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The Discrete World View

As computer scientists we generally take a discrete view of the
world.

This is particularly true when we want to reason about the
behaviour of systems, as most formalisms are built upon notions of
states and transitions.

Various formalisms have been designed for capturing such
behaviour.
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Process Algebra

Models consist of agents which engage in actions.

α.P
�
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action type
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The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

Process algebra
model

Labelled transition
system

-
SOS rules
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Quantitative Modelling

Performance modelling aims to construct models of the dynamic
behaviour of systems in order to support the efficient and equitable
sharing of resources. Availability and reliability modelling consider
the dynamic behaviour of systems with failures and breakdowns.

Markovian-based discrete event models have been applied to
computer systems since the mid-1960s and communication systems
since the early 20th century.

Originally queueing networks were primarily used to construct
models, and sophisticated analysis techniques were developed.

These techniques are no longer widely applicable for expressing the
dynamic behaviour observed in distributed systems with concurrent
behaviour.
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Formal Approaches to Quantitative Modelling

The size and complexity of real systems makes the direct
construction of discrete state models costly and error-prone.

For the last three decades there has been substantial interest in
applying formal modelling techniques enhanced with information
about timing and probability.

From these high-level system descriptions the underlying
mathematical model (Continuous Time Markov Chain (CTMC))
can be automatically generated.

Primary examples include:

Stochastic Petri Nets and

Stochastic/Markovian Process Algebras.
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Stochastic Process Algebra

Models are constructed from components which engage in
activities.

(α, r).P
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exponential distribution)

component/
derivative

The language is used to generate a CTMC for performance
modelling.
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TRANSITION
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CTMC Q- -
SOS rules state transition

diagram
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Integrated analysis

Qualitative verification can now be complemented by quantitative
verification.

Reachability analysisModel checking

How long will it take
for the system to arrive

in a particular state?
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?
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Performance Evaluation Process Algebra

PEPA components perform activities either independently or in
co-operation with other components.

(α, f ).P Prefix
P1 + P2 Choice
P1 ��

L
P2 Co-operation

P/L Hiding
C Constant

P1 ‖ P2 is a derived form for P1 ��∅ P2.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)
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Structured Operational Semantics

PEPA is defined using a Plotkin-style structured operational
semantics (a “small step” semantics).

Prefix

(α, r).E
(α,r)
−−−→ E

Choice

E
(α,r)
−−−→ E ′

E + F
(α,r)
−−−→ E ′

F
(α,r)
−−−→ F ′

E + F
(α,r)
−−−→ F ′
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Structured Operational Semantics: Cooperation (α /∈ L)

Cooperation

E
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Structured Operational Semantics: Cooperation (α ∈ L)

Cooperation
E

(α,r1)
−−−→ E ′ F

(α,r2)
−−−→ F ′

E ��
L

F
(α,R)
−−−→ E ′ ��

L
F ′

(α ∈ L)

where R =
r1

rα(E )

r2
rα(F )

min(rα(E ), rα(F ))
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Apparent Rate

rα((β, r).P) =

{
r β = α
0 β 6= α

rα(P + Q) = rα(P) + rα(Q)

rα(A) = rα(P) where A
def
= P

rα(P ��
L
Q) =

{
rα(P) + rα(Q) α /∈ L
min(rα(P), rα(Q)) α ∈ L

rα(P/L) =

{
rα(P) α /∈ L
0 α ∈ L
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Structured Operational Semantics: Hiding

Hiding

E
(α,r)
−−−→ E ′

E/L
(α,r)
−−−→ E ′/L

(α /∈ L)

E
(α,r)
−−−→ E ′

E/L
(τ,r)
−−−→ E ′/L

(α ∈ L)
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Structured Operational Semantics: Constants

Constant

E
(α,r)−→ E ′

A
(α,r)−→ E ′

(A
def
= E )
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Solving discrete state models

Under the SOS semantics a
SPA model is mapped to a
CTMC with global states
determined by the local states
of all the participating
components.
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Solving discrete state models

When the size of the state
space is not too large they are
amenable to numerical solution
(linear algebra) to determine a
steady state or transient
probability distribution.

Q =


q1,1 q1,2 · · · q1,N

q2,1 q2,2 · · · q2,N

...
...

...
qN,1 qN,2 · · · qN,N



π(t) = (π1(t), π2(t), . . . , πN (t))

π(∞)Q = 0
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Solving discrete state models

Alternatively they may be
studied using stochastic
simulation. Each run generates
a single trajectory through the
state space. Many runs are
needed in order to obtain
average behaviours.
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Mobile applications
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State space explosion

As the size of the state space becomes large it becomes infeasible
to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.
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When there are repeated instances of agents (populations) in the
system there is an alternative: fluid approximation.

