The Bio-PEPA project

Jane Hillston.
LFCS and CSBE, University of Edinburgh

24th February 2009

Joint work with Federica Ciocchetta, Adam Duguid, Vashti Galpin, Stephen Gilmore, Maria Luisa Guerriero and Laurence Loewe.
Integrated Analysis

System

Mathematical Model
e.g ODE or SSA
Integrated Analysis

System

Stochastic Process Algebra Model

ODE
SSA
Model Checking
Integrated Analysis

- Stochastic Process Algebra Model
- ODE
- SSA
- Model Checking
- Analysis
Bio-PEPA: motivations

Work on the stochastic π-calculus and related calculi, is typically based on Regev and Shapiro’s mapping: molecules as processes.
Bio-PEPA: motivations

Work on the stochastic π-calculus and related calculi, is typically based on Regev and Shapiro’s mapping: molecules as processes. This is an inherently individuals-based view of the system and analysis will generally then be via stochastic simulation.
Bio-PEPA: motivations

Work on the stochastic π-calculus and related calculi, is typically based on Regev and Shapiro’s mapping: molecules as processes. This is an inherently individuals-based view of the system and analysis will generally then be via stochastic simulation.

With PEPA and Bio-PEPA we have been experimenting with more abstract mappings between elements of signalling pathways and process algebra constructs: species as processes.
Bio-PEPA: motivations

Work on the stochastic π-calculus and related calculi, is typically based on Regev and Shapiro’s mapping: molecules as processes. This is an inherently individuals-based view of the system and analysis will generally then be via stochastic simulation.

With PEPA and Bio-PEPA we have been experimenting with more abstract mappings between elements of signalling pathways and process algebra constructs: species as processes.

Abstract models are more amenable to integrated analysis.
Bio-PEPA: motivations

Work on the stochastic π-calculus and related calculi, is typically based on Regev and Shapiro’s mapping: molecules as processes. This is an inherently individuals-based view of the system and analysis will generally then be via stochastic simulation.

With PEPA and Bio-PEPA we have been experimenting with more abstract mappings between elements of signalling pathways and process algebra constructs: species as processes.

Abstract models are more amenable to integrated analysis.

We also wanted to be able to capture more of the biological features expressed in the models such as those found in the BioModels database.
Motivations for Abstraction

Our motivations for seeking more abstraction:

- Process algebra-based analyses such as comparing models (e.g. for equivalence or simulation) and model checking are only possible if the state space is not prohibitively large.
- The data that we have available to parameterise models is sometimes speculative rather than precise.

This suggests that it can be useful to use semi-quantitative models rather than quantitative ones.
Motivations for Abstraction

Our motivations for seeking more abstraction:

- Process algebra-based analyses such as comparing models (e.g. for equivalence or simulation) and model checking are only possible if the state space is not prohibitively large.
Motivations for Abstraction

Our motivations for seeking more abstraction:

- Process algebra-based analyses such as comparing models (e.g. for equivalence or simulation) and model checking are only possible if the state space is not prohibitively large.

- The data that we have available to parameterise models is sometimes speculative rather than precise.
Motivations for Abstraction

Our motivations for seeking more abstraction:

▶ Process algebra-based analyses such as comparing models (e.g. for equivalence or simulation) and model checking are only possible if the state space is not prohibitively large.

▶ The data that we have available to parameterise models is sometimes speculative rather than precise.

This suggests that it can be useful to use semi-quantitative models rather than quantitative ones.
Alternative Representations

- ODEs
- Abstract SPA model
 - Stochastic Simulation

The Bio-PEPA project
Alternative Representations

Abstract SPA model

- ODEs
 - population view

- Stochastic Simulation
 - individual view
Discretising the population view

We can discretise the continuous range of possible concentration values into a number of distinct states. These form the possible states of the component representing the reagent.
Alternative Representations

- ODEs
- CTMC with M levels
- Stochastic Simulation

Abstract SPA model
Alternative Representations

Abstract SPA model

- ODEs
 - population view

- CTMC with M levels
 - abstract view

- Stochastic Simulation
 - individual view
Modelling biological features

There are some features of biochemical reaction systems which are not readily captured by many of the stochastic process algebras that are currently in use.
Modelling biological features

There are some features of biochemical reaction systems which are not readily captured by many of the stochastic process algebras that are currently in use.

Particular problems are encountered with:

- stoichiometry — the multiplicity in which an entity participates in a reaction;
- general kinetic laws — although mass action is widely used other kinetics are also commonly employed.
- multiway reactions — although thermodynamic arguments can be made that there are never more than two reagents involved in a reaction, in practice it is often useful to model at a more abstract level.
Modelling biological features

There are some features of biochemical reaction systems which are not readily captured by many of the stochastic process algebras that are currently in use.

