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Fluid Rewards for a Stochastic Process Algebra
Mirco Tribastone, Jie Ding, Stephen Gilmore, and Jane Hillston

Abstract—Reasoning about the performance of models of software systems typically entails the derivation of metrics such as
throughput, utilisation, and response time. If the model is a Markov chain, these are expressed as real functions of the chain, called
reward models. The computational complexity of reward-based metrics is of the same order as the solution of the Markov chain, making
the analysis infeasible when evaluating large-scale systems. In the context of the stochastic process algebra PEPA, the underlying
continuous-time Markov chain has been shown to admit a deterministic (fluid) approximation as a solution of an ordinary differential
equation, which effectively circumvents state-space explosion. This paper is concerned with approximating Markovian reward models
for PEPA with fluid rewards, i.e., functions of the solution of the differential equation problem. It shows that (a) the Markovian reward
models for typical metrics of performance enjoy asymptotic convergence to their fluid analogues, and that (b), via numerical tests, the
approximation yields satisfactory accuracy in practice.
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1 INTRODUCTION

S TOCHASTIC process algebras have emerged in the
last twenty years as a valuable modelling paradigm

in software performance engineering [1]. For example, a
strong link has been established between model-driven
development based on the UML and assessment of
non-functional properties using stochastic process alge-
bra languages such as PEPA [2], [3]. However, like all
discrete state system description techniques, stochastic
process algebras suffer from the problem of state space
explosion, which can make analysis extremely costly or
even infeasible. This problem is exacerbated when, as is
often the case with software models, we wish to evaluate
alternative configurations of a systems in order to choose
between different degrees of replication and redundancy
whilst ensuring that the system is dimensioned ade-
quately to meet user requirements. These problems have
motivated recent work on the approximation of the
continuous-time Markov chain (CTMC) underlying a
stochastic process algebra model with ordinary differ-
ential equations (ODEs) [4].

In a typical setting considered in this paper, the state
representation is a vector of nonnegative integers in
which each element denotes the population count of
a specific kind of entity of the system under study, a
distinct component type in the corresponding stochastic
process algebra model. The semantics is generally given
in terms of a CTMC, and each configuration of the
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system will be mapped to a CTMC {X(t)}. The following
programme is carried out to determine an approximat-
ing differential equation. Given a Markovian model of
the system under scrutiny, we must find some system
parameter n and build a sequence of CTMCs, denoted
by Xn(t), where each CTMC represents an instance of the
system with a specific value of n. At an intuitive level
n can be thought of as the scale of the current system
configuration.

Under conditions related to how the transition rates
behave as a function of n, it holds that a sample path of
the normalised real-valued stochastic process Xn(t)/n is
asymptotically indistinguishable from x(t), the solution
of an initial value problem associated with a system of
coupled ordinary differential equations. This result jus-
tifies the approximation Xn(t) ≈ nx(t), which is crucial
from a computational standpoint because it allows us
to estimate a difficult—if not intractable—Xn(t) with a
much more pleasant x(t).

The main contribution of [5] was to adopt this
differential-analysis framework for the purpose of eval-
uating the performance of software systems described
with PEPA [6]. Each element of the state descriptor
counts the number of copies of the components which
exhibit a particular state. In some models knowing the
trajectory of the population counts over time is sufficient
to gain deep insight into the system under scrutiny.
However, in situations concerned with performance
modelling, metrics of interest are usually described by
means of quantities derived from the Markov process.

This approach is known in the literature as the Markov
reward model. Specifically, this paper will be concerned
with rate rewards, i.e. functions which associate a real
value with each state of the CTMC. Let X be the
state space of a CTMC X(t), a rate reward is therefore
formally represented by a function ρ : X → R. The
stochastic process ρ(X(t)) is called a reward model. Re-
ward models have been widely employed in performa-
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bility analysis, which is concerned with the composite
evaluation of performance and reliability measures of
degradable computer systems [7]. Performability metrics
may be defined through ρ. The accumulated reward Y (t) is
a transient measure which gives the area under ρ(X(t)),
i.e., Y (t)

def
=

∫ t

0
ρ(X(s))ds and the time-averaged reward

W (t) divides the accumulated reward over the length
of the time period, i.e., W (t)

def
= Y (t)/t. For example,

the most basic form of availability may consist of a
reward structure Av which assigns the reward 1.0 to
each operational state of the chain and 0 to the non-
operational states (e.g., [8], [9]). Thus, E [Av(t)] gives the
average instantaneous availability of the system at time
t and the total availability over the interval [0, t] is given
by E

[∫ t

0
ρ(Av(s))ds

]
. Considerable attention has been

paid to the evaluation of the cumulative distribution
of Y (t)—an extensive review of solution techniques is
provided in [10] (in particular Section 3.3).

Clearly, the framework of Markov reward models may
be used for the evaluation of purely performance-related
measures. This appeared as early as in 1978 in the work
of Beaudry where the notion of computation availability
is related to the expected value of a reward structure
called computation capacity, which gives the amount of
processing power of a system at any point in time [11].
Trivedi et al. give a taxonomy of performance evalua-
tion reward models in [9], which includes examples of
throughput [7], bandwidth specification [8], and average
response time [12].

1.1 Paper Contributions
When the CTMC is inferred from a model specification
language, it is of utmost importance to be able to define
the Markov reward model directly in terms of the con-
stituents of the high-level description (e.g., [13], [14] and,
more recently, [15]). In this respect, the first contribution
of this paper is to define the notions of action throughput,
capacity utilisation, and average response time as reward
structures which may be transparently inferred from
the process algebraic description through the semantics
presented in [5]. Throughput measures the frequency of
execution of activities with given PEPA action types and
is analogous to the notion of throughput in stochastic
Petri nets and in queueing networks. Throughput-like
measures may also include behaviours with different
meanings, such as effective bandwidth and loss rate
in communication networks. Finally, the definition of
throughput is used to derive average response times
for the completion of a set of activities by a PEPA
component. Capacity utilisation gives a measure of the
likelihood that a sequential component is idle due to
the unavailability of another synchronising component
in the system.

In general, from a computational standpoint, the eval-
uation of these reward models is at least as difficult
as solving the CTMC for a transient or the equilibrium
distribution. This is because the probability vector has to

be computed first, and successively the reward measure
may be obtained by multiplying the reward in each
state by its probability, summing across all the states.
Therefore, this approach becomes infeasible for large-
scale models due to the problem of state-space explosion.
The other main contribution of this paper is to build
upon the deterministic approximation Xn(t) ≈ n x(t)
and characterise under which conditions the similar
approximation ρ

(
Xn(t)

)
≈ ρ

(
x(t)

)
ρ′(n), where ρ′ is a

reward-dependent deterministic function, holds for a
reward model. This relationship has a crucial implication
because it permits estimations of performance indices at
a dramatically reduced computational cost—given the
ODE solution x(t), the deterministic approximation of a
reward model only entails a single evaluation of the real
function ρ, for any time point t of interest.

