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Collective Dynamics

The behaviour of many systems can be interpreted as the result of
the collective behaviour of a large number of interacting entities.

For such systems we are often as interested in the population level
behaviour as we are in the behaviour of the individual entities.
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Collective Behaviour

In the natural world there are many instances of collective
behaviour and its consequences:
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Collective Behaviour

This is also true in the man-made and engineered world:

Spread of H1N1 virus in 2009
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This is also true in the man-made and engineered world:

Love Parade, Germany 2006
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Collective Behaviour

This is also true in the man-made and engineered world:

Self assessment tax returns 31st January each year
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Solving discrete state models

With compositional modelling
approaches we have a CTMC
with global states determined
by the local states of all the
participating components.
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Solving discrete state models

When the size of the state
space is not too large they are
amenable to numerical solution
(linear algebra) to determine a
steady state or transient
probability distribution.

Q =


q1,1 q1,2 · · · q1,N

q2,1 q2,2 · · · q2,N

...
...

...
qN,1 qN,2 · · · qN,N



π(t) = (π1(t), π2(t), . . . , πN (t))
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Solving discrete state models

Alternatively they may be
studied using stochastic
simulation. Each run generates
a single trajectory through the
state space. Many runs are
needed in order to obtain
average behaviours.
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State space explosion

As the size of the state space becomes large it becomes infeasible
to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.

In these cases we would like to take advantage of the mean field or
fluid approximation techniques.

Use continuous state variables to approximate the discrete state
space.

d ddd dd-� � -d dd d-� -� -� -�d d d dd d d d-� -� -� -� -� -� -� -�d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.
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Fluid approximation-based approach

Use a more abstract state representation rather than the
CTMC complete state space.

Assume that these state variables are subject to continuous
rather than discrete change.

No longer aim to calculate the probability distribution over
the entire state space of the model.

Instead the ODEs estimate the expected behaviour of the
CTMC.

Appropriate for models in which there are large numbers of
components of the same type, i.e. models of populations and
situations of collective dynamics.
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Fluid approximation theorem

Hypothesis

X
(N)

(t): a sequence of normalized population CTMC, residing
in E ⊂ Rn

∃x0 ∈ S such that X
(N)

(0)→ x0 in probability (initial
conditions)

x(t): solution of dx
dt = F (x), x(0) = x0, residing in E .

Theorem

For any finite time horizon T <∞, it holds that:

P( sup
0≤t≤T

||X(N)
(t)− x(t)|| > ε)→ 0.

T.G.Kurtz. Solutions of ordinary differential equations as limits of pure jump Markov processes.

Journal of Applied Probability, 1970.
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Process Algebra

Models consist of agents which engage in actions.

α.P
��
�*

HH
HY

action type
or name

agent/
component

The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

Process algebra model Labelled transition system-
SOS rules
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A simple example: processors and resources

Proc0
def
= task1.Proc1

Proc1
def
= task2.Proc0

Res0
def
= task1.Res1

Res1
def
= reset.Res0

Proc0 ‖task1 Res0

Proc0 ‖task1 Res0

?
task1

Proc1 ‖task1 Res1

�
�
�	

reset
@
@
@R
task2

Proc1 ‖task1 Res0

�
�
�
�
�
�
��

task2

Proc0 ‖task1 Res1

A
A
A
A
A
A
AK

reset
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Stochastic process algebras

Stochastic process algebra

Process algebras where models are decorated with quantitative
information used to generate a stochastic process are stochastic
process algebras (SPA).
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Stochastic Process Algebra

Models are constructed from components which engage in
activities.

(α, r).P
��
�* 6 H

HHY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language is used to generate a CTMC for performance
modelling.

SPA
MODEL

LABELLED
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition

diagram
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Performance Evaluation Process Algebra

PEPA components perform activities either independently or in
co-operation with other components.

(α, f ).P Prefix
P1 + P2 Choice
P1 ��

L
P2 Co-operation

P/L Hiding
X Variable

P1 ‖ P2 is a derived form for P1 ��∅ P2.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)
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Structured Operational Semantics

PEPA is defined using a Plotkin-style structured operational
semantics (a “small step” semantics).

