∧ l < P i
j , ∀i , j ∈ Θ(v) ∧ cji > θ

Slotj + Journey ij @PP i
j
−→ Bikej at (P i

j /d
i
j ) #(Journey ij @PP i

j
)

∀i , j ∈ Θ(v) ∧ cji > θ

Journey ij @PP i
j
−→ ∅ at 1

(
Slotj(t) = 0

)
(P i

j /d
i
j ) #(Journey ij @PP i

j
)

∀i , j ∈ Θ(v) ∧ cji > θ
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Specify the initial state of the reduced PCTMC

Given a snapshot of the bike-sharing system at a time instant t which
contains the following information:

Bikei (t), . . . ,Sloti (t), . . . , Journey i (t,∆t), . . .

Let
Journey i (t,∆t) = Journey ij (t,∆t)

if

α ≥
j−1∑
k=0

pik(t −∆t) and α <

j∑
k=0

pik(t −∆t).

α is a random number uniformly distributed in (0, 1).
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Specify the initial state of the reduced PCTMC

Given a snapshot of the bike-sharing system at a time instant t which
contains the following information:

Bikei (t), . . . ,Sloti (t), . . . , Journey i (t,∆t), . . .

Let
Journey ij (t,∆t) = Journey ij @Pl

if
∆t ≥ (l − 1)d i

j /P
i
j and ∆t < l × d i

j /P
i
j ,

where l ≤ P i
j . Otherwise, if l > P i

j , we let

Journey ij (t,∆t) = Journey ij @PP i
j

.
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From Moments to Probability Distribution

By solving the system of moment ODEs of the reduced PCTMC for BSS,
we obtain the first m moments of the number of available bikes Xv in the
target station: (u1, u2, . . . , um)

Our goal is to is to reveal the full probability distribution of Xv .

The corresponding distribution is generally not uniquely determined.

Hence, to select a particular distribution, we apply the maximum entropy
principle to minimize the amount of bias in the reconstruction process.
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Probability Distribution Reconstruction
Maximum Entropy Approach

Let G be the set of all possible probability distributions for Xv , we select a
distribution g which maximizes the entropy H(g) over all distributions in
G:

arg max
g∈G

H(g) = arg max
g∈G

(
−

kv∑
x=0

g(x) ln g(x)
)

s.t.
kv∑
x=0

xng(x) = un, n = 0, 1, . . . ,m

where u0 = 1

This is a constrained optimization problem.
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Probability Distribution Reconstruction
Maximum Entropy Approach cont.

Introduce one Lagrange multiplier λn per moment constraint, we seek the
extrema of the Lagrangian functional:

L(g , λ) = −
kv∑
x=0

g(x) ln g(x)−
m∑

n=0

λn
( kv∑
x=0

xng(x)− un
)

Functional variation with respect to g(x) yields:

∂L

∂g(x)
= 0 =⇒ g(x) = exp

(
− 1− λ0 −

m∑
n=1

λnx
n

)

Substitute g(x) back into the Lagrangian, the problem is transformed into an
unconstrained minimization problem with respect to variables λ1, λ2, . . . , λn:

arg min Γ(λ1, λ2, . . . , λn) = ln
kv∑
x=0

exp

(
−

m∑
n=1

λnx
n

)
+

m∑
n=1

λnu
n
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Probability Distribution Reconstruction
Maximum Entropy Approach cont.

Γ(λ1, λ2, . . . , λn) is a convex function, thus there exists a unique solution
to minimize Γ.

No analytical solution, but a close approximation (λ∗1, λ
∗
2, . . . , λ

∗
n) can be

found through gradient descent, and we can finally predict

Pr
(
Xv = x

)
=

exp

(
−
∑m

n=1 λ
∗
nx

n

)
∑kv

i=0 exp

(
−
∑m

n=1 λ
∗
ni

n

) , ∀x ∈ (1, 2, . . . , kv )
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Experiments

We use the historic journey data and bike availability data from January
2015 to March 2015 from the London Santander Cycles Hire scheme to
train our PCTMC model as well as the Markov queueing model, and the
data in April 2015 to test their prediction accuracy.

