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The Informatic Environment

Robin Milner coined the term of informatics environment, in which
pervasive computing elements are embedded in the human
environment, invisibly providing services and responding to
requirements.

Such systems underpin the current trend towards smart cities.

These systems are developed on the basis that information flows
within the system, from the users to the service provider and from
the service provider to the user, creating a dynamic ecosystem.
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Quantitative Modelling

The pervasive and embedded nature of the informatics
environment means it is imperative that we are able to reason
about their behaviour before deployment.

Performance modelling aims to construct models of the dynamic
behaviour of systems in order to support the fair and efficient
sharing of resources.

Markovian-based discrete event models have been applied to
computer systems since the mid-1960s and communication systems
since the early 20th century.
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Performance Modelling: Motivation

Capacity planning

How many buses do I need
to maintain service at peak
time in a smart urban
transport system?
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Performance Modelling: Motivation

System Configuration

What capacity do I need at
bike stations to minimise the
movement of bikes by truck?



Introduction Quantitative Analysis BICT 2017

Performance Modelling: Motivation

System Tuning

What strategy can I use to
maintain supply-demand
balance within a smart
electricity grid?
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Performance Modelling

The size and complexity of real systems makes the direct
construction of discrete state models costly and error-prone.

Instead models are constructed using formal modelling techniques
enhanced with information about timing and probability, such as
stochastic Petri nets and stochastic process algebras.

From these high-level system descriptions the underlying
mathematical model (Continuous Time Markov Chain (CTMC))
can be automatically generated.
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Stochastic Process Algebra

Stochastic process algebras are simple system description
languages where the focus is on components that engage in
activities.

Activities have a name and a stochastic rate and a small set
of language constructs determine which activities are possible
in each state.

Every expression in the language can be used to generate a
CTMC for quantitative analysis.

Process algebra
model

Labelled transition
system

-
SOS rules

CTMC Q

J.Hillston, A Compositional Approach to Performance Modelling, CUP, 1995
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Collective Systems

We are surrounded by examples of collective systems:

Most of these systems are also adaptive to their environment
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Collective Adaptive Systems

From a computer science perspective these systems can be viewed
as being made up of a large number of interacting entities.

Each entity may have its own properties, objectives and actions.

At the system level these combine to create collective behaviour.
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Collective Adaptive Systems

The behaviour of the system is thus dependent on the behaviour of
the individual entities.

And the behaviour of the individuals will be influenced by the state
of the overall system, leading to autonomous adaptation.



Introduction Collective Adaptive Systems BICT 2017

Collective Adaptive Systems

The behaviour of the system is thus dependent on the behaviour of
the individual entities.

And the behaviour of the individuals will be influenced by the state
of the overall system, leading to autonomous adaptation.



Introduction Collective Adaptive Systems BICT 2017

Collective Adaptive Systems

The behaviour of the system is thus dependent on the behaviour of
the individual entities.

And the behaviour of the individuals will be influenced by the state
of the overall system, leading to autonomous adaptation.



Introduction Collective Adaptive Systems BICT 2017

Bio-inspiration

What can we learn from the way that the CAS in nature have been
modelled to understand their behaviour, in order to build formal
modelling frameworks for engineered CAS that allow us to reason
about their behaviour before they are deployed?
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Solving discrete state models

Under the SOS semantics a
SPA model is mapped to a
CTMC with global states
determined by the local states
of all the participating
components.
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Solving discrete state models

When the size of the state
space is not too large they are
amenable to numerical solution
(linear algebra) to determine a
steady state or transient
probability distribution.

Q =


q1,1 q1,2 · · · q1,N

q2,1 q2,2 · · · q2,N

...
...

...
qN,1 qN,2 · · · qN,N



π(t) = (π1(t), π2(t), . . . , πN(t))

π(∞)Q = 0
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Solving discrete state models

Alternatively they may be
studied using stochastic
simulation. Each run generates
a single trajectory through the
state space. Many runs are
needed in order to obtain
average behaviours.
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State space explosion

As the size of the state space becomes large it becomes infeasible
to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.
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Modelling collective behaviour

A key feature of collective systems is the existence of
populations of entities who share certain characteristics.

In disciplines such as ecology and cellular biology, large scale
discrete systems are routines treated as if they were
continuous.

For example, in protein interactions concentrations are
modelled rather than counts of molecules; in SIR models the
proportion of the population that are infected, is modelled
rather than numbers of individuals.

Whilst this shift from discrete to continuous is often made
informally, it can have a sound mathematical basis.