For a large class of models, just as the size of the state space
becomes unmanageable, the models become amenable to an
efficient, scale-free approximation.
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Identity and Individuality

Population systems are constructed from many instances of a set
of components.

If we cease to distinguish between instances of components we can
form an aggregation or counting abstraction to reduce the state
space.
We may choose to disregard the identity of components.

Even better reductions can be achieved when we no longer regard
the components as individuals.
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Population models — intuition

On Off

Y (t)

N copies: Y
(N)
i

(0,N) (1,N−1) (2,N−2) (0,N)....

X(N)(t)

X
(N)
j =

N∑
i=1

1{Y (N)
i = j}

Y (t), Y
(N)
i (t) and X(N)(t) are all CTMCs;

As N increases we get a sequence of CTMCs, X(N)(t)
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Population state space

The population process X(N) = (X
(N)
1 , . . . ,X

(N)
n ) has the

dimension of the state space of Y (t).

Importantly, its dimensions are independent of N.

Essentially we are making a counting abstraction and
aggregation of the state space.

If we make the closed world assumption:
∑n

j=1 X
(N)
j = N

N.B. PEPA models always satisfy the closed world assumption.
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Population transitions

The dynamics of the population models is expressed in terms
of a set of possible transitions, T (N).

Transitions are stochastic, and take an exponentially
distributed time to happen.

Their rate may depend on the current global state of the
system.

Each transition is specified by a rate function r
(N)
τ , and by an

update vector vτ , specifying the impact of the event on the
population vector.

The infinitesimal generator matrix Q(N) of X(N)(t) is defined
as:

qx,x′ =
∑
{rτ (x) | τ ∈ T , x′ = x + vτ}.
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Population models — summary of notation

Individuals

We have N individuals Y
(N)
i ∈ S , S = {1, 2, . . . , n} in the system

(can have multiple classes).

System variables

X
(N)
j =

∑N
i=1 1{Y (N)

i = j}, and X(N) = (X
(N)
1 , . . . ,X

(N)
n )

Dynamics (system level)

X(N) is a CTMC with transitions τ ∈ T :

τ : X(N) to X(N) + vτ at rate r
(N)
τ (X)
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Scaling Conditions

Scaling assumptions

We have a sequence X(N) of population CTMCs.

We normalise such models, dividing variables by N:

X̂ =
X

N

occupancy measures

for each τ ∈ T (N)

the normalised update is v̂ = v/N
there is a normalised rate function r̂τ (X̂)

∀τ assume there exists a bounded and Lipschitz continuous
function fτ (X̂), the limit rate function on normalised variables,

independent of N, such that
1

N
r̂ (N)
τ (x)→ fτ (x) uniformly.
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Normalised process — intuition
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The whole population is represented as a single process.

Even when the number of individuals varies (N −→∞) the
processes remain comparable.
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Drift

Drift

The drift F (N)(X̂) — the mean instantaneous increment of model
variables in state X̂ — is defined as

F (N)(X̂) =
∑
τ∈T̂

1

N
vτ r̂

(N)
τ (X̂)

Limit Drift

Let fτ be the limit rate functions.

The limit drift of the model X̂ (N) is

F (X̂) =
∑
τ∈T̂

vτ fτ (X̂),

and F (N)(x)→ F (x) uniformly as N −→∞.
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Fluid ODE and Fluid approximation theorem

Fluid ODE

The fluid ODE is

dx

dt
= F (x), with x(0) = x0 ∈ S .

Since F is Lipschitz (all fτ are), this ODE has a unique solution
x(t) starting from x0.

Deterministic Approximation Theorem (Kurtz)

Assume that ∃ x0 ∈ S such that X̂(N)(0)→ x0 in probability.
Then, for any finite time horizon T <∞, it holds that as
N −→∞:

P

{
sup

0≤t≤T
||X̂(N)(t)− x(t)|| > ε

}
→ 0.

T.G.Kurtz. Solutions of ordinary differential equations as limits of pure jump Markov processes.

Journal of Applied Probability, 1970.
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Fluid Approximation ODEs

The fluid approximation ODEs can be interpreted in two different
ways:

as an approximation of the average of the system (usually a
first order approximation). This is often termed a mean field
approximation.

as an approximate description of system trajectories for large
populations.

We focus on the second interpretation — a functional version of
the Law of Large Numbers.

Instead of having a sequence of random variables, converging to a
deterministic value, here we have a sequence of CTMCs for
increasing population size, which converge to a deterministic
trajectory, the solution of the fluid ODE.
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Illustrative trajectories
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Process Algebra for Population Systems

Process algebra are well-suited for constructing models of
population systems:

Developed to represent concurrent behaviour compositionally;

Represent the interactions between individuals explicitly;

Populations are readily and rigorously identified;

Stochastic extensions allow the dynamics of system behaviour
to be captured;

Incorporate formal apparatus for reasoning about the
behaviour of systems through model checking.

