
1/ 68

Fluid Approximation for Stochastic Model
Checking

Jane Hillston
joint work with Luca Bortolussi

Laboratory for Foundations of Computer Science
University of Edinburgh

(Dipartimento di Matematica ed Informatica
University of Trieste)

24th October 2012

Introduction 2/ 68

The main story

Fluid methods have been very successful as an approximate
description of the collective (average) behaviour of Stochastic
(Process Algebra) models, even for moderately sized systems.

They have also been applied to estimate the passage times.
R.A.Hayden, A.Stefanek, J.T.Bradley. Fluid computation of passage-time distributions in large Markov models. TCS 2012.

Can we use them to query stochastic models and estimate
more complex stochastic properties?

Stated otherwise:
Can we do fluid model checking?

Introduction 3/ 68

The main story

Fluid methods have been very successful as an approximate
description of the collective (average) behaviour of Stochastic
(Process Algebra) models, even for moderately sized systems.

They have also been applied to estimate the passage times.
R.A.Hayden, A.Stefanek, J.T.Bradley. Fluid computation of passage-time distributions in large Markov models. TCS 2012.

Can we use them to query stochastic models and estimate
more complex stochastic properties?

Stated otherwise:
Can we do fluid model checking?

Introduction 4/ 68

The main story

Fluid methods have been very successful as an approximate
description of the collective (average) behaviour of Stochastic
(Process Algebra) models, even for moderately sized systems.

They have also been applied to estimate the passage times.
R.A.Hayden, A.Stefanek, J.T.Bradley. Fluid computation of passage-time distributions in large Markov models. TCS 2012.

Can we use them to query stochastic models and estimate
more complex stochastic properties?

Stated otherwise:
Can we do fluid model checking?

Introduction 5/ 68

The goal of this work

We will consider collective systems, composed of many
interacting agents of one or more classes.

We will focus on questions related to the behaviour of an
individual agent in the system (or of a small fixed collection of
agents).

Examples
There are many examples in which this can be interesting:

Estimate performance metrics in network models, from the
point of view of the single user/single server.
Ecological models, when one is interested at the survival
chances of an individual.
...

Introduction 6/ 68

The goal of this work

We will consider collective systems, composed of many
interacting agents of one or more classes.

We will focus on questions related to the behaviour of an
individual agent in the system (or of a small fixed collection of
agents).

Examples
There are many examples in which this can be interesting:

Estimate performance metrics in network models, from the
point of view of the single user/single server.
Ecological models, when one is interested at the survival
chances of an individual.
...

Introduction 7/ 68

The goal of this work

We will consider collective systems, composed of many
interacting agents of one or more classes.

We will focus on questions related to the behaviour of an
individual agent in the system (or of a small fixed collection of
agents).

Examples
There are many examples in which this can be interesting:

Estimate performance metrics in network models, from the
point of view of the single user/single server.
Ecological models, when one is interested at the survival
chances of an individual.
...

Introduction 8/ 68

Outline

1 Introduction

2 Fluid Model Checking
Theoretical Grounds
Example

3 Model Checking ICTMC
CSL model checking

4 Conclusions

Fluid Model Checking Theoretical Grounds 9/ 68

Population models — introduction to notation

Individuals

We have N individuals Y (N)
i ∈ S, S = {1,2, . . . ,n} in the

system (can have multiple classes).

System variables

X (N)
j =

∑N
i=1 1{Y (N)

i = j}, and X(N) = (X (N)
1 , . . . ,X (N)

n)

Dynamics (system level)

X(N) is a CTMC with transitions τ ∈ T :

τ : X(N) to X(N) + vτ at rate r (N)
τ (X)

Fluid Model Checking Theoretical Grounds 10/ 68

Population models — introduction to notation

Individuals

We have N individuals Y (N)
i ∈ S, S = {1,2, . . . ,n} in the

system (can have multiple classes).