Particular problems are encountered with:

- **stoichiometry** — the multiplicity in which an entity participates in a reaction;
Modelling biological features

There are some features of biochemical reaction systems which are not readily captured by many of the stochastic process algebras that are currently in use.

Particular problems are encountered with:

- **stoichiometry** — the multiplicity in which an entity participates in a reaction;
- **general kinetic laws** — although mass action is widely used other kinetics are also commonly employed.
Modelling biological features

There are some features of biochemical reaction systems which are not readily captured by many of the stochastic process algebras that are currently in use.

Particular problems are encountered with:

- **stoichiometry** — the multiplicity in which an entity participates in a reaction;
- **general kinetic laws** — although mass action is widely used other kinetics are also commonly employed.
- **multiway reactions** — although thermodynamic arguments can be made that there are never more than two reagents involved in a reaction, in practice it is often useful to model at a more abstract level.
Bio-PEPA

In Bio-PEPA:

- Unique rates are associated with each reaction (action) type, separately from the specification of the logical behaviour.
- The representation of an action within a component (species) records the stoichiometry of that entity with respect to that reaction. The role of the entity is also distinguished.
- The local states of components are quantitative rather than functional, i.e. distinct states of the species are represented as distinct components, not derivatives of a single component.
Bio-PEPA

In Bio-PEPA:

- **Unique rates** are associated with each reaction (action) type, separately from the specification of the logical behaviour. These rates may be specified by **functions**.
Bio-PEPA

In Bio-PEPA:

- **Unique rates** are associated with each reaction (action) type, separately from the specification of the logical behaviour. These rates may be specified by *functions*.
- The representation of an action within a component (species) records the *stoichiometry* of that entity with respect to that reaction. The *role* of the entity is also distinguished.
In Bio-PEPA:

- **Unique rates** are associated with each reaction (action) type, separately from the specification of the logical behaviour. These rates may be specified by functions.

- The representation of an action within a component (species) records the **stoichiometry** of that entity with respect to that reaction. The **role** of the entity is also distinguished.

- The local states of components are **quantitative** rather than functional, i.e. distinct states of the species are represented as distinct components, not derivatives of a single component.
The syntax

Sequential component (species component)

\[S ::= (\alpha, \kappa) \text{ op } S | S + S | C \quad \text{where op} = \downarrow \mid \uparrow \mid \oplus \mid \ominus \mid \odot \]
The syntax

Sequential component (species component)

\[S ::= (\alpha, \kappa) \, \text{op} \, S \mid S + S \mid C \quad \text{where op} = \downarrow \mid \uparrow \mid \oplus \mid \ominus \mid \odot \]
The syntax

Sequential component (species component)

\[S ::= (\alpha, \kappa) \, \text{op} \, S \mid S + S \mid C \quad \text{where} \quad \text{op} = \downarrow \mid \uparrow \mid \oplus \mid \ominus \mid \odot \]
The syntax

Sequential component (species component)

\[S ::= (\alpha, \kappa) \op S \mid S + S \mid C \quad \text{where} \quad \op = \downarrow \mid \uparrow \mid \oplus \mid \ominus \mid \odot \]
The syntax

Sequential component (species component)

\[S ::= (\alpha, \kappa) \ op \ S \mid S + S \mid C \]

where \(\op = \downarrow \mid \uparrow \mid \oplus \mid \ominus \mid \otimes \)
The syntax

Sequential component (species component)

\[S ::= (\alpha, \kappa) \text{ op } S \mid S + S \mid C \quad \text{where op} = \downarrow | \uparrow | \oplus | \ominus | \odot \]

Model component

\[P ::= P \text{ \textasciicircum} P \mid S(l) \]

The Bio-PEPA project
The syntax

Sequential component (species component)

\[S ::= (\alpha, \kappa) \circ \circ S \mid S + S \mid C \quad \text{where } \circ \circ = \downarrow \mid \uparrow \mid \oplus \mid \ominus \mid \odot \]

Model component

\[P ::= P \ll P \mid S(l) \]
The syntax

Sequential component (species component)

\[
S ::= (\alpha, \kappa) \text{ op } S | S + S | C \quad \text{ where op = } \downarrow | \uparrow | \oplus | \ominus | \odot
\]

