
1/ 172

Mean-field Analysis of Continuous-Time Markov Chains

2/ 172

Fluid Approximation for Stochastic Process Algebra and Stochastic
Model Checking

3/ 172

Fluid Approximation for Stochastic Process
Algebras

Jane Hillston

Laboratory for Foundations of Computer Science
University of Edinburgh

24th October 2012

4/ 172

Collective Dynamics

The behaviour of many systems can be interpreted as the result of
the collective behaviour of a large number of interacting entities.

For such systems we are often as interested in the population level
behaviour as we are in the behaviour of the individual entities.

5/ 172

Collective Dynamics

The behaviour of many systems can be interpreted as the result of
the collective behaviour of a large number of interacting entities.

For such systems we are often as interested in the population level
behaviour as we are in the behaviour of the individual entities.

6/ 172

Collective Behaviour

In the natural world there are many instances of collective
behaviour and its consequences:

7/ 172

Collective Behaviour

In the natural world there are many instances of collective
behaviour and its consequences:

8/ 172

Collective Behaviour

This is also true in the man-made and engineered world:

Spread of H1N1 virus in 2009

9/ 172

Collective Behaviour

This is also true in the man-made and engineered world:

Love Parade, Germany 2006

10/ 172

Collective Behaviour

This is also true in the man-made and engineered world:

Self assessment tax returns 31st January each year

11/ 172

Solving discrete state models

With compositional modelling
approaches we have a CTMC
with global states determined
by the local states of all the
participating components.

c

b

a

c

b

a

c

b

a

12/ 172

Solving discrete state models

When the size of the state
space is not too large they are
amenable to numerical solution
(linear algebra) to determine a
steady state or transient
probability distribution.

Q =


q1,1 q1,2 · · · q1,N

q2,1 q2,2 · · · q2,N

...
...

...
qN,1 qN,2 · · · qN,N



π(t) = (π1(t), π2(t), . . . , πN (t))

13/ 172

Solving discrete state models

When the size of the state
space is not too large they are
amenable to numerical solution
(linear algebra) to determine a
steady state or transient
probability distribution.

Q =


q1,1 q1,2 · · · q1,N

q2,1 q2,2 · · · q2,N

...
...

...
qN,1 qN,2 · · · qN,N



π(t) = (π1(t), π2(t), . . . , πN (t))

14/ 172

Solving discrete state models

When the size of the state
space is not too large they are
amenable to numerical solution
(linear algebra) to determine a
steady state or transient
probability distribution.

Q =


q1,1 q1,2 · · · q1,N

q2,1 q2,2 · · · q2,N

...
...

...
qN,1 qN,2 · · · qN,N



π(t) = (π1(t), π2(t), . . . , πN (t))

15/ 172

Solving discrete state models

Alternatively they may be
studied using stochastic
simulation. Each run generates
a single trajectory through the
state space. Many runs are
needed in order to obtain
average behaviours.

16/ 172

State space explosion

As the size of the state space becomes large it becomes infeasible
to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.

In these cases we would like to take advantage of the mean field or
fluid approximation techniques.

Use continuous state variables to approximate the discrete state
space.

d ddd dd-� � -d dd d-� -� -� -�d d d dd d d d-� -� -� -� -� -� -� -�d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.

17/ 172

State space explosion

As the size of the state space becomes large it becomes infeasible
to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.

In these cases we would like to take advantage of the mean field or
fluid approximation techniques.

Use continuous state variables to approximate the discrete state
space.

d ddd dd-� � -d dd d-� -� -� -�d d d dd d d d-� -� -� -� -� -� -� -�d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.

18/ 172

State space explosion

As the size of the state space becomes large it becomes infeasible
to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.

In these cases we would like to take advantage of the mean field or
fluid approximation techniques.

Use continuous state variables to approximate the discrete state
space.

d ddd dd-� � -d dd d-� -� -� -�d d d dd d d d-� -� -� -� -� -� -� -�d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.

19/ 172

State space explosion

As the size of the state space becomes large it becomes infeasible
to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.

In these cases we would like to take advantage of the mean field or
fluid approximation techniques.

Use continuous state variables to approximate the discrete state
space.

d dd

d dd-� � -d dd d-� -� -� -�d d d dd d d d-� -� -� -� -� -� -� -�d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.

20/ 172

State space explosion

As the size of the state space becomes large it becomes infeasible
to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.

In these cases we would like to take advantage of the mean field or
fluid approximation techniques.

Use continuous state variables to approximate the discrete state
space.

d dd

d dd

-� � -

d dd d-� -� -� -�d d d dd d d d-� -� -� -� -� -� -� -�d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.

21/ 172

State space explosion

As the size of the state space becomes large it becomes infeasible
to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.

In these cases we would like to take advantage of the mean field or
fluid approximation techniques.

Use continuous state variables to approximate the discrete state
space.

d dd

d dd-� � -

d d

d d-� -� -� -�d d d dd d d d-� -� -� -� -� -� -� -�d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.

22/ 172

State space explosion

As the size of the state space becomes large it becomes infeasible
to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.

In these cases we would like to take advantage of the mean field or
fluid approximation techniques.

Use continuous state variables to approximate the discrete state
space.

d dd

d dd-� � -

d d

d d

-� -� -� -�

d d d dd d d d-� -� -� -� -� -� -� -�d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.

23/ 172

State space explosion

As the size of the state space becomes large it becomes infeasible
to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.

In these cases we would like to take advantage of the mean field or
fluid approximation techniques.

Use continuous state variables to approximate the discrete state
space.

d dd

d dd-� � -

d d

d d-� -� -� -�

d d d d

d d d d-� -� -� -� -� -� -� -�d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.

24/ 172

State space explosion

As the size of the state space becomes large it becomes infeasible
to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.

In these cases we would like to take advantage of the mean field or
fluid approximation techniques.

Use continuous state variables to approximate the discrete state
space.

d dd

d dd-� � -

d d

d d-� -� -� -�

d d d d

d d d d

-� -� -� -� -� -� -� -�

d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.

25/ 172

State space explosion

As the size of the state space becomes large it becomes infeasible
to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.

In these cases we would like to take advantage of the mean field or
fluid approximation techniques.

Use continuous state variables to approximate the discrete state
space.

d dd

d dd-� � -

d d

d d-� -� -� -�

d d d d

d d d d-� -� -� -� -� -� -� -�

d d d d d d d d

d d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.

26/ 172

State space explosion

As the size of the state space becomes large it becomes infeasible
to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.

In these cases we would like to take advantage of the mean field or
fluid approximation techniques.

Use continuous state variables to approximate the discrete state
space.

d dd

d dd-� � -

d d

d d-� -� -� -�

d d d d

d d d d-� -� -� -� -� -� -� -�

d d d d d d d d

d d d d d d d d

-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�

d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.

27/ 172

State space explosion

As the size of the state space becomes large it becomes infeasible
to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.

In these cases we would like to take advantage of the mean field or
fluid approximation techniques.

Use continuous state variables to approximate the discrete state
space.

d dd

d dd-� � -

d d

d d-� -� -� -�

d d d d

d d d d-� -� -� -� -� -� -� -�

d d d d d d d d

d d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�

d d d d d d d d d d d d d d d d

d d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.

28/ 172

State space explosion

As the size of the state space becomes large it becomes infeasible
to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.

In these cases we would like to take advantage of the mean field or
fluid approximation techniques.

Use continuous state variables to approximate the discrete state
space.

d dd

d dd

-� � -d d

d d

-� -� -� -�d d d d

d d d d

-� -� -� -� -� -� -� -�d d d d d d d d

d d d d d d d d

-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d d

d d d d d d d d d d d d d d d d

Use ordinary differential equations to represent the evolution of
those variables over time.

29/ 172

State space explosion

As the size of the state space becomes large it becomes infeasible
to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.

In these cases we would like to take advantage of the mean field or
fluid approximation techniques.

Use continuous state variables to approximate the discrete state
space.

d dd

d dd

-� � -d d

d d

-� -� -� -�d d d d

d d d d

-� -� -� -� -� -� -� -�d d d d d d d d

d d d d d d d d

-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d d

d d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.

30/ 172

Fluid approximation-based approach

Use a more abstract state representation rather than the
CTMC complete state space.

Assume that these state variables are subject to continuous
rather than discrete change.

No longer aim to calculate the probability distribution over
the entire state space of the model.

Instead the ODEs estimate the expected behaviour of the
CTMC.

Appropriate for models in which there are large numbers of
components of the same type, i.e. models of populations and
situations of collective dynamics.

31/ 172

Fluid approximation-based approach

Use a more abstract state representation rather than the
CTMC complete state space.

Assume that these state variables are subject to continuous
rather than discrete change.

No longer aim to calculate the probability distribution over
the entire state space of the model.

Instead the ODEs estimate the expected behaviour of the
CTMC.

Appropriate for models in which there are large numbers of
components of the same type, i.e. models of populations and
situations of collective dynamics.

32/ 172

Fluid approximation-based approach

Use a more abstract state representation rather than the
CTMC complete state space.

Assume that these state variables are subject to continuous
rather than discrete change.

No longer aim to calculate the probability distribution over
the entire state space of the model.

Instead the ODEs estimate the expected behaviour of the
CTMC.

Appropriate for models in which there are large numbers of
components of the same type, i.e. models of populations and
situations of collective dynamics.