Prefix

(α, r).E
(α,r)
−−−→ E

Choice

E
(α,r)
−−−→ E ′

E + F
(α,r)
−−−→ E ′

F
(α,r)
−−−→ F ′

E + F
(α,r)
−−−→ F ′
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Structured Operational Semantics: Cooperation (α /∈ L)

Cooperation

E
(α,r)
−−−→ E ′

E ��
L

F
(α,r)
−−−→ E ′ ��

L
F

(α /∈ L)

F
(α,r)
−−−→ F ′

E ��
L

F
(α,r)
−−−→ E ��

L
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Structured Operational Semantics: Cooperation (α ∈ L)

Cooperation
E

(α,r1)
−−−→ E ′ F

(α,r2)
−−−→ F ′

E ��
L

F
(α,R)
−−−→ E ′ ��

L
F ′

(α ∈ L)

where R =
r1

rα(E )

r2

rα(F )
min(rα(E ), rα(F ))
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Apparent Rate

rα((β, r).P) =

{
r β = α
0 β 6= α

rα(P + Q) = rα(P) + rα(Q)

rα(A) = rα(P) where A
def
= P

rα(P ��
L

Q) =

{
rα(P) + rα(Q) α /∈ L
min(rα(P), rα(Q)) α ∈ L

rα(P/L) =

{
rα(P) α /∈ L
0 α ∈ L

Bounded capacity

We assume that components have bounded capacity: they cannot
be made to go any faster than their local definition of rate for a
shared activity.
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Structured Operational Semantics: Hiding

Hiding

E
(α,r)
−−−→ E ′

E/L
(α,r)
−−−→ E ′/L

(α /∈ L)

E
(α,r)
−−−→ E ′

E/L
(τ,r)
−−−→ E ′/L

(α ∈ L)
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Structured Operational Semantics: Hiding

Hiding

E
(α,r)
−−−→ E ′

E/L
(α,r)
−−−→ E ′/L

(α /∈ L)

E
(α,r)
−−−→ E ′

E/L
(τ,r)
−−−→ E ′/L

(α ∈ L)
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Structured Operational Semantics: Constants

Constant

E
(α,r)−→ E ′

A
(α,r)−→ E ′

(A
def
= E )
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A simple example: processors and resources

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0 ��
{task1}

Res0

Proc0 ��
{task1}

Res0

?
(task1, R)

Proc1 ��
{task1}

Res1

�
�
�	

(reset, r4)
@
@
@R
(task2, r2)

Proc1 ��
{task1}

Res0

�
�
�
�
�
�
��(task2, r2)

Proc0 ��
{task1}

Res1

A
A
A
A
A
A
AK (reset, r4)

R = min(r1, r3)

Q =


−R R 0 0

0 −(r2 + r4) r4 r2

r2 0 −r2 0
r4 0 0 −r4


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Process Algebra and Collective Dynamics

Process algebra are well-suited to modelling such systems

Developed to represent concurrent behaviour compositionally;

Capture the interactions between individuals explicitly;

Incorporate formal apparatus for reasoning about the
behaviour of systems;

Stochastic extensions, such as PEPA, enable quantified
behaviour of the dynamics of systems.

In the recent CODA project we investigated the use of stochastic
process algebras modelling and analysing the collective dynamics of
large systems of interacting entities.

In the soon-to-start QUANTICOL project we will be extending
techniques to spatially inhomogeneous systems.
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Simple example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
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Res0[NR ]
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Simple example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r1).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] ��
{task1}

Res0[NR ]

CTMC interpretation
Processors (NP ) Resources (NR ) States (2NP +NR )
1 1 4
2 1 8
2 2 16
3 2 32
3 3 64
4 3 128
4 4 256
5 4 512
5 5 1024
6 5 2048
6 6 4096
7 6 8192
7 7 16384
8 7 32768
8 8 65536
9 8 131072
9 9 262144
10 9 524288
10 10 1048576
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Simple example revisited

Proc0
def
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Res0
def
= (task1, r1).Res1

Res1
def
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task1 decreases Proc0 and Res0

task1 increases Proc1 and Res1

task2 decreases Proc1

task2 increases Proc0

reset decreases Res1

reset increases Res0
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Simple example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r1).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] ��
{task1}