Model component

\[
P ::= P \bowtie P | S(l)
\]
The syntax

Sequential component (species component)

\[S ::= (\alpha, \kappa) \text{ op } S \mid S + S \mid C \quad \text{where } \text{op} = \downarrow \mid \uparrow \mid \oplus \mid \ominus \mid \odot \]

Model component

\[P ::= P \uplus P \mid S(l) \]

The parameter \(l \) is abstract, recording quantitative information about the species.
The syntax

Sequential component (species component)

\[S ::= (\alpha, \kappa) \; \text{op} \; S \mid S + S \mid C \]
where \(\text{op} = \downarrow \mid \uparrow \mid \oplus \mid \ominus \mid \odot \)

Model component

\[P ::= P \; \text{T} \; P \mid S(l) \]

The parameter \(l \) is abstract, recording quantitative information about the species.

Depending on the interpretation, this quantity may be:

- number of molecules (SSA),
- concentration (ODE) or
- a level within a semi-quantitative model (CTMC).
The Bio-PEPA system

A Bio-PEPA system P is a 6-tuple $\langle V, N, K, F_R, \text{Comp}, P \rangle$, where:

- V is the set of compartments;
- N is the set of quantities describing each species (step size, number of levels, location, ...);
- K is the set of parameter definitions;
- F_R is the set of functional rate definitions;
- Comp is the set of definitions of sequential components;
- P is the model component describing the system.
Semantics

The semantics of Bio-PEPA is given as a small-step operational semantics, intended for deriving the CTMC with levels.
Semantics

The semantics of Bio-PEPA is given as a small-step *operational semantics*, intended for deriving the CTMC with levels.

We define two relations over the processes:

1. *capability relation*, that supports the derivation of quantitative information;
Semantics

The semantics of Bio-PEPA is given as a small-step operational semantics, intended for deriving the CTMC with levels.

We define two relations over the processes:

1. **capability relation**, that supports the derivation of quantitative information;

2. **stochastic relation**, that gives the rates associated with each action.
Semantics: prefix rules

\[\text{prefixReac } ((\alpha, \kappa)\downarrow S)(l) \xrightarrow{(\alpha, [S: \downarrow (l, \kappa)])} cS(l - \kappa) \]
\[\kappa \leq l \leq N \]
Semantics: prefix rules

\[
\text{prefixReac} \quad ((\alpha, \kappa) \downarrow S)(l) \xrightarrow{\alpha,[S:\downarrow(l,\kappa)]} cS(l - \kappa) \\
\kappa \leq l \leq N
\]

\[
\text{prefixProd} \quad ((\alpha, \kappa) \uparrow S)(l) \xrightarrow{\alpha,[S:\uparrow(l,\kappa)]} cS(l + \kappa) \\
0 \leq l \leq (N - \kappa)
\]
Semantics: prefix rules

\[
\text{prefixReac} \quad ((\alpha, \kappa) \downarrow S)(l) \xrightarrow{(\alpha, [S: \downarrow (l, \kappa)])} cS(l - \kappa) \\
\quad \kappa \leq l \leq N
\]

\[
\text{prefixProd} \quad ((\alpha, \kappa) \uparrow S)(l) \xrightarrow{(\alpha, [S: \uparrow (l, \kappa)])} cS(l + \kappa) \\
\quad 0 \leq l \leq (N - \kappa)
\]

\[
\text{prefixMod} \quad ((\alpha, \kappa) \text{ op } S)(l) \xrightarrow{(\alpha, [S: \text{op}(l, \kappa)])} cS(l) \\
\quad 0 \leq l \leq N
\]

with \(\text{op} = \ominus, \oplus, \text{ or } \ominus \)
Semantics: constant and choice rules

\[
\text{Choice1} \quad \frac{S_1(l) \xrightarrow{(\alpha, \nu)} c S'_1(l')}{(S_1 + S_2)(l) \xrightarrow{(\alpha, \nu)} c S'_1(l')}
\]

The Bio-PEPA project
Semantics: constant and choice rules

Choice 1

\[
S_1(I) \xrightarrow{(\alpha, \nu)} c S_1'(I')
\]

\[
(S_1 + S_2)(I) \xrightarrow{(\alpha, \nu)} c S_1'(I')
\]

Choice 2

\[
S_2(I) \xrightarrow{(\alpha, \nu)} c S_2'(I')
\]

\[
(S_1 + S_2)(I) \xrightarrow{(\alpha, \nu)} c S_2'(I')
\]
Semantics: constant and choice rules

Choice 1
\[
S_1(l)^{(\alpha,v)} \xrightarrow{c} S'_1(l')
\]
\[
(S_1 + S_2)(l)^{(\alpha,v)} \xrightarrow{c} S'_1(l')
\]