33/ 172

Fluid approximation-based approach

Use a more abstract state representation rather than the
CTMC complete state space.

Assume that these state variables are subject to continuous
rather than discrete change.

No longer aim to calculate the probability distribution over
the entire state space of the model.

Instead the ODEs estimate the expected behaviour of the
CTMC.

Appropriate for models in which there are large numbers of
components of the same type, i.e. models of populations and
situations of collective dynamics.

34/ 172

Fluid approximation-based approach

Use a more abstract state representation rather than the
CTMC complete state space.

Assume that these state variables are subject to continuous
rather than discrete change.

No longer aim to calculate the probability distribution over
the entire state space of the model.

Instead the ODEs estimate the expected behaviour of the
CTMC.

Appropriate for models in which there are large numbers of
components of the same type, i.e. models of populations and
situations of collective dynamics.

35/ 172

Fluid approximation theorem

Hypothesis

X
(N)

(t): a sequence of normalized population CTMC, residing
in E ⊂ Rn

∃x0 ∈ S such that X
(N)

(0)→ x0 in probability (initial
conditions)

x(t): solution of dx
dt = F (x), x(0) = x0, residing in E .

Theorem

For any finite time horizon T <∞, it holds that:

P(sup
0≤t≤T

||X(N)
(t)− x(t)|| > ε)→ 0.

T.G.Kurtz. Solutions of ordinary differential equations as limits of pure jump Markov processes.

Journal of Applied Probability, 1970.

36/ 172

Outline

1 Introduction
Stochastic Process Algebra

2 Continuous Approximation

3 Fluid-Flow Semantics
Fluid Structured Operational Semantics
Convergence results

4 Example

5 Conclusions

Introduction 37/ 172

Outline

1 Introduction
Stochastic Process Algebra

2 Continuous Approximation

3 Fluid-Flow Semantics
Fluid Structured Operational Semantics
Convergence results

4 Example

5 Conclusions

Introduction Stochastic Process Algebra 38/ 172

Process Algebra

Models consist of agents which engage in actions.

α.P
��
�*

HH
HY

action type
or name

agent/
component

The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

Process algebra model Labelled transition system-
SOS rules

Introduction Stochastic Process Algebra 39/ 172

Process Algebra

Models consist of agents which engage in actions.

α.P
��
�*

HH
HY

action type
or name

agent/
component

The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

Process algebra model Labelled transition system-
SOS rules

Introduction Stochastic Process Algebra 40/ 172

Process Algebra

Models consist of agents which engage in actions.

α.P
��
�*

HH
HY

action type
or name

agent/
component

The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

Process algebra model Labelled transition system-
SOS rules

Introduction Stochastic Process Algebra 41/ 172

Process Algebra

Models consist of agents which engage in actions.

α.P
��
�*

HH
HY

action type
or name

agent/
component

The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

Process algebra model Labelled transition system-
SOS rules

Introduction Stochastic Process Algebra 42/ 172

Process Algebra

Models consist of agents which engage in actions.

α.P
��
�*

HH
HY

action type
or name

agent/
component

The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

Process algebra model

Labelled transition system-
SOS rules

Introduction Stochastic Process Algebra 43/ 172

Process Algebra

Models consist of agents which engage in actions.

α.P
��
�*

HH
HY

action type
or name

agent/
component

The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

Process algebra model

Labelled transition system

-
SOS rules

Introduction Stochastic Process Algebra 44/ 172

Process Algebra

Models consist of agents which engage in actions.

α.P
��
�*

HH
HY

action type
or name

agent/
component

The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

Process algebra model Labelled transition system-
SOS rules

Introduction Stochastic Process Algebra 45/ 172

A simple example: processors and resources

Proc0
def
= task1.Proc1

Proc1
def
= task2.Proc0

Res0
def
= task1.Res1

Res1
def
= reset.Res0

Proc0 ‖task1 Res0

Proc0 ‖task1 Res0

?
task1

Proc1 ‖task1 Res1

�
�
�	

reset
@
@
@R
task2

Proc1 ‖task1 Res0

�
�
�
�
�
�
��

task2

Proc0 ‖task1 Res1

A
A
A
A
A
A
AK

reset

Introduction Stochastic Process Algebra 46/ 172

A simple example: processors and resources

Proc0
def
= task1.Proc1

Proc1
def
= task2.Proc0

Res0
def
= task1.Res1

Res1
def
= reset.Res0

Proc0 ‖task1 Res0

Proc0 ‖task1 Res0

?
task1

Proc1 ‖task1 Res1

�
�
�	

reset
@
@
@R
task2

Proc1 ‖task1 Res0

�
�
�
�
�
�
��

task2

Proc0 ‖task1 Res1

A
A
A
A
A
A
AK

reset

Introduction Stochastic Process Algebra 47/ 172

Stochastic process algebras

Stochastic process algebra

Process algebras where models are decorated with quantitative
information used to generate a stochastic process are stochastic
process algebras (SPA).

Introduction Stochastic Process Algebra 48/ 172

Stochastic Process Algebra

Models are constructed from components which engage in
activities.

(α, r).P
��
�* 6 H

HHY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language is used to generate a CTMC for performance
modelling.

SPA
MODEL

LABELLED
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition

diagram

Introduction Stochastic Process Algebra 49/ 172

Stochastic Process Algebra

Models are constructed from components which engage in
activities.

(α, r).P
��
�* 6 H

HHY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language is used to generate a CTMC for performance
modelling.

SPA
MODEL

LABELLED
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition

diagram

Introduction Stochastic Process Algebra 50/ 172

Stochastic Process Algebra

Models are constructed from components which engage in
activities.

(α, r).P
��
�* 6 H

HHY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language is used to generate a CTMC for performance
modelling.

SPA
MODEL

LABELLED
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition

diagram

Introduction Stochastic Process Algebra 51/ 172

Stochastic Process Algebra

Models are constructed from components which engage in
activities.

(α, r).P
��
�* 6 H

HHY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language is used to generate a CTMC for performance
modelling.

SPA
MODEL

LABELLED
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition

diagram

Introduction Stochastic Process Algebra 52/ 172

Stochastic Process Algebra

Models are constructed from components which engage in
activities.

(α, r).P
��
�* 6 H

HHY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language is used to generate a CTMC for performance
modelling.

SPA
MODEL

LABELLED
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition

diagram

Introduction Stochastic Process Algebra 53/ 172

Stochastic Process Algebra

Models are constructed from components which engage in
activities.

(α, r).P
��
�* 6 H

HHY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language is used to generate a CTMC for performance
modelling.

SPA
MODEL

LABELLED
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition

diagram

Introduction Stochastic Process Algebra 54/ 172

Stochastic Process Algebra

Models are constructed from components which engage in
activities.

(α, r).P
��
�* 6 H

HHY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language is used to generate a CTMC for performance
modelling.

SPA
MODEL

LABELLED
TRANSITION

SYSTEM
CTMC Q

-

-

SOS rules

state transition

diagram

Introduction Stochastic Process Algebra 55/ 172

Stochastic Process Algebra

Models are constructed from components which engage in
activities.

(α, r).P
��
�* 6 H

HHY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language is used to generate a CTMC for performance
modelling.

SPA
MODEL

LABELLED
TRANSITION

SYSTEM

CTMC Q

-

-

SOS rules

state transition

diagram

Introduction Stochastic Process Algebra 56/ 172

Stochastic Process Algebra

Models are constructed from components which engage in
activities.

(α, r).P
��
�* 6 H

HHY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language is used to generate a CTMC for performance
modelling.

SPA
MODEL

LABELLED
TRANSITION

SYSTEM

CTMC Q

- -
SOS rules state transition

diagram

Introduction Stochastic Process Algebra 57/ 172

Stochastic Process Algebra

Models are constructed from components which engage in
activities.

(α, r).P
��
�* 6 H

HHY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language is used to generate a CTMC for performance
modelling.

SPA
MODEL

LABELLED
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition

diagram

Introduction Stochastic Process Algebra 58/ 172

Performance Evaluation Process Algebra

PEPA components perform activities either independently or in
co-operation with other components.

(α, f).P Prefix
P1 + P2 Choice
P1 ��

L
P2 Co-operation

P/L Hiding
X Variable

P1 ‖ P2 is a derived form for P1 ��∅ P2.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)

Introduction Stochastic Process Algebra 59/ 172

Performance Evaluation Process Algebra

PEPA components perform activities either independently or in
co-operation with other components.

(α, f).P Prefix
P1 + P2 Choice
P1 ��

L
P2 Co-operation

P/L Hiding
X Variable

P1 ‖ P2 is a derived form for P1 ��∅ P2.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)

Introduction Stochastic Process Algebra 60/ 172

Performance Evaluation Process Algebra

PEPA components perform activities either independently or in
co-operation with other components.

(α, f).P Prefix
P1 + P2 Choice
P1 ��

L
P2 Co-operation

P/L Hiding
X Variable

P1 ‖ P2 is a derived form for P1 ��∅ P2.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)

Introduction Stochastic Process Algebra 61/ 172

Performance Evaluation Process Algebra

PEPA components perform activities either independently or in
co-operation with other components.

(α, f).P Prefix
P1 + P2 Choice
P1 ��

L
P2 Co-operation

P/L Hiding
X Variable

P1 ‖ P2 is a derived form for P1 ��∅ P2.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)

Introduction Stochastic Process Algebra 62/ 172

Performance Evaluation Process Algebra

PEPA components perform activities either independently or in
co-operation with other components.

