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The PEPA project

The PEPA project started in Edinburgh in 1991.

It was motivated by problems encountered when carrying out
performance analysis of large computer and communication
systems, based on numerical analysis of Markov chains.

Process algebras offered a compositional description technique
supported by apparatus for formal reasoning.

Performance Evaluation Process Algebra (PEPA) sought to
address these problems by the introduction of a suitable
process algebra.

We have sought to investigate and exploit the interplay
between the process algebra and the continuous time Markov
chain (CTMC)
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Performance Modelling

Performance modelling is concerned with the dynamic behaviour of
systems and quantified assessment of that behaviour.

There are often conflicting interests at play:

Users typically want to optimise external measurements of the
dynamics such as response time (as small as possible),
throughput (as high as possible) or blocking probability
(preferably zero);

In contrast, system managers may seek to optimize internal
measurements of the dynamics such as utilisation (reasonably
high, but not too high), idle time (as small as possible) or
failure rates (as low as possible).
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Does performance matter...?

There is sometimes a perception in software development that
performance does not matter much, or that it is easily fixed later
by buying a faster machine.

On the contrary — studies have shown that response time is a key
feature in user satisfaction and trust in systems.

In a study by Amazon they artificially delayed page loading times
in increments of 100 milliseconds. Even such very small delays
were observed to result in substantial and costly drops in revenue.

Gary Linden, Amazon, quoted on http://perspectives.mvdirona.com/2009/10/31/TheCostOfLatency

AOL, Bing and Google report similar findings.

http://perspectives.mvdirona.com/2009/10/31/TheCostOfLatency
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Continuous Time Markov Chains

There is a long association between queueing networks and
continuous time Markov chains (CTMCs) more generally and
performance modelling.

This dates back to Erlang’s Loss Formula for the performance of
telephone exchanges in the early 20th century.

In the 1960s and 1970s queueing networks were used extensively,
but the advent of distributed systems in the 1980s meant that
many systems no longer fit the assumptions of queueing networks.

Thus CTMC were used more directly, but the major challenge
became one of state space explosion.
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Performance Modelling using CTMC

Model Construction

describing the system using
a high level modelling formalism

generating the underlying
CTMC

Model Manipulation

model simplification

model aggregation

Model Solution

solving the CTMC to find steady
state or transient probability
distribution

deriving performance measures

MARKOV Q = 

.....
.....

.....
.....

.....

..........
.....

PROCESS

SYSTEM

DIAGRAM
TRANSITION

STATE
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Process Algebra

Models consist of agents which engage in actions.

α.P
�
��*

H
HHY

action type
or name

agent/
component

The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

Process algebra model Labelled transition system-
SOS rules
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Process algebra operators

Process algebras generally have a number of different operators for
combining actions and components, typically including:

Prefix . – designated first action;

Choice + – selection between alternative components;

Parallel composition ‖ – components working concurrently;

These operators have rules associated with them such as

P ‖ (Q ‖ R) = (P ‖ Q) ‖ R

and
P + P = P
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Bisimulation and congruence

Process algebras are usually equipped with an equivalence relation,
termed a bisimulation, meaning that one component is equivalent
to another if it can copy or simulate any action of the other
component and vice versa.

Languages are designed so that these relations are designed so that
these equivalence relations are congruences with respect to the
operators of the language.

For example, if P ∼ Q then

α.P ∼ α.Q,

P + R ∼ Q + R and

P ‖ R ∼ Q ‖ R.
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Stochastic process algebras

Stochastic process algebra

Process algebras where models are decorated with quantitative
information used to generate a stochastic process are stochastic
process algebras (SPA).
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Stochastic Process Algebra

Models are constructed from components which engage in
activities.

(α, r).P

��
�* 6 HH

HY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language is used to generate a Continuous Time Markov
Chain (CTMC) for performance modelling.

SPA
MODEL

LABELLED
MULTI-

TRANSITION
SYSTEM

CTMC Q- -
SOS rules state transition

diagram
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Performance Evaluation Process Algebra

PEPA components perform activities either independently or in
co-operation with other components.

(α, r).P Prefix
P1 + P2 Choice
P1 BC

L
P2 Co-operation

P/L Hiding
X Variable

P1 ‖ P2 is a derived form for P1 BC∅ P2.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)
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A simple example: processors and resources

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0 BC
{task1}

Res0

Proc0 BC
{task1}

Res0

?
(task1, R)

Proc1 BC
{task1}

Res1

�
�
�	

(reset, r4)
@
@
@R
(task2, r2)

Proc1 BC
{task1}

Res0

�
�
�
�
�
�
��(task2, r2)

Proc0 BC
{task1}

Res1

A
A
A
A
A
A
AK (reset, r4)

R = min(r1, r3)

Q =


−R R 0 0

0 −(r2 + r4) r4 r2
r2 0 −r2 0
r4 0 0 −r4
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Why use a process algebra?