As with the underlying CTMC of PEPA, the indices of
performance examined in this paper are shown to enjoy
convergence to their deterministic estimates asymptot-
ically as n → ∞. Since this relation cannot be used
for the quantitative assessment of the accuracy of the
approximation, the convergence is studied by means
of numerical tests on many randomly-generated PEPA
models. Measures of throughput, utilisation, and aver-
age response times for such models are evaluated both
deterministically and stochastically through simulation.
This investigation gives confidence that the deterministic
evaluation behaves satisfactorily at low population lev-
els and shows good rate of convergence with increasing
problem sizes.

1.2 Related Work
The question of defining performance measures in terms
of the PEPA components has been studied since its
inception [6] and has subsequently been considered also
in logical terms [16]. The extraction of fluid performance
measures from PEPA is discussed in [17], where the
authors introduce a slight variant to the language in
order to be able to express time-to-absorption measures.
The comparison against the corresponding stochastic
analysis is only empirical and does not make use of
properties of convergence between the two interpreta-
tions. By contrast, the throughput and average response-
time calculations presented in [18] and [19] are gener-
alised in the present framework and can be shown to be
embodied in it.

1.3 Paper Organisation
The technical contributions presented in this paper are
taken from [20] (especially, Chapter 5). In order to pro-
vide a self-contained report, Section 2 gives an informal
overview of PEPA and its differential analysis. The main
theoretical results of convergence of the performance
rewards are presented in Section 3. Throughput, capacity
utilisation and average response time are motivated and
formally defined in Sections 4, 5 and 6, respectively.
Throughout the paper, a simple running example will
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be used to illustrate these notions and provide some
preliminary results on the quality of the differential
approximation. Then, Section 7 presents the results of
numerical validation on a more computationally chal-
lenging model with faster rate of state-space growth.
Finally, Section 8 gives concluding remarks, commenting
on the computational advantages of fluid rewards.

2 OVERVIEW OF PEPA
This section presents background material concerning
PEPA and its semantics for Markovian and deterministic
analysis. The concepts are introduced by means of a
running example, which will be used in the remainder
of the paper to apply the definitions of the performance
indices to a concrete case study. The interested reader
should consult [6] for the formal development of the
language and its Markovian interpretation, and [5] for
the deterministic semantics.

A system in PEPA is described as a composition of
sequential components, i.e., automata evolving through a
number of local states (derivatives) and synchronising
over shared action types. Consider the following basic
model of client/server interaction in PEPA:

Download
def
= (transfer , r1).Think

Think
def
= (think , r2).Download

Upload
def
= (transfer , r3).Log

Log
def
= (log , r4).Upload

System
def
= Download [NC ] BC

{transfer}
Upload [NS ]

(1)

The first two definitions describe the cyclic behaviour of
a client, which performs a transfer action and pauses be-
fore engaging in the activity again. The action transfer is
performed in synchronisation with a sequential compo-
nent of a server, when it exhibits the derivative Upload .
The client’s state Think carries out an independent action,
i.e., an action which is not synchronised with any other
sequential component in the system. Similarly, Log exe-
cutes an independent action by the server component.

Each transition has a rate of execution r, which iden-
tifies an exponentially distributed duration of the action
with mean 1/r time units. Each sequential component
has a local view of the rate of the shared action, and the
semantics of PEPA defines the rate of the synchronising
activity as the minimum of the rates involved. In this
case, the rate of the shared action between one client
and one server is min(r1, r3).

Given a sequential component S, the array notation
S[N ] denotes N copies of identically behaving compo-
nents. Thus, the equation System says that there is a pool
of NC copies of a client and a pool of NS copies of
servers, and that each pair cooperates over the action
types in the set L, as indicated by the operator BC

L
.

Another important operator of the language, choice,
denoted by +, enables all the activities of its operands,
and the outcome is treated stochastically. For instance,
(α, r).P +(α, s).Q describes a process which will behave

as P (resp., Q) with probability r
r+s (resp., s

r+s ). A model
with choice will be presented in Section 7.1.

When interpreted against the Markovian semantics,
the model in (1) gives rise to a finite CTMC. Each state of
this chain is a derivative of System , which records the lo-
cal derivatives exhibited by each sequential component.
For instance, if NC = NS = 1, the underlying CTMC is
characterised by the following states:
• Download BC

{transfer}
Upload , which denotes that the

client and the server can perform the shared transfer
action.

• Think BC
{transfer}

Log , in which both sequential compo-
nents may perform their independent action.

• Think BC
{transfer}

Upload , in which only the client com-
ponent performs its independent action.

• Download BC
{transfer}

Log , in which only the server com-
ponent performs its independent action.

The differential interpretation is based on the reduced
context of a PEPA model, denoted by red(·), which ab-
stracts away from the actual population levels described
in the system equation and only collects the information
on all the local states exhibited by the sequential com-
ponents and the structure of the cooperation between
them. The reduced context of System in (1) is:

red(System) = Download BC
{transfer}

Upload

This representation is sufficient to define a population
vector ξ, the state descriptor of the PEPA model (nu-
merical vector form), of length hereafter denoted by d. In
general, let Ci be the derivative set of the i-th component,
i = 1, 2, . . . , NC and let Ni be its size, i.e., Ni = |Ci|.
Let Ci,j denote the j-th derivative of the i-th compo-
nent, j = 1, 2, . . . , Ni. The state descriptor ξ assigns
a coordinate, denoted by ξi,j , to each local derivative
Ci,j and indicates the number of copies in the system
which exhibit that derivative. The following mapping
is assumed for the model (1): C1,1 = Download , C1,2 =
Think , C2,1 = Upload , C2,2 = Log . (Sometimes, the fol-
lowing one-dimensional indexing of ξ may also be used:
Download 7→ ξ1,Think 7→ ξ2,Upload 7→ ξ3,Log 7→ ξ4.)

The deterministic semantics gives rise to Lipschitz
continuous generating functions of the underlying
population-based CTMC. For each state ξ of the CTMC,
each of these functions, denoted by ϕα(ξ, l), gives the
rate at which it jumps to state ξ+l and the corresponding
action type α which must be performed to make this
jump. The jump vector l records the impact of the given
action on the population vector. In (1), the generating
functions are defined as follows:

ϕtransfer

(
ξ, (−1, 1,−1, 1)

)
= min(r1ξ1, r3ξ3) (2)

ϕthink

(
ξ, (1,−1, 0, 0)

)
= r2ξ2 (3)

ϕlog

(
ξ, (0, 0, 1,−1)

)
= r4ξ4 (4)

and ϕα(ξ, l) = 0 for all other action types α and l ∈ Zd.
For instance, (2) states that, in a system with ξ1 clients
and ξ3 servers, the rate of completion of the action
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3 1 0 0 1
4 0 1 1 0

Fig. 1: State space in the numerical vector form of (1)
with NC = NS = 1.

