Mean-field Analysis of Continuous-Time Markov Chains

Fluid Approximation for Stochastic Process Algebra and Stochastic
Model Checking

Fluid Approximation for Stochastic Process
Algebras

Jane Hillston

Laboratory for Foundations of Computer Science
University of Edinburgh

24th October 2012

Collective Dynamics

The behaviour of many systems can be interpreted as the result of
the collective behaviour of a large number of interacting entities.

R

Collective Dynamics

The behaviour of many systems can be interpreted as the result of
the collective behaviour of a large number of interacting entities.

R

For such systems we are often as interested in the population level
behaviour as we are in the behaviour of the individual entities.

Collective Behaviour

In the natural world there are many instances of collective
behaviour and its consequences:

Collective Behaviour

In the natural world there are many instances of collective
behaviour and its consequences:

Collective Behaviour

This is also true in the man-made and engineered world:

Spread of HIN1 virus in 2009

Collective Behaviour

This is also true in the man-made and engineered world:

Collective Behaviour

This is also true in the man-made and engineered world:

8enNo HMRC: Login a
EB [+ [nttps:/oniine.nmre.gov.uk/10gin?GAREASONCODE=-18GARESOURC - & | (Q~ Inland Revenue Tax Returns)
m Apple Yahoo! Google Maps YouTube Wikipedia News (1075)v Popular+

HMRC: Login

(@) M Revenue Online Services

&Customs HMRC home | Contactus | Help

Welcome to Online Services

Existing users ™ New user

Please enter your User 1D and passwerd, then click the To register for online services please click the 'Register’

‘Login' button below. button below.

Please note: Fields are not case sensitive. Register

User 1D: @ » Digital Certificate user
Password: @ » Frequently Asked Questions (FAQs}
» Computer requirements o
» View a demo of HMRC's services
Login » Registration and Enrolment process
¥ Digital Certificate user
¥ Lost User ID?
» Lost password?
¥ Lost or expired Activation PIN?
¥ If you have lost both your User ID and password
please contact the HM Revenue & Customs (HMRC)
Online Services Helpdesk.
4

Self assessment tax returns 31st January each year

11/ 172
Solving discrete state models

With compositional modelling
approaches we have a CTMC
with global states determined
by the local states of all the
participating components.

Solving discrete state models

When the size of the state
space is not too large they are
amenable to numerical solution
(linear algebra) to determine a
steady state or transient
probability distribution.

13/ 172
Solving discrete state models

When the size of the state
space is not too large they are
amenable to numerical solution i1 qi2 ot quN
(linear algebra) to determine a @1 G2 "GN
steady state or transient : : :
probability distribution. gna gn2 o gNN

14/ 172
Solving discrete state models

When the size of the state
space is not too large they are

amenable to numerical solution a1 g2 0 quN
(linear algebra) to determine a Q= @1 G2 "GN
steady state or transient : : :

probability distribution. Nl gn2 o gnN

7(t) = (mi(t), ma(2), ..., 7N (1))

15/ 172
Solving discrete state models

Alternatively they may be

studied using stochastic

simulation. Each run generates .
a single trajectory through the

state space. Many runs are

needed in order to obtain

average behaviours. X

16/ 172
State space explosion

As the size of the state space becomes large it becomes infeasible
to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.

17/ 172
State space explosion

As the size of the state space becomes large it becomes infeasible

to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.

In these cases we would like to take advantage of the mean field or
fluid approximation techniques.

v

18/ 172
State space explosion

As the size of the state space becomes large it becomes infeasible

to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.

In these cases we would like to take advantage of the mean field or
fluid approximation techniques.

v

Use continuous state variables to approximate the discrete state
space.

19/ 172
State space explosion

As the size of the state space becomes large it becomes infeasible

to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.

In these cases we would like to take advantage of the mean field or
fluid approximation techniques.

v

Use continuous state variables to approximate the discrete state
space.

20/ 172
State space explosion

As the size of the state space becomes large it becomes infeasible

to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.

In these cases we would like to take advantage of the mean field or
fluid approximation techniques.

v

Use continuous state variables to approximate the discrete state
space.

State space explosion

As the size of the state space becomes large it becomes infeasible

to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.

In these cases we would like to take advantage of the mean field or
fluid approximation techniques.

v

Use continuous state variables to approximate the discrete state
space.

State space explosion

As the size of the state space becomes large it becomes infeasible

to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.

In these cases we would like to take advantage of the mean field or
fluid approximation techniques.

v

Use continuous state variables to approximate the discrete state
space.

State space explosion

As the size of the state space becomes large it becomes infeasible

to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.

In these cases we would like to take advantage of the mean field or
fluid approximation techniques.

v

Use continuous state variables to approximate the discrete state
space.

24/ 172
State space explosion

As the size of the state space becomes large it becomes infeasible

to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.

In these cases we would like to take advantage of the mean field or
fluid approximation techniques.

v

Use continuous state variables to approximate the discrete state
space.

State space explosion

As the size of the state space becomes large it becomes infeasible

to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.

In these cases we would like to take advantage of the mean field or
fluid approximation techniques.

v

Use continuous state variables to approximate the discrete state
space.

o o0 o o o o oo o oo o o o o o o

26/ 172
State space explosion

As the size of the state space becomes large it becomes infeasible

to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.

In these cases we would like to take advantage of the mean field or
fluid approximation techniques.

v

Use continuous state variables to approximate the discrete state
space.

O+-O0+-0+-0+- 0000000000000

27/ 172
State space explosion

As the size of the state space becomes large it becomes infeasible

to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.

In these cases we would like to take advantage of the mean field or
fluid approximation techniques.

v

Use continuous state variables to approximate the discrete state
space.

O00000OOOOOOOOOOLOOOOOOOOOOOOOOOOO

State space explosion

As the size of the state space becomes large it becomes infeasible

to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.

In these cases we would like to take advantage of the mean field or
fluid approximation techniques.

v

Use continuous state variables to approximate the discrete state
space.

State space explosion

As the size of the state space becomes large it becomes infeasible
to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.

In these cases we would like to take advantage of the mean field or
fluid approximation techniques.

v

Use continuous state variables to approximate the discrete state
space.

Use ordinary differential equations to represent the evolution of
those variables over time.

Fluid approximation-based approach

m Use a more abstract state representation rather than the
CTMC complete state space.

Fluid approximation-based approach

m Use a more abstract state representation rather than the
CTMC complete state space.

m Assume that these state variables are subject to continuous
rather than discrete change.

Fluid approximation-based approach

m Use a more abstract state representation rather than the
CTMC complete state space.

m Assume that these state variables are subject to continuous
rather than discrete change.

m No longer aim to calculate the probability distribution over
the entire state space of the model.

Fluid approximation-based approach

m Use a more abstract state representation rather than the
CTMC complete state space.

m Assume that these state variables are subject to continuous
rather than discrete change.

m No longer aim to calculate the probability distribution over
the entire state space of the model.

m Instead the ODEs estimate the expected behaviour of the
CTMC.