System variables

X (N)
j =

∑N
i=1 1{Y (N)

i = j}, and X(N) = (X (N)
1 , . . . ,X (N)

n)

Dynamics (system level)

X(N) is a CTMC with transitions τ ∈ T :

τ : X(N) to X(N) + vτ at rate r (N)
τ (X)

Fluid Model Checking Theoretical Grounds 11/ 68

Population models — introduction to notation

Individuals

We have N individuals Y (N)
i ∈ S, S = {1,2, . . . ,n} in the

system (can have multiple classes).

System variables

X (N)
j =

∑N
i=1 1{Y (N)

i = j}, and X(N) = (X (N)
1 , . . . ,X (N)

n)

Dynamics (system level)

X(N) is a CTMC with transitions τ ∈ T :

τ : X(N) to X(N) + vτ at rate r (N)
τ (X)

Fluid Model Checking Theoretical Grounds 12/ 68

Example: client server interaction

request

think

wait

recover

re
qu
es
t

reply

thinkrecover

timeout

ready

process

reply

log

requestlogging

processreply

CLIENT SERVER

timeout
tim
eout

Crq

Cw

Crc Ct

Srq

Srp

SpSl

Fluid Model Checking Theoretical Grounds 13/ 68

Example: client server interaction

Variables
4 variables for the client states: Crq, Cw , Crc Ct .
4 variables for the server states: Srq, Sp, Srp Sl .

Transitions
There are 7 transition in totals. We use synchronisation as in
PEPA:

request: (·,1Cw ,Sp − 1Crq ,Srq , kr ·min(Crq,Srq))

reply: (·,1Ct ,Sl − 1Cw ,Srp ,min(kwCw , krpSrp))

timeout: (·,1Crc − 1Cw , ktoCw)

. . .

Fluid Model Checking Theoretical Grounds 14/ 68

Scaling Conditions

Scaling assumptions

We have a sequence X(N) of population CTMC, for
increasing total population N.
We normalize such models, dividing variables by N:
X(N)

= X
N

for each τ ∈ T (N), the normalized update is v̄ = v/N and
the rate function is r̄τ (X(N)

) = Nfτ (X(N)
) (density

dependence).

Fluid ODE
The fluid ODE is ẋ = F (x), where

F (x) =
∑
τ∈T

vτ fτ (x)

Fluid Model Checking Theoretical Grounds 15/ 68

Fluid approximation theorem

Hypothesis

X(N)
(t): a sequence of normalized population CTMC,

residing in E ⊂ Rn

∃x0 ∈ S such that X(N)
(0)→ x0 in probability (initial

conditions)
x(t): solution of dx

dt = F (x), x(0) = x0, residing in E .

Theorem
For any finite time horizon T <∞, it holds that:

P(sup
0≤t≤T

||X(N)
(t)− x(t)|| > ε)→ 0.

T.G.Kurtz. Solutions of ordinary differential equations as limits of pure jump Markov processes.
Journal of Applied Probability, 1970.

Fluid Model Checking Theoretical Grounds 16/ 68

Single Agent Asymptotic Behaviour

Dynamics of individuals

Focus on a single individual Y (N)
h , which is a stochastic process

on S = {1, . . . ,n} (but NOT Markov!).

Let Q(N)(x) be the “infinitesimal generator matrix” of Y (N)
h :

P{Y (N)
h (t + dt) = j | Y (N)

h (t) = i ,X(N)
(t) = x} = q(N)

i,j (x)dt .

Suppose Q(N)(x)→ Q(x)

R. Darling, J. Norris. Differential equation approximations for Markov chains. Probability Surveys, 2008.

We suppose that as the population increases the transition
rates of the individual tend to the transition rates of an
individual dependent instead on the mean field.

Fluid Model Checking Theoretical Grounds 17/ 68

Single Agent Asymptotic Behaviour

Dynamics of individuals

Focus on a single individual Y (N)
h , which is a stochastic process

on S = {1, . . . ,n} (but NOT Markov!).

Let Q(N)(x) be the “infinitesimal generator matrix” of Y (N)
h :

P{Y (N)
h (t + dt) = j | Y (N)

h (t) = i ,X(N)
(t) = x} = q(N)

i,j (x)dt .