CTMC for the simple case NC = NS = 1.1
The explicit enumeration of the state space is not

required for the generation of the differential equation.
Rather, this is directly derived from the generating func-
tions as

dx(t)
dt

= F
�
x(t)

�
=

�

l∈Zd

l
�

α∈A
ϕα

�
x(t), l

�
,

where A is the set of all action types defined in the
model (A = {transfer , think , log} in (1)). The differential
equation underlying (1) is

dx1(t)
dt

= −min (r1x1, r3x3) + r2x2

dx2(t)
dt

= min (r1x1, r3x3)− r2x2

dx3(t)
dt

= −min (r1x1, r3x3) + r4x4

dx4(t)
dt

= min (r1x1, r3x3)− r4x4

(5)

By inspecting System in (1) it is possible to extract
the initial state of the system, δ = (NC , 0, NS , 0). The
(unique) solution to the initial-value problem dx(t)/dt =
F

�
x(t)

�
, with x(0) = δ, gives the deterministic time-

course trajectory x(t) of the population levels of all
sequential components. It is possible to show that the
solution must always satisfy a form of conservation law. In
this example, observe that dx1(t)/dt + dx2(t)/dt = 0 and
dx3(t)/dt + dx4(t)/dt = 0. Given the initial condition δ,
this implies that x1(t)+x2(t) = NC and x3(t)+x4(t) = NS

for all t, which states that no components are created or
destroyed during the temporal evolution of the process.
Furthermore, at any point in time there must be at least
one strictly positive component population level.

The result of convergence presented in [3] relates x(t)
to a family of CTMCs {Xn(t)} such that the initial state
of the n-th CTMC has n times more components as

1. In this case, the size of the state space is equal to that derived
from the original semantics. However, if the initial population levels
are increased then the state space based on the population-vector form
is smaller because the semantics exploits equivalence relations on the
process algebra terms.

TABLE 1: Summary of notation.
Symbol Description

A Set of all action types in a PEPA model
Ci,j Local derivative in the reduced context

Index i ranges across distinct sequential components
Index j ranges across derivatives of the i-th component

ξ ∈ Nd Population vector (elements ξi,j )
l ∈ Zd Jump vector of a CTMC transition (elements li,j )
δ ∈ Nd Parameter for the initial state of the CTMCs
Xn(t) Population-based CTMC with initial state Xn(0) = nδ

ϕα(ξ, l) Generating function of a CTMC, α ∈ A
x(t) Fluid limit of the CTMC (t =∞ at equilibrium)
ρ(ω) Reward function ρ with generic argument ω, written

ρ (Xn(t)/n) for a Markovian reward
or ρ (x(t)) for a fluid reward

P−−→ Convergence in probability (cfr. Eq. 7)
E [Y ] Expectation of the random variable Y

the chain X1(t). Such a family, denoted by {Xn(t)} is
parametrised by an integer n, called the scale factor, by
letting Xn(0) = nδ. This corresponds to increasingly
large populations as functions of n, though the rela-
tive proportions between the initial populations of the
sequential components are constant across the family
of CTMCs, i.e., the ratio between clients and servers is
always NC/NS .

The normalised process (also referred to as the den-
sity process) Xn(t)/n plays a crucial role in the theory
of convergence of PEPA models, because the sequence
{Xn(t)/n} is shown to converge to the deterministic limit
in the sense that

lim
n→∞

P
�

sup
s≤t

��Xn(s)/n− x(s)
�� > ε

�
= 0, ∀ε > 0. (6)

Intuitively, this result establishes that for sufficiently
large n, the solution to the differential equation is as
good as a sample path of the normalised process over
any finite time interval.

Notation: For ease of reference, Table 1 summarises
the notation used throughout this paper.

3 FLUID APPROXIMATION OF REWARD

STRUCTURES

To illustrate that the ODE solution x(t) is not always
sufficient to gain insight into the performance charac-
teristics of the model, consider, for instance, two con-
figurations of (1), in which all rates of one instance
(i.e., r1, r2, r3, r4) are doubled with respect to the rates
of the other instance. The solutions to the underlying
ODEs (5), with the same initial condition, is depicted in
Fig. 2 for x1(t) and x3(t). It reveals similar trajectories
after approximately fifty time units. Indeed, it is possible
to show that any pair of model instances such that
the rates of one instance are multiples (with the same
factor) of the rates of the other instance have the same

Client Server

State D T U L

1 1 0 1 0
2 0 1 0 1
3 1 0 0 1
4 0 1 1 0

Fig. 1: State space in the numerical vector form of (1)
with NC = NS = 1. D , T , U , and L stand for Download ,
Think , Upload , Log , respectively.

transfer is min(r1ξ1, r3ξ3). This causes a transition to
a state in which the number of Download components
is decreased by one and, correspondingly, the number
of Think components is increased by one. Since it is
a shared action, a similar behaviour is observed for
the servers, i.e., the number of Upload components is
decreased by one and the number of Log components is
increased by one. Figure 1 shows the population-based
CTMC for the simple case NC = NS = 1.1

The explicit enumeration of the state space is not
required for the generation of the differential equation.
Rather, this is directly derived from the generating func-
tions as

dx(t)
dt

= F
(
x(t)

)
=

∑
l∈Zd

l
∑
α∈A

ϕα

(
x(t), l

)
,

where A is the set of all action types defined in the
model (A = {transfer , think , log} in (1)). The differential
equation underlying (1) is

dx1(t)
dt

= −min (r1x1, r3x3) + r2x2

dx2(t)
dt

= min (r1x1, r3x3)− r2x2

dx3(t)
dt

= −min (r1x1, r3x3) + r4x4

dx4(t)
dt

= min (r1x1, r3x3)− r4x4

(5)

By inspecting System in (1) it is possible to extract
the initial state of the system, δ = (NC , 0, NS , 0). The
(unique) solution to the initial-value problem dx(t)/dt =
F

(
x(t)

)
, with x(0) = δ, gives the deterministic time-

course trajectory x(t) of the population levels of all
sequential components. It is possible to show that the
solution must always satisfy a form of conservation law. In
this example, observe that dx1(t)/dt + dx2(t)/dt = 0 and
dx3(t)/dt + dx4(t)/dt = 0. Given the initial condition δ,
this implies that x1(t)+x2(t) = NC and x3(t)+x4(t) = NS

1. In this case, the size of the state space is equal to that derived
from the original semantics. However, if the initial population levels
are increased then the state space based on the population-vector form
is smaller because the semantics exploits equivalence relations on the
process algebra terms.

TABLE 1: Summary of notation.
Symbol Description

A Set of all action types in a PEPA model
Ci,j Local derivative in the reduced context

Index i ranges across distinct sequential components
Index j ranges across derivatives of the i-th component

ξ ∈ Nd Population vector (elements ξi,j )
l ∈ Zd Jump vector of a CTMC transition (elements li,j )
δ ∈ Nd Parameter for the initial state of the CTMCs
Xn(t) Population-based CTMC with initial state Xn(0) = nδ

ϕα(ξ, l) Generating function of a CTMC, α ∈ A
x(t) Fluid limit of the CTMC (t = ∞ at equilibrium)
ρ(ω) Reward function ρ with generic argument ω, written

ρ (Xn(t)/n) for a Markovian reward
or ρ (x(t)) for a fluid reward

P−−→ Convergence in probability (cf. Eq. 7)
E [Y ] Expectation of the random variable Y

for all t, which states that no components are created or
destroyed during the temporal evolution of the process.
Furthermore, at any point in time there must be at least
one strictly positive component population level.