Fluid approximation-based approach

m Use a more abstract state representation rather than the
CTMC complete state space.

m Assume that these state variables are subject to continuous
rather than discrete change.

m No longer aim to calculate the probability distribution over
the entire state space of the model.

m Instead the ODEs estimate the expected behaviour of the
CTMC.

Appropriate for models in which there are large numbers of
components of the same type, i.e. models of populations and
situations of collective dynamics.

Fluid approximation theorem

Hypothesis

| K(N)(t): a sequence of normalized population CTMC, residing
in ECR”

m dxg € S such that X(N)(O) — Xg in probability (initial
conditions)

m x(t): solution of % = F(x), x(0) = xq, residing in E.

v
Theorem

For any finite time horizon T < oo, it holds that:

P(sup [[X™M () = x(t)[| > £) — 0.
0<t<T

<

T.G.Kurtz. Solutions of ordinary differential equations as limits of pure jump Markov processes.
Journal of Applied Probability, 1970.

36/ 172
Outline

Introduction
m Stochastic Process Algebra

Continuous Approximation

Fluid-Flow Semantics
m Fluid Structured Operational Semantics
m Convergence results

Example

Conclusions

Introduction

Outline

Introduction
m Stochastic Process Algebra

Introduction Stochastic Process Algebra

Process Algebra

m Models consist of agents which engage in actions.

o.P

action type agent/
or name component

Introduction Stochastic Process Algebra

Process Algebra

m Models consist of agents which engage in actions.

o.P

action type agent/
or name component

Introduction Stochastic Process Algebra

Process Algebra

m Models consist of agents which engage in actions.

o.P

action type agent/
or name component

Introduction Stochastic Process Algebra

Process Algebra

m Models consist of agents which engage in actions.

o.P

action type agent/
or name component

m The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

Introduction Stochastic Process Algebra

Process Algebra

m Models consist of agents which engage in actions.

o.P

action type agent/
or name component

m The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

Process algebra model

Introduction Stochastic Process Algebra

Process Algebra

m Models consist of agents which engage in actions.

o.P

action type agent/
or name component

m The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

SOS rules

Process algebra model

Introduction Stochastic Process Algebra

Process Algebra

m Models consist of agents which engage in actions.

o.P

action type agent/
or name component

m The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

SOS rules

Process algebra model Labelled transition system

Introduction Stochastic Process Algebra

A simple example: processors and resources

def

Procy = taskl.Procy
Proc, & task2. Procgy
Resg & taskl. Res,
Res, ' reset. Resg

Procg || task1 Reso

Introduction Stochastic Process Algebra

A simple example: processors and resources

PI‘OCO ||task1 ReS()

Procgy & taskl. Proc,q ltask 1
def
Procy = task2.Proc task2 reset
! def 0 Procy Htaskl Res;
Resg = taskl.Res;
Resi = reset.Resg r esmisld

Procy ||task1 Reso Procq ||task1 Res1

Q
0
-

Procg || task1 Reso

Introduction Stochastic Process Algebra

Stochastic process algebras

Process algebras where models are decorated with quantitative
information used to generate a stochastic process are stochastic
process algebras (SPA).

Introduction Stochastic Process Algebra

Stochastic Process Algebra

m Models are constructed from components which engage in
activities.

(o, r).P
B

component/
derivative
activity rate
(parameter of an
exponential distribution)

Introduction Stochastic Process Algebra

Stochastic Process Algebra

m Models are constructed from components which engage in
activities.

(o, r).P
e -~ I T

component/
derivative
activity rate
(parameter of an
exponential distribution)

Introduction Stochastic Process Algebra

Stochastic Process Algebra

m Models are constructed from components which engage in
activities.

(o, r).P
It

component/
derivative
activity rate
(parameter of an
exponential distribution)

Introduction Stochastic Process Algebra

Stochastic Process Algebra

m Models are constructed from components which engage in
activities.

(o, r).P
I

component/
derivative
activity rate
(parameter of an
exponential distribution)

Introduction Stochastic Process Algebra

Stochastic Process Algebra

m Models are constructed from components which engage in

activities.
(a, r). P\
action type / I component/
or name derivative

activity rate
(parameter of an
exponential distribution)

m The language is used to generate a CTMC for performance
modelling.

Introduction Stochastic Process Algebra

Stochastic Process Algebra

m Models are constructed from components which engage in

activities.
(a, r). P\
action type / I component/
or name derivative

activity rate
(parameter of an
exponential distribution)

m The language is used to generate a CTMC for performance
modelling.

SPA
MODEL

Introduction Stochastic Process Algebra

Stochastic Process Algebra

m Models are constructed from components which engage in

activities.
(a, r). P\
action type / I component/
or name derivative

activity rate
(parameter of an
exponential distribution)

m The language is used to generate a CTMC for performance
modelling.

spA SOS rules
MODEL

Introduction Stochastic Process Algebra

Stochastic Process Algebra

m Models are constructed from components which engage in

activities.
(a, r). P\
action type / I component/
or name derivative

activity rate
(parameter of an
exponential distribution)

m The language is used to generate a CTMC for performance
modelling.

MODEL SYSTEM

Introduction Stochastic Process Algebra

Stochastic Process Algebra

m Models are constructed from components which engage in
activities.

(o, r).P
/ I \ /
component
derivative

action type
or name

activity rate
(parameter of an
exponential distribution)

m The language is used to generate a CTMC for performance
modelling.

spA SOS rules LABELLED state transition
— TRANSITION :
MODEL SYSTEM diagram

Introduction Stochastic Process Algebra

Stochastic Process Algebra

m Models are constructed from components which engage in
activities.

(o, r).P
/ I \ /
component
derivative

action type
or name

activity rate
(parameter of an
exponential distribution)

m The language is used to generate a CTMC for performance
modelling.

spA SOS rules LABELLED state transition
— TRANSITION

CTMC Q
MODEL SYSTEM diagram

Introduction Stochastic Process Algebra

Performance Evaluation Process Algebra

PEPA components perform activities either independently or in
co-operation with other components.

Introduction Stochastic Process Algebra

Performance Evaluation Process Algebra

PEPA components perform activities either independently or in
co-operation with other components.

(a,f).P Prefix

Py + P, Choice

Py DF P> Co-operation
P/L Hiding

X Variable

Introduction Stochastic Process Algebra

Performance Evaluation Process Algebra

PEPA components perform activities either independently or in
co-operation with other components.

(o, F).P Prefix

Py + P, Choice

Py DF P> Co-operation
P/L Hiding

X Variable

Introduction Stochastic Process Algebra

Performance Evaluation Process Algebra

PEPA components perform activities either independently or in
co-operation with other components.