Suppose Q(N)(x)→ Q(x)

R. Darling, J. Norris. Differential equation approximations for Markov chains. Probability Surveys, 2008.

We suppose that as the population increases the transition
rates of the individual tend to the transition rates of an
individual dependent instead on the mean field.

Fluid Model Checking Theoretical Grounds 18/ 68

Fast Simulation

Asymptotic behaviour of Z (N)
k

Let x(t) be the solution of the fluid ODE, and assume to be
under the hypothesis of Kurtz theorem.

Let zk (t) be the time inhomogeneous-CTMC on Sk defined by
the following infinitesimal generator (for any h = 1, . . . , k):

P{zk (t +dt) = (. . . , j , . . .) | zk (t +dt) = (. . . , i , . . .)} = qi,j(x(t))dt

Theorem (Fast simulation theorem)

For any T <∞, P{Z (N)
k (t) 6= zk (t), t ≤ T} → 0.

R. Darling, J. Norris. Differential equation approximations for Markov chains. Probability Surveys, 2008.

Fluid Model Checking Theoretical Grounds 19/ 68

Fast Simulation

Asymptotic behaviour of Z (N)
k

Let x(t) be the solution of the fluid ODE, and assume to be
under the hypothesis of Kurtz theorem.

Let zk (t) be the time inhomogeneous-CTMC on Sk defined by
the following infinitesimal generator (for any h = 1, . . . , k):

P{zk (t +dt) = (. . . , j , . . .) | zk (t +dt) = (. . . , i , . . .)} = qi,j(x(t))dt

Theorem (Fast simulation theorem)

For any T <∞, P{Z (N)
k (t) 6= zk (t), t ≤ T} → 0.

R. Darling, J. Norris. Differential equation approximations for Markov chains. Probability Surveys, 2008.

Fluid Model Checking Theoretical Grounds 20/ 68

Client-Server example

Single client

Y (N) ∈ {rq,w , t , rc}

Rates of Z (N)
1

request: 1
C(N)

rq
kr min(C(N)

rq ,S(N)
rq)

reply: 1
C(N)

w
min(kwC(N)

w , krpS(N)
rp)

timeout: kto; recover: krc

Rates of z1

request: kr min(1, srq(t)
crq(t))

reply: min(kw , krp
srp(t)
cw (t))

timeout: kto; recover: krc

request

think

wait

recover

re
qu
es
t

reply

thinkrecover

timeout

CLIENT

Xrq

Xw

Xrc Xt

Fluid Model Checking Theoretical Grounds 21/ 68

The idea

Approximate the behaviour of an agent Z in the system using
the time-inhomogeneous Markov chain z.

Model check temporal logic formulae on z.
In this work, we consider CSL logic with time bounded temporal

operators.

Outline of results
A model checking algorithm for CSL on
time-inhomogeneous CTMC (ICTMC).
Investigation of its decidability.
Convergence results (asymptotic correctness for large N).

L. Bortolussi, J. Hillston. Fluid Model Checking. CONCUR 2012 and Corr arXiv, 1203.0920.

Fluid Model Checking Theoretical Grounds 22/ 68

The idea

Approximate the behaviour of an agent Z in the system using
the time-inhomogeneous Markov chain z.

Model check temporal logic formulae on z.
In this work, we consider CSL logic with time bounded temporal

operators.

Outline of results
A model checking algorithm for CSL on
time-inhomogeneous CTMC (ICTMC).
Investigation of its decidability.
Convergence results (asymptotic correctness for large N).

L. Bortolussi, J. Hillston. Fluid Model Checking. CONCUR 2012 and Corr arXiv, 1203.0920.

Fluid Model Checking Example 23/ 68

Logic: (time-bounded) CSL

Paths of a stochastic process on S

A path of V (t) is a sequence σ = s0
t0→ s1

t1→ . . ., with non null
probability of jumping from si to si+1, etc. Denote with σ@t the
state at time t .