High level description of the system eases the task of model
construction.

Formal language allows for unambiguous interpretation and
automatic translation into the underlying mathematical
structure.

Properties of that mathematical structure may be deduced by
the construction at the process algebra level.

Formal reasoning techniques such as equivalence relations and
model checking can be used to manipulate or interrogate
models.

Compositionality can be exploited both for model construction
and (in some cases) for model analysis.
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Compositionality can be exploited both for model construction
and (in some cases) for model analysis.
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Benefits of process algebra

For example,

The correspondence between the congruence, Markovian
bisimulation, in the process algebra and the lumpability
condition in the CTMC, allows exact model reduction to be
carried out compositionally.

Characterisation of product form structure at the process
algebra level allows decomposed model solution based on the
process algebra structure of the model.

Stochastic model checking based on the Continuous
Stochastic Logic (CSL) family of temporal logics allows
automatic evaluation of quantified properties of the behaviour
of the system.
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Outline

1 Introduction: Performance Modelling and Process Algebras
Performance Modelling
Stochastic Process Algebra

2 Tackling State Space Explosion
Lumpability and Bisimulation
Fluid Approximation

3 Beyond Performance Modelling
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Deriving performance measures

Under the SOS semantics a
SPA model is mapped to a
CTMC with global states
determined by the local states
of all the participating
components.
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Deriving performance measures

When the size of the state
space is not too large they are
amenable to numerical solution
(linear algebra) to determine a
steady state or transient
probability distribution.

Q =


q1,1 q1,2 · · · q1,N

q2,1 q2,2 · · · q2,N

...
...

...
qN,1 qN,2 · · · qN,N



π(t) = (π1(t), π2(t), . . . , πN(t))
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Deriving performance measures

Alternatively they may be
studied using stochastic
simulation. Each run generates
a single trajectory through the
state space. Many runs are
needed in order to obtain
average behaviours.
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State space explosion

As the size of the state space becomes large it becomes infeasible
to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.
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Model Manipulation

Model simplification: use a model-model equivalence to substitute
one model by another which is more attractive from
a solution point of view, e.g. smaller state space,
special class of model, etc.

Model aggregation: use a state-state equivalence to establish a
partition of the state space of a model, and replace
each set of states by one macro-state, i.e. take a
different stochastic representation of the same model.
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Lumpability

In the early 1960’s Kemeny and Snell established the
conditions under which it was possible to aggregate a Markov
chain and still have a Markov chain afterwards.

In particular these conditions were characterised by conditions
on the rates.

However checking the conditions typically involves
constructing the complete Markov chain first.

J.Kemeny and J.Snell. Finite Markov Chains. Van Nostrand (1960)
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Equivalence Relations

In process algebra equivalence relations are defined based on the notion
of observability:

In PEPA observation is assumed to include the ability to record timing
information over a number of runs.

The resulting equivalence relation is a bisimulation and coincides with the
Markov process notion of lumpability.

The formal definition means this can be applied automatically and

compositionally.

J.Hillston. A Compositional Approach to Performance Modelling. Cambridge University Press (1995)
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State space explosion

As the size of the state space becomes large it becomes infeasible
to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.

In these cases we would like to take advantage of the mean field or
fluid approximation techniques.

Use continuous state variables to approximate the discrete state
space and ordinary differential equations to represent the evolution
of those variables over time.

Appropriate for models in which there are large numbers of
components of the same type, i.e. models of populations and
situations of collective dynamics.
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Fluid approximation theorem

Hypothesis

X
(N)

(t): a sequence of normalized population CTMC, residing
in E ⊂ Rn

∃x0 ∈ S such that X
(N)

(0)→ x0 in probability (initial
conditions)

x(t): solution of dx
dt = F (x), x(0) = x0, residing in E .

(Density dependent CTMCs are a special case.)

Theorem

For any finite time horizon T <∞, it holds that:

P( sup
0≤t≤T

||X(N)
(t)− x(t)|| > ε)→ 0.

T.G.Kurtz. Solutions of ordinary differential equations as limits of pure jump Markov processes.