Res0[NR ]

dx1
dt = −min(r1 x1, r3 x3) + r2 x2

x1 = no. of Proc1

task1 decreases Proc0

task1 is performed by Proc0

and Res0

task2 increases Proc0

task2 is performed by Proc1
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Simple example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r1).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] ��
{task1}

Res0[NR ]

ODE interpretation
dx1
dt = −min(r1 x1, r3 x3) + r2 x2

x1 = no. of Proc1
dx2
dt = min(r1 x1, r3 x3)− r2 x2

x2 = no. of Proc2
dx3
dt = −min(r1 x1, r3 x3) + r4 x4

x3 = no. of Res0
dx4
dt = min(r1 x1, r3 x3)− r4 x4

x4 = no. of Res1
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100 processors and 80 resources (simulation run A)
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100 processors and 80 resources (simulation run B)
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100 processors and 80 resources (simulation run C)
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100 processors and 80 resources (average of 10 runs)
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100 Processors and 80 resources (average of 100 runs)
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100 processors and 80 resources (average of 1000 runs)
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100 processors and 80 resources (ODE solution)
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Deriving a Fluid Approximation of a PEPA model

The aim is to represent the CTMC implicitly (avoiding state space
explosion), and to generate the set of ODEs which are the fluid
limit of that CTMC.

The exisiting (CTMC) SOS semantics is not suitable for this
purpose because it constructs the state space of the CTMC
explicitly.

SPA
MODEL

SYMBOLIC
LABELLED

TRANSITION
SYSTEM

ABSTRACT
CTMC Q

or
ODEs FM(x)

- -
SOS rules generator

functions
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Fluid Structured Operational Semantics

In order to get to the implicit representation of the CTMC we need
to:

1 Remove excess components (Context Reduction)

2 Collect the transitions of the reduced context (Jump Multiset)

3 Calculate the rate of the transitions in terms of an arbitrary
state of the CTMC.

Once this is done we can extract the vector field FM(x) from the
jump multiset.

M.Tribastone, S.Gilmore and J.Hillston. Scalable Differential Analysis of Process Algebra Models. IEEE TSE 2012.
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Context Reduction

Proc0
def
= (task1 , r1 ).Proc1

Proc1
def
= (task2 , r2 ).Proc0

Res0
def
= (task1 , r3 ).Res1

Res1
def
= (reset, r4 ).Res0

System
def
= Proc0 [NP ] ��

{transfer}
Res0 [NR ]

⇓

R(System) = {Proc0 ,Proc1} ��
{task1}

{Res0 ,Res1}

Population Vector

ξ = (ξ1, ξ2, ξ3, ξ4)
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Location Dependency

System
def
= Proc0 [N ′C ] ��

{task1}
Res0 [NS ] ‖ Proc0 [N ′′C ]

⇓

{Proc0 ,Proc1} ��
{task1}

{Res0 ,Res1} ‖ {Proc0 ,Proc1}

Population Vector

ξ = (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6)
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def
= Proc0 [N ′C ] ��

{task1}
Res0 [NS ] ‖ Proc0 [N ′′C ]

⇓

{Proc0 ,Proc1} ��
{task1}

{Res0 ,Res1} ‖ {Proc0 ,Proc1}

Population Vector

ξ = (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6)
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Fluid Structured Operational Semantics by Example

Proc0
def
= (task1 , r1 ).Proc1

Proc1
def
= (task2 , r2 ).Proc0

Res0
def
= (task1 , r3 ).Res1

Res1
def
= (reset, r4 ).Res0

System
def
= Proc0 [NP ] ��

{transfer}
Res0 [NR ]

ξ = (ξ1, ξ2, ξ3, ξ4)

Proc0
task1 ,r1−−−−−−→ Proc1

Proc0
task1 ,r1 ξ1−−−−−−−→∗ Proc1

Res0
task1 ,r3−−−−−−→ Res1

Res0
task1 ,r3 ξ3−−−−−−−→∗ Res1

Proc0 ��
{task1}

Res0
task1 ,r(ξ)
−−−−−−−→∗ Proc1 ��

{task1}
Res1
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Fluid Structured Operational Semantics by Example
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Fluid Structured Operational Semantics by Example
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Fluid Structured Operational Semantics by Example

