
An Aggregation Technique For Large-Scale PEPA
Models With Non-Uniform Populations

Alireza Pourranjbar, Jane Hillston
School of Informatics, University of Edinburgh

10th December 2013

1 / 82

Overview

In this paper we present an aggregation technique suitable for handling
compositional models where we have different populations of entities
interacting.

In particular we consider the case where some populations are large but
crucially some entities are only present in low copy numbers.

Such models are difficult to represent with explicit representation of the
state space due to the large populations, but are not suitable for fluid
approximation due to the small populations.

We assume that the models are constructed using the stochastic process
algebra, PEPA.

2 / 82

Overview

In this paper we present an aggregation technique suitable for handling
compositional models where we have different populations of entities
interacting.

In particular we consider the case where some populations are large but
crucially some entities are only present in low copy numbers.

Such models are difficult to represent with explicit representation of the
state space due to the large populations, but are not suitable for fluid
approximation due to the small populations.

We assume that the models are constructed using the stochastic process
algebra, PEPA.

3 / 82

Overview

In this paper we present an aggregation technique suitable for handling
compositional models where we have different populations of entities
interacting.

In particular we consider the case where some populations are large but
crucially some entities are only present in low copy numbers.

Such models are difficult to represent with explicit representation of the
state space due to the large populations, but are not suitable for fluid
approximation due to the small populations.

We assume that the models are constructed using the stochastic process
algebra, PEPA.

4 / 82

Overview

In this paper we present an aggregation technique suitable for handling
compositional models where we have different populations of entities
interacting.

In particular we consider the case where some populations are large but
crucially some entities are only present in low copy numbers.

Such models are difficult to represent with explicit representation of the
state space due to the large populations, but are not suitable for fluid
approximation due to the small populations.

We assume that the models are constructed using the stochastic process
algebra, PEPA.

5 / 82

Overview

1 Large-scale PEPA models

2 Large-scale models with non-uniform populations

3 State space aggregation

4 Aggregation algorithm

5 Using the aggregation

6 Conclusion

6 / 82

Stochastic Process Algebra

Models are constructed from components which engage in activities.

(α, r).P
��
�* 6 HH

HY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language is used to generate a CTMC for performance modelling.

SPA
MODEL

LABELLED
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition

diagram

7 / 82

Stochastic Process Algebra

Models are constructed from components which engage in activities.

(α, r).P
��
�* 6 HH

HY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language is used to generate a CTMC for performance modelling.

SPA
MODEL

LABELLED
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition

diagram

8 / 82

Stochastic Process Algebra

Models are constructed from components which engage in activities.

(α, r).P
��
�* 6 HH

HY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language is used to generate a CTMC for performance modelling.

SPA
MODEL

LABELLED
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition

diagram

9 / 82

Stochastic Process Algebra

Models are constructed from components which engage in activities.

(α, r).P
��
�* 6 HH

HY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language is used to generate a CTMC for performance modelling.

SPA
MODEL

LABELLED
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition

diagram

10 / 82

Stochastic Process Algebra

Models are constructed from components which engage in activities.

(α, r).P
��
�* 6 HH

HY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language is used to generate a CTMC for performance modelling.

SPA
MODEL

LABELLED
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition

diagram

11 / 82

Stochastic Process Algebra

Models are constructed from components which engage in activities.

(α, r).P
��
�* 6 HH

HY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language is used to generate a CTMC for performance modelling.

SPA
MODEL

LABELLED
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition

diagram

12 / 82

Stochastic Process Algebra

Models are constructed from components which engage in activities.

(α, r).P
��
�* 6 HH

HY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language is used to generate a CTMC for performance modelling.

SPA
MODEL

LABELLED
TRANSITION

SYSTEM
CTMC Q

-

-

SOS rules

state transition

diagram

13 / 82

Stochastic Process Algebra

Models are constructed from components which engage in activities.

(α, r).P
��
�* 6 HH

HY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language is used to generate a CTMC for performance modelling.

SPA
MODEL

LABELLED
TRANSITION

SYSTEM

CTMC Q

-

-

SOS rules

state transition

diagram

14 / 82

Stochastic Process Algebra

Models are constructed from components which engage in activities.

(α, r).P
��
�* 6 HH

HY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language is used to generate a CTMC for performance modelling.

SPA
MODEL

LABELLED
TRANSITION

SYSTEM

CTMC Q

- -
SOS rules state transition

diagram

15 / 82

Stochastic Process Algebra

Models are constructed from components which engage in activities.

(α, r).P
��
�* 6 HH

HY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language is used to generate a CTMC for performance modelling.