The result of convergence presented in [5] relates x(t)
to a family of CTMCs {Xn(t)} such that the initial state
of the n-th CTMC has n times more components than
the chain X1(t). Such a family, denoted by {Xn(t)} is
parametrised by an integer n, called the scale factor, by
letting Xn(0) = nδ. This corresponds to increasingly
large populations as functions of n, though the rela-
tive proportions between the initial populations of the
sequential components are constant across the family
of CTMCs, i.e., the ratio between clients and servers is
always NC/NS .

The normalised process (also referred to as the den-
sity process) Xn(t)/n plays a crucial role in the theory
of convergence of PEPA models, because the sequence
{Xn(t)/n} is shown to converge to the deterministic limit
in the sense that

lim
n→∞

P
(

sup
s≤t

∣∣Xn(s)/n− x(s)
∣∣ > ε

)
= 0, ∀ε > 0. (6)

Intuitively, this result establishes that for sufficiently
large n, the solution to the differential equation is as
good as a sample path of the normalised process over
any finite time interval.

Notation: For ease of reference, Table 1 summarises
the notation used throughout this paper.

3 FLUID APPROXIMATION OF REWARDS

To illustrate that the ODE solution x(t) is not always
sufficient to gain insight into the performance charac-
teristics of models of computer systems, consider, for
instance, two configurations of (1), in which all rates of
one instance (i.e., r1, r2, r3, r4) are doubled with respect
to the rates of the other instance. The solutions to the
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Fig. 2: Deterministic trajectories of x1(t) (i.e., Download )
and x3(t) (i.e., Upload ) of Eq. 1 for two distinct config-
urations which have the same initial conditions but the
rates in the fast model are obtained by doubling the rates
in the slow model. Solid line: slow x1(t), dash-dotted line:
slow x3(t), dashed line: fast x1(t), dotted line: fast x3(t).

underlying ODEs (5), with the same initial condition, is
depicted in Fig. 2 for x1(t) and x3(t). It reveals similar
trajectories after approximately fifty time units. Indeed,
it is possible to show that any pair of model instances
such that the rates of one instance are multiples (with the
same factor) of the rates of the other instance have the
same equilibrium distribution of the underlying CTMC
(hence, of the normalised process Xn(t)/n, for any n).
However, this fails to capture the basic intuition that one
model should be faster than the other, because of the rate
configurations used. As will be shown in Section 4, the
different behaviours of these two models are captured by
the reward structure for the calculation of throughput.

3.1 A Generic Framework

The remainder of this section is concerned with a general
set-up of the framework within which will be defined
all the reward structures presented in this paper. The
convergence property (6) implies that, for any fixed t,
the sequence of random variables {Xn(t)/n} converges
in probability toward x(t) (as observed, e.g., in [21]):

lim
n→∞

P
(
|Xn(t)/n− x(t)| > ε

)
= 0, for every ε > 0. (7)

From now on, this form of convergence will be denoted
by the usual notation P−−→, e.g., Xn(t)/n

P−−→ x(t). The
main objective of this section is to determine under
which conditions convergence in probability of the den-
sity process implies convergence for the reward model
in the form ρ (Xn(t)/n) P−−→ ρ(x(t)). This constitutes the
formal justification of the use of the deterministic ap-
proximation for the computation of performance metrics
from PEPA models. The reasoning will be mostly based
upon the Continuous Mapping theorem, which ensures
convergence in probability for functions of stochastic
variables.

Theorem 1 (Continuous Mapping (cf. [22], Section 29)).
Let Yn be a random variable with ranges in Rd and Yn

P−−→ c,
with c ∈ Rk. Let g : Rd → Rk be continuous at c. Then,

g(Yn) P−−→ g(c).

This result is directly applicable to study the conver-
gence of ρ (Xn(t)/n) toward ρ(x(t)) by letting Yn(t) =
Xn(t)/n, for any t. In general, however, the performance
index of interest for a CTMC of a PEPA model is
expressed as a reward ρ (Xn(t)). Therefore, metric spec-
ifications will be restricted to reward structures which
are not explicitly dependent upon the scaling factor n.
In other words, the reward structure ρ must satisfy the
condition that there exists some ρ′ such that

ρ(Xn(t)/n) = ρ(Xn(t))/ρ′(n). (8)

Then, the asymptotic convergence in probability
ρ (Xn(t)/n) P−−→ ρ(x(t)) intuitively means that, for
sufficiently large n,

ρ (Xn(t)) ≈ ρ′(n)ρ(x(t)), (9)

which gives an approximate estimate of ρ (Xn(t)) in
terms of the deterministic quantity ρ(x(t)), as required.
The performance metrics defined in this paper are de-
veloped within this framework. Specifically, they will
be expressed in terms of the generating functions, i.e.,
ρ(ϕα(ω, l)), hence the verification of these conditions can
be derived from the properties of ϕ. This is particularly
useful because ϕ has been proven to be continuous and
to give rise to a family of density-dependent CTMCs.
Specifically, it implies that the condition in (8) is met,
since in [5] it has been shown that

ϕα(Xn(t)/n, l) = ϕα(Xn(t), l)/n, ∀ l ∈ Zd, α ∈ A. (10)

The cases of throughput, capacity utilisation, and re-
sponse time will be dealt with more in detail in this
paper because of the central role that the play in the
specification of performance measures with many mod-
elling techniques. However, the framework put forward
here is more general and also includes other interesting
indices. For instance, if ρ is a reward function satisfying
the conditions presented above, then its definite integral
is also a reward with guaranteed convergence to its
deterministic limit. As a result, accumulated and time-
averaged rewards (cf. Section 1) based on ρ are indices
with meaningful fluid approximations. Other functions
of suitable reward indices can be shown to enjoy conver-
gence, such as linear combinations A ρ1(·) + B ρ2(·) + . . .
with A and B constants, or minimums between rewards,
e.g., min(ρ1(·), ρ2(·)).

However, there are measures which do not exhibit
convergence in the sense described in this paper. For
example, consider a scenario with breakdowns and re-
pairs, and let i be the index in the population vector
that denotes the number of broken elements. A reward
R(ω) may define two levels of availability, 1.0 and 0., by
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setting R(ω) = 1.0 if 0 ≤ ωi < k and R(ω) = 0.0 if ωi ≥ k,
for some k > 0. Clearly R is discontinuous at k.

In addition to such rewards with discrete values, prob-
lems also arise with rewards which depend on second-
order moments of the CTMC [23] and functions of a
reward which do not satisfy the conditions for conver-
gence. In particular (8) does not imply that in general
exp{ρ(Xn(t)/n)} can be written as ρ′ exp{ρ(Xn(t))}.

3.2 Accuracy of the Approximation
Although the results of asymptotic convergence are im-
portant from a theoretical standpoint for the justification
of the use of the differential reward evaluation, they
do not provide estimates of the approximation error
for finite scale factors. The problem of assessing the
accuracy quantitatively is clearly of great significance
in most applications. In particular, it is often important
to establish the accuracy for small scale factors because
even for such factors the associated CTMC may be too
large to permit feasible solution (either numerically or
via stochastic simulation, cf. Section 8.1) and thus deter-
ministic analysis constitutes the most convenient form of
evaluation available. Unfortunately, theoretical bounds
developed in the context of density dependent Markov
chains (e.g., [24]) cannot be used here because in gen-
eral ρ(Xn(t)) does not enjoy the Markov property (cf.,
e.g., [25], [26]). Here, similarly to [5], the accuracy for
finite scale factors will be gauged more pragmatically by
making a direct comparison between the expectation of
the Markovian reward and its corresponding determin-
istic evaluation, using the following notion of percentage
relative error:

Error % =
∣∣∣∣E [ρ(Xn(t)/n)]− ρ(x(t))

E [ρ(Xn(t)/n)]

∣∣∣∣× 100

=
∣∣∣∣E [ρ(Xn(t))]− ρ′(n)ρ(x(t))

E [ρ(Xn(t))]

∣∣∣∣× 100.