Proc0
def
= (task1 , r1 ).Proc1

Proc1
def
= (task2 , r2 ).Proc0

Res0
def
= (task1 , r3 ).Res1

Res1
def
= (reset, r4 ).Res0

System
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{task1}
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Res1
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Apparent Rate Calculation

Proc0
task1 ,r ′1−−−−−−→ Proc1

Proc0
task1 ,r ′1 ξ1−−−−−−−→∗ Proc1

Res0
task1 ,r3−−−−−−→ Res1

Res0
task1 ,r3 ξ3−−−−−−−→∗ Res1

Proc0 ��
{task1}

Res0
task1 ,r(ξ)
−−−−−−−→∗ Proc1 ��

{task1}
Res1

r(ξ) =
r1ξ1

r?task1 (Proc0 , ξ)

r3ξ4

r?task1 (Res0 , ξ)
min

(
r?task1 (Proc0 , ξ) , r?task1 (Res0 , ξ)

)
=

r1ξ1

r1ξ1

r3ξ4

r3ξ4
min

(
r1ξ1, r3ξ4

)
=min

(
r1ξ1, r3ξ4

)
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Apparent Rate Calculation

Proc0
task1 ,r ′1−−−−−−→ Proc1

Proc0
task1 ,r ′1 ξ1−−−−−−−→∗ Proc1

Res0
task1 ,r3−−−−−−→ Res1

Res0
task1 ,r3 ξ3−−−−−−−→∗ Res1

Proc0 ��
{task1}

Res0
task1 ,r(ξ)
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r(ξ) =
r1ξ1

r?task1 (Proc0 , ξ)

r3ξ4

r?task1 (Res0 , ξ)
min

(
r?task1 (Proc0 , ξ) , r?task1 (Res0 , ξ)
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r3ξ4
min

(
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)
=min

(
r1ξ1, r3ξ4

)
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f (ξ, l , α) as the Generator Matrix of the Lumped CTMC

(P0 ‖ P0 ) ��
{task1}

(R0 ‖ R0 ‖ R0 )

(P1 ‖ P0 ) ��
{task1}

R1 ‖ R0 ‖ R0 )

(P1 ‖ P0 ) ��
{task1}

(R0 ‖ R1 ‖ R0 )

(P1 ‖ P0 ) ��
{task1}

(R0 ‖ R0 ‖ R1 )

(P0 ‖ P1 ) ��
{task1}

(R1 ‖ R0 ‖ R0 )

(P0 ‖ P1 ) ��
{task1}

(R0 ‖ R1 ‖ R0 )

(P0 ‖ P1 ) ��
{task1}

(R0 ‖ R0 ‖ R1 )
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f (ξ, l , α) as the Generator Matrix of the Lumped CTMC
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f (ξ, l , α) as the Generator Matrix of the Lumped CTMC

(P0 ‖ P0 ) ��
{task1}

(R0 ‖ R0 ‖ R0 )

(P1 ‖ P0 ) ��
{task1}

R1 ‖ R0 ‖ R0 )

(P1 ‖ P0 ) ��
{task1}

(R0 ‖ R1 ‖ R0 )

(P1 ‖ P0 ) ��
{task1}

(R0 ‖ R0 ‖ R1 )
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{task1}
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f (ξ, l , α) as the Generator Matrix of the Lumped CTMC

(P0 ‖ P0 ) ��
{task1}

(R0 ‖ R0 ‖ R0 )

(P1 ‖ P0 ) ��
{task1}

(R1 ‖ R0 ‖ R0 )

(P1 ‖ P0 ) ��
{task1}

(R0 ‖ R1 ‖ R0 )

(P1 ‖ P0 ) ��
{task1}

(R0 ‖ R0 ‖ R1 )

(P0 ‖ P1 ) ��
{task1}

(R1 ‖ R0 ‖ R0 )

(P0 ‖ P1 ) ��
{task1}

(R0 ‖ R1 ‖ R0 )

(P0 ‖ P1 ) ��
{task1}

(R0 ‖ R0 ‖ R1 )

�
�
�
�
�
�
�
��7

�
�
�
�
��>

��
���

�:

XXXXXXz
Z
Z
Z
Z
ZZ~

S
S
S
S
S
S
S
Sw

r = r1

2r1

r3

3r3
min(2r1, 3r3) = 1

6 min(2r1, 3r3)