SPA
MODEL

LABELLED
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition

diagram

16 / 82

PEPA

S ::= (α, r).S | S + S | A

P ::= S | P BC
L

P | P/L

PREFIX: (α, r).S designated first action

CHOICE: S + S competing components

CONSTANT: A
def
= S assigning names

COOPERATION: P BC
L

P α /∈ L individual actions

α ∈ L shared actions

HIDING: P/L abstraction α ∈ L⇒ α→ τ

17 / 82

PEPA

S ::= (α, r).S | S + S | A

P ::= S | P BC
L

P | P/L

PREFIX: (α, r).S designated first action

CHOICE: S + S competing components

CONSTANT: A
def
= S assigning names

COOPERATION: P BC
L

P α /∈ L individual actions

α ∈ L shared actions

HIDING: P/L abstraction α ∈ L⇒ α→ τ

18 / 82

PEPA

S ::= (α, r).S | S + S | A

P ::= S | P BC
L

P | P/L

PREFIX: (α, r).S designated first action

CHOICE: S + S competing components

CONSTANT: A
def
= S assigning names

COOPERATION: P BC
L

P α /∈ L individual actions

α ∈ L shared actions

HIDING: P/L abstraction α ∈ L⇒ α→ τ

19 / 82

PEPA

S ::= (α, r).S | S + S | A

P ::= S | P BC
L

P | P/L

PREFIX: (α, r).S designated first action

CHOICE: S + S competing components

CONSTANT: A
def
= S assigning names

COOPERATION: P BC
L

P α /∈ L individual actions

α ∈ L shared actions

HIDING: P/L abstraction α ∈ L⇒ α→ τ

20 / 82

PEPA

S ::= (α, r).S | S + S | A

P ::= S | P BC
L

P | P/L

PREFIX: (α, r).S designated first action

CHOICE: S + S competing components

CONSTANT: A
def
= S assigning names

COOPERATION: P BC
L

P α /∈ L individual actions

α ∈ L shared actions

HIDING: P/L abstraction α ∈ L⇒ α→ τ

21 / 82

PEPA

S ::= (α, r).S | S + S | A

P ::= S | P BC
L

P | P/L

PREFIX: (α, r).S designated first action

CHOICE: S + S competing components

CONSTANT: A
def
= S assigning names

COOPERATION: P BC
L

P α /∈ L individual actions

α ∈ L shared actions

HIDING: P/L abstraction α ∈ L⇒ α→ τ

22 / 82

Building Models of Large-Scale Systems With PEPA

We use the grouped PEPA syntax1 to express our large-scale PEPA
models:

S = (α, r).S | S + S | Cs P = P BC
L

P | S

D = D || D | P M = M BC
L

M | Y {D}

1 S : sequential component (essentially, a state machine)

2 Cs : constant used to name a component

3 P : the composition of sequential components
4 D : a group of sequential components

We only consider simple groups

5 M : a grouped PEPA model

1R.A.Hayden and J.T.Bradley, A fluid analysis framework for a Markovian process
algebra, in TCS. 411(22-24), 2010

23 / 82

Building Models With PEPA - A Client-Server System

Cthink Creq

think, rt

request, rc

Cthink
def
= (think, rt).Creq

Creq
def
= (req, rc).Cthink

Sidle Slog

Sbroken

request, rs

log, rl

break, rbfix, rf

Sidle
def
= (req, rs).Slog + (brk , rb).Sbroken

Slog
def
= (log, rl).Sidle

Sbroken
def
= (fix, rf).Sidle

CS
def
= Servers { Sidle[20] } BC

{req}
Clients { Cthink[1000] }

(In general, P[n] = P || P || . . . || P (n times).)

24 / 82

Building Models With PEPA - A Client-Server System

Cthink Creq

think, rt

request, rc

Cthink
def
= (think, rt).Creq

Creq
def
= (req, rc).Cthink

Sidle Slog

Sbroken

request, rs

log, rl

break, rbfix, rf

Sidle
def
= (req, rs).Slog + (brk , rb).Sbroken

Slog
def
= (log, rl).Sidle

Sbroken
def
= (fix, rf).Sidle

CS
def
= Servers { Sidle[20] } BC

{req}
Clients { Cthink[1000] }

(In general, P[n] = P || P || . . . || P (n times).)

25 / 82

State Space Representation of Large Scale PEPA Models

In order to take advantage of the symmetry within a large scale model
and lumpability we use a state representation based on a counting
abstraction: the state of each group is a count of how many instances
within the group are within each local state.

The rates of the individual and shared activities are defined as
functions of the counters.

Example: at any given time t, the state of the client-server system is
captured by a vector ξCS = 〈Si ,Sl ,Sb,Cr ,Ct〉.

26 / 82

State Space Representation of Client-Server system
(2 servers & 2 clients)

1,0,1,2,0

0,1,1,1,1

0,1,1,2,0

brk, rb

2,0,0,2,0

1,1,0,1,1

0,2,0,0,2

req,2rs

req, rs

0,2,0,1,1

tnk,2rt

log,2rl

log, rl

1,1,0,2,0 0,2,0,2,0

log,2rl

fix, rf

brk,2rb

log, rl

tnk, rt

fix, rf

fix, rf

req, rs
tnk, rt

req, rs

brk, rb
brk, rb

fix,2rf

tnk, rt

1,1,0,0,2
2,0,0,0,2

2,0,0,1,1

1,0,1,1,1

1,0,1,0,2

0,0,2,1,1

0,0,2,0,2

0,1,1,0,2

log, rl

log, rl

tnk,2rt

tnk,2rt

req, rs

tnk, rt

tnk,2rt

log,2rl

tnk, rt

tnk,2rt
req,2rs

log, rl

brk, rb

fix, rf

log, rl

brk, rb

fix,2rf

brk, rb
fix,2rf

brk,2rb

fix, rf

brk,2rb
fix, rf

0,0,2,2,0

tnk, rt

tnk,2rt

27 / 82

Markovian Analysis of PEPA Models

For PEPA, a set of structural operational semantics supports the
derivation of the model’s underlying population CTMC.

