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The Discrete World View

As computer scientists we generally take a discrete view of the
world.

This is particularly true when we want to reason about the
behaviour of systems, as most formalisms are built upon notions of
states and transitions.

Various formalisms have been designed for capturing such
behaviour.
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Process Algebra

Models consist of agents which engage in actions.
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The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

Process algebra
model

Labelled transition
system

-
SOS rules
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Quantitative Modelling

Performance modelling aims to construct models of the dynamic
behaviour of systems in order to support the efficient and equitable
sharing of resources. Availability and reliability modelling consider
the dynamic behaviour of systems with failures and breakdowns.

Markovian-based discrete event models have been applied to
computer systems since the mid-1960s and communication systems
since the early 20th century.

Originally queueing networks were primarily used to construct
models, and sophisticated analysis techniques were developed.

These techniques are no longer widely applicable for expressing the
dynamic behaviour observed in distributed systems with concurrent
behaviour.
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Formal Approaches to Quantitative Modelling

The size and complexity of real systems makes the direct
construction of discrete state models costly and error-prone.

For the last three decades there has been substantial interest in
applying formal modelling techniques enhanced with information
about timing and probability.

From these high-level system descriptions the underlying
mathematical model (Continuous Time Markov Chain (CTMC))
can be automatically generated.

Primary examples include:

Stochastic Petri Nets and

Stochastic/Markovian Process Algebras.
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Stochastic Process Algebra

Models are constructed from components which engage in
activities.
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Integrated analysis

Qualitative verification can now be complemented by quantitative
verification.

Reachability analysisModel checking

How long will it take
for the system to arrive

in a particular state?
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Solving discrete state models

Under the SOS semantics a
SPA model is mapped to a
CTMC with global states
determined by the local states
of all the participating
components.
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Solving discrete state models

When the size of the state
space is not too large they are
amenable to numerical solution
(linear algebra) to determine a
steady state or transient
probability distribution.

Q =


q1,1 q1,2 · · · q1,N

q2,1 q2,2 · · · q2,N

...
...

...
qN,1 qN,2 · · · qN,N



π(t) = (π1(t), π2(t), . . . , πN (t))

π(∞)Q = 0
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Solving discrete state models

Alternatively they may be
studied using stochastic
simulation. Each run generates
a single trajectory through the
state space. Many runs are
needed in order to obtain
average behaviours.
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State space explosion

As the size of the state space becomes large it becomes infeasible
to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.
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The Fluid Approximation Alternative

Fortunately there is an alternative: fluid approximation.

For a large class of models, just as the size of the state space
becomes unmanageable, the models become amenable to an
efficient, scale-free approximation.

These are models which consist of populations.
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Identity and Individuality

Population systems are constructed from many instances of a set
of components.

If we cease to distinguish between instances of components we can
form an aggregation or counting abstraction to reduce the state
space.
We may choose to disregard the identity of components.

Even better reductions can be achieved when we no longer regard
the components as individuals.
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Population models

A shift in perspective allows us to model the interactions between
individual components but then only consider the system as a
whole as an interaction of populations.

This allows us to model much larger systems than previously
possible but in making the shift we are no longer able to collect
any information about individuals in the system.

To characterise the behaviour of a population we calculate the
proportion of individuals within the population that are exhibiting
certain behaviours rather than tracking individuals directly.

Furthermore we make a continuous approximation of how the
proportions vary over time.
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Continuous Approximation

Although in reality all state transitions are discrete, we can see
that as the size of the population grows, the impact of each state
change becomes smaller, and the error introduced by continuous
approximation decreases.
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Pragmatism and Expediency

Through pragmatism and expediency the representation of
inherently discrete systems by collections of ordinary differential
equations has been adopted in many areas of science, e.g. cell
biology, ecology and epidemiology.

ODEs may be derived through heuristics, or may be the accepted
model (e.g. SIR models).

Nevertheless they may also be a fluid approximation which can be
rigorously derived as the limit of a discrete model as the size of the
population grows.
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Population models — intuition
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Y (t)
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(N)
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X(N)(t)

X
(N)
j =

N∑
i=1

1{Y (N)
i = j}

Y (t), Y
(N)
i (t) and X(N)(t) are all CTMCs;

As N increases we get a sequence of CTMCs, X(N)(t)
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Population state space

The population process X(N) = (X
(N)
1 , . . . ,X

(N)
n ) has the

dimension of the state space of Y (t).