(2, 0, 3, 0) -min(2r1, 3r3)
(1, 1, 2, 1)(2, 0, 3, 0) -min(2r1, 3r3)
(1, 1, 2, 1)



Fluid-Flow Semantics Fluid Structured Operational Semantics 127/ 172

Jump Multiset

Proc0 ��
{task1}

Res0
task1 ,r(ξ)−−−−−−−→∗ Proc1 ��

{task1}
Res1

r(ξ) = min
(
r1ξ1, r3ξ3

)

Proc1 ��
{task1}

Res0
task2 ,ξ2r2−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0
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Jump Multiset

Proc0 ��
{task1}

Res0
task1 ,r(ξ)−−−−−−−→∗ Proc1 ��

{task1}
Res1

r(ξ) = min
(
r1ξ1, r3ξ3

)

Proc1 ��
{task1}

Res0
task2 ,ξ2r2−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0
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Jump Multiset

Proc0 ��
{task1}

Res0
task1 ,r(ξ)−−−−−−−→∗ Proc1 ��

{task1}
Res1

r(ξ) = min
(
r1ξ1, r3ξ3

)

Proc1 ��
{task1}

Res0
task2 ,ξ2r2−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0
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Equivalent Transitions

Some transitions may give the same information:

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc1 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc1 ��

{task1}
Res0

i.e., Res1 may perform an action independently from the rest of
the system.

This is captured by the procedure used for the construction of the
generator function f (ξ, l , α)
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Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

Take l = (0, 0, 0, 0)

Add −1 to all elements of l corresponding to the indices of
the components in the lhs of the transition

l = (−1, 0, 0,−1)

Add +1 to all elements of l corresponding to the indices of
the components in the rhs of the transition

l = (−1 + 1, 0,+1,−1) = (0, 0,+1,−1)

f
(
ξ, (0, 0,+1,−1), reset

)
= ξ4r4
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Construction of f (ξ, l , α)

Proc0 ��
{task1}
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Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res1
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Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��
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Res0

Take l = (0, 0, 0, 0)

Add −1 to all elements of l corresponding to the indices of
the components in the lhs of the transition
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)
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Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res0
task1 ,r(ξ)−−−−−−−→∗ Proc1 ��

{task1}
Res1

Proc1 ��
{task1}

Res0
task2 ,ξ2r ′2−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

f (ξ, (−1,+1,−1,+1), task1) = r(ξ)

f (ξ, (+1,−1, 0, 0), task2) = ξ2r2

f (ξ, (0, 0,+1,−1), reset) = ξ4r4
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Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res0
task1 ,r(ξ)−−−−−−−→∗ Proc1 ��

{task1}
Res1

Proc1 ��
{task1}

Res0
task2 ,ξ2r ′2−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

f (ξ, (−1,+1,−1,+1), task1) = r(ξ)

f (ξ, (+1,−1, 0, 0), task2) = ξ2r2

f (ξ, (0, 0,+1,−1), reset) = ξ4r4
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Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res0
task1 ,r(ξ)−−−−−−−→∗ Proc1 ��

{task1}
Res1

Proc1 ��
{task1}

Res0
task2 ,ξ2r ′2−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

f (ξ, (−1,+1,−1,+1), task1) = r(ξ)

f (ξ, (+1,−1, 0, 0), task2) = ξ2r2

f (ξ, (0, 0,+1,−1), reset) = ξ4r4
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Capturing behaviour in the Generator Function

Proc0
def
= (task1 , r1 ).Proc1

Proc1
def
= (task2 , r2 ).Proc0

Res0
def
= (task1 , r3 ).Res1

Res1
def
= (reset, r4 ).Res0

System
def
= Proc0 [NP ] ��

{transfer}
Res0 [NR ]

Numerical Vector Form

ξ = (ξ1, ξ2, ξ3, ξ4) ∈ N4, ξ1 + ξ2 = NP and ξ3 + ξ4 = NR

Generator Function

f (ξ, l , α) :
f (ξ, (−1, 1,−1, 1), task1) = min (r1ξ1, r3ξ3)

f (ξ, (1,−1, 0, 0), task2) = r2ξ2

f (ξ, (0, 0, 1,−1), reset) = r4ξ4
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Capturing behaviour in the Generator Function