(α, f).P Prefix
P1 + P2 Choice
P1 ��

L
P2 Co-operation

P/L Hiding
X Variable

P1 ‖ P2 is a derived form for P1 ��∅ P2.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)

Introduction Stochastic Process Algebra 63/ 172

Performance Evaluation Process Algebra

PEPA components perform activities either independently or in
co-operation with other components.

(α, f).P Prefix
P1 + P2 Choice
P1 ��

L
P2 Co-operation

P/L Hiding
X Variable

P1 ‖ P2 is a derived form for P1 ��∅ P2.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)

Introduction Stochastic Process Algebra 64/ 172

Performance Evaluation Process Algebra

PEPA components perform activities either independently or in
co-operation with other components.

(α, f).P Prefix
P1 + P2 Choice
P1 ��

L
P2 Co-operation

P/L Hiding
X Variable

P1 ‖ P2 is a derived form for P1 ��∅ P2.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)

Introduction Stochastic Process Algebra 65/ 172

Performance Evaluation Process Algebra

PEPA components perform activities either independently or in
co-operation with other components.

(α, f).P Prefix
P1 + P2 Choice
P1 ��

L
P2 Co-operation

P/L Hiding
X Variable

P1 ‖ P2 is a derived form for P1 ��∅ P2.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)

Introduction Stochastic Process Algebra 66/ 172

Performance Evaluation Process Algebra

PEPA components perform activities either independently or in
co-operation with other components.

(α, f).P Prefix
P1 + P2 Choice
P1 ��

L
P2 Co-operation

P/L Hiding
X Variable

P1 ‖ P2 is a derived form for P1 ��∅ P2.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)

Introduction Stochastic Process Algebra 67/ 172

Structured Operational Semantics

PEPA is defined using a Plotkin-style structured operational
semantics (a “small step” semantics).

Prefix

(α, r).E
(α,r)
−−−→ E

Choice

E
(α,r)
−−−→ E ′

E + F
(α,r)
−−−→ E ′

F
(α,r)
−−−→ F ′

E + F
(α,r)
−−−→ F ′

Introduction Stochastic Process Algebra 68/ 172

Structured Operational Semantics

PEPA is defined using a Plotkin-style structured operational
semantics (a “small step” semantics).

Prefix

(α, r).E
(α,r)
−−−→ E

Choice

E
(α,r)
−−−→ E ′

E + F
(α,r)
−−−→ E ′

F
(α,r)
−−−→ F ′

E + F
(α,r)
−−−→ F ′

Introduction Stochastic Process Algebra 69/ 172

Structured Operational Semantics

PEPA is defined using a Plotkin-style structured operational
semantics (a “small step” semantics).

Prefix

(α, r).E
(α,r)
−−−→ E

Choice

E
(α,r)
−−−→ E ′

E + F
(α,r)
−−−→ E ′

F
(α,r)
−−−→ F ′

E + F
(α,r)
−−−→ F ′

Introduction Stochastic Process Algebra 70/ 172

Structured Operational Semantics: Cooperation (α /∈ L)

Cooperation

E
(α,r)
−−−→ E ′

E ��
L

F
(α,r)
−−−→ E ′ ��

L
F

(α /∈ L)

F
(α,r)
−−−→ F ′

E ��
L

F
(α,r)
−−−→ E ��

L
F ′

(α /∈ L)

Introduction Stochastic Process Algebra 71/ 172

Structured Operational Semantics: Cooperation (α /∈ L)

Cooperation

E
(α,r)
−−−→ E ′

E ��
L

F
(α,r)
−−−→ E ′ ��

L
F

(α /∈ L)

F
(α,r)
−−−→ F ′

E ��
L

F
(α,r)
−−−→ E ��

L
F ′

(α /∈ L)

Introduction Stochastic Process Algebra 72/ 172

Structured Operational Semantics: Cooperation (α ∈ L)

Cooperation
E

(α,r1)
−−−→ E ′ F

(α,r2)
−−−→ F ′

E ��
L

F
(α,R)
−−−→ E ′ ��

L
F ′

(α ∈ L)

where R =
r1

rα(E)

r2

rα(F)
min(rα(E), rα(F))

Introduction Stochastic Process Algebra 73/ 172

Structured Operational Semantics: Cooperation (α ∈ L)

Cooperation
E

(α,r1)
−−−→ E ′ F

(α,r2)
−−−→ F ′

E ��
L

F
(α,R)
−−−→ E ′ ��

L
F ′

(α ∈ L)

where R =
r1

rα(E)

r2

rα(F)
min(rα(E), rα(F))

Introduction Stochastic Process Algebra 74/ 172

Apparent Rate

rα((β, r).P) =

{
r β = α
0 β 6= α

rα(P + Q) = rα(P) + rα(Q)

rα(A) = rα(P) where A
def
= P

rα(P ��
L

Q) =

{
rα(P) + rα(Q) α /∈ L
min(rα(P), rα(Q)) α ∈ L

rα(P/L) =

{
rα(P) α /∈ L
0 α ∈ L

Bounded capacity

We assume that components have bounded capacity: they cannot
be made to go any faster than their local definition of rate for a
shared activity.

Introduction Stochastic Process Algebra 75/ 172

Structured Operational Semantics: Hiding

Hiding

E
(α,r)
−−−→ E ′

E/L
(α,r)
−−−→ E ′/L

(α /∈ L)

E
(α,r)
−−−→ E ′

E/L
(τ,r)
−−−→ E ′/L

(α ∈ L)

Introduction Stochastic Process Algebra 76/ 172

Structured Operational Semantics: Hiding

Hiding

E
(α,r)
−−−→ E ′

E/L
(α,r)
−−−→ E ′/L

(α /∈ L)

E
(α,r)
−−−→ E ′

E/L
(τ,r)
−−−→ E ′/L

(α ∈ L)

Introduction Stochastic Process Algebra 77/ 172

Structured Operational Semantics: Constants

Constant

E
(α,r)−→ E ′

A
(α,r)−→ E ′

(A
def
= E)

Introduction Stochastic Process Algebra 78/ 172

A simple example: processors and resources

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0 ��
{task1}

Res0

Proc0 ��
{task1}

Res0

?
(task1, R)

Proc1 ��
{task1}

Res1

�
�
�	

(reset, r4)
@
@
@R
(task2, r2)

Proc1 ��
{task1}

Res0

�
�
�
�
�
�
��(task2, r2)

Proc0 ��
{task1}

Res1

A
A
A
A
A
A
AK (reset, r4)

R = min(r1, r3)

Q =


−R R 0 0

0 −(r2 + r4) r4 r2

r2 0 −r2 0
r4 0 0 −r4



Introduction Stochastic Process Algebra 79/ 172

A simple example: processors and resources

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0 ��
{task1}

Res0

Proc0 ��
{task1}

Res0

?
(task1, R)

Proc1 ��
{task1}

Res1

�
�
�	

(reset, r4)
@
@
@R
(task2, r2)

Proc1 ��
{task1}

Res0

�
�
�
�
�
�
��(task2, r2)

Proc0 ��
{task1}

Res1

A
A
A
A
A
A
AK (reset, r4)

R = min(r1, r3)

Q =


−R R 0 0

0 −(r2 + r4) r4 r2

r2 0 −r2 0
r4 0 0 −r4



Introduction Stochastic Process Algebra 80/ 172

A simple example: processors and resources

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0 ��
{task1}

Res0

Proc0 ��
{task1}

Res0

?
(task1, R)

Proc1 ��
{task1}

Res1

�
�
�	

(reset, r4)
@
@
@R
(task2, r2)

Proc1 ��
{task1}

Res0

�
�
�
�
�
�
��(task2, r2)

Proc0 ��
{task1}

Res1

A
A
A
A
A
A
AK (reset, r4)

R = min(r1, r3)

Q =


−R R 0 0

0 −(r2 + r4) r4 r2

r2 0 −r2 0
r4 0 0 −r4



Continuous Approximation 81/ 172

Outline

1 Introduction
Stochastic Process Algebra

2 Continuous Approximation

3 Fluid-Flow Semantics
Fluid Structured Operational Semantics
Convergence results

4 Example

5 Conclusions

Continuous Approximation 82/ 172

Process Algebra and Collective Dynamics

Process algebra are well-suited to modelling such systems

Developed to represent concurrent behaviour compositionally;

Capture the interactions between individuals explicitly;

Incorporate formal apparatus for reasoning about the
behaviour of systems;

Stochastic extensions, such as PEPA, enable quantified
behaviour of the dynamics of systems.

In the recent CODA project we investigated the use of stochastic
process algebras modelling and analysing the collective dynamics of
large systems of interacting entities.

In the soon-to-start QUANTICOL project we will be extending
techniques to spatially inhomogeneous systems.

Continuous Approximation 83/ 172

Process Algebra and Collective Dynamics

Process algebra are well-suited to modelling such systems

Developed to represent concurrent behaviour compositionally;

Capture the interactions between individuals explicitly;

Incorporate formal apparatus for reasoning about the
behaviour of systems;

Stochastic extensions, such as PEPA, enable quantified
behaviour of the dynamics of systems.

In the recent CODA project we investigated the use of stochastic
process algebras modelling and analysing the collective dynamics of
large systems of interacting entities.