Importantly, its dimensions are independent of N.

Essentially we are making a counting abstraction and
aggregation of the state space.

If we make the closed world assumption:
∑n

j=1 X
(N)
j = N
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Population transitions

The dynamics of the population models is expressed in terms
of a set of possible transitions, T (N).

Transitions are stochastic, and take an exponentially
distributed time to happen.

Their rate may depend on the current global state of the
system.

Each transition is specified by a rate function r
(N)
τ , and by an

update vector vτ , specifying the impact of the event on the
population vector.

The infinitesimal generator matrix Q(N) of X(N)(t) is defined
as:

qx,x′ =
∑
{rτ (x) | τ ∈ T , x′ = x + vτ}.
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Population models — summary of notation

Individuals

We have N individuals Y
(N)
i ∈ S , S = {1, 2, . . . , n} in the system

(can have multiple classes).

System variables

X
(N)
j =

∑N
i=1 1{Y

(N)
i = j}, and X(N) = (X

(N)
1 , . . . ,X

(N)
n )

Dynamics (system level)

X(N) is a CTMC with transitions τ ∈ T :

τ : X(N) to X(N) + vτ at rate r
(N)
τ (X)
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Scaling Conditions

Scaling assumptions

We have a sequence X(N) of population CTMCs.

We normalise such models, dividing variables by N:

X̂ =
X

N

occupancy measures

for each τ ∈ T (N)

the normalised update is v̂ = v/N
there is a normalised rate function r̂τ (X̂)

∀τ assume there exists a bounded and Lipschitz continuous
function fτ (X̂), the limit rate function on normalised variables,

independent of N, such that
1

N
r̂ (N)
τ (x)→ fτ (x) uniformly.
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Normalised process — intuition
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Normalised process — intuition

The whole population is represented as a single process.

Even when the number of individuals varies (N −→∞) the
processes remain comparable.
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Drift

Drift

The drift F (N)(X̂) — the mean instantaneous increment of model
variables in state X̂ — is defined as

F (N)(X̂) =
∑
τ∈T̂

1

N
vτ r̂

(N)
τ (X̂)

Limit Drift

Let fτ be the limit rate functions.

The limit drift of the model X̂ (N) is

F (X̂) =
∑
τ∈T̂

vτ fτ (X̂),

and F (N)(x)→ F (x) uniformly as N −→∞.
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Fluid ODE and Fluid approximation theorem

Fluid ODE

The fluid ODE is

dx

dt
= F (x), with x(0) = x0 ∈ S .

Since F is Lipschitz (all fτ are), this ODE has a unique solution
x(t) starting from x0.

Deterministic Approximation Theorem (Kurtz)

Assume that ∃ x0 ∈ S such that X̂(N)(0)→ x0 in probability.
Then, for any finite time horizon T <∞, it holds that as
N −→∞:

P

{
sup

0≤t≤T
||X̂(N)(t)− x(t)|| > ε

}
→ 0.

T.G.Kurtz. Solutions of ordinary differential equations as limits of pure jump Markov processes.

Journal of Applied Probability, 1970.
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Fluid Approximation ODEs

The fluid approximation ODEs can be interpreted in two different
ways:

as an approximation of the average of the system (usually a
first order approximation). This is often termed a mean field
approximation.

as an approximate description of system trajectories for large
populations.

We focus on the second interpretation — a functional version of
the Law of Large Numbers.

Instead of having a sequence of random variables, converging to a
deterministic value, here we have a sequence of CTMCs for
increasing population size, which converge to a deterministic
trajectory, the solution of the fluid ODE.



Fluid Approximation Implications CONCUR 2014

Fluid Approximation ODEs

The fluid approximation ODEs can be interpreted in two different
ways:

as an approximation of the average of the system (usually a
first order approximation). This is often termed a mean field
approximation.

as an approximate description of system trajectories for large
populations.

We focus on the second interpretation — a functional version of
the Law of Large Numbers.

Instead of having a sequence of random variables, converging to a
deterministic value, here we have a sequence of CTMCs for
increasing population size, which converge to a deterministic
trajectory, the solution of the fluid ODE.



Fluid Approximation Implications CONCUR 2014

Fluid Approximation ODEs

The fluid approximation ODEs can be interpreted in two different
ways:

as an approximation of the average of the system (usually a
first order approximation). This is often termed a mean field
approximation.

as an approximate description of system trajectories for large
populations.