Proc0
def
= (task1 , r1 ).Proc1

Proc1
def
= (task2 , r2 ).Proc0

Res0
def
= (task1 , r3 ).Res1

Res1
def
= (reset, r4 ).Res0

System
def
= Proc0 [NP ] ��

{transfer}
Res0 [NR ]

Numerical Vector Form

ξ = (ξ1, ξ2, ξ3, ξ4) ∈ N4, ξ1 + ξ2 = NP and ξ3 + ξ4 = NR

Generator Function

f (ξ, l , α) :
f (ξ, (−1, 1,−1, 1), task1) = min (r1ξ1, r3ξ3)

f (ξ, (1,−1, 0, 0), task2) = r2ξ2

f (ξ, (0, 0, 1,−1), reset) = r4ξ4
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Capturing behaviour in the Generator Function

Proc0
def
= (task1 , r1 ).Proc1

Proc1
def
= (task2 , r2 ).Proc0

Res0
def
= (task1 , r3 ).Res1

Res1
def
= (reset, r4 ).Res0

System
def
= Proc0 [NP ] ��

{transfer}
Res0 [NR ]

Numerical Vector Form

ξ = (ξ1, ξ2, ξ3, ξ4) ∈ N4, ξ1 + ξ2 = NP and ξ3 + ξ4 = NR

Generator Function

f (ξ, l , α) :
f (ξ, (−1, 1,−1, 1), task1) = min (r1ξ1, r3ξ3)

f (ξ, (1,−1, 0, 0), task2) = r2ξ2

f (ξ, (0, 0, 1,−1), reset) = r4ξ4
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Extraction of the ODE from f

Generator Function

f (ξ, (−1, 1,−1, 1), task1) = min (r1ξ1, r3ξ3)
f (ξ, (1,−1, 0, 0), task2) = r2ξ2

f (ξ, (0, 0, 1,−1), reset) = r4ξ4

Differential Equations

dx

dt
= FM(x) =

∑
l∈Zd

l
∑
α∈A

f (x , l , α)

= (−1, 1,−1, 1) min (r1x1, r3x3) + (1,−1, 0, 0)r2x2

+ (0, 0, 1,−1)r4x4
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Extraction of the ODE from f

Generator Function

f (ξ, (−1, 1,−1, 1), task1) = min (r1ξ1, r3ξ3)
f (ξ, (1,−1, 0, 0), task2) = r2ξ2

f (ξ, (0, 0, 1,−1), reset) = r4ξ4

Differential Equations

dx1

dt
= −min (r1x1, r3x3) + r2 x2

dx2

dt
= min (r1x1, r3x3)− r2 x2

dx3

dt
= −min (r1x1, r3x3) + r4 x4

dx4

dt
= min (r1x1, r3x3)− r4 x4
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Density Dependence

Density dependence of parametric apparent rates

Let r?α (P, ξ) be the parametric apparent rate of action type α in
process P. For any n ∈ N and α ∈ A,

r?α (P, ξ) = n · r?α (P, ξ/n)

Density dependence of parametric transition rates

If P
(α,r(ξ))−−−−−→∗ Q then, for any n ∈ N, r(ξ) = n · r(ξ/n)

Generating functions give rise to density dependent rates

Let M be a PEPA model with generating functions f (ξ, l , α)
derived as demonstrated. Then the corresponding sequence of
CTMCs will be density dependent.
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Density Dependence
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Density Dependence

Density dependence of parametric apparent rates

Let r?α (P, ξ) be the parametric apparent rate of action type α in
process P. For any n ∈ N and α ∈ A,

r?α (P, ξ) = n · r?α (P, ξ/n)

Density dependence of parametric transition rates

If P
(α,r(ξ))−−−−−→∗ Q then, for any n ∈ N, r(ξ) = n · r(ξ/n)

Generating functions give rise to density dependent rates
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derived as demonstrated. Then the corresponding sequence of
CTMCs will be density dependent.
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Lipschitz continuity

Since Lipschitz continuity is preserved by summation, in order to
verify that the vector field FM(x) is Lipschitz it suffices to prove
that any parametric rate generated by the semantics is Lipschitz.