In the soon-to-start QUANTICOL project we will be extending
techniques to spatially inhomogeneous systems.

Continuous Approximation 84/ 172

Process Algebra and Collective Dynamics

Process algebra are well-suited to modelling such systems

Developed to represent concurrent behaviour compositionally;

Capture the interactions between individuals explicitly;

Incorporate formal apparatus for reasoning about the
behaviour of systems;

Stochastic extensions, such as PEPA, enable quantified
behaviour of the dynamics of systems.

In the recent CODA project we investigated the use of stochastic
process algebras modelling and analysing the collective dynamics of
large systems of interacting entities.

In the soon-to-start QUANTICOL project we will be extending
techniques to spatially inhomogeneous systems.

Continuous Approximation 85/ 172

Process Algebra and Collective Dynamics

Process algebra are well-suited to modelling such systems

Developed to represent concurrent behaviour compositionally;

Capture the interactions between individuals explicitly;

Incorporate formal apparatus for reasoning about the
behaviour of systems;

Stochastic extensions, such as PEPA, enable quantified
behaviour of the dynamics of systems.

In the recent CODA project we investigated the use of stochastic
process algebras modelling and analysing the collective dynamics of
large systems of interacting entities.

In the soon-to-start QUANTICOL project we will be extending
techniques to spatially inhomogeneous systems.

Continuous Approximation 86/ 172

Process Algebra and Collective Dynamics

Process algebra are well-suited to modelling such systems

Developed to represent concurrent behaviour compositionally;

Capture the interactions between individuals explicitly;

Incorporate formal apparatus for reasoning about the
behaviour of systems;

Stochastic extensions, such as PEPA, enable quantified
behaviour of the dynamics of systems.

In the recent CODA project we investigated the use of stochastic
process algebras modelling and analysing the collective dynamics of
large systems of interacting entities.

In the soon-to-start QUANTICOL project we will be extending
techniques to spatially inhomogeneous systems.

Continuous Approximation 87/ 172

Process Algebra and Collective Dynamics

Process algebra are well-suited to modelling such systems

Developed to represent concurrent behaviour compositionally;

Capture the interactions between individuals explicitly;

Incorporate formal apparatus for reasoning about the
behaviour of systems;

Stochastic extensions, such as PEPA, enable quantified
behaviour of the dynamics of systems.

In the recent CODA project we investigated the use of stochastic
process algebras modelling and analysing the collective dynamics of
large systems of interacting entities.

In the soon-to-start QUANTICOL project we will be extending
techniques to spatially inhomogeneous systems.

Continuous Approximation 88/ 172

Process Algebra and Collective Dynamics

Process algebra are well-suited to modelling such systems

Developed to represent concurrent behaviour compositionally;

Capture the interactions between individuals explicitly;

Incorporate formal apparatus for reasoning about the
behaviour of systems;

Stochastic extensions, such as PEPA, enable quantified
behaviour of the dynamics of systems.

In the recent CODA project we investigated the use of stochastic
process algebras modelling and analysing the collective dynamics of
large systems of interacting entities.

In the soon-to-start QUANTICOL project we will be extending
techniques to spatially inhomogeneous systems.

Continuous Approximation 89/ 172

Simple example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r1).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP] ��
{task1}

Res0[NR]

Continuous Approximation 90/ 172

Simple example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r1).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP] ��
{task1}

Res0[NR]

CTMC interpretation
Processors (NP) Resources (NR) States (2NP +NR)
1 1 4
2 1 8
2 2 16
3 2 32
3 3 64
4 3 128
4 4 256
5 4 512
5 5 1024
6 5 2048
6 6 4096
7 6 8192
7 7 16384
8 7 32768
8 8 65536
9 8 131072
9 9 262144
10 9 524288
10 10 1048576

Continuous Approximation 91/ 172

Simple example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r1).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP] ��
{task1}

Res0[NR]

task1 decreases Proc0 and Res0

task1 increases Proc1 and Res1

task2 decreases Proc1

task2 increases Proc0

reset decreases Res1

reset increases Res0

Continuous Approximation 92/ 172

Simple example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r1).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP] ��
{task1}

Res0[NR]

dx1
dt = −min(r1 x1, r3 x3) + r2 x2

x1 = no. of Proc1

task1 decreases Proc0

task1 is performed by Proc0

and Res0

task2 increases Proc0

task2 is performed by Proc1

Continuous Approximation 93/ 172

Simple example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r1).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP] ��
{task1}

Res0[NR]

ODE interpretation
dx1
dt = −min(r1 x1, r3 x3) + r2 x2

x1 = no. of Proc1
dx2
dt = min(r1 x1, r3 x3)− r2 x2

x2 = no. of Proc2
dx3
dt = −min(r1 x1, r3 x3) + r4 x4

x3 = no. of Res0
dx4
dt = min(r1 x1, r3 x3)− r4 x4

x4 = no. of Res1

Continuous Approximation 94/ 172

100 processors and 80 resources (simulation run A)

Continuous Approximation 95/ 172

100 processors and 80 resources (simulation run B)

Continuous Approximation 96/ 172

100 processors and 80 resources (simulation run C)

Continuous Approximation 97/ 172

100 processors and 80 resources (average of 10 runs)

Continuous Approximation 98/ 172

100 Processors and 80 resources (average of 100 runs)

Continuous Approximation 99/ 172

100 processors and 80 resources (average of 1000 runs)

Continuous Approximation 100/ 172

100 processors and 80 resources (ODE solution)

Fluid-Flow Semantics 101/ 172

Outline

1 Introduction
Stochastic Process Algebra

2 Continuous Approximation

3 Fluid-Flow Semantics
Fluid Structured Operational Semantics
Convergence results

4 Example

5 Conclusions

Fluid-Flow Semantics Fluid Structured Operational Semantics 102/ 172

Deriving a Fluid Approximation of a PEPA model

The aim is to represent the CTMC implicitly (avoiding state space
explosion), and to generate the set of ODEs which are the fluid
limit of that CTMC.

The exisiting (CTMC) SOS semantics is not suitable for this
purpose because it constructs the state space of the CTMC
explicitly.

SPA
MODEL

SYMBOLIC
LABELLED

TRANSITION
SYSTEM

ABSTRACT
CTMC Q

or
ODEs FM(x)

- -
SOS rules generator

functions

Fluid-Flow Semantics Fluid Structured Operational Semantics 103/ 172

Deriving a Fluid Approximation of a PEPA model

The aim is to represent the CTMC implicitly (avoiding state space
explosion), and to generate the set of ODEs which are the fluid
limit of that CTMC.

The exisiting (CTMC) SOS semantics is not suitable for this
purpose because it constructs the state space of the CTMC
explicitly.

SPA
MODEL

SYMBOLIC
LABELLED

TRANSITION
SYSTEM

ABSTRACT
CTMC Q

or
ODEs FM(x)

- -
SOS rules generator

functions

Fluid-Flow Semantics Fluid Structured Operational Semantics 104/ 172

Deriving a Fluid Approximation of a PEPA model

The aim is to represent the CTMC implicitly (avoiding state space
explosion), and to generate the set of ODEs which are the fluid
limit of that CTMC.

The exisiting (CTMC) SOS semantics is not suitable for this
purpose because it constructs the state space of the CTMC
explicitly.

SPA
MODEL

LABELLED
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition

diagram

SPA
MODEL

SYMBOLIC
LABELLED

TRANSITION
SYSTEM

ABSTRACT
CTMC Q

or
ODEs FM(x)

- -
SOS rules generator

functions

Fluid-Flow Semantics Fluid Structured Operational Semantics 105/ 172

Deriving a Fluid Approximation of a PEPA model

The aim is to represent the CTMC implicitly (avoiding state space
explosion), and to generate the set of ODEs which are the fluid
limit of that CTMC.

The exisiting (CTMC) SOS semantics is not suitable for this
purpose because it constructs the state space of the CTMC
explicitly.

We define a structured operational semantics which defines the pos-
sible transitions of an arbitrary abstract state and from this derive
the ODEs.

SPA
MODEL

SYMBOLIC
LABELLED

TRANSITION
SYSTEM

ABSTRACT
CTMC Q

or
ODEs FM(x)

- -
SOS rules generator

functions

Fluid-Flow Semantics Fluid Structured Operational Semantics 106/ 172

Deriving a Fluid Approximation of a PEPA model

The aim is to represent the CTMC implicitly (avoiding state space
explosion), and to generate the set of ODEs which are the fluid
limit of that CTMC.

The exisiting (CTMC) SOS semantics is not suitable for this
purpose because it constructs the state space of the CTMC
explicitly.

We define a structured operational semantics which defines the pos-
sible transitions of an arbitrary abstract state and from this derive
the ODEs.

SPA
MODEL

SYMBOLIC
LABELLED

TRANSITION
SYSTEM

ABSTRACT
CTMC Q

or
ODEs FM(x)

- -
SOS rules generator

functions

Fluid-Flow Semantics Fluid Structured Operational Semantics 107/ 172

Fluid Structured Operational Semantics

In order to get to the implicit representation of the CTMC we need
to:

1 Remove excess components (Context Reduction)

2 Collect the transitions of the reduced context (Jump Multiset)

3 Calculate the rate of the transitions in terms of an arbitrary
state of the CTMC.

Once this is done we can extract the vector field FM(x) from the
jump multiset.