States of V (t) are labelled by atomic propositions a1,a2, . . .

(Time-Bounded) Continuous Stochastic Logic

φ = a | φ1 ∧ φ2 | ¬φ | P./p(φ1 U [T1,T2] φ2)

Fluid Model Checking Example 24/ 68

Logic: (time-bounded) CSL

Paths of a stochastic process on S

A path of V (t) is a sequence σ = s0
t0→ s1

t1→ . . ., with non null
probability of jumping from si to si+1, etc. Denote with σ@t the
state at time t .

States of V (t) are labelled by atomic propositions a1,a2, . . .

(Time-Bounded) Continuous Stochastic Logic

φ = a | φ1 ∧ φ2 | ¬φ | P./p(φ1 U [T1,T2] φ2)

Fluid Model Checking Example 25/ 68

Logic: (time-bounded) CSL

Paths of a stochastic process on S

A path of V (t) is a sequence σ = s0
t0→ s1

t1→ . . ., with non null
probability of jumping from si to si+1, etc. Denote with σ@t the
state at time t .

States of V (t) are labelled by atomic propositions a1,a2, . . .

(Time-Bounded) Continuous Stochastic Logic

φ = a | φ1 ∧ φ2 | ¬φ | P./p(φ1 U [T1,T2] φ2)

Fluid Model Checking Example 26/ 68

Satisfiability for CSL

s, t0 |= P./p(φ1 U [T1,T2] φ2) iff
P{σ | σ, t0 |= φ1U [T1,T2] φ2} ./ p.

σ, t0 |= φ1U [T1,T2]φ2 iff
∃t̄ ∈ [t0 + T1, t0 + T2] such that

σ@t̄ |= φ2 and ∀t0 ≤ t < t̄ , σ@t |= φ1.

Fluid Model Checking Example 27/ 68

Satisfiability for CSL

s, t0 |= P./p(φ1 U [T1,T2] φ2) iff
P{σ | σ, t0 |= φ1U [T1,T2] φ2} ./ p.

σ, t0 |= φ1U [T1,T2]φ2 iff
∃t̄ ∈ [t0 + T1, t0 + T2] such that

σ@t̄ |= φ2 and ∀t0 ≤ t < t̄ , σ@t |= φ1.

Fluid Model Checking Example 28/ 68

Satisfiability for CSL

s, t0 |= P./p(φ1 U [T1,T2] φ2) iff
P{σ | σ, t0 |= φ1U [T1,T2] φ2} ./ p.

σ, t0 |= φ1U [T1,T2]φ2 iff
∃t̄ ∈ [t0 + T1, t0 + T2] such that

σ@t̄ |= φ2 and ∀t0 ≤ t < t̄ , σ@t |= φ1.

Fluid Model Checking Example 29/ 68

Client-Server example

request

think

wait

recover

re
qu
es
t

reply

thinkrecover

timeout

CLIENT

Xrq

Xw

Xrc Xt

Fluid Model Checking Example 30/ 68

Client-Server: P=?(F≤T atimeout)

0 500 1000 1500 2000 2500 3000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pr=?[F<=T timeout] −− 10 clients, 5 servers

time

pr
ob

ab
ili

ty

stat mc (10000 runs)
fluid mc

Fluid Model Checking Example 31/ 68

Client-Server: P=?(arequest ∨ awaitU≤T atimeout)

0 20 40 60 80 100

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Pr=?[(request or wait) U<=T timeout] −− 10 clients, 5 servers

time

pr
ob

ab
ili

ty

stat mc (10000 runs)
fluid mc

Fluid Model Checking Example 32/ 68

Client-Server: computational cost

Computational cost
The cost of the fluid system is independent of N.
For this example (10 clients - 5 servers) it is ∼100 times faster
than the simulation-based approach (which increases linearly
with N).