Lipschitz continuity of parametric apparent rates

Let r?α (P, ξ) be the parametric apparent rate of action type α in
process P. There exists a constant L ∈ R such that for all
x , y ∈ Rd , x 6= y ,

‖r?α (P, x)− r?α (P, y)‖
‖x − y‖

≤ L

Lipschitz continuity of rate functions

If P
(α,r(x))−−−−−→∗ P ′ then r(x) ≤ r?α (P, x) and thus it follows that

r(x) is Lipschitz continuous.
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Lipschitz continuity

Since Lipschitz continuity is preserved by summation, in order to
verify that the vector field FM(x) is Lipschitz it suffices to prove
that any parametric rate generated by the semantics is Lipschitz.

Lipschitz continuity of parametric apparent rates

Let r?α (P, ξ) be the parametric apparent rate of action type α in
process P. There exists a constant L ∈ R such that for all
x , y ∈ Rd , x 6= y ,

‖r?α (P, x)− r?α (P, y)‖
‖x − y‖

≤ L

Lipschitz continuity of rate functions

If P
(α,r(x))−−−−−→∗ P ′ then r(x) ≤ r?α (P, x) and thus it follows that

r(x) is Lipschitz continuous.
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Kurtz’s Theorem

Kurtz’s Theorem for PEPA

Let x(t), 0 ≤ t ≤ T satisfy the initial value problem
dx
dt = F (x(t)), x(0) = δ, specified from a PEPA model.

Let {Xn(t)} be a family of CTMCs with parameter n ∈ N
generated as explained and let Xn(0) = n · δ. Then,

∀ε > 0 lim
n→∞

P

(
sup
t≤T
‖Xn(t)/n − x(t)‖ > ε

)
= 0.

Moreover Lipschitz continuity of the vector field guarantees
existence and uniqueness of the solution to the initial value
problem.

M.Tribastone, S.Gilmore and J.Hillston. Scalable Differential Analysis of Process Algebra Models. IEEE TSE 2012.
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Eclipse Plug-in for PEPA
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Designing for human crowd dynamics

Widespread take up of mobile and communicating
computational devices is making pervasive systems a reality
and creating new ways for us to interact with our
environment, an informatic environment.

One application is to provide routing information to help
people navigate through unfamiliar locations.

In theses case the dynamic behaviour of the system as a whole
is important to ensure the satisfaction of the users.

Using a stochastic process algebra allows quantified
information, necessary for dynamic analysis, to be captured
whilst also focussing on the behaviour of the individuals and
their interactions with the environment.
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Example scenario: emergency egress

Emergency egress can be regarded as a particular case of crowd
dynamics, when the location may be familiar but circumstances
may alter the usual topology and make efficient movement
particularly important.

Here technology mediation may mean that information about the
best routes (possibly contradicting signage) can be supplied
dynamically.

M.Massink, D.Latella, A.Bracciali, M.Harrison and J.Hillston. Scalable Context-dependent Analysis of Emergency

Egress Models. FACS 2012.
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Example scenario
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The layout of the building is described in terms of the arrangement
of the rooms, hallways, landing and stairs. Each has a capacity and
may have an initial occupancy.

Process algebra components describe the behaviours of individuals,
but also rooms and information dissemination.
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Model specification
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Example results: room occupancy
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Example results: room occupancy
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Example results: room occupancy
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Results from PEPA model
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Results from PEPA model
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Example results: rerouting through mediation
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Example results: rerouting through mediation
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Summary

Other examples we have considered include :

Individualised routing in unfamiliar buildings such as hospitals,
airports and museums.

Crowd dynamics in cities — particularly the
El Bottelon problem in squares in Spanish cities

On-going research issues:

Good/appropriate representations of space.

Relationship between the population level view and the
individual view, particularly with respect to correctness.
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Conclusions

Many interesting and important systems can be regarded as
examples of collective dynamics and emergent behaviour.

Process algebras, such as PEPA, are well-suited to modelling
the behaviour of such systems in terms of the individuals and
their interactions.

Continuous approximation allows a rigorous mathematical
analysis of the average behaviour of such systems.

Embedding the fluid approximation in the formal semantics of
the language allows necessary conditions for the convergence
to be established once and for all for the language rather than
on a model-by-model basis.
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