M.Tribastone, S.Gilmore and J.Hillston. Scalable Differential Analysis of Process Algebra Models. IEEE TSE 2012.

Fluid-Flow Semantics Fluid Structured Operational Semantics 108/ 172

Fluid Structured Operational Semantics

In order to get to the implicit representation of the CTMC we need
to:

1 Remove excess components (Context Reduction)

2 Collect the transitions of the reduced context (Jump Multiset)

3 Calculate the rate of the transitions in terms of an arbitrary
state of the CTMC.

Once this is done we can extract the vector field FM(x) from the
jump multiset.

M.Tribastone, S.Gilmore and J.Hillston. Scalable Differential Analysis of Process Algebra Models. IEEE TSE 2012.

Fluid-Flow Semantics Fluid Structured Operational Semantics 109/ 172

Fluid Structured Operational Semantics

In order to get to the implicit representation of the CTMC we need
to:

1 Remove excess components (Context Reduction)

2 Collect the transitions of the reduced context (Jump Multiset)

3 Calculate the rate of the transitions in terms of an arbitrary
state of the CTMC.

Once this is done we can extract the vector field FM(x) from the
jump multiset.

M.Tribastone, S.Gilmore and J.Hillston. Scalable Differential Analysis of Process Algebra Models. IEEE TSE 2012.

Fluid-Flow Semantics Fluid Structured Operational Semantics 110/ 172

Fluid Structured Operational Semantics

In order to get to the implicit representation of the CTMC we need
to:

1 Remove excess components (Context Reduction)

2 Collect the transitions of the reduced context (Jump Multiset)

3 Calculate the rate of the transitions in terms of an arbitrary
state of the CTMC.

Once this is done we can extract the vector field FM(x) from the
jump multiset.

M.Tribastone, S.Gilmore and J.Hillston. Scalable Differential Analysis of Process Algebra Models. IEEE TSE 2012.

Fluid-Flow Semantics Fluid Structured Operational Semantics 111/ 172

Fluid Structured Operational Semantics

In order to get to the implicit representation of the CTMC we need
to:

1 Remove excess components (Context Reduction)

2 Collect the transitions of the reduced context (Jump Multiset)

3 Calculate the rate of the transitions in terms of an arbitrary
state of the CTMC.

Once this is done we can extract the vector field FM(x) from the
jump multiset.

M.Tribastone, S.Gilmore and J.Hillston. Scalable Differential Analysis of Process Algebra Models. IEEE TSE 2012.

Fluid-Flow Semantics Fluid Structured Operational Semantics 112/ 172

Context Reduction

Proc0
def
= (task1 , r1).Proc1

Proc1
def
= (task2 , r2).Proc0

Res0
def
= (task1 , r3).Res1

Res1
def
= (reset, r4).Res0

System
def
= Proc0 [NP] ��

{transfer}
Res0 [NR]

⇓

R(System) = {Proc0 ,Proc1} ��
{task1}

{Res0 ,Res1}

Population Vector

ξ = (ξ1, ξ2, ξ3, ξ4)

Fluid-Flow Semantics Fluid Structured Operational Semantics 113/ 172

Context Reduction

Proc0
def
= (task1 , r1).Proc1

Proc1
def
= (task2 , r2).Proc0

Res0
def
= (task1 , r3).Res1

Res1
def
= (reset, r4).Res0

System
def
= Proc0 [NP] ��

{transfer}
Res0 [NR]

⇓

R(System) = {Proc0 ,Proc1} ��
{task1}

{Res0 ,Res1}

Population Vector

ξ = (ξ1, ξ2, ξ3, ξ4)

Fluid-Flow Semantics Fluid Structured Operational Semantics 114/ 172

Location Dependency

System
def
= Proc0 [N ′C] ��

{task1}
Res0 [NS] ‖ Proc0 [N ′′C]

⇓

{Proc0 ,Proc1} ��
{task1}

{Res0 ,Res1} ‖ {Proc0 ,Proc1}

Population Vector

ξ = (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6)

Fluid-Flow Semantics Fluid Structured Operational Semantics 115/ 172

Location Dependency

System
def
= Proc0 [N ′C] ��

{task1}
Res0 [NS] ‖ Proc0 [N ′′C]

⇓

{Proc0 ,Proc1} ��
{task1}

{Res0 ,Res1} ‖ {Proc0 ,Proc1}

Population Vector

ξ = (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6)

Fluid-Flow Semantics Fluid Structured Operational Semantics 116/ 172

Location Dependency

System
def
= Proc0 [N ′C] ��

{task1}
Res0 [NS] ‖ Proc0 [N ′′C]

⇓

{Proc0 ,Proc1} ��
{task1}

{Res0 ,Res1} ‖ {Proc0 ,Proc1}

Population Vector

ξ = (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6)

Fluid-Flow Semantics Fluid Structured Operational Semantics 117/ 172

Fluid Structured Operational Semantics by Example

Proc0
def
= (task1 , r1).Proc1

Proc1
def
= (task2 , r2).Proc0

Res0
def
= (task1 , r3).Res1

Res1
def
= (reset, r4).Res0

System
def
= Proc0 [NP] ��

{transfer}
Res0 [NR]

ξ = (ξ1, ξ2, ξ3, ξ4)

Proc0
task1 ,r1−−−−−−→ Proc1

Proc0
task1 ,r1 ξ1−−−−−−−→∗ Proc1

Res0
task1 ,r3−−−−−−→ Res1

Res0
task1 ,r3 ξ3−−−−−−−→∗ Res1

Proc0 ��
{task1}

Res0
task1 ,r(ξ)
−−−−−−−→∗ Proc1 ��

{task1}
Res1

Fluid-Flow Semantics Fluid Structured Operational Semantics 118/ 172

Fluid Structured Operational Semantics by Example

Proc0
def
= (task1 , r1).Proc1

Proc1
def
= (task2 , r2).Proc0

Res0
def
= (task1 , r3).Res1

Res1
def
= (reset, r4).Res0

System
def
= Proc0 [NP] ��

{transfer}
Res0 [NR]

ξ = (ξ1, ξ2, ξ3, ξ4)

Proc0
task1 ,r1−−−−−−→ Proc1

Proc0
task1 ,r1 ξ1−−−−−−−→∗ Proc1

Res0
task1 ,r3−−−−−−→ Res1

Res0
task1 ,r3 ξ3−−−−−−−→∗ Res1

Proc0 ��
{task1}

Res0
task1 ,r(ξ)
−−−−−−−→∗ Proc1 ��

{task1}
Res1

Fluid-Flow Semantics Fluid Structured Operational Semantics 119/ 172

Fluid Structured Operational Semantics by Example

Proc0
def
= (task1 , r1).Proc1

Proc1
def
= (task2 , r2).Proc0

Res0
def
= (task1 , r3).Res1

Res1
def
= (reset, r4).Res0

System
def
= Proc0 [NP] ��

{transfer}
Res0 [NR]

ξ = (ξ1, ξ2, ξ3, ξ4)

Proc0
task1 ,r1−−−−−−→ Proc1

Proc0
task1 ,r1 ξ1−−−−−−−→∗ Proc1

Res0
task1 ,r3−−−−−−→ Res1

Res0
task1 ,r3 ξ3−−−−−−−→∗ Res1

Proc0 ��
{task1}

Res0
task1 ,r(ξ)
−−−−−−−→∗ Proc1 ��

{task1}
Res1

Fluid-Flow Semantics Fluid Structured Operational Semantics 120/ 172

Fluid Structured Operational Semantics by Example

Proc0
def
= (task1 , r1).Proc1

Proc1
def
= (task2 , r2).Proc0

Res0
def
= (task1 , r3).Res1

Res1
def
= (reset, r4).Res0

System
def
= Proc0 [NP] ��

{transfer}
Res0 [NR]

ξ = (ξ1, ξ2, ξ3, ξ4)

Proc0
task1 ,r1−−−−−−→ Proc1

Proc0
task1 ,r1 ξ1−−−−−−−→∗ Proc1

Res0
task1 ,r3−−−−−−→ Res1

Res0
task1 ,r3 ξ3−−−−−−−→∗ Res1

Proc0 ��
{task1}

Res0
task1 ,r(ξ)
−−−−−−−→∗ Proc1 ��

{task1}
Res1

Fluid-Flow Semantics Fluid Structured Operational Semantics 121/ 172

Apparent Rate Calculation

Proc0
task1 ,r ′1−−−−−−→ Proc1

Proc0
task1 ,r ′1 ξ1−−−−−−−→∗ Proc1

Res0
task1 ,r3−−−−−−→ Res1

Res0
task1 ,r3 ξ3−−−−−−−→∗ Res1

Proc0 ��
{task1}

Res0
task1 ,r(ξ)
−−−−−−−→∗ Proc1 ��

{task1}
Res1

r(ξ) =
r1ξ1

r?task1 (Proc0 , ξ)

r3ξ4

r?task1 (Res0 , ξ)
min

(
r?task1 (Proc0 , ξ) , r?task1 (Res0 , ξ)

)
=

r1ξ1

r1ξ1

r3ξ4

r3ξ4
min

(
r1ξ1, r3ξ4

)
=min

(
r1ξ1, r3ξ4

)