Choice 2
\[
S_2(l)^{(\alpha,v)} \xrightarrow{c} S'_2(l')
\]
\[
(S_1 + S_2)(l)^{(\alpha,v)} \xrightarrow{c} S'_2(l')
\]

Constant
\[
S(l)^{(\alpha,S:\{op(l,\kappa)\})} \xrightarrow{c} S'(l')
\]
\[
C(l)^{(\alpha,C:\{op(l,\kappa)\})} \xrightarrow{c} S'(l')
\]

with \(C \stackrel{\text{def}}{=} S \)
Semantics: cooperation rules

coop1

\[
\frac{P_1 \xrightarrow{(\alpha, v)} cP'_1}{P_1 \Join P_2 \xrightarrow{(\alpha, v)} cP'_1 \Join P_2}
\]

with \(\alpha \notin \mathcal{L} \)
Semantics: cooperation rules

coop1

\[
P_1 \xrightarrow{(\alpha, \nu)} cP'_1 \quad \text{with } \alpha \notin \mathcal{L}
\]

\[
P_1 \sqcap P_2 \xrightarrow{(\alpha, \nu)} cP'_1 \sqcap P_2
\]

coop2

\[
P_2 \xrightarrow{(\alpha, \nu)} cP'_2 \quad \text{with } \alpha \notin \mathcal{L}
\]

\[
P_1 \sqcap P_2 \xrightarrow{(\alpha, \nu)} cP_1 \sqcap P'_2
\]
Semantics: cooperation rules

coop1

\[
P_1 \xrightarrow{(\alpha,v)} cP'_1
\]

with \(\alpha \notin \mathcal{L}\)

\[
P_1 \otimes P_2 \xrightarrow{(\alpha,v)} cP'_1 \otimes P_2
\]

coop2

\[
P_2 \xrightarrow{(\alpha,v)} cP'_2
\]

with \(\alpha \notin \mathcal{L}\)

\[
P_1 \otimes P_2 \xrightarrow{(\alpha,v)} cP'_1 \otimes P'_2
\]

coopFinal

\[
P_1 \xrightarrow{(\alpha,v_1)} cP'_1 \quad P_2 \xrightarrow{(\alpha,v_2)} cP'_2
\]

with \(\alpha \in \mathcal{L}\)

\[
P_1 \otimes P_2 \xrightarrow{(\alpha,v_1::v_2)} cP'_1 \otimes P'_2
\]
Semantics: rates and transition system

In order to derive the rates we consider the *stochastic relation* $\rightarrow_s \subseteq \mathcal{P} \times \Gamma \times \mathcal{P}$, with $\gamma \in \Gamma := (\alpha, r)$ and $r \in \mathbb{R}^+$. The rate r_{α_j} represents the parameter of an exponential distribution and the dynamic behaviour is determined by a race condition. The rate r_{α_j} is defined as $f_{\alpha_j}(V, N, K) / h$.
Semantics: rates and transition system

In order to derive the rates we consider the stochastic relation \(\rightarrow_s \subseteq \mathcal{P} \times \Gamma \times \mathcal{P} \), with \(\gamma \in \Gamma := (\alpha, r) \) and \(r \in \mathbb{R}^+ \).

The relation is defined in terms of the previous one:
Semantics: rates and transition system

In order to derive the rates we consider the *stochastic relation* \(\rightarrow_s \subseteq P \times \Gamma \times P \), with \(\gamma \in \Gamma := (\alpha, r) \) and \(r \in \mathbb{R}^+ \).

The relation is defined in terms of the previous one:

\[
P^{(\alpha_j, \nu)} \xrightarrow{c} P'
\]

\[
\langle V, N, K, F_R, \text{Comp}, P \rangle \xrightarrow{(\alpha_j, r_{\alpha_j})} s \langle V, N, K, F_R, \text{Comp}, P' \rangle
\]
Semantics: rates and transition system

In order to derive the rates we consider the stochastic relation
\[\rightarrow_s \subseteq P \times \Gamma \times P, \] with \(\gamma \in \Gamma := (\alpha, r) \) and \(r \in \mathbb{R}^+ \).