The CTMC may be analysed for finding the model’s
transient/equilibrium behaviour.

Markovian analysis leads to detailed information about the model’s
behaviour:

The complete set of states
The complete joint probability distribution of the CTMC
The complete probability distribution of the reward random variables

The problem of state space explosion hampers this process even after
using the counting abstraction.

28 / 82

Alternative solution techniques for large scale models

For large scale models, even with counting abstraction aggregation,
Markovian analysis becomes infeasible due to state space explosion.

Stochastic simulation:

Computationally expensive

Intrinsic error

Fluid flow approximation (mean-field method): treating the counters
as continuous variables governed by a set of ordinary differential
equations.

Convergence ensured as populations uniformly scale to infinity.

Empirically, shown to be sufficient for models with uniformly large
populations (without getting to infinity)

Efficient

29 / 82

Alternative solution techniques for large scale models

For large scale models, even with counting abstraction aggregation,
Markovian analysis becomes infeasible due to state space explosion.

Stochastic simulation:

Computationally expensive

Intrinsic error

Fluid flow approximation (mean-field method): treating the counters
as continuous variables governed by a set of ordinary differential
equations.

Convergence ensured as populations uniformly scale to infinity.

Empirically, shown to be sufficient for models with uniformly large
populations (without getting to infinity)

Efficient

30 / 82

Alternative solution techniques for large scale models

For large scale models, even with counting abstraction aggregation,
Markovian analysis becomes infeasible due to state space explosion.

Stochastic simulation:

Computationally expensive

Intrinsic error

Fluid flow approximation (mean-field method): treating the counters
as continuous variables governed by a set of ordinary differential
equations.

Convergence ensured as populations uniformly scale to infinity.

Empirically, shown to be sufficient for models with uniformly large
populations (without getting to infinity)

Efficient

31 / 82

Alternative solution techniques for large scale models

For large scale models, even with counting abstraction aggregation,
Markovian analysis becomes infeasible due to state space explosion.

Stochastic simulation:

Computationally expensive

Intrinsic error

Fluid flow approximation (mean-field method): treating the counters
as continuous variables governed by a set of ordinary differential
equations.

Convergence ensured as populations uniformly scale to infinity.

Empirically, shown to be sufficient for models with uniformly large
populations (without getting to infinity)

Efficient

32 / 82

Alternative solution techniques for large scale models

For large scale models, even with counting abstraction aggregation,
Markovian analysis becomes infeasible due to state space explosion.

Stochastic simulation:

Computationally expensive

Intrinsic error

Fluid flow approximation (mean-field method): treating the counters
as continuous variables governed by a set of ordinary differential
equations.

Convergence ensured as populations uniformly scale to infinity.

Empirically, shown to be sufficient for models with uniformly large
populations (without getting to infinity)

Efficient

33 / 82

Alternative solution techniques for large scale models

For large scale models, even with counting abstraction aggregation,
Markovian analysis becomes infeasible due to state space explosion.

Stochastic simulation:

Computationally expensive

Intrinsic error

Fluid flow approximation (mean-field method): treating the counters
as continuous variables governed by a set of ordinary differential
equations.

Convergence ensured as populations uniformly scale to infinity.

Empirically, shown to be sufficient for models with uniformly large
populations (without getting to infinity)

Efficient

34 / 82

Alternative solution techniques for large scale models

For large scale models, even with counting abstraction aggregation,
Markovian analysis becomes infeasible due to state space explosion.

Stochastic simulation:

Computationally expensive

Intrinsic error

Fluid flow approximation (mean-field method): treating the counters
as continuous variables governed by a set of ordinary differential
equations.

Convergence ensured as populations uniformly scale to infinity.

Empirically, shown to be sufficient for models with uniformly large
populations (without getting to infinity)

Efficient

35 / 82

Alternative solution techniques for large scale models

For large scale models, even with counting abstraction aggregation,
Markovian analysis becomes infeasible due to state space explosion.

Stochastic simulation:

Computationally expensive

Intrinsic error

Fluid flow approximation (mean-field method): treating the counters
as continuous variables governed by a set of ordinary differential
equations.

Convergence ensured as populations uniformly scale to infinity.

Empirically, shown to be sufficient for models with uniformly large
populations (without getting to infinity)

Efficient

36 / 82

Large-Scale Models with Non-Uniform Populations (LSNP)

Unfortunately, convergence of fluid approximation is based on
assumption that all populations scale consistently and not all models
fit this pattern.

For example in resource-bound computer and communication
networks often involve interaction of small population of resources
and relatively larger populations of resource users.

In these cases the stochastic dynamics of the small populations can
significantly affect the model’s global behaviour preventing it from
being close to a deterministic limit.

37 / 82

LSNP Models, Small and Large Groups

We consider PEPA models in which some groups have a large number of
instances — large groups — but some also only have a few instances —
small group.