(a,f).P Prefix

Py + P, Choice

Py DF P> Co-operation
P/L Hiding

X Variable

Introduction Stochastic Process Algebra

Performance Evaluation Process Algebra

PEPA components perform activities either independently or in
co-operation with other components.

(a,f).P Prefix

Py + P, Choice

Py DF P, Co-operation
P/L Hiding

X Variable

Introduction Stochastic Process Algebra

Performance Evaluation Process Algebra

PEPA components perform activities either independently or in
co-operation with other components.

(a,f).P Prefix

Py + P, Choice

Py DF P> Co-operation
P/L Hiding

X Variable

Introduction Stochastic Process Algebra

Performance Evaluation Process Algebra

PEPA components perform activities either independently or in
co-operation with other components.

(a,f).P Prefix

Py + P, Choice

Py DF P> Co-operation
P/L Hiding

X Variable

Introduction Stochastic Process Algebra

Performance Evaluation Process Algebra

PEPA components perform activities either independently or in
co-operation with other components.

(a,f).P Prefix

Py + P, Choice

Py DF P> Co-operation
P/L Hiding

X Variable

P1 || P> is a derived form for P; Df Ps.

Introduction Stochastic Process Algebra

Performance Evaluation Process Algebra

PEPA components perform activities either independently or in
co-operation with other components.

(a,f).P Prefix

Py + P, Choice

Py DF P> Co-operation
P/L Hiding

X Variable

P1 || P> is a derived form for P; Df Ps.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

PBI=(PIPIPIPIP)

Introduction Stochastic Process Algebra

Structured Operational Semantics

PEPA is defined using a Plotkin-style structured operational
semantics (a “small step” semantics).

Introduction Stochastic Process Algebra

Structured Operational Semantics

PEPA is defined using a Plotkin-style structured operational
semantics (a “small step” semantics).

Prefix

(ar)
(a,r).E —— E

Introduction Stochastic Process Algebra

Structured Operational Semantics

PEPA is defined using a Plotkin-style structured operational
semantics (a “small step” semantics).

Prefix

(ar)
(a,r).E —— E

Choice

E—— E

(avr)
E+F——F

(er)
F—— F

(er)
E+F—>F

Introduction Stochastic Process Algebra 70/ 172

Structured Operational Semantics: Cooperation (a ¢ L)

Cooperation

a,r
EDF F—>E'BL4F

Introduction Stochastic Process Algebra 71/ 172

Structured Operational Semantics: Cooperation (a ¢ L)

Cooperation

a,r
EDF F—>E'BL4F

(a,r)
F——F
— (a ¢ L)

E > F—>E1>L<]F'

Introduction Stochastic Process Algebra 72/ 172

Structured Operational Semantics: Cooperation (a € L)

E (Oé7r1) EI F (Oé,l‘z) FI

Cooperation) (vel)

EDLQ F—>E’Dfl F’

Introduction

Stochastic Process Algebra

73/ 172

Structured Operational Semantics: Cooperation (a € L)

E (Oé7r1) EI F (Oé,l‘z) FI

Cooperation @R (e l)
E>F 5 F 1 F
n p) .
where R = min(ro(E), ra(F))

ra(E) ra(F)

Introduction Stochastic Process Algebra

Apparent Rate

w(np) = { g o

r(P+Q) = r(P)+r(Q)
ro(A) = ra(P) where A< P

_ ra(P) + ra(Q) adgl
ra(P > Q) = { min(ry(P), ra(Q)) a €L
wiey = { o7 afl

Bounded capacity

We assume that components have bounded capacity: they cannot
be made to go any faster than their local definition of rate for a
shared activity.

Introduction Stochastic Process Algebra

Structured Operational Semantics: Hiding

Hiding
[N

e/ prn

(a¢ L)

Introduction Stochastic Process Algebra

Structured Operational Semantics: Hiding

Hiding
[N

e/ prn

(a¢ L)

(a,r)

=) (vel)
E/L—5E'JL

Introduction Stochastic Process Algebra

Structured Operational Semantics: Constants

Constant

@ p

o, AEE)
A E

Introduction Stochastic Process Algebra

A simple example: processors and resources

Proco = (taskl,n).Proc;
Proc; % (task2, r,).Proco
Resy 2 (taskl,r;).Res;
Res; o (reset, r4).Resg

Procog B4 Resg
{task1}

Introduction Stochastic Process Algebra

A simple example: processors and resources

Proco = (taskl,n).Proc;
Proc; = (task2,r).Procg
Reso, & (taskl, r3).Res;

Res; (reset, r4).Resg

Procog B4 Resg
{task1}

Procog B Resg
{task1}

(task2, rp) (reset, rg)

(taskl, R)

Proc; B Res;
{task1}
(reset, ry) (task2, rp)

Proc; D4 Resy, Procy P4 Res;
{task1} {task1}

R = min(r1, r3)

Introduction Stochastic Process Algebra

A simple example: processors and resources

Procog B Resg
{task1}

Procy < (taskl, r).Procy (task2, r2) (oot) (reset, r3)
Proc; % (task2, ry).Procg Proc, I Res;
Resy 2 (taskl,r;).Res; (o)

(reset, ry) (task2, rp)

Res; (reset, r4).Resg

Proc; B4 Res Procog B Res
Procg {Bﬂ} Resg 1 (osky 0070 0 (foe} 1
tasl

R = min(r1, r3)

—-R R 0 0
Q= 0 —(r2 + I’4) ry r»
- r 0 —r 0

Continuous Approximation

Outline

Continuous Approximation

Continuous Approximation

Process Algebra and Collective Dynamics

Process algebra are well-suited to modelling such systems

Continuous Approximation

Process Algebra and Collective Dynamics

Process algebra are well-suited to modelling such systems

m Developed to represent concurrent behaviour compositionally;

Continuous Approximation

Process Algebra and Collective Dynamics

Process algebra are well-suited to modelling such systems
m Developed to represent concurrent behaviour compositionally;

m Capture the interactions between individuals explicitly;

Continuous Approximation

Process Algebra and Collective Dynamics

Process algebra are well-suited to modelling such systems
m Developed to represent concurrent behaviour compositionally;
m Capture the interactions between individuals explicitly;

m Incorporate formal apparatus for reasoning about the
behaviour of systems;

Continuous Approximation

Process Algebra and Collective Dynamics

Process algebra are well-suited to modelling such systems
m Developed to represent concurrent behaviour compositionally;
m Capture the interactions between individuals explicitly;

m Incorporate formal apparatus for reasoning about the
behaviour of systems;

m Stochastic extensions, such as PEPA, enable quantified
behaviour of the dynamics of systems.

Continuous Approximation

Process Algebra and Collective Dynamics

Process algebra are well-suited to modelling such systems
m Developed to represent concurrent behaviour compositionally;
m Capture the interactions between individuals explicitly;

m Incorporate formal apparatus for reasoning about the
behaviour of systems;

m Stochastic extensions, such as PEPA, enable quantified
behaviour of the dynamics of systems.