0 500 1000 1500 2000 2500 3000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pr=?[F<=T timeout] −− 10 clients, 5 servers

time

pr
ob

ab
ili

ty

stat mc (10000 runs)
fluid mc

0 20 40 60 80 100

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Pr=?[(request or wait) U<=T timeout] −− 10 clients, 5 servers

time

pr
ob

ab
ili

ty

stat mc (10000 runs)
fluid mc

Model Checking ICTMC CSL model checking 33/ 68

CSL model checking for CTMC

Consider a CTMC with state space S and time varying rates
Q = Q(t).
Focus on the formula

P./p (φ1 U [0,T] φ2)

Time-homogeneous CTMC

For time-homogeneous case, we can check this formula by
computing, for each state s ∈ S, the probability of paths
satisfying φ1 U [0,T] φ2 deciding if this probability is ./ p.

This is done via transient analysis on the chain in which ¬φ1
and φ2 states are made absorbing.

Time-homogeneity⇒ we can run each transient analysis from
time t0 = 0 even if we have nested until formulae.

Model Checking ICTMC CSL model checking 34/ 68

CSL model checking for CTMC

Consider a CTMC with state space S and time varying rates
Q = Q(t).
Focus on the formula

P./p (φ1 U [0,T] φ2)

Time-homogeneous CTMC

For time-homogeneous case, we can check this formula by
computing, for each state s ∈ S, the probability of paths
satisfying φ1 U [0,T] φ2 deciding if this probability is ./ p.

This is done via transient analysis on the chain in which ¬φ1
and φ2 states are made absorbing.

Time-homogeneity⇒ we can run each transient analysis from
time t0 = 0 even if we have nested until formulae.

Model Checking ICTMC CSL model checking 35/ 68

CSL model checking for CTMC

Consider a CTMC with state space S and time varying rates
Q = Q(t).
Focus on the formula

P./p (φ1 U [0,T] φ2)

This is no longer true in time-inhomogeneous CTMCs, as the
probability of an until formula depends on the time at which we
evaluate it.

The truth value of φ in a state s
depends on the time t at which we evaluate it!

This causes problems when we consider nested until formulae.

Model Checking ICTMC CSL model checking 36/ 68

Model Checking ICTMC — related work

The CTMC z(N)
n is time-inhomogeneous.

Model checking for ICTMC

Model checking Hennessy Milner Logics (ICTMC with
piecewise constant rates)
Model checking LTL (time unbounded operators, requires
asymptotic regularity of rates).
Model checking against DTA specification (not for ICTMC,
can possibly be extended)

J.P. Katoen, A. Mereacre. Model Checking HML on Piecewise-Constant Inhomogeneous Markov Chains.
FORMATS 2008.

T. Chen, T. Han, J.P. Katoen, A. Mereacre: LTL Model Checking of Time-Inhomogeneous Markov Chains.
ATVA 2009.

T. Chen, T. Han, J.P. Katoen, A. Mereacre: Model Checking of Continuous-Time Markov Chains Against
Timed Automata Specifications. Logical Methods in Computer Science 7, 2011.

Model Checking ICTMC CSL model checking 37/ 68

CSL model checking for ICTMC

Consider a ICTMC with state space S and rates Q = Q(t).

P./p(φ1 U [0,T] φ2)

Model Checking ICTMC CSL model checking 38/ 68

CSL model checking for ICTMC

Consider a ICTMC with state space S and rates Q = Q(t).

P./p(φ1 U [0,T] φ2)

This can be model checked using transient analysis to solve the
following reachability problem:

What is the probability of reaching a φ2-state within time T
without entering a ¬φ1-state?

Model Checking ICTMC CSL model checking 39/ 68

Kolmogorov forward and backward equations

Let Π(t1, t2) = (πsi ,sj (t1, t2))i,j be the probability matrix giving the
probability of being in state sj at time t2, given that we are in
state si at time t1.

The Kolmogorov forward and backward equations describe the
time evolution of Π(t1, t2) as a function of t1 and t2 respectively.

Kolmogorov forward and backward equations

∂Π(t1, t2)

∂t2
= Π(t1, t2)Q(t2)

∂Π(t1, t2)

∂t1
= −Q(t1)Π(t1, t2).