The relation is defined in terms of the previous one:

\[P^{(\alpha, v)} \xrightarrow{c} P' \]

\[\langle V, N, K, F_R, Comp, P \rangle^{(\alpha, r_{\alpha_j})} \xrightarrow{s} \langle V, N, K, F_R, Comp, P' \rangle \]

\(r_{\alpha_j} \) represents the parameter of an exponential distribution and the dynamic behaviour is determined by a race condition.
Semantics: rates and transition system

In order to derive the rates we consider the stochastic relation $\rightarrow_s \subseteq \mathcal{P} \times \Gamma \times \mathcal{P}$, with $\gamma \in \Gamma := (\alpha, r)$ and $r \in \mathbb{R}^+$.

The relation is defined in terms of the previous one:

$$P \xrightarrow{(\alpha_j, \nu)} c P'$$

$$\langle \mathcal{V}, \mathcal{N}, \mathcal{K}, \mathcal{F}_R, \text{Comp}, P \rangle \xrightarrow{(\alpha_j, r_{\alpha_j})} s \langle \mathcal{V}, \mathcal{N}, \mathcal{K}, \mathcal{F}_R, \text{Comp}, P' \rangle$$

r_{α_j} represents the parameter of an exponential distribution and the dynamic behaviour is determined by a race condition.

The rate r_{α_j} is defined as $f_{\alpha_j}(\mathcal{V}, \mathcal{N}, \mathcal{K})/h$.

The Bio-PEPA project
Each of these kinds of analysis can be of help for studying different aspects of the biological model. Moreover we are exploring how they can be used in conjunction.
Examples from the literature

We have used Bio-PEPA for a number of examples, originally taken from the literature, but increasingly in collaboration with biologists.
Examples from the literature

We have used Bio-PEPA for a number of examples, originally taken from the literature, but increasingly in collaboration with biologists.

- Goldbeter’s model describing the oscillation of cyclin in the cell cycle.
- A simple genetic network, with a negative feedback loop.
- The repressilator.
- Edelstein’s model for the acetylcholine receptor (with events).
- Model for complex intracellular calcium oscillations (by Goldbeter and co-authors).
Examples undertaken with biologists

- **rRNA synthesis pathway** in the formation of ribosomes: the model was used to investigate the relative frequency of co-transcriptional cleavage. (Tollervey Laboratory, CSBE)
Examples undertaken with biologists

- **rRNA synthesis pathway** in the formation of ribosomes: the model was used to investigate the relative frequency of co-transcriptional cleavage. (Tollervey Laboratory, CSBE)
- **Circadian clock**: investigating the structure of the pathway controlling the clock mechanism. (Millar Laboratory, CSBE)
Examples undertaken with biologists

- **rRNA synthesis pathway** in the formation of ribosomes: the model was used to investigate the relative frequency of co-transcriptional cleavage. (Tollervey Laboratory, CSBE)

- **Circadian clock**: investigating the structure of the pathway controlling the clock mechanism. (Millar Laboratory, CSBE)

- **JAK/STAT pathway in breast cancer cells**: investigating the localisation of the STAT proteins and the roles of inhibitors in the pathway (Heath Laboratory, U. of Birmingham)
Examples undertaken with biologists

- **rRNA synthesis pathway** in the formation of ribosomes: the model was used to investigate the relative frequency of co-transcriptional cleavage. (Tollervey Laboratory, CSBE)
- **Circadian clock**: investigating the structure of the pathway controlling the clock mechanism. (Millar Laboratory, CSBE)
- **JAK/STAT pathway in breast cancer cells**: investigating the localisation of the STAT proteins and the roles of inhibitors in the pathway (Heath Laboratory, U. of Birmingham)
- **JAK/STAT pathway in chickens**: investigating the differences between chickens susceptible and resistant to Marek’s disease. (Roslin Institute)
Bio-PEPA with Events [Cioc ProcMod08]

In a recent extension we consider events to be constructs that change the state of the system due to some trigger conditions.
Bio-PEPA with Events [Cioc ProcMod08]

In a recent extension we consider events to be constructs that change the state of the system due to some trigger conditions.

There are several motivations for introducing discrete events into Bio-PEPA. For example,
Bio-PEPA with Events [Cioc ProcMod08]

In a recent extension we consider events to be constructs that change the state of the system due to some trigger conditions.

There are several motivations for introducing discrete events into Bio-PEPA. For example,

- When modelling *in vitro* systems it can be the case that the system is deliberately perturbed in a controlled way at a specific time.
- There may be discrete changes in systems, such as gene activation and deactivation.
Bio-PEPA with Events [Cioc ProcMod08]

In a recent extension we consider events to be constructs that change the state of the system due to some trigger conditions.

There are several motivations for introducing discrete events into Bio-PEPA. For example,

- When modelling in vitro systems it can be the case that the system is deliberated perturbed in a controlled way at a specific time.
- There may be discrete changes in systems, such as gene activation and deactivation.