Fluid-Flow Semantics Fluid Structured Operational Semantics 122/ 172

Apparent Rate Calculation

Proc0
task1 ,r ′1−−−−−−→ Proc1

Proc0
task1 ,r ′1 ξ1−−−−−−−→∗ Proc1

Res0
task1 ,r3−−−−−−→ Res1

Res0
task1 ,r3 ξ3−−−−−−−→∗ Res1

Proc0 ��
{task1}

Res0
task1 ,r(ξ)
−−−−−−−→∗ Proc1 ��

{task1}
Res1

r(ξ) =
r1ξ1

r?task1 (Proc0 , ξ)

r3ξ4

r?task1 (Res0 , ξ)
min

(
r?task1 (Proc0 , ξ) , r?task1 (Res0 , ξ)

)
=

r1ξ1

r1ξ1

r3ξ4

r3ξ4
min

(
r1ξ1, r3ξ4

)
=min

(
r1ξ1, r3ξ4

)

Fluid-Flow Semantics Fluid Structured Operational Semantics 123/ 172

f (ξ, l , α) as the Generator Matrix of the Lumped CTMC

(P0 ‖ P0) ��
{task1}

(R0 ‖ R0 ‖ R0)

(P1 ‖ P0) ��
{task1}

R1 ‖ R0 ‖ R0)

(P1 ‖ P0) ��
{task1}

(R0 ‖ R1 ‖ R0)

(P1 ‖ P0) ��
{task1}

(R0 ‖ R0 ‖ R1)

(P0 ‖ P1) ��
{task1}

(R1 ‖ R0 ‖ R0)

(P0 ‖ P1) ��
{task1}

(R0 ‖ R1 ‖ R0)

(P0 ‖ P1) ��
{task1}

(R0 ‖ R0 ‖ R1)

�
�
�
�
�
�
�
��7r

�
�
�
�
��>

r

��
���

�:r

XXXXXXz
rZ

Z
Z
Z
ZZ~

r

S
S
S
S
S
S
S
Sw

r

r = r1

2r1

r3

3r3
min(2r1, 3r3) = 1

6 min(2r1, 3r3)

Fluid-Flow Semantics Fluid Structured Operational Semantics 124/ 172

f (ξ, l , α) as the Generator Matrix of the Lumped CTMC

(P0 ‖ P0) ��
{task1}

(R0 ‖ R0 ‖ R0)

(P1 ‖ P0) ��
{task1}

R1 ‖ R0 ‖ R0)

(P1 ‖ P0) ��
{task1}

(R0 ‖ R1 ‖ R0)

(P1 ‖ P0) ��
{task1}

(R0 ‖ R0 ‖ R1)

(P0 ‖ P1) ��
{task1}

(R1 ‖ R0 ‖ R0)

(P0 ‖ P1) ��
{task1}

(R0 ‖ R1 ‖ R0)

(P0 ‖ P1) ��
{task1}

(R0 ‖ R0 ‖ R1)

�
�
�
�
�
�
�
��7r

�
�
�
�
��>

r

��
���

�:r

XXXXXXz
rZ

Z
Z
Z
ZZ~

r

S
S
S
S
S
S
S
Sw

r

r = r1

2r1

r3

3r3
min(2r1, 3r3) = 1

6 min(2r1, 3r3)

Fluid-Flow Semantics Fluid Structured Operational Semantics 125/ 172

f (ξ, l , α) as the Generator Matrix of the Lumped CTMC

(P0 ‖ P0) ��
{task1}

(R0 ‖ R0 ‖ R0)

(P1 ‖ P0) ��
{task1}

R1 ‖ R0 ‖ R0)

(P1 ‖ P0) ��
{task1}

(R0 ‖ R1 ‖ R0)

(P1 ‖ P0) ��
{task1}

(R0 ‖ R0 ‖ R1)

(P0 ‖ P1) ��
{task1}

(R1 ‖ R0 ‖ R0)

(P0 ‖ P1) ��
{task1}

(R0 ‖ R1 ‖ R0)

(P0 ‖ P1) ��
{task1}

(R0 ‖ R0 ‖ R1)

�
�
�
�
�
�
�
��7r

�
�
�
�
��>

r

��
���

�:r

XXXXXXz
rZ

Z
Z
Z
ZZ~

r

S
S
S
S
S
S
S
Sw

r

r = r1

2r1

r3

3r3
min(2r1, 3r3) = 1

6 min(2r1, 3r3)

Fluid-Flow Semantics Fluid Structured Operational Semantics 126/ 172

f (ξ, l , α) as the Generator Matrix of the Lumped CTMC

(P0 ‖ P0) ��
{task1}

(R0 ‖ R0 ‖ R0)

(P1 ‖ P0) ��
{task1}

(R1 ‖ R0 ‖ R0)

(P1 ‖ P0) ��
{task1}

(R0 ‖ R1 ‖ R0)

(P1 ‖ P0) ��
{task1}

(R0 ‖ R0 ‖ R1)

(P0 ‖ P1) ��
{task1}

(R1 ‖ R0 ‖ R0)

(P0 ‖ P1) ��
{task1}

(R0 ‖ R1 ‖ R0)

(P0 ‖ P1) ��
{task1}

(R0 ‖ R0 ‖ R1)

�
�
�
�
�
�
�
��7

�
�
�
�
��>

��
���

�:

XXXXXXz
Z
Z
Z
Z
ZZ~

S
S
S
S
S
S
S
Sw

r = r1

2r1

r3

3r3
min(2r1, 3r3) = 1

6 min(2r1, 3r3)

(2, 0, 3, 0) -min(2r1, 3r3)
(1, 1, 2, 1)(2, 0, 3, 0) -min(2r1, 3r3)
(1, 1, 2, 1)

Fluid-Flow Semantics Fluid Structured Operational Semantics 127/ 172

Jump Multiset

Proc0 ��
{task1}

Res0
task1 ,r(ξ)−−−−−−−→∗ Proc1 ��

{task1}
Res1

r(ξ) = min
(
r1ξ1, r3ξ3

)

Proc1 ��
{task1}

Res0
task2 ,ξ2r2−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

Fluid-Flow Semantics Fluid Structured Operational Semantics 128/ 172

Jump Multiset

Proc0 ��
{task1}

Res0
task1 ,r(ξ)−−−−−−−→∗ Proc1 ��

{task1}
Res1

r(ξ) = min
(
r1ξ1, r3ξ3

)

Proc1 ��
{task1}

Res0
task2 ,ξ2r2−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

Fluid-Flow Semantics Fluid Structured Operational Semantics 129/ 172

Jump Multiset

Proc0 ��
{task1}

Res0
task1 ,r(ξ)−−−−−−−→∗ Proc1 ��

{task1}
Res1

r(ξ) = min
(
r1ξ1, r3ξ3

)

Proc1 ��
{task1}

Res0
task2 ,ξ2r2−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

Fluid-Flow Semantics Fluid Structured Operational Semantics 130/ 172

Equivalent Transitions

Some transitions may give the same information:

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc1 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc1 ��

{task1}
Res0

i.e., Res1 may perform an action independently from the rest of
the system.

This is captured by the procedure used for the construction of the
generator function f (ξ, l , α)

Fluid-Flow Semantics Fluid Structured Operational Semantics 131/ 172

Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

Take l = (0, 0, 0, 0)

Add −1 to all elements of l corresponding to the indices of
the components in the lhs of the transition

l = (−1, 0, 0,−1)

Add +1 to all elements of l corresponding to the indices of
the components in the rhs of the transition

l = (−1 + 1, 0,+1,−1) = (0, 0,+1,−1)

f
(
ξ, (0, 0,+1,−1), reset

)
= ξ4r4

Fluid-Flow Semantics Fluid Structured Operational Semantics 132/ 172

Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

Take l = (0, 0, 0, 0)

Add −1 to all elements of l corresponding to the indices of
the components in the lhs of the transition

l = (−1, 0, 0,−1)

Add +1 to all elements of l corresponding to the indices of
the components in the rhs of the transition

l = (−1 + 1, 0,+1,−1) = (0, 0,+1,−1)

f
(
ξ, (0, 0,+1,−1), reset

)
= ξ4r4

Fluid-Flow Semantics Fluid Structured Operational Semantics 133/ 172

Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

Take l = (0, 0, 0, 0)

Add −1 to all elements of l corresponding to the indices of
the components in the lhs of the transition

l = (−1, 0, 0,−1)

Add +1 to all elements of l corresponding to the indices of
the components in the rhs of the transition

l = (−1 + 1, 0,+1,−1) = (0, 0,+1,−1)

f
(
ξ, (0, 0,+1,−1), reset

)
= ξ4r4

Fluid-Flow Semantics Fluid Structured Operational Semantics 134/ 172

Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

Take l = (0, 0, 0, 0)

Add −1 to all elements of l corresponding to the indices of
the components in the lhs of the transition

l = (−1, 0, 0,−1)

Add +1 to all elements of l corresponding to the indices of
the components in the rhs of the transition

l = (−1 + 1, 0,+1,−1) = (0, 0,+1,−1)

f
(
ξ, (0, 0,+1,−1), reset

)
= ξ4r4

Fluid-Flow Semantics Fluid Structured Operational Semantics 135/ 172

Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res0
task1 ,r(ξ)−−−−−−−→∗ Proc1 ��

{task1}
Res1

Proc1 ��
{task1}

Res0
task2 ,ξ2r ′2−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

f (ξ, (−1,+1,−1,+1), task1) = r(ξ)

f (ξ, (+1,−1, 0, 0), task2) = ξ2r2

f (ξ, (0, 0,+1,−1), reset) = ξ4r4

Fluid-Flow Semantics Fluid Structured Operational Semantics 136/ 172

Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res0
task1 ,r(ξ)−−−−−−−→∗ Proc1 ��

{task1}
Res1

Proc1 ��
{task1}

Res0
task2 ,ξ2r ′2−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

f (ξ, (−1,+1,−1,+1), task1) = r(ξ)

f (ξ, (+1,−1, 0, 0), task2) = ξ2r2

f (ξ, (0, 0,+1,−1), reset) = ξ4r4

Fluid-Flow Semantics Fluid Structured Operational Semantics 137/ 172

Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res0
task1 ,r(ξ)−−−−−−−→∗ Proc1 ��

{task1}
Res1

Proc1 ��
{task1}

Res0
task2 ,ξ2r ′2−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

f (ξ, (−1,+1,−1,+1), task1) = r(ξ)

f (ξ, (+1,−1, 0, 0), task2) = ξ2r2

f (ξ, (0, 0,+1,−1), reset) = ξ4r4

Fluid-Flow Semantics Fluid Structured Operational Semantics 138/ 172

Capturing behaviour in the Generator Function

Proc0
def
= (task1 , r1).Proc1

Proc1
def
= (task2 , r2).Proc0

Res0
def
= (task1 , r3).Res1

Res1
def
= (reset, r4).Res0

System
def
= Proc0 [NP] ��

{transfer}
Res0 [NR]

Numerical Vector Form

ξ = (ξ1, ξ2, ξ3, ξ4) ∈ N4, ξ1 + ξ2 = NP and ξ3 + ξ4 = NR

Generator Function

f (ξ, l , α) :
f (ξ, (−1, 1,−1, 1), task1) = min (r1ξ1, r3ξ3)

f (ξ, (1,−1, 0, 0), task2) = r2ξ2

f (ξ, (0, 0, 1,−1), reset) = r4ξ4

Fluid-Flow Semantics Fluid Structured Operational Semantics 139/ 172

Capturing behaviour in the Generator Function

Proc0
def
= (task1 , r1).Proc1

Proc1
def
= (task2 , r2).Proc0

Res0
def
= (task1 , r3).Res1

Res1
def
= (reset, r4).Res0

System
def
= Proc0 [NP] ��

{transfer}
Res0 [NR]

Numerical Vector Form

ξ = (ξ1, ξ2, ξ3, ξ4) ∈ N4, ξ1 + ξ2 = NP and ξ3 + ξ4 = NR

Generator Function

f (ξ, l , α) :
f (ξ, (−1, 1,−1, 1), task1) = min (r1ξ1, r3ξ3)

f (ξ, (1,−1, 0, 0), task2) = r2ξ2

f (ξ, (0, 0, 1,−1), reset) = r4ξ4

Fluid-Flow Semantics Fluid Structured Operational Semantics 140/ 172

Capturing behaviour in the Generator Function

Proc0
def
= (task1 , r1).Proc1

Proc1
def
= (task2 , r2).Proc0

Res0
def
= (task1 , r3).Res1

Res1
def
= (reset, r4).Res0

System
def
= Proc0 [NP] ��

{transfer}
Res0 [NR]

Numerical Vector Form

ξ = (ξ1, ξ2, ξ3, ξ4) ∈ N4, ξ1 + ξ2 = NP and ξ3 + ξ4 = NR

Generator Function

f (ξ, l , α) :
f (ξ, (−1, 1,−1, 1), task1) = min (r1ξ1, r3ξ3)

f (ξ, (1,−1, 0, 0), task2) = r2ξ2

f (ξ, (0, 0, 1,−1), reset) = r4ξ4

Fluid-Flow Semantics Fluid Structured Operational Semantics 141/ 172

Extraction of the ODE from f

Generator Function

f (ξ, (−1, 1,−1, 1), task1) = min (r1ξ1, r3ξ3)
f (ξ, (1,−1, 0, 0), task2) = r2ξ2

f (ξ, (0, 0, 1,−1), reset) = r4ξ4

Differential Equations

dx

dt
= FM(x) =

∑
l∈Zd

l
∑
α∈A

f (x , l , α)

= (−1, 1,−1, 1) min (r1x1, r3x3) + (1,−1, 0, 0)r2x2

+ (0, 0, 1,−1)r4x4

Fluid-Flow Semantics Fluid Structured Operational Semantics 142/ 172

Extraction of the ODE from f

Generator Function

f (ξ, (−1, 1,−1, 1), task1) = min (r1ξ1, r3ξ3)
f (ξ, (1,−1, 0, 0), task2) = r2ξ2

f (ξ, (0, 0, 1,−1), reset) = r4ξ4

Differential Equations

dx1

dt
= −min (r1x1, r3x3) + r2 x2

dx2

dt
= min (r1x1, r3x3)− r2 x2

dx3

dt
= −min (r1x1, r3x3) + r4 x4

dx4

dt
= min (r1x1, r3x3)− r4 x4

Fluid-Flow Semantics Convergence results 143/ 172

Density Dependence

Density dependence of parametric apparent rates

Let r?α (P, ξ) be the parametric apparent rate of action type α in
process P. For any n ∈ N and α ∈ A,

r?α (P, ξ) = n · r?α (P, ξ/n)

Density dependence of parametric transition rates

If P
(α,r(ξ))−−−−−→∗ Q then, for any n ∈ N, r(ξ) = n · r(ξ/n)

Generating functions give rise to density dependent rates

Let M be a PEPA model with generating functions f (ξ, l , α)
derived as demonstrated. Then the corresponding sequence of
CTMCs will be density dependent.

Fluid-Flow Semantics Convergence results 144/ 172

Density Dependence

Density dependence of parametric apparent rates

Let r?α (P, ξ) be the parametric apparent rate of action type α in
process P. For any n ∈ N and α ∈ A,

r?α (P, ξ) = n · r?α (P, ξ/n)

Density dependence of parametric transition rates

If P
(α,r(ξ))−−−−−→∗ Q then, for any n ∈ N, r(ξ) = n · r(ξ/n)

Generating functions give rise to density dependent rates

Let M be a PEPA model with generating functions f (ξ, l , α)
derived as demonstrated. Then the corresponding sequence of
CTMCs will be density dependent.

Fluid-Flow Semantics Convergence results 145/ 172

Density Dependence

Density dependence of parametric apparent rates

Let r?α (P, ξ) be the parametric apparent rate of action type α in
process P. For any n ∈ N and α ∈ A,

r?α (P, ξ) = n · r?α (P, ξ/n)

Density dependence of parametric transition rates

If P
(α,r(ξ))−−−−−→∗ Q then, for any n ∈ N, r(ξ) = n · r(ξ/n)

Generating functions give rise to density dependent rates

Let M be a PEPA model with generating functions f (ξ, l , α)
derived as demonstrated. Then the corresponding sequence of
CTMCs will be density dependent.

Fluid-Flow Semantics Convergence results 146/ 172

Lipschitz continuity

Since Lipschitz continuity is preserved by summation, in order to
verify that the vector field FM(x) is Lipschitz it suffices to prove
that any parametric rate generated by the semantics is Lipschitz.

Lipschitz continuity of parametric apparent rates

Let r?α (P, ξ) be the parametric apparent rate of action type α in
process P. There exists a constant L ∈ R such that for all
x , y ∈ Rd , x 6= y ,

‖r?α (P, x)− r?α (P, y)‖
‖x − y‖

≤ L

Lipschitz continuity of rate functions

If P
(α,r(x))−−−−−→∗ P ′ then r(x) ≤ r?α (P, x) and thus it follows that

r(x) is Lipschitz continuous.

Fluid-Flow Semantics Convergence results 147/ 172

Lipschitz continuity

Since Lipschitz continuity is preserved by summation, in order to
verify that the vector field FM(x) is Lipschitz it suffices to prove
that any parametric rate generated by the semantics is Lipschitz.

Lipschitz continuity of parametric apparent rates

Let r?α (P, ξ) be the parametric apparent rate of action type α in
process P. There exists a constant L ∈ R such that for all
x , y ∈ Rd , x 6= y ,

‖r?α (P, x)− r?α (P, y)‖
‖x − y‖

≤ L

Lipschitz continuity of rate functions

If P
(α,r(x))−−−−−→∗ P ′ then r(x) ≤ r?α (P, x) and thus it follows that

r(x) is Lipschitz continuous.

Fluid-Flow Semantics Convergence results 148/ 172

Lipschitz continuity

Since Lipschitz continuity is preserved by summation, in order to
verify that the vector field FM(x) is Lipschitz it suffices to prove
that any parametric rate generated by the semantics is Lipschitz.

Lipschitz continuity of parametric apparent rates

Let r?α (P, ξ) be the parametric apparent rate of action type α in
process P. There exists a constant L ∈ R such that for all
x , y ∈ Rd , x 6= y ,

‖r?α (P, x)− r?α (P, y)‖
‖x − y‖

≤ L

Lipschitz continuity of rate functions

If P
(α,r(x))−−−−−→∗ P ′ then r(x) ≤ r?α (P, x) and thus it follows that

r(x) is Lipschitz continuous.