Model Checking ICTMC CSL model checking 40/ 68

Kolmogorov forward and backward equations

Let Π(t1, t2) = (πsi ,sj (t1, t2))i,j be the probability matrix giving the
probability of being in state sj at time t2, given that we are in
state si at time t1.

The Kolmogorov forward and backward equations describe the
time evolution of Π(t1, t2) as a function of t1 and t2 respectively.

Kolmogorov forward and backward equations

∂Π(t1, t2)

∂t2
= Π(t1, t2)Q(t2)

∂Π(t1, t2)

∂t1
= −Q(t1)Π(t1, t2).

Model Checking ICTMC CSL model checking 41/ 68

Kolmogorov forward and backward equations

Let Π(t1, t2) = (πsi ,sj (t1, t2))i,j be the probability matrix giving the
probability of being in state sj at time t2, given that we are in
state si at time t1.

The Kolmogorov forward and backward equations describe the
time evolution of Π(t1, t2) as a function of t1 and t2 respectively.

Kolmogorov forward and backward equations

∂Π(t1, t2)

∂t2
= Π(t1, t2)Q(t2)

∂Π(t1, t2)

∂t1
= −Q(t1)Π(t1, t2).

Model Checking ICTMC CSL model checking 42/ 68

Time-Dependent reachability probability

If we want to compute Π(t , t + T) as a function of t , let
t ′ = t + T (initial conditions, Π(0,T)):

dΠ(t , t + T)

dt
=
∂Π(t , t ′)
∂t ′

∂t ′

∂t
+
∂Π(t , t ′)
∂t

dΠ(t , t + T)

dt
= Π(t , t + T)Q(t + T)−Q(t)Π(t , t + T)

Then, Pφ1U [0,T]φ2
(s, t) = is equal to

∑
s′|=φ2

Π¬φ1∧φ2(t , t + T)s,s′ .

Model Checking ICTMC CSL model checking 43/ 68

Client Server: P=?F≤T atimeout as a function of t0

●

● ●

●
●

●

0 5 10 15 20 25

0.
00

0.
05

0.
10

0.
15

0.
20

Pr=?[F<=50 timeout] −− t0 varying −− 10 clients, 5 servers

initial time

pr
ob

ab
ili

ty

●

● ●

●
●

●

stat mc (10000 runs)
fluid mc

Model Checking ICTMC CSL model checking 44/ 68

Time-dependent truth

When computing the truth value of an until formula, we
obtain a time dependent value T(φ, s, t) in each state.

When we consider nested temporal operators, we need to
take this into account.

The problem is that in this case the topology of goal and
unsafe states in the CTMC can change in time.

Model Checking ICTMC CSL model checking 45/ 68

Time-dependent truth

When computing the truth value of an until formula, we
obtain a time dependent value T(φ, s, t) in each state.

When we consider nested temporal operators, we need to
take this into account.

The problem is that in this case the topology of goal and
unsafe states in the CTMC can change in time.

Model Checking ICTMC CSL model checking 46/ 68

Time-dependent truth

When computing the truth value of an until formula, we
obtain a time dependent value T(φ, s, t) in each state.

When we consider nested temporal operators, we need to
take this into account.

The problem is that in this case the topology of goal and
unsafe states in the CTMC can change in time.

Model Checking ICTMC CSL model checking 47/ 68

Time dependent truth: �≤Tφ

t0
false

true

Td

T(φ, s, t)

At discontinuity times, changes in topology introduce
discontinuities in the probability values.

But...
Discontinuities happen at specific and fixed time instants. We
can solve Kolmogorov equations piecewise!

Model Checking ICTMC CSL model checking 48/ 68

Time dependent truth: �≤Tφ

t0
false

true

Td

T(φ, s, t)

More precisely

Write Π(t , t + T) = ζTd (Π(t ,Td))Π(Td , t + T), and derive
Kolmogorov equations by applying chain rule.

Here ζTd sets to zero all entries πs,s′ , such that s is a ¬φ-state
before time Td and s′ is a ¬φ-state either before of after time
Td .