Such an extension of Bio-PEPA has been defined consisting of a separate specification of the events and their effects, and mappings to hybrid automata and stochastic simulation models.
Example with Events
Improved Compartments [CG MeCBiC08]

In the current version of Bio-PEPA compartments are simply containers for species, only the size of the compartment being used to calculate concentrations when necessary.
Improved Compartments [CG MeCBiC08]

In the current version of Bio-PEPA compartments are simply containers for species, only the size of the compartment being used to calculate concentrations when necessary.

Recent work by Ciocchetta and Guerriero has extended this view of compartments, allowing the relative positioning of compartments and membranes to be captured.
Improved Compartments [CG MeCBiC08]

In the current version of Bio-PEPA compartments are simply containers for species, only the size of the compartment being used to calculate concentrations when necessary.

Recent work by Ciocchetta and Guerriero has extended this view of compartments, allowing the relative positioning of compartments and membranes to be captured.

Additionally species and reactions may be specified to have a particular location relative to this structure, for example on a membrane or within a compartment.
Equivalence relations

Standard process algebra equivalences, based on the notion of bisimulation, have been defined and shown to be congruences [CH TCS09].
Equivalence relations

Standard process algebra equivalences, based on the notion of bisimulation, have been defined and shown to be congruences [CH TCS09].

These turn out to be very strong notions of equivalence essentially amounting to isomorphism of the biological systems.
Equivalence relations

Standard process algebra equivalences, based on the notion of bisimulation, have been defined and shown to be congruences [CH TCS09].

These turn out to be very strong notions of equivalence essentially amounting to isomorphism of the biological systems.

We are now seeking to define equivalence and simulation relations for Bio-PEPA which might be more useful from the biological perspective.
Equivalence relations

Standard process algebra equivalences, based on the notion of bisimulation, have been defined and shown to be congruences [CH TCS09].

These turn out to be very strong notions of equivalence essentially amounting to isomorphism of the biological systems.

We are now seeking to define equivalence and simulation relations for Bio-PEPA which might be more useful from the biological perspective.

In particular we are investigating the situations in which biologists regard models or elements of models to be equivalent, especially when this is employed for model simplification.
Biologically-inspired equivalences

After studying models from the literature and talking to biological collaborators we are investigating the following possibilities:

- **Lumping**
 - two species are viewed as one
- **Fast versus slow reactions**
 - Michaelis-Menten abstraction using QSSA
- **Unobservable species**
 - species that cannot be observed/measured in experiments
 - example: $A \to A_1 \to A_2 \to A_3 \to A_4 \to B$ and $A \to B$
Biologically-inspired equivalences

After studying models from the literature and talking to biological collaborators we are investigating the following possibilities:

- **Lumping**
 - two species are viewed as one

- **Fast versus slow reactions**
 - Michaelis-Menten abstraction using QSSA

- **Unobservable species**
 - species that cannot be observed/measured in experiments
 - example: \(A \rightarrow A_1 \rightarrow A_2 \rightarrow A_3 \rightarrow A_4 \rightarrow B \) and \(A \rightarrow B \)

Currently, we are studying these at the qualitative level, but ultimately relationships based on the stochastic relation will be important.
Mapping from SBGN to Bio-PEPA

An automated mapping from SBML to Bio-PEPA has already been implemented and a mapping from Bio-PEPA to SBML is planned.
Mapping from SBGN to Bio-PEPA

An automated mapping from SBML to Bio-PEPA has already been implemented and a mapping from Bio-PEPA to SBML is planned.

Work in underway on a mapping from SBGN to Bio-PEPA.
Mapping from SBGN to Bio-PEPA

An automated mapping from SBML to Bio-PEPA has already been implemented and a mapping from Bio-PEPA to SBML is planned.

Work in underway on a mapping from SBGN to Bio-PEPA.

Systems Biology Graphical Notation (SBGN) has been proposed as a standard graphical notation for biochemical reaction networks, designed by an international consortium. It is expected to become a standard for graphical interfaces.
Mapping from SBGN to Bio-PEPA

An automated mapping from SBML to Bio-PEPA has already been implemented and a mapping from Bio-PEPA to SBML is planned.

Work in underway on a mapping from SBGN to Bio-PEPA.

Systems Biology Graphical Notation (SBGN) has been proposed as a standard graphical notation for biochemical reaction networks, designed by an international consortium. It is expected to become a standard for graphical interfaces.