In the recent CODA project we investigated the use of stochastic
process algebras modelling and analysing the collective dynamics of
large systems of interacting entities.

Continuous Approximation

Process Algebra and Collective Dynamics

Process algebra are well-suited to modelling such systems
m Developed to represent concurrent behaviour compositionally;
m Capture the interactions between individuals explicitly;

m Incorporate formal apparatus for reasoning about the
behaviour of systems;

m Stochastic extensions, such as PEPA, enable quantified
behaviour of the dynamics of systems.

In the recent CODA project we investigated the use of stochastic
process algebras modelling and analysing the collective dynamics of
large systems of interacting entities.

v,

In the soon-to-start QUANTICOL project we will be extending
techniques to spatially inhomogeneous systems.

Continuous Approximation

Simple example revisited

Proco = (taskl,ri).Procy
Proc; & (task2, rp).Procg
Res, & (taskl, r).Resy
Res; % (reset,r).Reso

PI‘OCO[NP] =] Reso[NR]

{task1}

Continuous Approximation

Simple example revisited

Proco £ (taskl, r).Procy
Proc; & (task2, rp).Procg
Res, & (taskl, r).Resy
Res; % (reset,r).Reso

PI‘OCO[NP] =] Reso[NR]

{task1}

CTMC interpretation

Processors (Np)

HHEHOO®OONNOOTUADRWWNNH

o o

Resources (Ng)

HOWOOWONNOOOUIOTEBDWWNN -

o

States (2VPTNR)
4

8

16

32

64

128
256
512
1024
2048
4096
8192
16384
32768
65536
131072
262144
524288
1048576

Continuous Approximation

Simple example revisited

Procg (taskl, r).Procy m taskl decreases Procg and Resg
def .
Procy = (task2,r;).Procg m taskl increases Proci and Res;
def
Reso = (taskl,r).Res; m task2 decreases Procy
def
Res1 = (reset, rs).Reso m task?2 increases Procg
m reset decreases Res
Proco[Np] DI Resq[Ng]) !
{task1} m reset increases Resg

Continuous Approximation

Simple example revisited

% = — min(r1 X1, 13 X3) + rnXxo
def
Procy = (taskl,rl).Procl x1 = no. of Proc;
Proc; & (task2, rp).Procg

Reso % (taskl,r).Res; m taskl decreases Procg

Res; & (reset, ry).Reso m taskl is performed by Procg

and Resg
Proco[Np] {Esﬂ} Reso[Ng] m task2 increases Procg

m task?2 is performed by Proc

Continuous Approximation

Simple example revisited

Procg (taskl, r).Procy

Proci = (task2,r).Procg
(taskl, r).Resy
(reset, ry).Reso

Resg =
.
Res; =

PI‘OCO[NP] =] Reso[NR]

{task1}

ODE interpretation
—min(ry x1, 3 x3) + r2x
x1 = no. of Proc;
min(r1 X1, 13 X3) — I X2
Xo = no. of Procy
—min(r x1,n3x3) + raxa
x3 = no. of Resy

min(ry x1, 3 X3) — ra xa
X4 = no. of Resy

Continuous Approximation

100 processors and 80 resources (simulation run A)

105

value

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
time

M Proc_0 M Proc_l M Res_ Res_L

Continuous Approximation

100 processors and 80 resources (simulation run B)

105

value

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
time

M Proc_0 M Proc_l M Res_ Res_L

Continuous Approximation

100 processors and 80 resources (simulation run C)

105

value

104 ¢

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
time

M Proc_0 M Proc_l M Res_ Res_L

Continuous Approximation

100 processors and 80 resources (average of 10 runs)

105

value

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
time

M Proc_0 M Proc_l M Res_ Res_L

Continuous Approximation

100 Processors and 80 resources (average of 100 runs)

105

value

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
time

M Proc_0 M Proc_l M Res_ Res_L

Continuous Approximation 99/ 172

100 processors and 80 resources (average of 1000 runs)

105

value

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
time

M Proc_0 M Proc_l M Res_ Res_L

Continuous Approximation

100 processors and 80 resources (ODE solution)

105

value

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
time

M Proc_0 M Proc_l M Res_ Res_L

Fluid-Flow Semantics

Outline

A
Fluid-Flow Semantics

m Fluid Structured Operational Semantics
m Convergence results

Fluid-Flow Semantics Fluid Structured Operational Semantics

Deriving a Fluid Approximation of a PEPA model

The aim is to represent the CTMC implicitly (avoiding state space
explosion), and to generate the set of ODEs which are the fluid
limit of that CTMC.

Fluid-Flow Semantics Fluid Structured Operational Semantics

Deriving a Fluid Approximation of a PEPA model

The aim is to represent the CTMC implicitly (avoiding state space

explosion), and to generate the set of ODEs which are the fluid
limit of that CTMC.

The exisiting (CTMC) SOS semantics is not suitable for this

purpose because it constructs the state space of the CTMC
explicitly.

Fluid-Flow Semantics Fluid Structured Operational Semantics

Deriving a Fluid Approximation of a PEPA model

The aim is to represent the CTMC implicitly (avoiding state space

explosion), and to generate the set of ODEs which are the fluid
limit of that CTMC.

The exisiting (CTMC) SOS semantics is not suitable for this

purpose because it constructs the state space of the CTMC
explicitly.

spA SOS rules LABELLED state transition
— TRANSITION -
MODEL SYSTEM diagram

cTMC Q

Fluid-Flow Semantics Fluid Structured Operational Semantics

Deriving a Fluid Approximation of a PEPA model

The aim is to represent the CTMC implicitly (avoiding state space
explosion), and to generate the set of ODEs which are the fluid
limit of that CTMC.

The exisiting (CTMC) SOS semantics is not suitable for this
purpose because it constructs the state space of the CTMC
explicitly.

We define a structured operational semantics which defines the pos-
sible transitions of an arbitrary abstract state and from this derive
the ODEs.

Fluid-Flow Semantics Fluid Structured Operational Semantics

Deriving a Fluid Approximation of a PEPA model

The aim is to represent the CTMC implicitly (avoiding state space
explosion), and to generate the set of ODEs which are the fluid
limit of that CTMC.

The exisiting (CTMC) SOS semantics is not suitable for this
purpose because it constructs the state space of the CTMC
explicitly.

We define a structured operational semantics which defines the pos-
sible transitions of an arbitrary abstract state and from this derive
the ODEs.