(11)

3.3 Steady-State Rewards
Strictly speaking, the framework presented here could
not be used asymptotically as t →∞ because the result
of convergence (6) holds for finite t. Nevertheless, with a
slight abuse, in the remainder of the paper steady-state
rewards will be considered (for instance, in Section 6). In
all subsequent discussions, these are interpreted as being
given by approximating rewards computed at a large
enough—but finite—time point t, for which convergence
in probability does hold.

In practice, steady-state rewards are estimated through
stochastic simulation using the method of batch means
(e.g., see [27], [28]). Equilibrium conditions for the ODE
model are based on two criteria that are checked dur-
ing numerical integration. Recalling that the numeri-
cal solution of an ODE is given as a mesh of time
points [t0, t1, . . . , tn] and corresponding solution vectors
[x0, x1, . . . , xn] (e.g., [29]), one criterion checks if the
norm of the derivative of the current solution vector xi

is less than a given absolute threshold. The other criterion
checks whether the norm of the difference between two
subsequent solution vectors |xi − xi−1|, with i ≥ 1, is
less than a given relative threshold. If both criteria are
satisfied, then the ODE is said to reach equilibrium at
time ti and the solution vector xi is used to approximate
the fluid steady-state rewards. In the analyses conducted
in this paper both thresholds were set to 10−6.

4 ACTION THROUGHPUT

Throughput is a performance metric which has coun-
terparts in other formalisms for quantitative evaluation.
In queueing theory, it is associated with a station and
denotes the frequency of service; in stochastic Petri nets,
it indicates the frequency of firing of a transition. In
stochastic process algebras, throughput measures the
frequency of execution of an action type.

Action throughput is introduced in [6] for the original
Markovian interpretation of the language, which maps
a PEPA component Pk onto a state of the underlying
CTMC. For a probability distribution π(t) of the CTMC,
the throughput of an action type α ∈ A is defined as∑

k

πk(t) tk, where tk =
∑

(α,r)∈Act(Pk )

r.

Act(Pk ) denotes the set of activities enabled by com-
ponent Pk . The reward sums over all the rates of the
activities which are labelled with the action type α. An
equivalent formulation for the population-based CTMC
may be given in terms of the generating functions. For
some action type α, each of the generating functions
ϕα(ξ, l) gives the frequency of some activity of that
type occurring, which changes the population counts
corresponding to the nonzero elements of the vector l.
Therefore, summing over all such generating functions
gives the throughput of interest for each state ξ.

Definition 1. The reward function for the action throughput
of α ∈ A, denoted by Thα(ω), is

Thα(ω) =
∑
l∈Zd

ϕα (ω, l) .

The generic argument ω is intended to be Xn(t)/n for
the Markovian reward, and x(t) for its deterministic ap-
proximation. Therefore, the deterministic approximation
of the throughput of action α is

Thα(x(t)) =
∑
l∈Zd

ϕα (x (t) , l) .

Convergence in probability is satisfied by throughput
rewards because of their Lipschitz continuity. In the re-
mainder of this section, we show how throughput enjoys
a stronger notion of convergence, i.e., convergence in
mean (written E−−→):

lim
n→∞

E [Thα(Xn(t)/n)− Thα(x(t))] = 0, for any t and α.
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A sufficient condition for convergence in mean of a
succession of random variables which enjoy convergence
in probability is provided by the following

Theorem 2 (Dominated Convergence). If Yn
P−−→ Y and

Yn is uniformly bounded, i.e., there exists M such that |Yn| <
M almost surely, then Yn

E−−→ Y .

Theorem 3. Let {Xn(t)} be the sequence of random variables
of the density process of a PEPA model, for any fixed t. Let
α ∈ A. If Thα is continuous at x(t) then,

Thα (Xn(t)/n) E−−→ Thα(x(t)).

Proof: Convergence in probability of Thα (Xn(t)/n)
follows from the fact that Thα is expressed as a sum-
mation of generating functions, which are Lipschitz
continuous. Therefore, in order to prove convergence
in mean it is sufficient to check for uniform bounded-
ness of Thα (Xn(t)/n). Using the same arguments as in
Theorem 2 of [5], the family of CTMCs {Xn(t)} is such
that a coordinate ξi,j of the population vector for the n-
th CTMC takes values in

{
0, 1, . . . ,

∑Ni

k=1 n δi,k

}
, hence

{Xn(t)} may be bounded by a closed (d-dimensional)
interval which depends on δ (and does not depend on
n). On that interval the Extreme Value Theorem (e.g. [30],
Theorem 11.22), holds because of the continuity of Thα.
Therefore, Thα(Xn(t)/n) is also bounded, as required to
complete the proof.
The property in (8) is trivially satisfied because it holds
for the generating functions, as shown in (10). Therefore,
it holds that Thα(Xn(t)/n) = Thα(Xn(t))/n for any
α ∈ A and n ∈ N. With regard to the model in (1), the
following reward functions are defined:

Ththink (ω) = r2ω2

Thlog(ω) = r4ω4

Thtransfer (ω) = min (r1ω1, r3ω3) .

These equations may be used, for instance, to reveal the
difference in the behaviours of the two models illustrated
in Fig. 2—in particular, given the steady-state regime, the
faster model has twice the throughput of the slower one.

4.1 Location-Aware Throughput
According to Definition 1, throughput is a system-related
measure as it does not take account of the identity of
the sequential components involved. However, in PEPA
distinct components can engage in activities of the same
type independently from each other. The formulation
of throughput can be refined so as to include location
(i.e., identity) awareness and to restrict the estimation of
throughput to a subset of components Ci,j in the system.
Let C be such a subset, L(C) gives the subset of jumps
l related to transitions in which the elements of C are
involved. Such transitions are obtained by considering
all the jumps l for which −1 is present in one of the co-
ordinates in the population vector corresponding to the
derivatives in C. As observed above, li,j = −1 indicates

that the population of the component Ci,j is decreased
by one because of the transition, i.e., the activity is being
performed by the component. Thus,

L(C) =
{
l ∈ Zd : li,j = −1 ∧ Ci,j ∈ C

}
. (12)

The location-aware throughput of α with respect to C,
denoted by Thα(ω | C), is

Thα(ω | C) =
∑

l∈L(C)

ϕα (ω, l) .

In addition to preserving continuity, it is straightforward
to see that, for any C and α, Thα(ω | C) ≤ Thα(ω), for any
ω.