T.G.Kurtz, Approximation of Population Processes, SIAM 1981
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The Fluid Approximation Alternative

Analogously in the formal setting, we can shift attention from the

individual entities to the populations, and then consider the average

behaviour within a population.

Ceasing to distinguish between instances of components we form an

aggregation or counting abstraction to reduce the state space.

We no longer regard the components as individuals, instead focussing on

the proportion of the population exhibiting certain behaviours.

Furthermore we make a continuous or fluid approximation of how the

proportions vary over time.

M.Tribastone, S.Gilmore and J.Hillston. Scalable Differential Analysis of Process Algebra Models. IEEE TSE 2012.
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Illustrative trajectories
Limit fluid ODE and single stochastic trajectory of a network epidemics example for
N = 100
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Limit fluid ODE and single stochastic trajectory of a network epidemics example for
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Challenges for modelling CAS

The work over the last decade demonstrates a solid basic
framework for modelling systems with collective behaviour but
there remain a number of challenges:

Richer forms of interaction

The influence of space on behaviour

Capturing adaptivity
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Interaction patterns in CAS

Typically, CAS exhibit two kinds of interaction pattern:

1 Spreading: one agent spreads relevant information to a given
group of other agents

2 Collecting: one agent changes its behaviour according to
data collected from one agent belonging to a given group of
agents.

Spreading: 1-to-many

Collecting: 1-to-1
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Modelling space

Location and movement play an important role within many CAS,
especially smart cities.

We can encode space into the behaviour of the actions of
components (e.g. using different names in different locations) and
so distinguishing the same component in different locations, but
this only captures space implicitly.

It would be preferable to model space explicitly but this poses
significant challenges both for model expression and model
solution.

Moreover this is difficult for scalable analysis which is often based
on an assumption that all components are co-located.
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Capturing adaptivity

Existing process algebras, tend to work with a fixed set of actions
for each entity type.

Some stochastic process algebras allow the rate of activity to be
dependent on the state of the system.

But for truly adaptive systems there should also be some way to
identify the goal or objective of entity in addition to its behaviour.
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A new language for CAS

carma (Collective Adaptive Resource-sharing Markovian Agents),
is a new language stochastic process algebra-based language for
CAS which handles:

1 The behaviours of agents and their interactions;

2 The global knowledge of the system and that of its agents;

3 The environment where agents operate. . .

taking into account open ended-ness and adaptation;

taking into account resources, locations and
visibility/reachability issues.

M.Loreti et al. CARMA: Collective Adaptive Resource-sharing Markovian Agents. QAPL 2015.
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CAS: Carma perspective

Collective

Environment Attributes

Processes are referenced via their attributes.
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Components

Agents in Carma are defined as components C of the form (P, γ)
where. . .

P is a process, representing agent behaviour;

γ is a store, modelling agent knowledge.

The participants of an interaction are identified via predicates. . .

the counterpart of a communication is selected according its
properties

both sender and receiver can filter messages using predicates,
choosing who they are willing to communicate with
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Interaction primitives

We term this attribute based communication and we support
several forms:. . .

Broadcast output: a message is sent to all the components
satisfying a predicate π;

Broadcast input: a process is willing to receive a broadcast
message from a component satisfying a predicate π;

Unicast output: a message is sent to one of the components
satisfying a predicate π;

Unicast input: a process is willing to receive a message from
a component satisfying a predicate π.

The execution of an action takes an exponentially distributed time;
the rate of each action is determined by the environment.
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Interaction primitives
Syntax

act ::= α?[π]〈−→e 〉σ Broadcast output

| α?[π](−→x )σ Broadcast input

| α[π]〈−→e 〉σ Unicast output

| α[π](−→x )σ Unicast input

α is an action type;

π is a predicate;

σ is the effect of the action on the store.
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Updating the store

After the execution of an action, a process can update the
component store:

updates are instantaneous

σ is a function mapping attribute γ to a probability
distribution over possible values (the deterministic distribution
in most cases)

move?[π]〈v〉{x := x + U(−1,+1)}
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More on synchronisation

Predicates regulating broadcast/unicast inputs can refer also to the
received values.

Example:

A value greater than 0 is expected from a component with a
trust level less than 3:

α?[(x > 0) ∧ (trust level < 3)](x)σ.P
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Examples of interactions. . .