SYMBOLIC ABSTRACT
I\/I%)P[;AEL e T%%?\IESLI%'IIEC?N e cryjca
; or
VSTEM functions ODEs Fa(x)

Fluid-Flow Semantics Fluid Structured Operational Semantics

Fluid Structured Operational Semantics

In order to get to the implicit representation of the CTMC we need
to:

Fluid-Flow Semantics Fluid Structured Operational Semantics

Fluid Structured Operational Semantics

In order to get to the implicit representation of the CTMC we need
to:

Remove excess components (Context Reduction)

Fluid-Flow Semantics Fluid Structured Operational Semantics

Fluid Structured Operational Semantics

In order to get to the implicit representation of the CTMC we need
to:

Remove excess components (Context Reduction)

Collect the transitions of the reduced context (Jump Multiset)

Fluid-Flow Semantics Fluid Structured Operational Semantics

Fluid Structured Operational Semantics

In order to get to the implicit representation of the CTMC we need
to:

Remove excess components (Context Reduction)
Collect the transitions of the reduced context (Jump Multiset)

Calculate the rate of the transitions in terms of an arbitrary
state of the CTMC.

Fluid-Flow Semantics Fluid Structured Operational Semantics

Fluid Structured Operational Semantics

In order to get to the implicit representation of the CTMC we need
to:

Remove excess components (Context Reduction)
Collect the transitions of the reduced context (Jump Multiset)

Calculate the rate of the transitions in terms of an arbitrary
state of the CTMC.

Once this is done we can extract the vector field F(x) from the
jump multiset.

M. Tribastone, S.Gilmore and J.Hillston. Scalable Differential Analysis of Process Algebra Models. IEEE TSE 2012.

Fluid-Flow Semantics Fluid Structured Operational Semantics

Context Reduction

Procy = (taskl,r;).Proc;
Proc; & (task2,r2).Procy
Resy = (taskl,rs).Res;
Res; £ (reset,rs).Resp
System = Procy[Np] . >4 Resy[Ng]

{ transfer}

J
R(System) = {Procp, Procy } {Dﬂ {Resp, Res; }

task1}

Fluid-Flow Semantics Fluid Structured Operational Semantics

Context Reduction

Procy = (taskl,r;).Proc;
Proc; & (task2, rp).Procy
Resy = (taskl,rs).Res;
Res; £ (reset, ry).Resp
System = Procy[Np] {trabffer} Reso[NRg]
J
R(System) = {Procp, Procy } {Esﬂ} {Resp, Res; }

Population Vector

f = (€1a§27§3;£4)

Fluid-Flow Semantics Fluid Structured Operational Semantics

Location Dependency

System & Procy[N}] DX Resg[Ns] || Proco[NY]

{task1}

Fluid-Flow Semantics Fluid Structured Operational Semantics

Location Dependency

System £ Procy[Ny] DX Resy[Ns] || Proco[NZ

{task1}

Y
{Procg, Proc;} B {Resp, Res;} || { Procy, Proc; }

{task1}

Fluid-Flow Semantics Fluid Structured Operational Semantics

Location Dependency

System £ Procy[Ny] DX Resy[Ns] || Proco[NZ

{task1}

Y
{Procg, Proc;} B {Resp, Res;} || { Procy, Proc; }

{task1}

Population Vector

£ =(61,£,83,64,85,86)

Fluid-Flow Semantics Fluid Structured Operational Semantics

Fluid Structured Operational Semantics by Example

Procy = (taskl,r;).Proc;
Proc; ¥ (task2,r2).Procy
Res, & (taskl,r3).Res;
Res; & (reset, rq).Resg

System = Procy[Np] B Resp[Ng]

{ transfer}

§=(&1,6.83,6)

Fluid-Flow Semantics Fluid Structured Operational Semantics

Fluid Structured Operational Semantics by Example

Procy &f (taskl,r1).Procs
Proc; ¥ (task2,r2).Procy
Res, & (taskl,r3).Res;
Res; & (reset, rq).Resg

System = Procy[Np] B Resp[Ng]

{ transfer}

§=(&1,6.83,6)

taskl,r
Procy —="%3 Proc;

taskl,r
Procg —151>* Proc;

Fluid-Flow Semantics Fluid Structured Operational Semantics

Fluid Structured Operational Semantics by Example

Procy = (taskl,r;).Proc;
Proc; ¥ (task2,r2).Procy
Res, & (taskl,r3).Res;
Res; & (reset, rq).Resg
def
System = Procy[Np] {trzger} Resp[NRg]
5 = (617 525 637 54)
Procg —>t35k1’r1 Proc; Resg taskl,rs Res;

task1,r;&;

taskl,r:
Procy ——"*>%,_ Proc; Resy _taskl,rsés

+ Resy

Fluid-Flow Semantics

Fluid Structured Operational Semantics

Fluid Structured Operational Semantics by Example

Procy = (taskl,r;).Proc;
Proc; & (task2,r2).Procy
Res, & (taskl,r3).Res;
Res; % (reset,rs).Resy
de
System = Procy[Np] {trzger} Resp[NRg]
5 = (517 525 637 54)
Procg —>t35k1’r1 Proc; Resg taskl,rs Res;

Procg

task1,r;&;
-—_

taskl1,r3&3
_—

Proc; Resg + Resy

Proco > Reso

{task1}

kL, Proc; DX Res;

{task1}

Fluid-Flow Semantics Fluid Structured Operational Semantics

Apparent Rate Calculation

taskl1,r!
Proco ——1+ Proc; Resg

task1,r;&; task1,r3é3
R

taskl,r3 Res
1

« Procy Resop « Res;

——%taSkl’r(g) « Procy {l><] Res;

taskl}

Procg

Procp B4 Resp
{task1}

Fluid-Flow Semantics Fluid Structured Operational Semantics

Apparent Rate Calculation

taskl,r} taskl,
Proco ——% Proc; Resy ——", Res;
taskl,ri¢ taskl1,r3&3
Proco N, Procs Resg « Res;
taskl,r
Procy {Fﬂ} Resg _(5.)% Proc; sz]} Res;
rié r3éa o X
r(§) = min (r5q; (Proco,€), rie: (Reso, €)
riaski (Proco, §) riogq (Reso, §) (riss 16) 5 Tas .€))
B ISEEI
—= ——min (r; &1, r3&4
Cnb s (&1, r3éa)

=min (r1&1, rsés)

Fluid-Flow Semantics Fluid Structured Operational Semantics

f(&, 1,) as the Generator Matrix of the Lumped CTMC

(P11l Po) B Ri |l Ro |l Ro)
(P11 Po) B (Ro | R1 |l Ro)
r
r (Pl Po) B (Ro |l Ro |l Ri)
(Po Il Po) P (Ro |l Ro Il Ro) ;
T(Poll P1) B (Ri [Ro |l Ro)
N
(Po Il P1) = (Ro | Ri || Ro)
r
(Po I P1) B (Ro || Ro || R1)

{task1}

Fluid-Flow Semantics Fluid Structured Operational Semantics

f(&, 1,) as the Generator Matrix of the Lumped CTMC

(P11l Po) B Ri |l Ro |l Ro)
(P11 Po) B (Ro | R1 |l Ro)
r
r (Pl Po) B (Ro |l Ro |l Ri)
(Po | Po) 1 (Ro || Ro || Ro) ,
~(Po Il P1) B (R | Ro || Ro)
N
(Po |l Pz) B (Ro | R1 || Ro)
r
r= -3 min(2ri,3r3) = % min(2ry,3r3) (Po || P1) {mm(Ro | Ro |l R1)