Location-aware throughput is not useful in (1) because
any sequential component is always involved in the ac-
tivities which it enables. For instance, the action transfer
is carried out by both Upload and Download , and the sets
of independent actions enabled by the two components
are disjoint. Suppose now that the definition of Log in
(1) is replaced with

Log
def
= (think , r4).Upload ,

i.e., the action type log is replaced by think . This gives
rise to an identical underlying system of differential
equations although the generating function associated
with the above definition is now ϕthink

(
ξ, (0, 0, 1,−1)

)
=

r4ξ4 in place of ϕlog

(
ξ, (0, 0, 1,−1)

)
= r4ξ4. Since the

action set in the cooperation operator is not changed, the
activities think performed by Think and Log are carried
out without synchronisation. In this modified model, the
location-aware throughputs of action think are

Ththink

(
ω | {Download ,Think}

)
= r2ω2

Ththink

(
ω | {Upload ,Log}

)
= r4ω4

and

Ththink (ω) = Ththink

(
ω | {Download ,Think}

)
+ Ththink

(
ω | {Upload ,Log}

)
.

Another useful application of location-aware throughput
is in cases where there are two components performing a
shared action with a third component, independently from
each other. Consider for instance the following definition
of another client

SuperUser
def
= (transfer , r5 ).Rest

Rest
def
= (rest , r6 ).SuperUser

and the system equation

(Download [NC ] ‖ SuperUser [NR]) BC
{transfer}

Upload [NS ].

(An analogous scenario will be discussed in more
detail in Section 7.) The components Download and
SuperUser will be mapped onto two distinct coor-
dinates in the population vector representation. The
empty cooperation set between them indicates no co-
operation, but each component will independently per-
form the action transfer cooperatively with Upload .



8

In this case the estimates Thtransfer

(
ω | {Download}

)
and Thtransfer

(
ω | {SuperUser}

)
disaggregate the overall

throughput Thtransfer into the throughputs of two con-
stituting interactions between Download and Upload , and
between SuperUser and Upload .

Location-aware throughput becomes counterintuitive
if applied to components exhibiting self-loops, i.e., when
they do not change behaviour after performing an action.
For instance, in a model containing S

def
= (α, r).S, it holds

that Thα(ω | {S}) = 0 because the element of l for S is
equal to −1 + 1 = 0. This situation could be in principle
improved by a slight modification of the fluid semantics
so as to collect two vectors, l− and l+, respectively
recording the negative and the positive contributions
to the jump vector l, and let l = l− + l+. With this
change, the throughput would be defined through l−,
which would record a nonzero entry even for self-loops.

5 CAPACITY UTILISATION

Capacity utilisation is a performance metric which may
be associated with a sequential component to indicate
the proportion of time that it engages in some activity,
either independently or in synchronisation with other
components. This is analogous to the definition of util-
isation in queueing networks, which denotes the pro-
portion of time that a service centre serves a customer.
This section gives an informal interpretation of capacity
utilisation in PEPA, presents its definition with respect
to the framework developed in Section 3, and applies
this notion to the running example.

5.1 Motivation
The question of how often a device is utilised in a system
arises frequently in performance studies. A device that
is under-utilised may represent wasteful consumption
of resources, whilst devices with utilisation close to
unity may indicate overload and a bottleneck which
affects the system’s overall behaviour. For instance, let us
consider the model in (1), and suppose that the modeller
is interested in the utilisation of the user component
C1 = {Download ,Think} (similarly, the server component
is defined as C2 = {Upload ,Log}). For simplicity, let us
consider the simple case NC = NS = 1, whose state
space representation was shown in Fig. 1.

It is interesting to note that although the sub-vector for
C1 is the same in states 1 and 3, the behaviour of the two
states is profoundly different. In 1, both C1 and C2 enable
transfer , whereas in 3 the activity cannot be carried out
because it is not enabled by C2. Similar considerations
apply with respect to the behaviour of C2. In this case,
(1, 0) is the same sub-vector in states 1 and 4 although
action transfer cannot be carried out in 4 because it is
not enabled by C1. Therefore, an intuitive requirement for
the notion of capacity utilisation is that it take account
of these different dynamic behaviours across the state
space. In addition, it is also natural to assign a unitary
capacity utilisation to independent actions, to capture the

observation that they can always be performed when
locally enabled and their execution is not dependent
upon the behaviour of other components of the system.

Let CUC1(k) denote the capacity utilisation of C1 in
state k of the population-based CTMC. A rather crude
reward structure may be the following:

CUC1(k) =
{

1 if k = 1, 2, 4,
0 if k = 3.

(13)

where 1 is assigned to state 1 because the shared ac-
tion transfer can be performed, and to states 2 and 4
because C1 is engaged in the independent action think .
However, this definition fails to account for potential
under-utilisation arising from the execution of transfer .
The definition of Download may be interpreted as that
of a component which can perform the action at the
maximum rate of r1. According to the semantics of
PEPA, the corresponding transition from state 1 to state
2 occurs at the rate min(r1, r3). Therefore, the value
min(r1, r3)/r1 seems better suited to measure the fraction
of the upload capacity of C1 that is consumed in state 1.

In general, in order to refine (13), the reward may
assign a fraction to each state of the CTMC. The numer-
ator of this fraction measures the total activity rate en-
abled, whereas the denominator indicates the maximum
rate exhibited by the component. This latter quantity
corresponds to the component’s parametric apparent rate,
denoted by rα(·), as introduced in [5]. Thus, the unitary
values of capacity utilisation for states 2 and 4 may be
interpreted as the fraction r2/r2. Clearly, independent
actions are always assigned unitary utilisation. Hence,
(13) can be revised as

CUC1(k) =

 min(r1, r3)/r1 if k = 1,
r2/r2 = 1 if k = 2, 4,
0 if k = 3.

Notice that the fraction min(r1, r3)/r3 could be analo-
gously assigned to state 1 for the computation of the
capacity utilisation of C2:

CUC2(k) =

 min(r1, r3)/r3 if k = 1,
r4/r4 = 1 if k = 2, 3
0 if k = 4.

5.2 General Definition and Properties
The following reward function extends the definition of
capacity utilisation to the population-based representa-
tion of an arbitrary PEPA model.

Definition 2 (Capacity Utilisation). Let Ci denote a deriva-
tive set in the reduced context with Ni distinct derivatives
Ci,1, Ci,2, . . . , Ci,Ni

. The capacity utilisation of Ci, denoted
by CUCi

, measures the proportion of time that the derivatives
of Ci are engaged in some action:

CUCi
(ω) =

∑
α∈A

∑
l∈L(Ci)

ϕα(ω, l)∑
α∈A

∑Ni

j=1 rα(Ci,j)ωi,j

where L is defined as in (12).
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The numerator of Definition 2 gives the overall utilised
capacity by the components which exhibit the local states
in Ci. Similarly, the denominator provides the overall
available capacity of all such components, as it sums across
the apparent rates of all local states, for all action types
enabled. Thus, the fraction measures the capacity of Ci

that is utilised by the system. The following proposition
restates Theorem 1 for capacity utilisation.

Proposition 1. If CUCi
is continuous at x(t) then

CUCi

(
Xn(t)/n

) P−−→ CUCi

(
x(t)

)
.