The major impediment is state space explosion and fluid
approximation offers a solution to that problem.
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Fluid semantics for Stochastic Process Algebras

Incorporating fluid approximation into a formal high-level
language used for CTMC modelling offers quantitative
scalable analysis which is immune to state space explosion.

Indeed, accuracy increases as the size of the populations in
the model grow.

Embedding the approach in a formal language offers the
possibility to establish the conditions for convergence at the
language level via the semantics,

This removes the requirement to fulfil the proof obligation on
a model-by-model basis.

Moreover the derivation of the ODEs can be automated in the
implementation of the language.
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Multiple agents

Kurtz’s Theorem is based on the notion of a single agent class —
many instances of one sequential component.

But in a process algebra model we typically work with multiple
components composed to evolve concurrently.

We construct a single agent class in the population CTMC but
partition the state space S into subsets, each of which represents
the states of a distinct component, and such that there are no
transitions between subsets.

The agents whose initial state is in each subset correspond to that
component.
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Deriving a Fluid Approximation of a PEPA model

The aim is to represent the CTMC implicitly (avoiding state space
explosion), and to generate the set of ODEs which are the fluid
limit of that CTMC.

The existing SOS semantics is not suitable for this purpose
because it constructs the state space of the CTMC explicitly.

PEPA
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Fluid Structured Operational Semantics

In order to get to the implicit representation of the CTMC we need
to:

1 Remove excess components to identify the counting
abstraction of the process (Context Reduction)

2 Collect the transitions of the reduced context as symbolic
updates on the state representation (Jump Multiset)

3 Calculate the rate of the transitions in terms of an arbitrary
state of the CTMC.

Once this is done we can extract the vector field FM(x) from the
jump multiset, under the assumption that the population size
tends to infinity.

M.Tribastone, S.Gilmore and J.Hillston. Scalable Differential Analysis of Process Algebra Models. IEEE TSE 2012.
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Consistency results

The vector field F(x) is Lipschitz continuous i.e. all the rate
functions governing transitions in the process algebra satisfy
local continuity conditions.

Thus the hypotheses of the Deterministic Approximation
Theorem are satisfied.

The generated ODEs are the fluid limit of the family of
CTMCs and so approximate the discrete behaviour as the size
of the system grows.

Moreover Lipschitz continuity of the vector field guarantees
existence and uniqueness of the solution to the initial value
problem.

M.Tribastone, S.Gilmore and J.Hillston. Scalable Differential Analysis of Process Algebra Models. IEEE TSE 2012.
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Quantitative properties

The derived vector field F(x), gives an approximation of the
expected count for each population over time.

This has been extended in a number of ways:

Fluid rewards which can be safely calculated from the fluid
expectation trajectories.

M.Tribastone, J.Ding, S.Gilmore and J.Hillston. Fluid Rewards for a Stochastic Process Algebra. IEEE TSE 2012.

Vector fields have been defined to approximate higher
moments.

R.A.Hayden and J.T.Bradley. A fluid analysis framework for a Markovian process algebra. TCS 2010.

Fluid approximation of passage times have been defined.

R.A.Hayden, A.Stefanek and J.T.Bradley. Fluid computation of passage-time distributions in large Markov models.

TCS 2012.
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PEPA applied in practice (continuous)

Denial of service attacks
S.Gilmore, J.Hillston and N.Zon. Abstraction Interpretation of PEPA Models. Semantics, Logics and

Calculi 2016.

Emergency egress
A.Kumar Singh and S. Kaur. Analysis of Emergency Evacuation of Buildings using PEPA. IDCDIT 2015.

M.Massink, D.Latella, A.Bracciali and M.Harrion. A scalable fluid flow process algebraic approach to

emergency egress. SEFM 2010.

Security protocols Y.Zhao and N.Thomas. A Simplified Solution of a PEPA model of the

Kerberos Protocol. CyberC 2011.

Energy considerations in computing systems
A.Stefanek, R.A.Hayden and J.T.Bradley. Fluid computation of the performance/energy trade-off in large

scale Markov models. Performance Evaluation Review 2011.
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Conclusions

Many interesting and important systems can be regarded as
examples of collective dynamics and emergent behaviour.

Process algebras, such as PEPA, are well-suited to modelling
the behaviour of such systems in terms of the individuals and
their interactions.

Continuous approximation allows a rigorous mathematical
analysis of the average behaviour of such systems.

This alternative view of systems has opened up many and
exciting new research directions.
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