Fluid-Flow Semantics Fluid Structured Operational Semantics 125/ 172

f(&, 1,) as the Generator Matrix of the Lumped CTMC

(P11l Po) B Ri |l Ro |l Ro)
r
(P11 Po) B (Ro | R1 |l Ro)
2
r| (P11l Po) B (Ro |l Ro || Ri)
(Po | Po) 1 (Ro || Ro || Ro) ,
~(Po Il P1) B (R | Ro || Ro)
S
(Po |l Pz) B (Ro | R1 || Ro)
r
r= -3 min(2ri,3r3) = % min(2ry,3r3) (Po || P1) {mkl}(Ro | Ro |l R1)

Fluid-Flow Semantics Fluid Structured Operational Semantics 126/ 172

f(&, 1, a) as the Generator Matrix of the Lumped CTMC

(P11l Po) B (R: || Ro || Ro)

{task1}

min(2r1, 3r3)
2,0,3,0)ME3) (1 101
(2.0.3.0) WL2D L by Py B0 (Ro I Ry | Ro)
/
| (P Po) P (Ro | Roll Ri)

{task1}

(Po |l Po) B (Ro || Ro || Ro)

{task1}

(Po || P1) B (Ry || Ro || Ro)

{taskl}

o |l P1) (Ro |l Rz || Ro)

{ taskl }

"y

r= -2 min(2r,3n) = 1 min(2ry, 3r3) (Po [l P1)

2n 3n3 6 RO H RO H Rl)

{r sk1}

Fluid-Flow Semantics Fluid Structured Operational Semantics

Jump Multiset

taskl,r
Procy X1 Resy —(E')>* Proc; ™1 Res;
{task1} {task1}

r(&) = min (r1&1, rs&3)

Fluid-Flow Semantics

Fluid Structured Operational Semantics

Jump Multiset

taskl,
Procy {Fﬂ} Resg as—r(§)>* Proc; Dﬂ} Res;

r(&) = min (r1&1, rs&3)

task2,£ar;
Proc; DE}R S0 #n Procg Dﬂ}R S0

Fluid-Flow Semantics

Fluid Structured Operational Semantics

Jump Multiset

taskl,
Procy {Fﬂ} Resg as—r(§)>* Proc; Dﬂ} Res;

r(&) = min (r1&1, rs&3)

task2
Proc1 Dﬂ Resg as—mn Proco Dﬂ Resg
task1} taskl}
reset r.
Procg Dﬂ}Re 1 ﬂn Procy Dﬁ}R S0

Fluid-Flow Semantics Fluid Structured Operational Semantics

Equivalent Transitions

Some transitions may give the same information:

t7
Procy {Dﬂ Res; —— bars « Procg {Dﬁl} Resg
reset,&ar.
Proc; Bﬂ}Re 1 ﬁ* Proc; Dﬂ}Reso

i.e., Res; may perform an action independently from the rest of
the system.

This is captured by the procedure used for the construction of the
generator function (&, /,)

Fluid-Flow Semantics Fluid Structured Operational Semantics

Construction of (&, 1, @)

reset,&ar.
Procy > Res; S0 « Procg

{task1}

] , Resg J

{ task1

m Take / =(0,0,0,0)

Fluid-Flow Semantics Fluid Structured Operational Semantics

Construction of (&, 1, @)

reset,£qry

Procy ™1 Res; + Procy

{task1} { task1

] , Resg J

m Take / =(0,0,0,0)

m Add —1 to all elements of / corresponding to the indices of
the components in the |hs of the transition

| =(-1,0,0,—1)

Fluid-Flow Semantics Fluid Structured Operational Semantics

Construction of (&, 1, @)

reset,£qry

Procy ™1 Res; + Procy Dﬁ} Resg J

{task1} { task1

m Take / =(0,0,0,0)
m Add —1 to all elements of / corresponding to the indices of
the components in the |hs of the transition

| =(-1,0,0,—1)

m Add +1 to all elements of / corresponding to the indices of
the components in the rhs of the transition

|=(~=1+1,0,41,—-1) = (0,0, +1,—1)

Fluid-Flow Semantics Fluid Structured Operational Semantics

Construction of (&, 1, @)

reset,£qry
{task1} {task1}

Procy ™1 Res; « Procg {0 Resy J

m Take / =(0,0,0,0)
m Add —1 to all elements of / corresponding to the indices of
the components in the |hs of the transition

/=(-1,0,0,-1)

m Add +1 to all elements of / corresponding to the indices of
the components in the rhs of the transition

|=(~=1+1,0,41,—-1) = (0,0, +1,—1)

f(g,(0,0,+1,—1),reset) = &41g J

Fluid-Flow Semantics Fluid Structured Operational Semantics

Construction of (&, 1, @)

task1,r(&)

Procy B4 Resy, —— "3, Proc;

B> Res;
{task1} 1}

{ task

f(&, (1,41, —1,+1), taskl) = r(€)

Fluid-Flow Semantics

Fluid Structured Operational Semantics

Construction of (&, 1, @)

taskl,r
Procy X1 Resy —(E)> « Proc; BU Res;
{task1} {task1}
task2,£ar)
Proc; B Resy ——="25, Procy P Resp
{task1} {task1}

f(&, (1,41, —1,+1), taskl) = r(€)

f(g/ (+1/ _17 07 0)7 taSk2) - £2r2

Fluid-Flow Semantics Fluid Structured Operational Semantics

Construction of (&, 1, @)

taskl,r
Procy P4 Resg —(§)>* Proc; P4 Res;
{task1} {task1}
task2,£ar)
Proc; B Resy ——="25, Procy P Resp
{task1} {task1}
reset,&ar.
Procy Dﬂ} Res; —&i—n Procy Dﬂ} Resg

f(&, (1,41, —1,+1), taskl) = r(€)

f(& (+1,-1,0,0), task2) = &aro

f(&,(0,0,+41,—1), reset) = &ary

Fluid-Flow Semantics Fluid Structured Operational Semantics

Capturing behaviour in the Generator Function

Procy = (taskl,r;).Proc;
Proc; & (task2, r2).Procy
Resg & (taskl,r3).Res;
Res; & (reset, ry).Resp

PFOCO[NP] B>] ReSg[NR]

{ transfer}

System

Fluid-Flow Semantics Fluid Structured Operational Semantics

Capturing behaviour in the Generator Function

Procy = (taskl,r;).Proc;
Proc; & (task2, r2).Procy
Resg & (taskl,r3).Res;
Res; & (reset, ry).Resp

System 2= Procy[Np] DX Res,[Ng]