To show that capacity utilisation satisfies (8), write
CUCi

explicitly as a fraction between two functions N(ω)
and D(ω) which satisfy the condition in (8):

CUCi
(Xn(t)/n) =

N(Xn(t)/n)
D(Xn(t)/n)

=
N(Xn(t))/n

D(Xn(t))/n
= CUCi

(Xn(t)).

Convergence in mean cannot be proven using the ar-
guments of Theorem 3 because CUCi

is not continuous
in the zero vector in Rd. However, the reward function
is continuous at all values taken by x(t). To show this,
notice that CUCi is a rational function of two Lipschitz-
continuous functions. Thus, it is sufficient to establish
that

∑
α∈A

∑Ni

j=1 rα(Ci,j)xi,j(t) > 0 for all t. But at least
one coordinate of x(t) must be strictly positive, because
of the conservation law discussed in Section 2. Let xi,j

be such a coordinate. The corresponding component Ci,j

must enable at least one action type α, which yields
rα(Ci,j) > 0.

In the running example, the capacity utilisations of
two sequential components are

CUC1(ω) =
min(r1ω1, r3ω3) + r2ω2

r1ω1 + r2ω2
, (14)

CUC2(ω) =
min(r1ω1, r3ω3) + r4ω4

r3ω3 + r4ω4
. (15)

5.3 Numerical Example

As a practical application, Fig. 3a plots the results of
a sensitivity analysis of the steady-state capacity utili-
sation (14) with respect to the parameters r3 and NS .
Two values for the rate r3 were considered, i.e., 1.0 and
2.0 (solid and dashed lines, respectively), and NS was
varied between 1 and 100. All the other parameters of the
system were set as follows: r1 = 1.0, r2 = 10.0, r4 = 50.0
and NC = 30. Here, the capacity utilisation of the
clients (in Fig. 3a) increases with NS because the thirty
clients are increasingly likely to find servers to download
from. Clearly, for large NS the probability of finding an
available server component is so high that the capacity
of the clients is fully utilised.

Figure 3b shows the same sensitivity analysis for (15).
Qualitatively, the trajectories of the curves for the two
values of r3 are in agreement with the intuition that,
as NS increases, each of the sequential components is
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Fig. 3: Capacity utilisations for (1) as a function of NS .
Left y-axis: Markovian analysis (solid line for estimates
with r3 = 1.0, dashed line for those with r3 = 2.0).
Right y-axis: Percentage errors of the differential esti-
mates (upward-pointing triangles: models with r3 = 1.0,
downward-pointing triangles: models with r3 = 2.0).

less utilised on average. A particularly interesting point
is NS = 30, i.e., there are as many clients as server
components. When r3 = 1.0 they have the same rate
for the shared action, and the high capacity utilisation
(i.e., 0.992) obtained in this case highlights that each pair
is very likely to be engaged in a synchronised activity.
However, the same model with r3 = 2.0 yields a capacity
utilisation of about 50%—this is explained by the fact
that the capacity of servers is twice that of clients.

The error plots in Fig. 3 (cf. lines with markers) show
that the accuracy is within 10% in most cases, and that
higher capacity utilisations are usually approximated
better. Despite these being reasonable estimates in prac-
tical situations, it is nevertheless worthwhile pointing
out that the model instances considered in this simple
example do not necessitate deterministic approximation
because their state space sizes—ranging from 62 to 3131
states—were well within the reach of numerical CTMC
solvers. As will be shown in Section 7, much greater
accuracy is typically achieved for models of larger size.
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Fig. 4: Schematic representation of the system used for
the application of Little’s law to PEPA models

6 AVERAGE RESPONSE TIME

Throughput and capacity utilisation are meaningful per-
formance metrics at every time point of the system.
Indeed, it is possible to define the notion of peak and
minimum across a finite time interval, or to normalise
these metrics with respect to the time-frame of interest,
as outlined in Section 1. Instead, the notion of average
response time discussed in this section can only be
applied to systems under equilibrium conditions because
it is based on Little’s law [31], providing the response
time as a function of a specific kind of location-aware
throughput and of the steady-state population levels of
the model’s sequential components.

6.1 Little’s Law
In its general formulation, Little’s law considers a system
under steady-state conditions with L users, arriving at
rate λ and subject to an average waiting time W . The
law states that

L = λ W. (16)

Here, this relation is used to determine W = L/λ, i.e., the
average response time is estimated from the computation
of population levels and action throughputs, which can
be obtained as discussed in the previous sections. A
slightly simpler formulation of Little’s law requires the
computation of only one estimate and may be applied for
closed systems such as in Fig. 4. The system comprises a
total population of N users. The arrival rate for service
is λ, the average service time is W , and each user
spends some time Z between successive admissions into
the system. Under steady-state conditions, the following
holds

N = λ (Z + W ) (17)

which can be used to give W = N/λ−Z. Note that (17)
is obtained by applying (16) to the system comprising
the thinking stations and the service, observing that the
waiting time is the sum of the average waiting times
in the two sub-systems. This expression requires the
calculation of λ, since N and Z are model parameters.

The PEPA model of (1) can be thought of as an instance
of the system considered in Fig. 4. The thinking stations
are represented by the number of components which
exhibit the local derivative Think , whilst the service
centre comprises the components which exhibit the local

S1

S2 S3

S1

S2

t1

t2

t3

t4

t5

t6 t7

t8
t9

Figure 1: Test

1

Fig. 5: Derivation graph of a sequential component.
The local derivatives are partitioned into S = {S1, S2}
and S = {S1, S2, S3}, interpreted as the component
being inside and outside the system, respectively. Thus,
transitions t3 and t7 are paths of entry into the system.
Conversely, the system is exited via t8.

derivative Download . The total number of users is N =
NC , and the average thinking time Z = 1/r2. Finally,
the arrival rate at the service centre λ is calculated as
the steady-state action throughput of think . Thus, the
average response time can be calculated as follows

W =
NC

Ththink (∞)
− 1

r2
.

Such a syntactic structure of the user component has
been assumed in previous work on this topic (e.g., [18]),
though it cannot be used for more complex user descrip-
tions. For instance, Fig. 5 shows the derivation graph
of one such sequential component, in which multiple
paths of entry and exit are defined. The following sec-
tion is concerned with the development of a general
formulation for the average response time which does
not require any assumption for the applicability of the
analysis.

6.2 General Formulation
Let Ci be the component of the reduced context rep-
resenting the user with respect to whom the average
response time is to be computed. Let Si ⊂ Ci, S

i 6= ∅
be the subset of derivatives which indicate the presence
of the user in the system, Si induces a binary partition
{Si, Si}. The derivatives in Si denote the states in which
the user is outside the system. Let µl

i and µl
i be the sub-

sets of the jump vector l corresponding to the population
levels of Si and Si, respectively. By the population-based
semantics of PEPA, the number of non-zero elements
in µl

i ∪ µl
i can be either zero or two. There cannot be

only one non-zero element because this would imply
an increase (resp., decrease) in the population level of
some derivative without a corresponding decrease (resp.,
increase) in the population level of some other deriva-
tive. However, this is clearly not allowed by the fact that
the derivation graphs of the sequential components are
strongly connected—the dynamic creation or destruction
of sequential components is not possible. These non-
zero elements must be −1 and +1, because the transition
records unitary changes in the population levels. Thus,



11

TABLE 2: The set of subvectors µl
i and µl

i for the sequen-
tial component in Fig. 5. Transitions t3 and t7 indicate
the entry of a user into the system, because a population
level in µl

i is incremented by one and, correspondingly,
a population level in µl

i is decreased by one.