We assume that the modeller has specified a partition on set G(M)
specifying Gs(M) and Gl(M):

G(M) = Gl(M) ∪ Gs(M).

Therefore, the state vector can be partitioned:

ξ = 〈ξs , ξl〉

38 / 82

LSNP Models, Small and Large Groups

We consider PEPA models in which some groups have a large number of
instances — large groups — but some also only have a few instances —
small group.

We assume that the modeller has specified a partition on set G(M)
specifying Gs(M) and Gl(M):

G(M) = Gl(M) ∪ Gs(M).

Therefore, the state vector can be partitioned:

ξ = 〈ξs , ξl〉

39 / 82

LSNP Models, Small and Large Groups

We consider PEPA models in which some groups have a large number of
instances — large groups — but some also only have a few instances —
small group.

We assume that the modeller has specified a partition on set G(M)
specifying Gs(M) and Gl(M):

G(M) = Gl(M) ∪ Gs(M).

Therefore, the state vector can be partitioned:

ξ = 〈ξs , ξl〉

40 / 82

Aggregation Condition

The proposed approach depends on non-uniform population models which
satisfy the following aggregation condition:

For any shared activity, synchronised between one or more large groups
and one or more small groups, the rate of the shared activity, should
be completely decided by the small groups.

In any synchronisation on a shared activity of type α, if both small
and large groups are involved, then all instances in those large groups
need to undertake α passively.

The condition can be checked automatically by syntactic analysis of
the process terms.

41 / 82

Aggregation Condition - Example

Assuming that Gs(CS) = Servers and Gl(CS) = Clients:

Cthink
def
= (think, rt).Creq

Creq
def
= (req,>).Cthink

Sidle
def
= (req, rs).Slog + (brk , rb).Sbroken

Slog
def
= (log, rl).Sidle Sbroken

def
= (fix, rf).Sidle

CS
def
= Servers { Sidle[20] } BC

{req}
Clients { Cthink[1000] }

In any state of the system, if req is enabled, the rate of the shared activity
depends only on the state of the servers.

42 / 82

Structural Properties of the State Space:
→
A∗s (M)

A model which satisfies the syntactic aggregation condition exhibits
important structural properties in its state space.

There are some action types,
→
A∗s (M), which only involve the small

populations.

Transitions of these types only change ξs and have no effect on ξl .

Moreover the rate of these transitions only depend on the
configuration of the small populations.

43 / 82

Structural Properties of the State Space:
→
A∗s (M)

A model which satisfies the syntactic aggregation condition exhibits
important structural properties in its state space.

There are some action types,
→
A∗s (M), which only involve the small

populations.

Transitions of these types only change ξs and have no effect on ξl .

Moreover the rate of these transitions only depend on the
configuration of the small populations.

44 / 82

Structural Properties of the State Space:
→
A∗s (M)

A model which satisfies the syntactic aggregation condition exhibits
important structural properties in its state space.

There are some action types,
→
A∗s (M), which only involve the small

populations.

Transitions of these types only change ξs and have no effect on ξl .

Moreover the rate of these transitions only depend on the
configuration of the small populations.

45 / 82

→
A∗s (CS) = {log , brk , fix}

1,0,1,2,0

0,1,1,1,1

0,1,1,2,0

brk, rb

2,0,0,2,0

1,1,0,1,1

0,2,0,0,2

req,2rs

req, rs

0,2,0,1,1

tnk,2rt

log,2rl

log, rl

1,1,0,2,0 0,2,0,2,0

log,2rl

fix, rf

brk,2rb

log, rl

tnk, rt

fix, rf

fix, rf

req, rs
tnk, rt

req, rs

brk, rb
brk, rb

fix,2rf

tnk, rt

1,1,0,0,2
2,0,0,0,2

2,0,0,1,1

1,0,1,1,1

1,0,1,0,2

0,0,2,1,1

0,0,2,0,2

0,1,1,0,2

log, rl

log, rl

tnk,2rt

tnk,2rt

req, rs

tnk, rt

tnk,2rt

log,2rl

tnk, rt

tnk,2rt
req,2rs

log, rl

brk, rb

fix, rf

log, rl

brk, rb

fix,2rf

brk, rb
fix,2rf

brk,2rb

fix, rf

brk,2rb
fix, rf

0,0,2,2,0

tnk, rt

tnk,2rt

46 / 82

Structural Properties of the State Space:
→
A∗sl (M)

The remainder of action types for small groups,
→
A∗sl (M), involve

cooperation with instances in one or more large groups.

Transitions of these types change both ξs and ξl .

However, due to the aggregation condition, the rates such transitions
still depend only on the configuration of small populations and are
independent of ξs .

47 / 82

Structural Properties of the State Space:
→
A∗sl (M)

The remainder of action types for small groups,
→
A∗sl (M), involve

cooperation with instances in one or more large groups.

Transitions of these types change both ξs and ξl .

However, due to the aggregation condition, the rates such transitions
still depend only on the configuration of small populations and are
independent of ξs .

48 / 82

Structural Properties of the State Space:
→
A∗sl (M)

The remainder of action types for small groups,
→
A∗sl (M), involve

cooperation with instances in one or more large groups.