Broadcast synchronisation:

( stop?[bl < 5%]〈v〉σ1.P , {role = “master”}) ‖
( stop?[role = “master”](x)σ2 .Q1 , {bl = 4%}) ‖

( stop?[role = “super”](x)σ3.Q2 , {bl = 2%}) ‖
( stop?[>](x)σ4.Q3 , {bl = 2%})

⇓

(P, σ1({role = “master”})) ‖
(Q1[v/x ], σ2({bl = 4%})) ‖

(stop?[role = “super”](x)σ3.Q2, {bl = 2%}) ‖
(Q3[v/x ], σ4({bl = 2%}))
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(stop?[>](x)σ4.Q3, {bl = 25%})

⇓

(P, σ1({role = “master”})) ‖
(stop?[role = “master”](x)σ2.Q1, {bl = 45%}) ‖

(stop?[role = “super”](x)σ3.Q2, {bl = 2%}) ‖
(stop?[>](x)σ4.Q3, {bl = 25%})
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Examples of interactions. . .

Unicast synchronisation:

(stop[bl < 5%]〈•〉σ1.P, {role = “master”}) ‖
(stop[role = “master”](x)σ2.Q1, {bl = 4%}) ‖

(stop[role = “super”](x)σ3.Q2, {bl = 2%}) ‖
(stop[>](x)σ4.Q3, {bl = 2%})

⇓

(P, σ1({role = “master”})) ‖
(stop[role = “master”](x)σ2.Q1, {bl = 4%}) ‖

(stop[role = “super”](x)σ3.Q2, {bl = 2%}) ‖
(Q3, σ4({bl = 2%}))
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Modelling the environment

Interactions between components can be affected by the
environment:

a wall can inhibit wireless interactions;

two components are too distant to interact;

. . .

The environment. . .

is used to model the intrinsic rules that govern the physical
context;

consists of a pair (γ, ρ):

a global store γ, that models the overall state of the system;

an evolution rule ρ that regulates component interactions
(receiving probabilities, action rates,. . . ).
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Example: Smart Taxi System

System description:

We consider a set of taxis operating in a city, providing service
to users;

Both taxis and users are modelled as components.

The city is subdivided into a number of patches arranged in a
grid over the geography of the city.

The users arrive randomly in different patches, at a rate that
depends on the specific time of day.

After arrival, a user makes a call for a taxi and then waits in
that patch until they successfully engage a taxi and move to
another randomly chosen patch.

Unengaged taxis move about the city, influenced by the calls
made by users.

J.Hillston and M.Loreti. Specification and analysis of open-ended systems with Carma. In LNCS 9068, 2015.
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Taxis and Users: stores

Components use the local store to capture the relevant data that
will be used to represent the state of the agent.

Taxis

loc: identifies current taxi location;

occupancy : ranging in {0, 1} describes if a taxi is free
(occupancy = 0) or engaged (occupancy = 1);

dest: if occupied, this attribute indicates the destination of
the taxi journey.

Users

loc: identifies user location;

dest: indicates user destination.
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User processes

Users

process User =
Wait : call?[>]〈my.loc.x ,my.loc.y〉.Wait

+
take[loc.x == my.loc.x ∧ loc.y == my.loc.y ]

〈my.dest.x ,my.dest.y〉.kill
endprocess
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Taxi processes

Taxis

process Taxi =
F : call?[(my.loc.x 6= posx) ∧ my.loc.y 6= posy](posx , posy)

{dest := [x := posx , y := posy ]}.G
+
take[>](posx , posy)

{dest := [x := posx , y := posy ], occupancy := 1}.G
G : move?[⊥]〈◦〉

{loc := dest, dest := [x := 3, y := 3], occupancy := 0}.F
endprocess
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Modelling arrivals

The Arrivals process has a single attribute loc.

Arrivals process for users

process Arrivals =
A : arrival?[⊥]〈◦〉.A

endprocess

This process is executed in a separated component where attribute
loc indicates the location where the user arrives.
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The Environment: the evolution rule ρ

ρ is a function, dependent on current time, the global store and
the current state of the collective, returns a tuple of functions
ε = 〈µp, µw , µr , µu〉 known as the evaluation context

µp(γs , γr , α): the probability that a component with store γr
can receive a broadcast message α from a component with
store γs ;

µw (γs , γr , α): the weight to be used to compute the
probability that a component with store γr can receive a
unicast message α from a component with store γs ;

µr (γs , α) computes the execution rate of action α executed at
a component with store γs ;

µu(γs , α) determines the updates on the environment (global
store and collective) induced by the execution of action α at a
component with store γs .
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Evolution rule: µp

Defining the probabilities of broadcast actions

prob{
>, call? : global.plost

default 1
}

call? can be missed with a probability plost defined in the
global store.