The SBGN standard lacks quantitative information such as kinetic rates and initial concentrations/molecule counts, so our translation is based on the version of SBGN supported by the Edinburgh Pathway Editor, which has these values defined as attributes.
Narrative Language input to Bio-PEPA models

We are also using the narrative language developed in Guerriero’s PhD thesis (joint work with Heath and Priami) as a means to help biologists capture details of the system to be modelled.
Narrative Language input to Bio-PEPA models

We are also using the narrative language developed in Guerriero’s PhD thesis (joint work with Heath and Priami) as a means to help biologists capture details of the system to be modelled.

This language represents information about a biochemical pathway in a series of related tables.
Narrative Language input to Bio-PEPA models

We are also using the narrative language developed in Guerriero’s PhD thesis (joint work with Heath and Priami) as a means to help biologists capture details of the system to be modelled.

This language represents information about a biochemical pathway in a series of related tables.

Previously these tables were used to automatically generate a Beta-binders model, and we will soon be implementing a translation into Bio-PEPA.
More Information?

http://homepages.inf.ed.ac.uk/jeh/biopepa
Acknowledgements

This work has been/is being developed under the auspices of the following projects:

- *The Centre for Systems Biology at Edinburgh (CSBE)*, funded by BBSRC and EPSRC (one of six Centres for Integrative Systems Biology).

- *Process Algebra Approaches for Collective Dynamics*, Advanced Research Fellowship and associated project (EP/c543696/01 and EP/c54370x/01), funded by EPSRC and BBSRC.

- *SIGNAL: Stochastic Process Algebra for Biochemical Signalling Pathways Analysis* with Prof Muffy Calder and Prof Walter Kolch (University of Glasgow) (EP/EO31439/1), funded by EPSRC.
CTMC with levels

- Analysis of the Markov process can yield quite detailed information about the dynamic behaviour of the model.
CTMC with levels

- Analysis of the Markov process can yield quite detailed information about the dynamic behaviour of the model.
- A steady state analysis provides statistics for average behaviour over a long run of the system, when the bias introduced by the initial state has been lost.
CTMC with levels

- Analysis of the Markov process can yield quite detailed information about the dynamic behaviour of the model.
- A steady state analysis provides statistics for average behaviour over a long run of the system, when the bias introduced by the initial state has been lost.
- A transient analysis provides statistics relating to the evolution of the model over a fixed period. This will be dependent on the starting state.
CTMC with levels

- Analysis of the Markov process can yield quite detailed information about the dynamic behaviour of the model.
- A steady state analysis provides statistics for average behaviour over a long run of the system, when the bias introduced by the initial state has been lost.
- A transient analysis provides statistics relating to the evolution of the model over a fixed period. This will be dependent on the starting state.

SPA
MODEL
CTMC with levels

- Analysis of the Markov process can yield quite detailed information about the dynamic behaviour of the model.
- A steady state analysis provides statistics for average behaviour over a long run of the system, when the bias introduced by the initial state has been lost.
- A transient analysis provides statistics relating to the evolution of the model over a fixed period. This will be dependent on the starting state.
CTMC with levels

- Analysis of the Markov process can yield quite detailed information about the dynamic behaviour of the model.
- A steady state analysis provides statistics for average behaviour over a long run of the system, when the bias introduced by the initial state has been lost.
- A transient analysis provides statistics relating to the evolution of the model over a fixed period. This will be dependent on the starting state.
CTMC with levels

- Analysis of the Markov process can yield quite detailed information about the dynamic behaviour of the model.
- A steady state analysis provides statistics for average behaviour over a long run of the system, when the bias introduced by the initial state has been lost.
- A transient analysis provides statistics relating to the evolution of the model over a fixed period. This will be dependent on the starting state.
CTMC with levels

- Analysis of the Markov process can yield quite detailed information about the dynamic behaviour of the model.
- A steady state analysis provides statistics for average behaviour over a long run of the system, when the bias introduced by the initial state has been lost.
- A transient analysis provides statistics relating to the evolution of the model over a fixed period. This will be dependent on the starting state.
CTMC with levels

The granularity of the system is defined in terms of the step size h of the concentration intervals and the same step size is used for all the species, with few exceptions. (Law of conservation of mass).
CTMC with levels

The granularity of the system is defined in terms of the step size h of the concentration intervals and the same step size is used for all the species, with few exceptions. (Law of conservation of mass).

The granularity must be specified by the modeller based on the expected range of concentration values and the number of levels considered and transition rates are made consistent with the granularity.
CTMC with levels

The granularity of the system is defined in terms of the step size h of the concentration intervals and the same step size is used for all the species, with few exceptions. (Law of conservation of mass).