Transitions of these types change both ξs and ξl .

However, due to the aggregation condition, the rates such transitions
still depend only on the configuration of small populations and are
independent of ξs .

49 / 82

→
A∗sl (CS) = {req}

1,0,1,2,0

0,1,1,1,1

0,1,1,2,0

brk, rb

2,0,0,2,0

1,1,0,1,1

0,2,0,0,2

req,2rs

req, rs

0,2,0,1,1

tnk,2rt

log,2rl

log, rl

1,1,0,2,0 0,2,0,2,0

log,2rl

fix, rf

brk,2rb

log, rl

tnk, rt

fix, rf

fix, rf

req, rs
tnk, rt

req, rs

brk, rb
brk, rb

fix,2rf

tnk, rt

1,1,0,0,2
2,0,0,0,2

2,0,0,1,1

1,0,1,1,1

1,0,1,0,2

0,0,2,1,1

0,0,2,0,2

0,1,1,0,2

log, rl

log, rl

tnk,2rt

tnk,2rt

req, rs

tnk, rt

tnk,2rt

log,2rl

tnk, rt

tnk,2rt
req,2rs

log, rl

brk, rb

fix, rf

log, rl

brk, rb

fix,2rf

brk, rb
fix,2rf

brk,2rb

fix, rf

brk,2rb
fix, rf

0,0,2,2,0

tnk, rt

tnk,2rt

50 / 82

Structural Properties of the State Space:
→
A∗l (M)

The remaining action types,
→
A∗l (M), represent the action types in

which the large populations alone are involved.

Transitions of these types change ξl only and have no effect on ξs

When these actions occur the state of the small groups do not change.

The rate of such transitions depends on the configuration of large
populations only.

These transitions capture the internal dynamics of the large
populations.

51 / 82

→
A∗l (CS) = {tnk}

1,0,1,2,0

0,1,1,1,1

0,1,1,2,0

brk, rb

2,0,0,2,0

1,1,0,1,1

0,2,0,0,2

req,2rs

req, rs

0,2,0,1,1

tnk,2rt

log,2rl

log, rl

1,1,0,2,0 0,2,0,2,0

log,2rl

fix, rf

brk,2rb

log, rl

tnk, rt

fix, rf

fix, rf

req, rs
tnk, rt

req, rs

brk, rb
brk, rb

fix,2rf

tnk, rt

1,1,0,0,2
2,0,0,0,2

2,0,0,1,1

1,0,1,1,1

1,0,1,0,2

0,0,2,1,1

0,0,2,0,2

0,1,1,0,2

log, rl

log, rl

tnk,2rt

tnk,2rt

req, rs

tnk, rt

tnk,2rt

log,2rl

tnk, rt

tnk,2rt
req,2rs

log, rl

brk, rb

fix, rf

log, rl

brk, rb

fix,2rf

brk, rb
fix,2rf

brk,2rb

fix, rf

brk,2rb
fix, rf

0,0,2,2,0

tnk, rt

tnk,2rt

52 / 82

Identifying Sub-chains

The underlying CTMC can be divided into a number of sub-chains of

states that are connected only by
→
A∗l (M) transitions and for which

the configuration of instances in Gs(M) remains constant.

From a state S , a sub-chain Yi can be derived using these rules:

S ∈ Yi ∧ S
(α,·)−→ S ′ ∧ α ∈

→
A∗l (M) =⇒ S ′ ∈ Yi

S ∈ Yi ∧ S ′′
(α,·)−→ S ∧ α ∈

→
A∗l (M) =⇒ S ′′ ∈ Yi

A sub-chain can be characterised by the configuration it captures for
the small groups.

53 / 82

Identifying Sub-chains

The underlying CTMC can be divided into a number of sub-chains of

states that are connected only by
→
A∗l (M) transitions and for which

the configuration of instances in Gs(M) remains constant.

From a state S , a sub-chain Yi can be derived using these rules:

S ∈ Yi ∧ S
(α,·)−→ S ′ ∧ α ∈

→
A∗l (M) =⇒ S ′ ∈ Yi

S ∈ Yi ∧ S ′′
(α,·)−→ S ∧ α ∈

→
A∗l (M) =⇒ S ′′ ∈ Yi

A sub-chain can be characterised by the configuration it captures for
the small groups.

54 / 82

Identifying Sub-chains

The underlying CTMC can be divided into a number of sub-chains of

states that are connected only by
→
A∗l (M) transitions and for which

the configuration of instances in Gs(M) remains constant.

From a state S , a sub-chain Yi can be derived using these rules:

S ∈ Yi ∧ S
(α,·)−→ S ′ ∧ α ∈

→
A∗l (M) =⇒ S ′ ∈ Yi

S ∈ Yi ∧ S ′′
(α,·)−→ S ∧ α ∈

→
A∗l (M) =⇒ S ′′ ∈ Yi

A sub-chain can be characterised by the configuration it captures for
the small groups.