We focus on the second interpretation — a functional version of
the Law of Large Numbers.

Instead of having a sequence of random variables, converging to a
deterministic value, here we have a sequence of CTMCs for
increasing population size, which converge to a deterministic
trajectory, the solution of the fluid ODE.



Fluid Approximation Implications CONCUR 2014

Fluid Approximation ODEs

The fluid approximation ODEs can be interpreted in two different
ways:

as an approximation of the average of the system (usually a
first order approximation). This is often termed a mean field
approximation.

as an approximate description of system trajectories for large
populations.

We focus on the second interpretation — a functional version of
the Law of Large Numbers.

Instead of having a sequence of random variables, converging to a
deterministic value, here we have a sequence of CTMCs for
increasing population size, which converge to a deterministic
trajectory, the solution of the fluid ODE.



Fluid Approximation Implications CONCUR 2014

Illustrative trajectories
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Implications of the Deterministic Approximation Theorem

The Theorem implies that in the limit the dynamics of a single
agent becomes independent of other agents — it will sense them
only through the collective system state, or mean field, described
by the fluid limit.

This asymptotic decoupling allows us to find a simple,
time-inhomogenous, Markov chain for the evolution of the single
agent, a result often known as fast simulation.
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Focusing on one individual

We focus on a single individual Y
(N)
h (t), a (Markov) process

on the state space S = {1, . . . , n}, conditional on the global
state of the complete population X̂(N)(t).

Rate qij (X̂) depends on the global system state and X̂(N)(t).

Its transition rates qij , are obtained projecting on a single
agent the rate of global transitions that induce a change of
state of at least one agent from i to j .

However, by the theorem, as N −→∞, the stochastic
fluctuations of X̂(N)(t) tend to vanish, and the stochastic

behaviour of Y
(N)
h (t) can be approximated by making it

dependent only on the fluid limit x(t).

Thus we construct the time-inhomogeneous CTMC z(t) with
state space S and rates qij (x(t)).
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Fast Simulation

Fast Simulation Theorem (Darling and Norris)

For any finite time horizon T <∞,

P{Y (N)
h (t) 6= z(t), for some t ≤ T} → 0, as N →∞.

R. Darling, J. Norris. Differential equation approximations for Markov chains. Probability Surveys, 2008.

This theorem states that, in the limit of an infinite population,
each agent will behave independently from all the others, sensing
only the mean state of the global system, described by the fluid
limit x(t).
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Process Algebra for Population Systems

Process algebra are well-suited for constructing models of
population systems:

Developed to represent concurrent behaviour compositionally;

Represent the interactions between individuals explicitly;

Populations are readily and rigorously identified;

Stochastic extensions allow the dynamics of system behaviour
to be captured;

Incorporate formal apparatus for reasoning about the
behaviour of systems through model checking.

The major impediment is state space explosion and fluid
approximation offers a solution to that problem.
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Fluid semantics for Stochastic Process Algebras

Incorporating fluid approximation into a formal high-level
language used for constructing CTMC models offers
quantitative scalable analysis which is immune to state space
explosion.

Indeed, accuracy increases as the size of the model grows.

Embedding the approach in a formal language offers the
possibility to establish the conditions for convergence at the
language level via the semantics,

This removes the requirement to fulfil the proof obligation on
a model-by-model basis.

Moreover the derivation of the ODEs can be automated in the
implementation of the language.
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Multiple agents

Kurtz’s Theorem is based on the notion of a single agent class —
many instances of one sequential component.

But in a process algebra model we typically work with multiple
components composed to evolve concurrently.

We construct a single agent class in the population CTMC but
partition the state space S into subsets, each of which represents
the states of a distinct component, and such that there are no
transitions between subsets.

The agents whose initial state is in each subset correspond to that
component.
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Deriving a Fluid Approximation of a SPA model

The aim is to represent the CTMC implicitly (avoiding state space
explosion), and to generate the set of ODEs which are the fluid
limit of that CTMC.

The existing SOS semantics is not suitable for this purpose
because it constructs the state space of the CTMC explicitly.