All the other interactions occur with probability 1.
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Evolution rule: µw

Defining the weights of unicast actions

prob{
>, take : Takeprob(real(#{Taxi [F ] |

(my.loc.x == sender.loc.x) ∧
(my.loc.y == sender.loc.y)}));

}

Each taxi receives a user request (take) with a weight that
depends on the number of taxis in the patch.
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Evolution rule: µr

Defining the rates of actions

rate{
>, take : global.rt

>, call? : global.rc

>,move? : Mtime(now, sender.loc, sender.dest, 6)
>, arrival? : Atime(now, sender.loc, 1)
default 0

}

While take and call have constant rates, the rates of the actions
move and arrival are functions that depend on time, reflecting
shifting traffic patterns within the city over the course of a day.
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Evolution rule: µu

In the taxi example, the arrival of a new user is achieved via the
update rule:

Update rule

update{
>, arrival? : new User(sender.loc,DestLoc(now, sender.loc),Wait) {loc = sender.loc, dest = destLoc(now, sender.loc))

}
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Measures

To extract data from a system, a Carma specifications also
contains a set of measures.

The number of waiting users at a location

measure WaitingUser00[i := 0] = #{User[Wait] |
my.loc.x == 0 ∧ my.loc.y == 0};

The number of taxis relocating

measure Taxi Relocating[i := 1] = #{Taxi[G ] | my.occupancy == 0};
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Two Scenarios

We consider a grid of 3× 3 patches, i.e., a set of locations (i , j)
where 0 ≤ i , j ≤ 2, and two different scenarios:

Scenario 1: Users arrive in all the patches at the same rate;

Scenario 2: At the beginning users arrive with a higher
probability to the patches at the border of the grid;
subsequently, users arrive with higher probability in
the centre of the grid.

These are investigated by placing the same collective in different
environments.
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Smart Taxi System Collective

collective {
new : Arrival(0 : 2, 0 : 2);
new Taxi(0 : 2, 0 : 2, 3, 3, 0,F );

}
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Quantitative Analysis

The semantics of carma gives rise to a Continuous Time Markov
Chain (CTMC).

This can be analysed by

by numerical analysis of the CTMC for small systems;

by stochastic simulation of the CTMC;

by fluid approximation of the CTMC under certain restrictions
(particularly on the environment).

Here we show the results of stochastic simulation.



CARMA Smart Taxi System Example BICT 2017

Quantitative Analysis

The semantics of carma gives rise to a Continuous Time Markov
Chain (CTMC).

This can be analysed by

by numerical analysis of the CTMC for small systems;

by stochastic simulation of the CTMC;

by fluid approximation of the CTMC under certain restrictions
(particularly on the environment).

Here we show the results of stochastic simulation.



CARMA Smart Taxi System Example BICT 2017

Scenario 1 results
Average number of users waiting at (1, 1) and (0, 0)
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Scenario 1 results
Proportion of free taxis at (1, 1) and (0, 0) and in transit
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Comments: Scenario 1

In Scenario 1 after an initial startup period, around 2.5 users
are waiting for a taxi in the peripheral location while only 1.5
users are waiting for a taxi in location (1, 1).

In this scenario a larger fraction of users are delivered to
location (1, 1) so soon a larger fraction of taxis are available
to collect users at the centre.

A large fraction of taxis (around 50%) are continually moving
between the different patches.
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Scenario 2 results
Average number of users waiting at (1, 1) and (0, 0)
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Scenario 2 results
Proportion of free taxis at (1, 1) and (0, 0) and in transit
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Comments: Scenario 2

In Scenario 2 the location of new arrivals depends on the
current time:

[0, 200): 3/4 of users arrive on the border and only 1/4 in
the centre;

[200, 400): 1/4 of users arrive on the border and 3/4 in the
centre.

Results in the first phase are similar to Scenario 1.

After time 200, the number of users waiting for a taxi in the
border decreases below 1 whilst the average waiting for a taxi
in the centre increases to just over 1 and the fraction of taxis
continually moving is reduced to 20%.
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Concluding remarks

Collective Systems are an interesting and challenging class of
systems to design and construct.

Their role within infrastructure, such as within smart cities,
make it essential that quantitive aspects of behaviour is taken
into consideration, as well as functional correctness.

The complexity of these systems poses challenges both for
model construction and model analysis.

carma aims to address many of these challenges, supporting
rich forms of interaction, using attributes to capture explicit
locations and the environment to allow adaptivity.

Fluid approximation based analysis offers hope for scalable
quantitative analysis techniques, but further work is needed to
make this applicable to a wider class of CAS.
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