55 / 82

Identifying Sub-chains

1,0,1,2,0

0,1,1,1,1

0,1,1,2,0

brk, rb

2,0,0,2,0

1,1,0,1,1

0,2,0,0,2

req,2rs

req, rs

0,2,0,1,1

tnk,2rt

log,2rl

log, rl

1,1,0,2,0 0,2,0,2,0

log,2rl

fix, rf

brk,2rb

log, rl

tnk, rt

fix, rf

fix, rf

req, rs
tnk, rt

req, rs

brk, rb
brk, rb

fix,2rf

tnk, rt

1,1,0,0,2
2,0,0,0,2

2,0,0,1,1

1,0,1,1,1

1,0,1,0,2

0,0,2,1,1

0,0,2,0,2

0,1,1,0,2

log, rl

log, rl

tnk,2rt

tnk,2rt

req, rs

tnk, rt

tnk,2rt

log,2rl

tnk, rt

tnk,2rt
req,2rs

log, rl

brk, rb

fix, rf

log, rl

brk, rb

fix,2rf

brk, rb
fix,2rf

brk,2rb

fix, rf

brk,2rb
fix, rf

0,0,2,2,0

tnk, rt

tnk,2rt

Each sub-chain identifies a unique configuration for the servers.

56 / 82

Low Probability Boundary States

Consider an actions type α ∈
→
A∗sl (M) and a sub-chain Yi

In any state S ∈ Yi , whether α is enabled or not depends on the
configurations of both small and large groups

There are some states where the small groups are ready for
cooperation, but the large groups are not.
We call these the boundary states.

In a heavily loaded system where the resources are under contention,
the probability of these states is very low.

57 / 82

Low Probability Boundary States

1,0,1,2,0

0,1,1,1,1

0,1,1,2,0

brk, rb

2,0,0,2,0

1,1,0,1,1

0,2,0,0,2

req,2rs

req, rs

0,2,0,1,1

tnk,2rt

log,2rl

log, rl

1,1,0,2,0 0,2,0,2,0

log,2rl

fix, rf

brk,2rb

log, rl

tnk, rt

fix, rf

fix, rf

req, rs
tnk, rt

req, rs

brk, rb
brk, rb

fix,2rf

tnk, rt

1,1,0,0,2
2,0,0,0,2

2,0,0,1,1

1,0,1,1,1

1,0,1,0,2

0,0,2,1,1

0,0,2,0,2

0,1,1,0,2

log, rl

log, rl

tnk,2rt

tnk,2rt

req, rs

tnk, rt

tnk,2rt

log,2rl

tnk, rt

tnk,2rt
req,2rs

log, rl

brk, rb

fix, rf

log, rl

brk, rb

fix,2rf

brk, rb
fix,2rf

brk,2rb

fix, rf

brk,2rb
fix, rf

0,0,2,2,0

tnk, rt

tnk,2rt

The servers are ready to handle requests, but no clients are requesting.

58 / 82

Rate Regularity for Non-Boundary States

All non-boundary states in sub-chain Yi ∈ YM enable the same set of

activities of type
→
A∗sl (M)∪

→
A∗s (M).

Moreover the rates of these activities in non-boundary states are same
within each Yi .

59 / 82

The Aggregated State Space

Assuming that the probability of being in boundary states is close to
zero, we construct an aggregated state space which captures the
evolution of the process at the level of the sub-chains,
i.e. each subchain becomes one macro-state in the aggregation.

In aggregated state space the dynamics of the large groups are
abstracted but the stochastic behaviour of the small groups can be
studied explicitly.

60 / 82

The Aggregated State Space

Assuming that the probability of being in boundary states is close to
zero, we construct an aggregated state space which captures the
evolution of the process at the level of the sub-chains,
i.e. each subchain becomes one macro-state in the aggregation.

In aggregated state space the dynamics of the large groups are
abstracted but the stochastic behaviour of the small groups can be
studied explicitly.

61 / 82

The Complete State Space

1,0,1,2,0

0,1,1,1,1

0,1,1,2,0

brk, rb

2,0,0,2,0

1,1,0,1,1

0,2,0,0,2

req,2rs

req, rs

0,2,0,1,1

tnk,2rt

log,2rl

log, rl

1,1,0,2,0 0,2,0,2,0

log,2rl

fix, rf

brk,2rb

log, rl

tnk, rt

fix, rf

fix, rf

req, rs
tnk, rt

req, rs

brk, rb
brk, rb

fix,2rf

tnk, rt

1,1,0,0,2
2,0,0,0,2

2,0,0,1,1

1,0,1,1,1

1,0,1,0,2

0,0,2,1,1

0,0,2,0,2

0,1,1,0,2

log, rl

log, rl

tnk,2rt

tnk,2rt

req, rs

tnk, rt

tnk,2rt

log,2rl

tnk, rt

tnk,2rt
req,2rs

log, rl

brk, rb

fix, rf

log, rl

brk, rb

fix,2rf

brk, rb
fix,2rf

brk,2rb

fix, rf

brk,2rb
fix, rf

0,0,2,2,0

The complete state space of the client-server system.
62 / 82

The Aggregated State Space

0,0,2

1,0,1 0,1,1

brk, rb

2,0,0 1,1,0 0,2,0

req,2rs req, rs

log, rlfix, rf
brk,2rb

req, rs

brk, rb

fix,2rf
log, rl

log,2rl
fix, rf

The aggregated state space of the client-server model with two servers.