Model Checking ICTMC CSL model checking 49/ 68

Time dependent truth: F≤Tφ

t0
false

true

Td

T(φ, s, t)

State s becomes a goal state at time Td .
If we are in state s at time T−d (without having reached a φ
state before), then we are suddenly in a φ-state at time T+

d .
At time Td we need to add πs′,s(t ,Td) to the reachability
probability from each state s′.
This introduces discontinuties in the reachability
probability.
At each discontinuity event, we also have to appropriately
re-route the Q matrix.

Model Checking ICTMC CSL model checking 50/ 68

Time dependent truth: F≤Tφ

t0
false

true

Td

T(φ, s, t)

Pragmatically
In both cases, at each discontinuity event, we have to
appropriately re-route the Q matrix.

For bookkeeping reasons, we need to add |S| additional sink
variables that collect the probability of reaching a φ-state within
T time units from time t to t + T .

Model Checking ICTMC CSL model checking 51/ 68

k discontinuities T1, . . . ,Tk in [t , t + T]

time

t t + T

T1 T2 Tk Tk+1· · ·

The generic Chapman-Kolmogorov equation
Π(t , t + T) = Π1(t ,T1)ζ(T1)Π2(T1,T2)ζ(T2) · · · ζ(Tk)Πk+1(Tk , t + T).

ζ(Tj) apply the appropriate bookkeeping operations to deal with
changes in the topology of absorbing states.

We can compute Π(t , t + T) by an ODE obtained by
derivation and application of chain rule.
In advancing time, when we hit a discontinuity point (from
below or above), the structure of the previous equation
changes: integration has to be stopped and restarted.

Model Checking ICTMC CSL model checking 52/ 68

The Algorithm (sketched)

Proceed bottom-up on the parse tree of a formula.
Case T(P./p(φ1U [0,T]φ2), t):

Compute T(φ1, t) and T(φ2, t)
Let T1, . . . ,Tm be all the discontinuity points of T(φ1, t) and
T(φ2, t) up to a final time Tf .
Compute Π(Ti ,Ti + 1) for each i
Compute Π(0,T) using generalized CK equations
Integrate d

dt Π(t , t + T) up to Tf .

Return T(P./p(φ1U [0,T]φ2), t) = Π(t , t + T) ./ p.

The use of Kolmogorov equations is feasible if the state space
is small.
This is usually the case for single agent mean field models.

Model Checking ICTMC CSL model checking 53/ 68

Client-Server: F≤T (P<0.167(F≤50timeout))

0 20 40 60 80 100

0.
00

0.
05

0.
10

0.
15

0.
20

Pr=?[F<=50 timeout] −− t0 varying

initial time

pr
ob

ab
ili

ty

false

true

0.167

t ~ 2.1

rq
truth−value

P<0.167(F≤50timeout) from state rq of client.

Model Checking ICTMC CSL model checking 54/ 68

Client-Server: F≤T (P<0.167(F≤50timeout))

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F<=t(Pr<0.167[F<=50 timeout])

time

pr
ob

ab
ili

ty

R(0)=1
W(0)=1
T(0)=1
A(0)=1

Model Checking ICTMC CSL model checking 55/ 68

Time-dependent until probability

There are two issues which we need to consider:

Numerical stability of the integration of the
forward+backward equation.
Number of zeros of the function Pφ1U [T ,T ′]φ2

(s, t)− p: is it
always finite, if we restrict our attention to a compact time
interval [0,Tmax]? Can it be infinite?

Model Checking ICTMC CSL model checking 56/ 68

Time-dependent until probability

There are two issues which we need to consider:

Numerical stability of the integration of the
forward+backward equation.
Number of zeros of the function Pφ1U [T ,T ′]φ2

(s, t)− p: is it
always finite, if we restrict our attention to a compact time
interval [0,Tmax]? Can it be infinite?

Conclusions 57/ 68

Decidability

Number of zeros of P(t)− p

We want that this equation has a finite number of solutions
in each [0,T].
We can enforce this by requiring rate functions of ICTMC
to be piecewise real-analytic functions.