The granularity must be specified by the modeller based on the expected range of concentration values and the number of levels considered and transition rates are made consistent with the granularity.

The structure of the CTMC derived from Bio-PEPA, which we term the CTMC with levels, will depend on the granularity of the model.
CTMC with levels

The granularity of the system is defined in terms of the step size h of the concentration intervals and the same step size is used for all the species, with few exceptions. (Law of conservation of mass).

The granularity must be specified by the modeller based on the expected range of concentration values and the number of levels considered and transition rates are made consistent with the granularity.

The structure of the CTMC derived from Bio-PEPA, which we term the CTMC with levels, will depend on the granularity of the model.

As the granularity tends to zero the behaviour of this CTMC with levels tends to the behaviour of the ODEs [CDHC FBTC08].
PRISM model and model checking

- Analysing models of biological processes via probabilistic model-checking has considerable appeal.
PRISM model and model checking

- Analysing models of biological processes via probabilistic model-checking has considerable appeal.
- As with stochastic simulation the answers which are returned from model-checking give a thorough stochastic treatment to the small-scale phenomena.
PRISM model and model checking

- Analysing models of biological processes via probabilistic model-checking has considerable appeal.
- As with stochastic simulation the answers which are returned from model-checking give a thorough stochastic treatment to the small-scale phenomena.
- However, in contrast to a simulation run which generates just one trajectory, probabilistic model-checking gives a definitive answer so it is not necessary to re-run the analysis repeatedly and compute ensemble averages of the results.
PRISM model and model checking

- Analysing models of biological processes via probabilistic model-checking has considerable appeal.
- As with stochastic simulation the answers which are returned from model-checking give a thorough stochastic treatment to the small-scale phenomena.
- However, in contrast to a simulation run which generates just one trajectory, probabilistic model-checking gives a definitive answer so it is not necessary to re-run the analysis repeatedly and compute ensemble averages of the results.
- Building a reward structure over the model it is possible to express complex analysis questions.
PRISM model and model checking

- Probabilistic model checking in PRISM is based on a CTMC and the logic CSL.
PRISM model and model checking

- Probabilistic model checking in PRISM is based on a CTMC and the logic CSL.
- Formally the mapping from Bio-PEPA is based on the structured operational semantics, generating the underlying CTMC in the usual way.
PRISM model and model checking

- Probabilistic model checking in PRISM is based on a CTMC and the logic CSL.
- Formally the mapping from Bio-PEPA is based on the structured operational semantics, generating the underlying CTMC in the usual way.
- As with SSA, in practice it is more straightforward to directly map to the input language of the tool, as interacting reactive modules.
PRISM model and model checking

- Probabilistic model checking in PRISM is based on a CTMC and the logic CSL.
- Formally the mapping from Bio-PEPA is based on the structured operational semantics, generating the underlying CTMC in the usual way.
- As with SSA, in practice it is more straightforward to directly map to the input language of the tool, as interacting reactive modules.
- From a Bio-PEPA description one module is generated for each species component with an additional module to capture the functional rate information.
Integrated analyses
[CHDC FBTC08] and [CGGH PASM08]

As well as offering alternative analyses we can use the different analysis tools in a complementary way. For example using stochastic simulation and probabilistic model checking in tandem.
Integrated analyses
[CHDC FBTC08] and [CGGH PASM08]

As well as offering alternative analyses we can use the different analysis tools in a complementary way. For example using stochastic simulation and probabilistic model checking in tandem.

▶ The exact discrete-state representation of probabilistic model-checking means that its use is limited by state space explosion.
Integrated analyses

[CHDC FBTC08] and [CGGH PASM08]

As well as offering alternative analyses we can use the different analysis tools in a complementary way. For example using stochastic simulation and probabilistic model checking in tandem.

- The exact discrete-state representation of probabilistic model-checking means that its use is limited by state space explosion.
- Moreover, the finite nature of the state representation used means that *a priori* bounds must be set (whether numbers of molecules or discrete levels for each species are used).
Integrated analyses
[CHDC FBTC08] and [CGGH PASM08]

As well as offering alternative analyses we can use the different analysis tools in a complementary way. For example using stochastic simulation and probabilistic model checking in tandem.

▶ The exact discrete-state representation of probabilistic model-checking means that its use is limited by state space explosion.

▶ Moreover, the finite nature of the state representation used means that a priori bounds must be set (whether numbers of molecules or discrete levels for each species are used).

▶ We can use stochastic simulation to establish appropriate bounds to use for defining the PRISM state space.