Journal of Applied Probability, 1970.
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Simple example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r1).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] BC
{task1}

Res0[NR ]
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Simple example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r1).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] BC
{task1}

Res0[NR ]

CTMC interpretation
Processors (NP ) Resources (NR ) States (2NP+NR )
1 1 4
2 1 8
2 2 16
3 2 32
3 3 64
4 3 128
4 4 256
5 4 512
5 5 1024
6 5 2048
6 6 4096
7 6 8192
7 7 16384
8 7 32768
8 8 65536
9 8 131072
9 9 262144
10 9 524288
10 10 1048576
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Simple example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r1).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] BC
{task1}

Res0[NR ]

task1 decreases Proc0 and Res0

task1 increases Proc1 and Res1

task2 decreases Proc1

task2 increases Proc0

reset decreases Res1

reset increases Res0
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Simple example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r1).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] BC
{task1}

Res0[NR ]

dx1
dt = −min(r1 x1, r3 x3) + r2 x2

x1 = no. of Proc1

task1 decreases Proc0

task1 is performed by Proc0

and Res0

task2 increases Proc0

task2 is performed by Proc1
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Simple example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r1).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] BC
{task1}

Res0[NR ]

ODE interpretation
dx1
dt = −min(r1 x1, r3 x3) + r2 x2

x1 = no. of Proc1
dx2
dt = min(r1 x1, r3 x3)− r2 x2

x2 = no. of Proc2
dx3
dt = −min(r1 x1, r3 x3) + r4 x4

x3 = no. of Res0
dx4
dt = min(r1 x1, r3 x3)− r4 x4

x4 = no. of Res1
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100 processors and 80 resources (simulation run A)
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100 processors and 80 resources (simulation run B)
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100 processors and 80 resources (simulation run C)
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100 processors and 80 resources (average of 10 runs)
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100 Processors and 80 resources (average of 100 runs)
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100 processors and 80 resources (average of 1000 runs)
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Deriving a Fluid Approximation of a PEPA model

The aim is to represent the CTMC implicitly (avoiding state space
explosion), and to generate the set of ODEs which are the fluid
limit of that CTMC.

The exisiting (CTMC) SOS semantics is not suitable for this
purpose because it constructs the state space of the CTMC
explicitly.

SPA
MODEL

SYMBOLIC
LABELLED

TRANSITION
SYSTEM

ABSTRACT
CTMC Q

or
ODEs FM(x)

- -
SOS rules generator

functions
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Fluid Structured Operational Semantics

In order to get to the implicit representation of the CTMC we need
to:

1 Context Reduction: Remove excess components to find the
abstract state representation ξ.

2 Jump Multiset: Collect the transitions α of the reduced
context in terms of update vectors l .

3 Generating Functions: Calculate the rate of the transitions in
terms of an arbitrary state of the CTMC, f (ξ, l , α).

Once this is done we can extract the vector field FM(x) from the
jump multiset.

M.Tribastone, S.Gilmore and J.Hillston. Scalable Differential Analysis of Process Algebra Models. IEEE TSE 2012.
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terms of an arbitrary state of the CTMC, f (ξ, l , α).

Once this is done we can extract the vector field FM(x) from the
jump multiset.

M.Tribastone, S.Gilmore and J.Hillston. Scalable Differential Analysis of Process Algebra Models. IEEE TSE 2012.
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Rate properties of PEPA models

Density dependence of parametric transition rates

The transition rates scale in the same way as the population,

i.e. if P
(α,r(ξ))−−−−−→∗ Q then, for any n ∈ N, r(ξ) = n · r(ξ/n)

Generating functions give rise to density dependent rates

Let M be a PEPA model with generating functions f (ξ, l , α). Then the
corresponding sequence of CTMCs will be density dependent.

Lipschitz continuity of parametric apparent rates

Let r?α (P, ξ) be the parametric apparent rate of action type α in process
P. There exists a constant L ∈ R such that for all x , y ∈ Rd , x 6= y ,

‖r?α (P, x)− r?α (P, y)‖
‖x − y‖

≤ L
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Kurtz’s Theorem

Kurtz’s Theorem for PEPA

Let x(t), 0 ≤ t ≤ T satisfy the initial value problem
dx
dt = F (x(t)), x(0) = δ, specified from a PEPA model.

Let {Xn(t)} be a family of CTMCs with parameter n ∈ N
generated as explained and let Xn(0) = n · δ. Then,

∀ε > 0 lim
n→∞

P

(
sup
t≤T
‖Xn(t)/n − x(t)‖ > ε

)
= 0.

Moreover Lipschitz continuity of the vector field guarantees
existence and uniqueness of the solution to the initial value
problem.