63 / 82

Aggregation Algorithm

For a model which satisfies the syntactic condition, we assume that
the probability of being in boundary states is close to zero.

The algorithm takes the model and directly generates its underlying
aggregated state space in numerical vector form in two steps:

1 Reduction: working at the syntactic level build a reduced version of
the model which abstracts from the behaviours specified for the large
groups.

2 Count-oriented Structured Semantics are applied on the reduced form
to generate its aggregated CTMC directly in the numerical vector
form.

3 From the aggregated CTMC the marginal probability distribution with
respect to the small groups can be derived.

64 / 82

Reduction

Consider model M which satisfies the aggregation condition. Reduction
rules are applied on M’s system equation to produce reduced model MR .

red(G) =


red(G1) BC

L
red(G2), if G =G1 BC

L
G2

H{·}, if G = H{·} , H ∈ Gs(M)

Nil , if G = H{·} , H ∈ Gl(M)

red(X), if G
def
= X

The process Nil represents a sequential process which does not undertake
any activity.

The following rules removes Nil processes to find the minimal reduced
system equation:

Nil BC
·

Nil = Nil Nil BC
·

P = P P BC
·

Nil = P

65 / 82

Reduction

Consider model M which satisfies the aggregation condition. Reduction
rules are applied on M’s system equation to produce reduced model MR .

red(G) =


red(G1) BC

L
red(G2), if G =G1 BC

L
G2

H{·}, if G = H{·} , H ∈ Gs(M)

Nil , if G = H{·} , H ∈ Gl(M)

red(X), if G
def
= X

The process Nil represents a sequential process which does not undertake
any activity.

The following rules removes Nil processes to find the minimal reduced
system equation:

Nil BC
·

Nil = Nil Nil BC
·

P = P P BC
·

Nil = P

66 / 82

Count-Oriented Semantics

Working on the reduced model MR , the count-oriented semantics works
from the transitions associated with individual components in the small
group, to derive the aggregated behaviour of the group as a whole.

In this way the state space of the aggregated model is generated based on
the numerical count vector representation of the state of each small group.

67 / 82

Count-Oriented Semantics

Working on the reduced model MR , the count-oriented semantics works
from the transitions associated with individual components in the small
group, to derive the aggregated behaviour of the group as a whole.

In this way the state space of the aggregated model is generated based on
the numerical count vector representation of the state of each small group.

68 / 82

Deriving Marginal Distribution Over the Small Groups

There are two routes from the original model to the marginal
distribution: using the model’s complete system of
Chapman-Kolmogorov equations and using the aggregated CTMC.

The latter is faster as it takes advantage of the aggregation.

LSNP model Model’s complete
satisfying the

SOS

Aggregation

Aggregated model Aggregated CTMC

Count Oriented

Complete set

Derivation of C-K

Derivation of C-K

Extracting marginal

Marginal distribution

aggregation condition
CTMC Chapman-Kolmogorov

equations

over the small groups

equations

distribution

equationsSemantics

algorithm

Negligible probability
of experiencing
boundary states

69 / 82

Numerical Example: Case 1

The aggregated model is suitable to answer queries about the
performance of the small groups.

Consider the client-server model with the following parameters:

rs rl rb rc rt ns nc

10 50 0.005 > 15 5 100

This set of parameters guarantee that the probability of Cr = 0 ≈ 0
(the event of being in boundary states).

Let Z represent the model’s original CTMC and Za, the aggregated
CTMC.

We compare the distribution associated with Z and Za across three
representative states.

70 / 82

The Aggregated State Space

5,0,0 4,1,0 3,2,0 2,3,0 1,4,0 0,5,0

req,5rs req,4rs req,3rs req,2rs req, rs

log, rl log,2rl log,3rl log,4rl log,5rl

4,0,1 3,1,1 2,2,1 1,3,1 0,4,1
req,4rs req,3rs req,2rs req, rs

log, rl log,2rl log,3rl log,4rl

3,0,2 2,1,2 1,2,2 0,3,2
req,3rs req,2rs req, rs

log, rl) log,2rl log,3rl

2,0,3 1,1,3 0,2,3

req,2rs req, rs

log, rl log,2rl

1,0,4 0,1,4
req, rs

log, rl

0,0,5

brk,5rb brk,4rb brk,3rb brk,2rb brk, rb

brk,4rb brk,3rb brk,2rb brk, rb

brk,3rb brk,2rb brk, rb

brk,2rb brk, rb

brk, rb

fix, rf fix, rf fix, rf fix, rf fix, rf

fix,2rf fix,2rf fix,2rf fix,2rf

fix,3rf (fix,3rf fix,3rf

fix,4rf fix,4rf

fix,5rf

The aggregated state space of the client-server model with five servers.