SPA
MODEL

SYMBOLIC
LABELLED

TRANSITION
SYSTEM

ABSTRACT
CTMC Q

or
ODEs FM(x)

- -
SOS rules generator

functions

Similar work has been done for WSCCS, sCCP, Stochastic CCS,
Kappa, Bio-PEPA and Grouped PEPA.
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Fluid Structured Operational Semantics

In order to get to the implicit representation of the CTMC we need
to:

1 Remove excess components to identify the counting
abstraction of the process (Context Reduction)

2 Collect the transitions of the reduced context as symbolic
updates on the state representation (Jump Multiset)

3 Calculate the rate of the transitions in terms of an arbitrary
state of the CTMC.

Once this is done we can extract the vector field FM(x) from the
jump multiset, under the assumption that the population size
tends to infinity.

M.Tribastone, S.Gilmore and J.Hillston. Scalable Differential Analysis of Process Algebra Models. IEEE TSE 2012.
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Consistency results

The vector field F(x) is Lipschitz continuous i.e. all the rate
functions governing transitions in the process algebra satisfy
local continuity conditions.

Thus the hypotheses of the Deterministic Approximation
Theorem are satisfied.

The generated ODEs are the fluid limit of the family of
CTMCs and so approximate the discrete behaviour as the size
of the system grows.

Moreover Lipschitz continuity of the vector field guarantees
existence and uniqueness of the solution to the initial value
problem.

M.Tribastone, S.Gilmore and J.Hillston. Scalable Differential Analysis of Process Algebra Models. IEEE TSE 2012.
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Quantitative properties

The derived vector field F(x), gives an approximation of the
expected count for each population over time.

This has been extended in a number of ways:

Fluid rewards which can be safely calculated from the fluid
expectation trajectories.

M.Tribastone, J.Ding, S.Gilmore and J.Hillston. Fluid Rewards for a Stochastic Process Algebra. IEEE TSE 2012.

Vector fields have been defined to approximate higher
moments.

R.A.Hayden and J.T.Bradley. A fluid analysis framework for a Markovian process algebra. TCS 2010.

Fluid approximation of passage times have been defined.

R.A.Hayden, A.Stefanek and J.T.Bradley. Fluid computation of passage-time distributions in large Markov models.

TCS 2012.
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Fluid model checking

Since the vector field records only deterministic behaviour, LTL
model checking can be used over a trace to give boolean results.
But for the systems we are interested in we would like some more
quantified answers, in the style of stochastic model checking.

Work on this is on-going but there are initial results for:

CSL properties of a single agent within a population.

L.Bortolussi and J.Hillston. Fluid model checking. CONCUR 2012.

The fraction of a population that satisfies a property
expressed as a one-clock deterministic timed automaton.

L.Bortolussi and R.Lanciani. Central Limit Approximation for Stochastic Model Checking. QEST 2013.

Model checking for PCTL single agent properties in
discrete-time, synchronous clock population processes.

D.Latella, M.Loreti and M.Massink. On-the-fly Fast Mean-Field Model-Checking. TGC 2013.
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CSL model checking of a single agent

We consider properties of a single agent within a population,
expressed in the Continuous Stochastic Logic (CSL), usually used
for model checking CTMCs, and exploit fast simulation.
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CSL model checking of a single agent

We consider properties of a single agent within a population,
expressed in the Continuous Stochastic Logic (CSL), usually used
for model checking CTMCs, and exploit fast simulation.

We consider an arbitrary member of the population.

This agent is kept discrete, making transitions between its discrete
states, but all other agents are treated as a mean-field influencing
the behaviour of this agent.
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Inhomogeneous CTMC

The transition rates within the discrete-event representation will
depend on the rest of the population.

i.e. it will depend on the vector field capturing the behaviour of the
residual population.

r1

r2

r3

r4

=⇒

f1

f2

f3

f4
Y (t) z(t)

where fi = f
( )

It is an inhomogeneous CTMC, with rates that vary with time
according to the mean field.
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CSL model checking for CTMC

Consider a CTMC with state space S and rates given by Q = Q(t).
Focus on the formula

P./p (ϕ1 U
[0,T ] ϕ2)

Time-homogeneous CTMC

We check this formula by computing, for each state s ∈ S , the
probability of paths satisfying ϕ1 U

[0,T ] ϕ2 and then comparing this
probability ./ p.

This is done via transient analysis on the chain in which ¬ϕ1 and
ϕ2 states are made absorbing.