Conclusions 58/ 68

Decidability

Decidability
We need algorithms to solve ODEs with error guarantee
(interval analysis).
We need to find zeros of function P(s, t)− p (root finding).
To answer the CSL query for main until formulae, we need
to know if P(s,0) ./ p (zero test).
It is not known if root finding and zero test are decidable.

p

Conclusions 59/ 68

Decidability

Decidability
We need algorithms to solve ODEs with error guarantee
(interval analysis).
We need to find zeros of function P(s, t)− p (root finding).
To answer the CSL query for main until formulae, we need
to know if P(s,0) ./ p (zero test).
It is not known if root finding and zero test are decidable.

p

Conclusions 60/ 68

Decidability

Decidability
We need algorithms to solve ODEs with error guarantee
(interval analysis).
We need to find zeros of function P(s, t)− p (root finding).
To answer the CSL query for main until formulae, we need
to know if P(s,0) ./ p (zero test).
It is not known if root finding and zero test are decidable.

p

Conclusions 61/ 68

Decidability

Decidability
We need algorithms to solve ODEs with error guarantee
(interval analysis).
We need to find zeros of function P(s, t)− p (root finding).
To answer the CSL query for main until formulae, we need
to know if P(s,0) ./ p (zero test).
It is not known if root finding and zero test are decidable.

p

Conclusions 62/ 68

Decidability

Decidability
We need algorithms to solve ODEs with error guarantee
(interval analysis).
We need to find zeros of function P(s, t)− p (root finding).
To answer the CSL query for main until formulae, we need
to know if P(s,0) ./ p (zero test).
It is not known if root finding and zero test are decidable.

p

Conclusions 63/ 68

Decidability

Theorem (Quasi-decidability)

Let φ = φ(p) be a CSL formula, with constants
p = (p1, . . . ,pk) ∈ [0,1]k appearing in until formulae.

The CSL model checking for ICTMC problem is decidable for
p ∈ E, where E is an open subset of [0,1]k , of measure 1.

Conclusions 64/ 68

Convergence of CSL truth

We considered also convergence of CSL properties:
properties that are true in zk are eventually true in Z (N)

k ?
Convergence suffers from similar issues to decidability:
tangential zeros and P(s,0) = p can create problems.

Theorem (Asymptotic correctness)

Let φ = φ(p) be a CSL formula, with constants
p = (p1, . . . ,pk) ∈ [0,1]k appearing in until formulae.

Then, for p ∈ E, an open subset of [0,1]k of measure 1, there
exists N0 such that ∀N ≥ N0

s,0 |=
Z (N)

k
φ⇔ s,0 |=zk φ.

Conclusions 65/ 68

Conclusions

We presented an application of mean field theory to model
check properties of single agents in a large population.

We focussed on CSL, providing a method to model check
CSL formulae versus time-inhomogeneous CTMC.

We provided convergence results that guarantee almost
surely consistence of the method.

Conclusions 66/ 68

Conclusions

We presented an application of mean field theory to model
check properties of single agents in a large population.

We focussed on CSL, providing a method to model check
CSL formulae versus time-inhomogeneous CTMC.

We provided convergence results that guarantee almost
surely consistence of the method.

Conclusions 67/ 68

Conclusions

We presented an application of mean field theory to model
check properties of single agents in a large population.

We focussed on CSL, providing a method to model check
CSL formulae versus time-inhomogeneous CTMC.

We provided convergence results that guarantee almost
surely consistence of the method.

Conclusions 68/ 68

Future work

Investigate the use of error bounds for mean field
convergence to provide a (rough) estimate of the error.
Investigate better the “individual to population” relationship
(average behaviour, estimates for probability)
Include rewards, next operator, and steady state, when
possible.
Working implementation
Consider other logics on single agents (e.g. MTL)

	Introduction
	

	Fluid Model Checking
	Theoretical Grounds
	Example

	Model Checking ICTMC
	CSL model checking

	Conclusions
	