71 / 82

The Aggregated State Space

5,0,0 4,1,0 3,2,0 2,3,0 1,4,0 0,5,0

req,5rs req,4rs req,3rs req,2rs req, rs

log, rl log,2rl log,3rl log,4rl log,5rl

4,0,1 3,1,1 2,2,1 1,3,1 0,4,1
req,4rs req,3rs req,2rs req, rs

log, rl log,2rl log,3rl log,4rl

3,0,2 2,1,2 1,2,2 0,3,2
req,3rs req,2rs req, rs

log, rl) log,2rl log,3rl

2,0,3 1,1,3 0,2,3

req,2rs req, rs

log, rl log,2rl

1,0,4 0,1,4
req, rs

log, rl

0,0,5

brk,5rb brk,4rb brk,3rb brk,2rb brk, rb

brk,4rb brk,3rb brk,2rb brk, rb

brk,3rb brk,2rb brk, rb

brk,2rb brk, rb

brk, rb

fix, rf fix, rf fix, rf fix, rf fix, rf

fix,2rf fix,2rf fix,2rf fix,2rf

fix,3rf (fix,3rf fix,3rf

fix,4rf fix,4rf

fix,5rf

The aggregated state space of the client-server model with five servers.

72 / 82

Comparison of the approximate and exact distribution
across three different states.

0

0.05

0.1

0.15

0.2

0 200 400 600 800 1000 1200 1400

Time

P〈Z⊂S005〉(t)P〈Za=005〉(t)
P〈Z⊂S311〉(t)

P〈Za=311〉(t)
P〈Z⊂S500〉(t)P〈Za=500〉(t)

1

73 / 82

Using the Marginal Distribution for Dependability

Assume that the measure of interest is the number of working servers,
i.e. those which are not broken

Let us define the event EK , k = 1, . . . , 5.

E i represents the probability of having i servers working at time t.

P〈Z⊂E5〉 =P〈Z⊂(5,0,0)〉 + P〈Z⊂(4,1,0)〉 + . . . + P〈Z⊂(0,5,0)〉 ≈
P〈Za⊂E5〉=P〈Za=(5,0,0)〉 + P〈Za=(4,1,0)〉 + . . . + P〈Za=(0,5,0)〉

74 / 82

Comparison of the approximate and exact dependability
measure.

0

0.1

0.2

0.3

0.4

0.5

0 200 400 600 800 1000 1200 1400

Time

P〈Z⊂E1〉(t)
P〈Za⊂E1〉(t)
P〈Z⊂E2〉(t)

P〈Za⊂E2〉(t)
P〈Z⊂E5〉(t)
P〈Za⊂E5〉(t)

2

75 / 82

Exact and Approximate Marginal Distribution

First Case

exact approximate error (%)

P〈Za=500〉 0.011 0.011 0

P〈Za=311〉 0.056 0.056 0

P〈Za=005〉 0.034 0.034 0

P〈Za⊂E5〉 0.028 0.028 0

P〈Za⊂E2〉 0.310 0.317 2

P〈Za⊂E1〉 0.161 0.165 2.48

76 / 82

Accuracy of the Aggregation: Case 2

We consider a client-server model with the following parameters:

rs rl rb rc rt ns nc

10 50 0.005 > 2 5 100

Clients spend longer thinking; i.e. the load on the servers is decreased.

Compared to the first case, this set of parameters increases the
probability of Cr = 0.

Again, we compare the distribution associated with Z and Za across
three representative states.

77 / 82

Comparison of Exact and Approximate Marginal
Distributions

0

0.05

0.1

0.15

0.2

0 200 400 600 800 1000 1200 1400

Time

P〈Z⊂S500〉(t)P〈Za=500〉(t)
P〈Z⊂S311〉(t)

P〈Za=311〉(t)
P〈Z⊂S005〉(t)P〈Za=S005〉(t)

3

78 / 82

Comparison of Exact and Approximate Marginal
Distributions

0

0.1

0.2

0.3

0.4

0.5

0 200 400 600 800 1000 1200 1400

Time

P〈Z⊂E1〉(t)
P〈Za⊂E1〉(t)
P〈Z⊂E2〉(t)

P〈Za⊂E2〉(t)
P〈Z⊂E5〉(t)
P〈Za⊂E5〉(t)

4

79 / 82

Exact and Approximate Marginal Distribution

Second Case

exact approximate error (%)

P〈Za=500〉 0.015 0.011 26

P〈Za=311〉 0.038 0.056 47

P〈Za=005〉 0.035 0.034 2

P〈Za⊂E5〉 0.023 0.028 21

P〈Za⊂E2〉 0.328 0.317 3

P〈Za⊂E1〉 0.171 0.165 3.5

Comparison of the equilibrium probabilities when the probability of being
in boundary states is larger.

80 / 82

Conclusion

We presented an aggregation method which is suitable for the class of
PEPA models with non-uniform populations.

The aggregation condition can be readily checked by considering the
model description.

The aggregated state space can be generated directly from the model
and can be used for deriving a marginal distribution over the model’s
small groups.

81 / 82

Future Work

The aggregation can be used to detect important properties about
the model at a reduced cost, and we are exploring its connections
with time-scale decomposability.

We are also exploring relaxing the assumption of the large populations
being passive with respect to the shared activity.

Finally we hope to use a hybrid mean-field approach for the analysis
of large scale non-uniform population models. This would allow us to
study the impact of the stochastic behaviour of the small groups on
the large ones.

82 / 82

	Large-scale PEPA models
	Large-scale models with non-uniform populations
	State space aggregation
	Aggregation algorithm
	Using the aggregation
	Conclusion