Time-homogeneity ⇒ we can run each transient analysis from time
t0 = 0 even if we have nested until formulae.



Exploiting the results in Stochastic Model Checking CSL model checking CONCUR 2014

CSL model checking for CTMC

Consider a CTMC with state space S and rates given by Q = Q(t).
Focus on the formula

P./p (ϕ1 U
[0,T ] ϕ2)

Time-homogeneous CTMC

We check this formula by computing, for each state s ∈ S , the
probability of paths satisfying ϕ1 U

[0,T ] ϕ2 and then comparing this
probability ./ p.

This is done via transient analysis on the chain in which ¬ϕ1 and
ϕ2 states are made absorbing.

Time-homogeneity ⇒ we can run each transient analysis from time
t0 = 0 even if we have nested until formulae.



Exploiting the results in Stochastic Model Checking CSL model checking CONCUR 2014

CSL model checking for ICTMC

Again consider a CTMC with state space S and rates given by
Q = Q(t) and the formula P./p (ϕ1 U

[0,T ] ϕ2).

Time-inhomogeneous CTMC

We check this formula by computing, for each state s ∈ S , the
probability of paths satisfying ϕ1 U

[0,T ] ϕ2 and then comparing this
probability ./ p.

Again this is done via transient analysis, based on the Kolmogorov
equations, in which ¬ϕ1 and ϕ2 states are made absorbing.

But:

The truth value of ϕ in a state s depends on the time t at which
we evaluate it!

This causes problems when we consider nested until formulae.
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Again consider a CTMC with state space S and rates given by
Q = Q(t) and the formula P./p (ϕ1 U

[0,T ] ϕ2).
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We check this formula by computing, for each state s ∈ S , the
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Time-dependent truth

When computing the truth value of an until formula, we
obtain a time dependent value true(ϕ, s, t) in each state.

When we consider nested temporal operators, we need to take
this into account.

The problem is that in this case the topology of goal and
unsafe states in the CTMC can change in time.
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Time dependent truth

t0
false

true

Td

true(ϕ, s, t)

At discontinuity times, changes in topology introduce
discontinuities in the probability values.

Fortunately

Discontinuities happen at specific and fixed time instants.

We can carry out the transient solution, using Kolmogorov
equations, piecewise.

At each discontinuity event, we also have to appropriately change
the absorbing structure of the Q matrix.
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Convergence of CSL truth

Consider convergence of CSL properties: will properties that

are true in zk eventually be true in Y
(N)
k ?

Asymptotic Correctness Theorem

Let ϕ = ϕ(p) be a CSL formula, with constants
p = (p1, . . . , pk ) ∈ [0, 1]k appearing in until formulae.

Then, for p ∈ E , an open subset of [0, 1]k of measure 1, there
exists N0 such that ∀N ≥ N0

s, 0 |=
Y

(N)
k

ϕ⇔ s, 0 |=zk
ϕ.

L.Bortolussi and J.Hillston. Fluid model checking. CONCUR 2012.



Future Perspectives CONCUR 2014

Outline

1 Introduction
Discrete World
Stochastic Process Algebra
Quantitative Analysis

2 Fluid Approximation
Theoretical Foundations
Implications

3 Exploiting the results in Stochastic Process Algebra Analysis
4 Exploiting the results in Stochastic Model Checking

CSL model checking
5 Future Perspectives



Future Perspectives CONCUR 2014

Future Perspectives

Some limitations which I have included in this talk have already
been addressed:

The closed world assumption — the theory can be generalised
to apply to growing or declining populations of agents.

Finite time horizon — for models which have ergodic
behaviour, the results can be extended to consider infinite
time horizons.

On-going work is seeking to incorporate infinite time horizons into
fluid model checking to allow consideration of unbounded until
formulae.

We also aim to extend the result to consider global properties of
the system, in addition to those focussed on individual agents.
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Thanks to the other members of the QUANTICOL project

www.quanticol.eu



Future Perspectives CONCUR 2014

Thanks

Thanks to the other members of the QUANTICOL project

www.quanticol.eu


	Introduction
	Discrete World
	Stochastic Process Algebra
	Quantitative Analysis

	Fluid Approximation
	Theoretical Foundations
	Implications

	Exploiting the results in Stochastic Process Algebra Analysis
	Exploiting the results in Stochastic Model Checking
	CSL model checking

	Future Perspectives