M.Tribastone, S.Gilmore and J.Hillston. Scalable Differential Analysis of Process Algebra Models. IEEE TSE 2012.
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Stochastic process algebras

Over the last two decades stochastic process algebras (mostly with
Markovian semantics) have been applied to a wide range of
application domains.

In some case there have been new languages developed to support
particular features of the application domain. These have included
stochastic process algebras for modelling hybrid systems, spatial
temporal systems and ecological processes.

This is most noticeable in the arena of systems biology, which is
often focussed on biomolecular processing systems, for example
Bio-PEPA.



Introduction: Performance Modelling and Process Algebras Tackling State Space Explosion Beyond Performance Modelling

Stochastic process algebras

Over the last two decades stochastic process algebras (mostly with
Markovian semantics) have been applied to a wide range of
application domains.

In some case there have been new languages developed to support
particular features of the application domain. These have included
stochastic process algebras for modelling hybrid systems, spatial
temporal systems and ecological processes.

This is most noticeable in the arena of systems biology, which is
often focussed on biomolecular processing systems, for example
Bio-PEPA.



Introduction: Performance Modelling and Process Algebras Tackling State Space Explosion Beyond Performance Modelling

Stochastic process algebras

Over the last two decades stochastic process algebras (mostly with
Markovian semantics) have been applied to a wide range of
application domains.

In some case there have been new languages developed to support
particular features of the application domain. These have included
stochastic process algebras for modelling hybrid systems, spatial
temporal systems and ecological processes.

This is most noticeable in the arena of systems biology, which is
often focussed on biomolecular processing systems, for example
Bio-PEPA.



Introduction: Performance Modelling and Process Algebras Tackling State Space Explosion Beyond Performance Modelling

Molecular processes as concurrent computations

Concurrency
Molecular
Biology

Metabolism Signal
Transduction

Concurrent
computational processes

Molecules Enzymes and
metabolites

Interacting
proteins

Synchronous communication Molecular
interaction

Binding and
catalysis

Binding and
catalysis

Transition or mobility
Biochemical
modification or
relocation

Metabolite
synthesis

Protein binding,
modification or
sequestration

A. Regev and E. Shapiro Cells as computation, Nature 419, 2002.
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Bio-PEPA modelling

The state of the system at any time consists of the local
states of each of its sequential/species components.

The local states of components are quantitative rather than
functional, i.e. biological changes to species are represented as
distinct components.

A component varying its state corresponds to it varying its
amount.

This is captured by an integer parameter associated with the
species and the effect of a reaction is to vary that parameter
by a number corresponding to the stoichiometry of this
species in the reaction.
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The abstraction

Each species i is described by a species component Ci

Each reaction j is associated with an action type αj and its
dynamics is described by a specific function fαj

The species components (now quantified) are then composed
together to describe the behaviour of the system.
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The syntax

Sequential component (species component)

S ::= (α, κ) op S | S + S | C where op = ↓ | ↑ | ⊕ | 	 | �

Model component

P ::= P BC
L

P | S(l)

Each action αj is associated with a rate fαj

The list N contains the numbers of levels/maximum
concentrations
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The semantics

The semantics is defined by two transition relations:

First, a capability relation — is a transition possible?

Second, a stochastic relation — gives rate of a transition,
derived from the parameters of the model.

The labelled transition system generated by the stochastic relation
formally defines the underlying CTMC.

F.Ciocchetta & J.Hillston. Bio-PEPA: A framework for the modelling and analysis of biological systems. TCS 2009.
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Example — in Bio-PEPA

I RSI
S S

R
spread

stop1
stop2

k_s = 0.5;

k_r = 0.1;

kineticLawOf spread : k_s * I * S;

kineticLawOf stop1 : k_r * S * S;

kineticLawOf stop2 : k_r * S * R;

I = (spread,1) ↓ ;

S = (spread,1) ↑ + (stop1,1) ↓ + (stop2,1) ↓ ;

R = (stop1,1) ↑ + (stop2,1) ↑ ;

I[10] BC
∗

S[5] BC
∗

R[0]
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Conclusions

Stochastic process algebras provide high-level description
languages which can eases the task of model construction for
large CTMC models.

The formal nature of the langauge allows for unambiguous
interpretation and automatic CTMC generation.

Properties of the underlying mathematical structure can be
detected at the syntax level and proof obligations can be
carried out once and for all in the semantics of the langauge.

Languages can be tailored to particular application domains
making it easier for non-experts to build and analyse
Markovian models.
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Thank you
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