{ transfer}

Numerical Vector Form

E=(6,6,6,4) €N, & +&=Np and &+& = Ng

Fluid-Flow Semantics Fluid Structured Operational Semantics

Capturing behaviour in the Generator Function

Procy = (taskl,r;).Proc;
Proc; & (task2, r2).Procy
Resg & (taskl,r3).Res;
Res; & (reset, ry).Resp

System 2= Procy[Np] DX Res,[Ng]

{ transfer}

Numerical Vector Form

E=(6,6,6,4) €N, & +&=Np and &+& = Ng

v
Generator Function

(& (-1,1,-1,1),taskl) = min(ré&, n&s)
f(£7 /7 Oé) : f({,(l,—l,0,0),task2) = r2§2
f(£,(0,0,1,—1), reset) = rés

Fluid-Flow Semantics Fluid Structured Operational Semantics

Extraction of the ODE from f

Generator Function

(¢ (-1, 1, 1,1),taskl) = min(ré1, ré3)
f(§7 (17 7): t35k2) = r2€2
(&, (0, 0,1, 1), reset) = réa

:)t‘ =31y f(xla)

lezd aceA

=(-1,1,—1,1) min(rix1, r3x3) + (1, —1,0,0)rox2

aF (0, 0, 1, —1)!‘4X4

Fluid-Flow Semantics Fluid Structured Operational Semantics

Extraction of the ODE from f

Generator Function
f(&(—1,1,-1,1),taskl) = min(ré1, r3)
f(§7(17_17070)7t35k2) = r2€2
f(&,(0,0,1,—1), reset) = réa

142/ 172

dX1
dt
de
dt
da
dt
da
dt

= —min (rxy, 3x3) + r2xs
= min (rx1, 3x3) — r2xo
= —min(rxy, nx3) + rix

= min (rixy, r3x3) — raxa

Fluid-Flow Semantics Convergence results

Density Dependence

Let rx (P, &) be the parametric apparent rate of action type « in
process P. For any n € N and a € A,

r;(Pvg):n'r;(Pvf/n)

Fluid-Flow Semantics Convergence results

Density Dependence

Let rx (P, &) be the parametric apparent rate of action type « in
process P. For any n € N and a € A,

7 (P.€&) = n-r3 (P.&/n) J
Density dependence of parametric transition rates

if P27, @ then, for any n € N, r(€) = n- r(¢/n)

Fluid-Flow Semantics Convergence results

Density Dependence

Let rx (P, &) be the parametric apparent rate of action type « in
process P. For any n € N and a € A,

(Pvg)_n'r*(Paf/n)

%
|
o
A\

(a,r(8))

If P ——=, Q then, forany n€ N, r(§) =n-r(&/n)

Let M be a PEPA model with generating functions (&, /,)
derived as demonstrated. Then the corresponding sequence of
CTMCs will be density dependent.

\

Fluid-Flow Semantics Convergence results

Lipschitz continuity

Since Lipschitz continuity is preserved by summation, in order to
verify that the vector field Fo((x) is Lipschitz it suffices to prove
that any parametric rate generated by the semantics is Lipschitz.

Fluid-Flow Semantics Convergence results

Lipschitz continuity

Since Lipschitz continuity is preserved by summation, in order to
verify that the vector field Fo((x) is Lipschitz it suffices to prove
that any parametric rate generated by the semantics is Lipschitz.

Let rx (P, &) be the parametric apparent rate of action type « in
process P. There exists a constant L € R such that for all
x,y €RY x £y,

Iry (P, x) — ra (P, y)

<L
Ix =y

Fluid-Flow Semantics Convergence results

Lipschitz continuity

Since Lipschitz continuity is preserved by summation, in order to
verify that the vector field Fo((x) is Lipschitz it suffices to prove
that any parametric rate generated by the semantics is Lipschitz.

Let rx (P, &) be the parametric apparent rate of action type « in
process P. There exists a constant L € R such that for all
x,y €ERY x#y,

[ra (P, x) —r5 (P, y)

=l J
(or(x) * .

If P ——=, P’ then r(x) < rX (P, x) and thus it follows that
r(x) is Lipschitz continuous.

<L

\

Fluid-Flow Semantics Convergence results

Kurtz's Theorem

Let x(t),0 < t < T satisfy the initial value problem

9 = F(x(t)), x(0) = 6, specified from a PEPA model.
Let {X,h(t)} be a family of CTMCs with parameter n € N
generated as explained and let X,(0) = n-¢. Then,

Ve >0 lim P <sup||X,,(t)/n —x(t)] > 5) = (0);
n—o0 t<T

Fluid-Flow Semantics Convergence results

Kurtz's Theorem

Let x(t),0 < t < T satisfy the initial value problem
bl

,0 T
9 = F(x(t)), x(0) = 6, specified from a PEPA model.

Let {X,h(t)} be a family of CTMCs with parameter n € N
generated as explained and let X,(0) = n-¢. Then,

Ve >0 lim P (sup||Xn(t)/n —x(t)] > 5) = (0);
n—o0 t<T

Moreover Lipschitz continuity of the vector field guarantees
existence and uniqueness of the solution to the initial value
problem.

M. Tribastone, S.Gilmore and J.Hillston. Scalable Differential Analysis of Process Algebra Models. IEEE TSE 2012.

Fluid-Flow Semantics

Eclipse Plug-in for PEPA

Convergence results

Fle Edt Navigate Search Project Run PEPA Windaw Help
W[QL- B LEIEI [| b pERA |8 dava
5 Havigator 3 = O || b=l model.pepa D= finalisation.pepa D] webservice.pepa 2 . 4 = B[5 outine] Performance Evaluat £3 . = B
= VebService securing = |encryptResponse ws, r_us_enc b .VebServi & %]
WepService_responding = (response_ws, r_we_resp_k) . WebService_i e
@ BS —resp 9 T (response _ve_resr_R) = Utisation | Throughput | Population
= pepa WebService method = |execute_ws, r_ws_exec).WebService_returnin
Dléld -project VebService returning = [result_ws, r_us_res).VebService idle;
finslsation.pepa // End component definition: Uek Service
D1 madel pepa

=] model.pepa.fiters I

B models. pepa
5] models.pepa.cmdl
=] webservice.pepa

(SecondPartyClient_idle[1000]

<request_k, response_b> Broker_idle[10007]

response_ws>

<request_ws,
(WehService_idle[2000]
<invoke_ws, result_ws> FirstPartyClient_idle[1000])

)
< |

|~

[2 problems | = state space view | = Graph view 50 [ast view | l Console =8

-+ Export ”

Chart 1 |

Graph 1

1,000

175 200 225 250 275 300 325 350 375 400 425 450 475 500 52
Time

000 025 050 075 100 125 1.50

lient_enc

lient_dec

| lient_sending lient_wraiiing lient_idie

Example

Outline

Example

Example

Designing for human crowd dynamics

Widespread take up of mobile and communicating
computational devices is making pervasive systems a reality
and creating new ways for us to interact with our
environment, an informatic environment.