For parameter estimation, we split a day into slots of 20 minute duration.

Prediction Horizon is set to 10 minutes for short range prediction and 40
minutes for long range prediction.
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Evaluation
Root Mean Square Error

Given a vector x of predictions and y of observations, with A the set of
prediction/observation pairs, the RMSE is defined as√

1

|A|
∑
i∈A

(xi − yi )2

The calculated RMSE on the prediction of the number of available bikes:

10min 40min

Markov queueing model 1.52 3.03

PCTMC with θ = 0.03 1.49 2.81 m = 1, 2, 3

PCTMC with θ = 0.02 1.49 2.81 m = 1, 2, 3

PCTMC with θ = 0.01 1.48 2.79 m = 1, 2, 3
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Evaluation
A proper evaluation rule for trip feasibility predictions

RMSE works for point predictions.

Not suitable for evaluating trip feasibility predictions.

A proper score rule proposed by Gast et al. to evaluate trip feasibility predictions:

Score =


1 if Pr(Xv > 0) > 0.8 ∧ xv > 0

−4 if Pr(Xv > 0) > 0.8 ∧ xv = 0

1 if Pr(Xv > 0) < 0.8 ∧ xv = 0

− 1
4 if Pr(Xv > 0) < 0.8 ∧ xv > 0

Includes a penalty of 4 for incorrectly recommending to go when there is no bike

available, a penalty of 1
4 for incorrectly recommending not to go when there is a

bike available
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Evaluation
Average score of making a recommendation to “Will there be a bike?” query

10min 40min

Markov queueing model 0.90± 0.05 0.87± 0.06

PCTMC with θ = 0.03
0.91± 0.04 0.89± 0.05 m = 2

0.92± 0.04 0.91± 0.04 m = 3

PCTMC with θ = 0.02
0.91± 0.04 0.89± 0.05 m = 2

0.92± 0.04 0.91± 0.04 m = 3

PCTMC with θ = 0.01
0.92± 0.04 0.89± 0.05 m = 2

0.93± 0.04 0.91± 0.04 m = 3
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Evaluation
Average score of making a recommendation to the “Will there be a slot?” query

10min 40min

Markov queueing model 0.91± 0.04 0.88± 0.05

PCTMC with θ = 0.03
0.91± 0.04 0.9± 0.05 m = 2

0.92± 0.04 0.91± 0.04 m = 3

PCTMC with θ = 0.02
0.91± 0.04 0.9± 0.05 m = 2

0.92± 0.04 0.91± 0.04 m = 3

PCTMC with θ = 0.01
0.92± 0.04 0.91± 0.05 m = 2

0.93± 0.04 0.92± 0.04 m = 3
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Evaluation
Time cost to make a prediction

10min 40min

PCTMC with θ = 0.03

1.76± 0.2ms 6.98± 0.77ms m = 1

103± 13.7ms 328± 43ms m = 2

2.2± 0.2sec 8.9± 0.83sec m = 3

PCTMC with θ = 0.02

4.25± 0.4ms 15.72± 1.42ms m = 1

251± 25.5ms 1.1± 0.1sec m = 2

8.9± 1.2sec 37± 3.5sec m = 3

PCTMC with θ = 0.01

13.5± 0.9ms 49.1± 3.92ms m = 1

8.8± 1.1sec 30.1± 0.31sec m = 2

33.9± 5.4sec 157± 17.8sec m = 3
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Conclusion and future work

Using a moment-based approach to make prediction of bike
availability capturing significant journey dynamics between stations
can achieve better accuracy, compared with Markov queueing model
which analyses stations in isolation.

The moment-based approach is suitable for real time application.

Future work: explore the impact of neighbouring stations, and extend
our model to capture their effects.
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