Fluid-Flow Semantics Convergence results 149/ 172

Kurtz’s Theorem

Kurtz’s Theorem for PEPA

Let x(t), 0 ≤ t ≤ T satisfy the initial value problem
dx
dt = F (x(t)), x(0) = δ, specified from a PEPA model.

Let {Xn(t)} be a family of CTMCs with parameter n ∈ N
generated as explained and let Xn(0) = n · δ. Then,

∀ε > 0 lim
n→∞

P

(
sup
t≤T
‖Xn(t)/n − x(t)‖ > ε

)
= 0.

Moreover Lipschitz continuity of the vector field guarantees
existence and uniqueness of the solution to the initial value
problem.

M.Tribastone, S.Gilmore and J.Hillston. Scalable Differential Analysis of Process Algebra Models. IEEE TSE 2012.

Fluid-Flow Semantics Convergence results 150/ 172

Kurtz’s Theorem

Kurtz’s Theorem for PEPA

Let x(t), 0 ≤ t ≤ T satisfy the initial value problem
dx
dt = F (x(t)), x(0) = δ, specified from a PEPA model.

Let {Xn(t)} be a family of CTMCs with parameter n ∈ N
generated as explained and let Xn(0) = n · δ. Then,

∀ε > 0 lim
n→∞

P

(
sup
t≤T
‖Xn(t)/n − x(t)‖ > ε

)
= 0.

Moreover Lipschitz continuity of the vector field guarantees
existence and uniqueness of the solution to the initial value
problem.

M.Tribastone, S.Gilmore and J.Hillston. Scalable Differential Analysis of Process Algebra Models. IEEE TSE 2012.

Fluid-Flow Semantics Convergence results 151/ 172

Eclipse Plug-in for PEPA

Example 152/ 172

Outline

1 Introduction
Stochastic Process Algebra

2 Continuous Approximation

3 Fluid-Flow Semantics
Fluid Structured Operational Semantics
Convergence results

4 Example

5 Conclusions

Example 153/ 172

Designing for human crowd dynamics

Widespread take up of mobile and communicating
computational devices is making pervasive systems a reality
and creating new ways for us to interact with our
environment, an informatic environment.

One application is to provide routing information to help
people navigate through unfamiliar locations.

In theses case the dynamic behaviour of the system as a whole
is important to ensure the satisfaction of the users.

Using a stochastic process algebra allows quantified
information, necessary for dynamic analysis, to be captured
whilst also focussing on the behaviour of the individuals and
their interactions with the environment.

Example 154/ 172

Example scenario: emergency egress

Emergency egress can be regarded as a particular case of crowd
dynamics, when the location may be familiar but circumstances
may alter the usual topology and make efficient movement
particularly important.

Here technology mediation may mean that information about the
best routes (possibly contradicting signage) can be supplied
dynamically.

M.Massink, D.Latella, A.Bracciali, M.Harrison and J.Hillston. Scalable Context-dependent Analysis of Emergency

Egress Models. FACS 2012.

Example 155/ 172

Example scenario

RA
211 18w 18e

SE
13

LW
25

HA
133

LE
16

SW
22

RB
92 16w

RC
98 18e

The layout of the building is described in terms of the arrangement
of the rooms, hallways, landing and stairs. Each has a capacity and
may have an initial occupancy.

Process algebra components describe the behaviours of individuals,
but also rooms and information dissemination.

Example 156/ 172

Example scenario

RA
211 18w 18e

SE
13

LW
25

HA
133

LE
16

SW
22

RB
92 16w

RC
98 18e

The layout of the building is described in terms of the arrangement
of the rooms, hallways, landing and stairs. Each has a capacity and
may have an initial occupancy.

Process algebra components describe the behaviours of individuals,
but also rooms and information dissemination.

Example 157/ 172

Model specification

Example 158/ 172

Example results: room occupancy

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.5 1 1.5 2 2.5 3

Ag
en

ts
 (u

ni
ts

)

Time (minutes)

Bio-PEPA Emergency Egress

HAeHAwLEeLWwOUTeOUTwRAeRAwRBeRBwRCeRCwSEeSWw

One stochastic simulation run

Example 159/ 172

Example results: room occupancy

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.5 1 1.5 2 2.5 3

Ag
en

ts
 (u

ni
ts

)

Time (minutes)

Bio-PEPA Emergency Egress

HAeHAwLEeLWwOUTeOUTwRAeRAwRBeRBwRCeRCwSEeSWw

10 stochastic simulation runs

Example 160/ 172

Example results: room occupancy

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.5 1 1.5 2 2.5 3

Ag
en

ts
 (u

ni
ts

)

Time (minutes)

Bio-PEPA Emergency Egress

HAeHAwLEeLWwOUTeOUTwRAeRAwRBeRBwRCeRCwSEeSWw

500 stochastic simulation runs

Example 161/ 172

Example results: room occupancy

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.5 1 1.5 2 2.5 3

Ag
en

ts
 (u

ni
ts

)

Time (minutes)

Bio-PEPA Emergency Egress

HAeHAwLEeLWwOUTeOUTwRAeRAwRBeRBwRCeRCwSEeSWw

ODE numerical simulation

Example 162/ 172

Results from PEPA model

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 0.5 1 1.5 2 2.5 3

Ag
en

ts
 (u

ni
ts

)

Time (minutes)

PEPA Emergency Egress

RA
RB
RC
HA
LW
LE

Room occupancy (PEPA model)

Example 163/ 172

Results from PEPA model

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.5 1 1.5 2 2.5 3

Ag
en

ts
 (u

ni
ts

)

Time (minutes)

PEPA Emergency Egress

W arrivals
E arrivals

Number arrived (PEPA model)

Example 164/ 172

Example results: rerouting through mediation

-50

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 1 2 3 4 5 6

Ag
en

ts
 (u

ni
ts

)

Time (minutes)

Bio-PEPA Emergency Egress

HAeHAwOUTeOUTwOUTallallowanceLEallowanceLWsaturatedEsaturatedW

Room occupancy over time without rerouting capability

Example 165/ 172

Example results: rerouting through mediation

-50

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 1 2 3 4 5 6

Ag
en

ts
 (u

ni
ts

)

Time (minutes)

Bio-PEPA Emergency Egress

HAeHAwOUTeOUTwOUTallallowanceLEallowanceLWsaturatedEsaturatedW

Room occupancy over time with rerouting capability

Example 166/ 172

Summary

Other examples we have considered include :

Individualised routing in unfamiliar buildings such as hospitals,
airports and museums.

Crowd dynamics in cities — particularly the
El Bottelon problem in squares in Spanish cities

On-going research issues:

Good/appropriate representations of space.

Relationship between the population level view and the
individual view, particularly with respect to correctness.

Example 167/ 172

Summary

Other examples we have considered include :

Individualised routing in unfamiliar buildings such as hospitals,
airports and museums.

Crowd dynamics in cities — particularly the
El Bottelon problem in squares in Spanish cities

On-going research issues:

Good/appropriate representations of space.

Relationship between the population level view and the
individual view, particularly with respect to correctness.

Conclusions 168/ 172

Outline

1 Introduction
Stochastic Process Algebra

2 Continuous Approximation

3 Fluid-Flow Semantics
Fluid Structured Operational Semantics
Convergence results

4 Example

5 Conclusions

Conclusions 169/ 172

Conclusions

Many interesting and important systems can be regarded as
examples of collective dynamics and emergent behaviour.

Process algebras, such as PEPA, are well-suited to modelling
the behaviour of such systems in terms of the individuals and
their interactions.

Continuous approximation allows a rigorous mathematical
analysis of the average behaviour of such systems.

Embedding the fluid approximation in the formal semantics of
the language allows necessary conditions for the convergence
to be established once and for all for the language rather than
on a model-by-model basis.

Conclusions 170/ 172

Conclusions

Many interesting and important systems can be regarded as
examples of collective dynamics and emergent behaviour.

Process algebras, such as PEPA, are well-suited to modelling
the behaviour of such systems in terms of the individuals and
their interactions.

Continuous approximation allows a rigorous mathematical
analysis of the average behaviour of such systems.

Embedding the fluid approximation in the formal semantics of
the language allows necessary conditions for the convergence
to be established once and for all for the language rather than
on a model-by-model basis.

Conclusions 171/ 172

Conclusions

Many interesting and important systems can be regarded as
examples of collective dynamics and emergent behaviour.

Process algebras, such as PEPA, are well-suited to modelling
the behaviour of such systems in terms of the individuals and
their interactions.

Continuous approximation allows a rigorous mathematical
analysis of the average behaviour of such systems.

Embedding the fluid approximation in the formal semantics of
the language allows necessary conditions for the convergence
to be established once and for all for the language rather than
on a model-by-model basis.

Conclusions 172/ 172

Conclusions

Many interesting and important systems can be regarded as
examples of collective dynamics and emergent behaviour.

Process algebras, such as PEPA, are well-suited to modelling
the behaviour of such systems in terms of the individuals and
their interactions.

Continuous approximation allows a rigorous mathematical
analysis of the average behaviour of such systems.

Embedding the fluid approximation in the formal semantics of
the language allows necessary conditions for the convergence
to be established once and for all for the language rather than
on a model-by-model basis.

	Introduction
	Stochastic Process Algebra

	Continuous Approximation
	Fluid-Flow Semantics
	Fluid Structured Operational Semantics
	Convergence results

	Example
	Conclusions