One application is to provide routing information to help
people navigate through unfamiliar locations.

In theses case the dynamic behaviour of the system as a whole
is important to ensure the satisfaction of the users.

Using a stochastic process algebra allows quantified
information, necessary for dynamic analysis, to be captured
whilst also focussing on the behaviour of the individuals and
their interactions with the environment.

Example

Example scenario: emergency egress

Emergency egress can be regarded as a particular case of crowd
dynamics, when the location may be familiar but circumstances
may alter the usual topology and make efficient movement
particularly important.

Here technology mediation may mean that information about the
best routes (possibly contradicting signage) can be supplied
dynamically.

M.Massink, D.Latella, A.Bracciali, M.Harrison and J.Hillston. Scalable Context-dependent Analysis of Emergency

Egress Models. FACS 2012.

Example

Example scenario

RA SE
211 18w 18e 13
LW [HA LE
25 133 16
SW |RB RC

22 192 16w 98 18e

155/ 172

The layout of the building is described in terms of the arrangement
of the rooms, hallways, landing and stairs. Each has a capacity and
may have an initial occupancy.

Example 156/ 172

Example scenario

RA SE
211 18w 18e 13
LW [HA LE |
25 133 |16
SW |RB RC

22 192 16w 98 18e

The layout of the building is described in terms of the arrangement
of the rooms, hallways, landing and stairs. Each has a capacity and
may have an initial occupancy.

Process algebra components describe the behaviours of individuals,
but also rooms and information dissemination.

Example

Model specification

// BUILDING LAYOUT (COMPARTMENTS)

ra : = normal_room, = compartment;
dl_ra_ha : = normal_door, = compartment;

-;'-'f PARARMETERS SET UP

to_ra_dl = 6; 73+ (60/7):
from_dl = door_exit_rate;

occupancy_dl = Dl_ra_eidl_ra_ha + Dl_ra_wi'dl_ra_ha +
full_dl = H(capacity_dl - occupancy dl);
switeh dl = open dl*full dl;

// AGENT DYNAMICS (FUNCTIONAL RATES)

'z From ra to ha through dl1

kineticLawOf ra_e_in_ dl_ra ha : fMA(to_ra dl * switch dl * ra_e_in_safe);
kineticLawOf ha_e_out__dl_ra ha : ﬂ-ﬂ\tfrom_dl * open_dl * safeDl_ra e * nllouance_ha};
kineticLawOf ra_w_in__dl_ra ha :

kineticLawOf ha_w_out__dl_ra_ha

i/ ... and back

kineticLawOf ha_e_in__dl_ra ha

// AGENT DEFINITIONS (SEQUENTIAL PROCESSES)

RA_e = (ra_e_in__dl_ra ha, 1) << RA_elra +
(ra_e out_dl_ra ha, 1) >> RA elra +
RA_w =
HA & =
Dl_ra_e = (ra_e_in__dl_ra_ha, 1) >> Dl_ra_eidl_ra_ha +

(ha_e_out__dl_ra_ha, 1) << Dl_ra_e/dl_ra_ha;
Dl ra w =

Example

Example results: room occupancy

Agents (units)

Bio-PEPA Emergency Egress

1.5
Time (minutes)

One stochastic simulation run

Example

Example results: room occupancy

Agents (units)

40

35

30

25

Bio-PEPA Emergency Egress

1.5
Time (minutes)

10 stochastic simulation runs

Example

Example results: room occupancy

Agents (units)

40

35

30

25

Bio-PEPA Emergency Egress

1 1.5
Time (minutes)

500 stochastic simulation runs

25

Example

Example results: room occupancy

Agents (units)

40

35

30

25

Bio-PEPA Emergency Egress

1.5
Time (minutes)

ODE numerical simulation

25

Example

Results

Agents (units)

50

45

40

35

30

25

from PEPA model

PEPA Emergency Egress

‘::'“. \
i

0 05 1 1.5 2 25
Time (minutes)

Room occupancy (PEPA model)

Example

Results from PEPA model

PEPA Emergency Egress

40

W arrivals
E arrivals ==-=---

35

25

20

Agents (units)

0 05 1 1.5 2 25 3
Time (minutes)

Number arrived (PEPA model)

Example

Example results: rerouting through mediation

Bio-PEPA Emergency Egress

400
350
OUT,y
allowance, g
300 allowance yy « v+
saturatede +
saturatedyy %
250
2
e 200
2
2
c
g 150
<
100
50 |
0
-50 ' .

Time (minutes)

Room occupancy over time without rerouting capability

Example

Example results: rerouting through mediation

Bio-PEPA Emergency Egress

400
350
e QUT,.
' allowance, g
800 allowance, - b
saturatedg ~ +

saturatedyy %

Agents (units)

-50 &
2 3 4 5
Time (minutes)

Room occupancy over time with rerouting capability

Example 166/ 172

Summary

Other examples we have considered include :
m Individualised routing in unfamiliar buildings such as hospitals,
airports and museums.

m Crowd dynamics in cities — particularly the
El Bottelon problem in squares in Spanish cities

Example

Summary

Other examples we have considered include :
m Individualised routing in unfamiliar buildings such as hospitals,
airports and museums.

m Crowd dynamics in cities — particularly the
El Bottelon problem in squares in Spanish cities

On-going research issues:

m Good/appropriate representations of space.

m Relationship between the population level view and the
individual view, particularly with respect to correctness.

Conclusions

Outline

Conclusions

Conclusions 169/ 172

Conclusions

m Many interesting and important systems can be regarded as
examples of collective dynamics and emergent behaviour.

Conclusions 170/ 172

Conclusions

m Many interesting and important systems can be regarded as
examples of collective dynamics and emergent behaviour.

m Process algebras, such as PEPA, are well-suited to modelling
the behaviour of such systems in terms of the individuals and
their interactions.

Conclusions

Conclusions

m Many interesting and important systems can be regarded as
examples of collective dynamics and emergent behaviour.

m Process algebras, such as PEPA, are well-suited to modelling
the behaviour of such systems in terms of the individuals and
their interactions.

m Continuous approximation allows a rigorous mathematical
analysis of the average behaviour of such systems.

171/ 172

Conclusions 172/ 172

Conclusions

m Many interesting and important systems can be regarded as
examples of collective dynamics and emergent behaviour.

m Process algebras, such as PEPA, are well-suited to modelling
the behaviour of such systems in terms of the individuals and
their interactions.

m Continuous approximation allows a rigorous mathematical
analysis of the average behaviour of such systems.

m Embedding the fluid approximation in the formal semantics of
the language allows necessary conditions for the convergence
to be established once and for all for the language rather than
on a model-by-model basis.

	Introduction
	Stochastic Process Algebra

	Continuous Approximation
	Fluid-Flow Semantics
	Fluid Structured Operational Semantics
	Convergence results

	Example
	Conclusions