Transition µl
i µl

i

Si
1 Si

2 Si
1 Si

2 Si
3

t1 0 0 −1 +1 0
t2 0 0 −1 0 +1
t3 +1 0 −1 0 0
t4 0 0 +1 −1 0
t5 0 0 0 −1 +1
t6 0 0 0 +1 −1
t7 0 +1 0 0 −1
t8 −1 0 +1 0 0
t9 +1 −1 0 0 0

there are five cases according to the location of the non-
zero elements:
• {−1,+1} 6∈ µl

i ∪ µl
i indicates a jump in which the

population levels of Ci are not affected (for instance,
an independent action performed by some other
sequential component in the system).

• {−1,+1} ∈ µl
i indicates a transition within the

system in which the user is engaged.
• {−1,+1} ∈ µl

i is the symmetric case in which user
is engaged, though the activity takes place outside
the system.

• {−1} ∈ µl
i and {+1} ∈ µl

i represents the departure
of one user from the system, as the population level
of some component in Si is decreased by one, with a
corresponding increase observed for the population
of some component in Si.

• {−1} ∈ µl
i and {+1} ∈ µl

i is the subset of jumps
of interest with respect to the computation of the
average response time, as it represents the arrival
of users into the system. The population level of
some component in Si is increased by one, and,
correspondingly, the population of some component
in Si is decreased.

The set of jumps for the sequential component in Fig. 5
is shown in Table 2. The following two definitions
specify how to calculate the throughput of arrivals and
the average number of users in a PEPA model.

Definition 3. The throughput of the arrivals of Si into the
system, denoted by λSi , is the sum of the throughputs, for all
action types, across all transitions such that {−1} ∈ µl

i and
{+1} ∈ µl

i:

λSi(ω) =
∑

α∈A,{−1}∈µl
i,{+1}∈µl

i

ϕα(ω, l)

Definition 4. The population count of the users in the
system, denoted by LSi , is

LSi(ω) =
∑

Ci,j∈Si

ωi,j
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Fig. 6: Average response time calculation for (1) as a
function of NC . Left y-axis: Markovian analysis (circles
for the model with r4 = 0.2, squares for the model
with r4 = 2.0). Right y-axis: Percentage errors of the
differential estimates (upward-pointing triangles: model
with r4 = 0.2, downward-pointing triangles: model with
r4 = 2.0).

Using the same arguments as in Theorem 3, the fol-
lowing proposition holds.

Proposition 2. For any Si ⊂ Ci, S
i 6= ∅, it holds that

λSi(Xn(t)/n) E−−→ λSi(x(t)) and that LSi(Xn(t)/n) E−−→
LSi(x(t)).

Based on this result, the following approximation for
the calculation of the fluid response time will be used:

LSi(x(t))
λSi(x(t))

≈ E [LSi(Xn(t)/n)]
E [λSi(Xn(t)/n)]

=
E [LSi(Xn(t))] /n

E [λSi(Xn(t))] /n
=

E [LSi(Xn(t))]
E [λSi(Xn(t))]

(18)

where the first equality follows directly from Definitions
3 and 4, and the rightmost fraction corresponds to the
definition of average response time for the n-th Markov
chain of the family of PEPA models. As stated above,
although this calculation is in principle applicable to
any time point, it is only meaningful under steady-state
conditions.

For the model (1), the partition Si = {Download}, Si =
{Think} gives rise to the following definitions of LSi and
λSi for the average response time of C1:

LSi(ω) = ω1 (19)
λSi(ω) = r2 ω2 (20)

Figure 6 shows an example of average response time cal-
culation for this model, experimenting with population
levels of the clients ranging from 1 to 50 and two values
for rate r4. In all cases NS was kept fixed at 10, and
the rate set as in Section 5 (with r3 = 1.0). As expected,
the response time does not change significantly when
the population of clients is less than that of servers.
In contrast, a dramatic increase is observed when the



12

number of clients is significantly more than the number
of server components. Clearly, increasing r4 reduces the
response time although it does not impact on its qualita-
tive behaviour. In all cases considered in this study, the
accuracy of the fluid approximation was mostly within
one percent.

7 NUMERICAL VALIDATION

This section presents numerical validations of the per-
formance metrics introduced in the previous sections. It
examines a more complex model than (1), which has
the following features: (i) use of the choice operator
to describe alternative behaviour; (ii) more structured
system equation, comprising five sequential components
and a pattern of composition similar to that described
in Section 4.1; (iii) faster rate of state-space growth;
(iv) unlike (1), the average response times cannot be
calculated using the simplified version (17).

The model descriptions were parametrised by the ac-
tivity rates and the population level density. A set of 300
model instances was obtained by assigning randomly
chosen rate parameters and initial densities drawn from
uniform distributions. The objective of this approach is
to measure the quality of the deterministic approxima-
tion on a broad spectrum of behaviours, from models
which exhibit poor indices (i.e., low capacity utilisation
or high average response times) to those with good
performance. Each model instance was analysed for
three scale factors, n = 1, n = 10, and n = 100.

The validation concerned performance estimates at
equilibrium—this is necessary for the computation of
average response times whereas steady-state measures
were taken as representative conditions for the calcula-
tion of throughput and capacity utilisation. All analyses
were conducted using the PEPA Eclipse Plug-in [32].

7.1 Model Description
This model comprises two distinct classes of users, C1

and C2 , defined as follows (alongside the definitions are
the corresponding coordinates in the population vector):

ξ1 C1 Think
def
= (think , (1− p) pdb t1 ).C1 UseDb
+ (think , (1− p) p′db t1 ).C1 UseCpu
+ (think , p t1 ).C1 Think ′

ξ2 C1 UseCpu
def
= (useCpu, c1 ).C1 Think

ξ3 C1 UseDb
def
= (useDb, d1 c1 ).C1 Think

ξ4 C1 Think ′
def
= (think , t ′1 ).C1 UseCpu

ξ5 C2 Think
def
= (think , qdb t2 ).C2 UseDb
+ (think , q ′db t2 ).C2 UseCpu

ξ6 C2 UseCpu
def
= (useCpu, c2 ).C2 Think

ξ7 C2 UseDb
def
= (useDb, d2 c2 ).C2 Think

The use of the choice operator in C1 Think and
C2 Think allows the specification of conditional be-
haviour. The action think is performed at rates t1 and

t2 by C1 and C2 respectively. With probability p, C1

moves into a second thinking state, C1 Think ′. With
probability 1 − p the component may behave either as
C1 UseDb, with probability pdb, or as C1 UseCpu , with
probability p′db = 1−pdb. The behaviour of C2 is similar,
although the second thinking process is not exhibited.
Both components may perform the actions useDb and
useCpu although with different local rates. Specifically
the rates of useDb are expressed as ratios, i.e., d1 and d2 ,
of the rates of useCpu . If d1 < 1 then the behaviour of C1

is such that it requires longer data-bound activities. Con-
versely, if d2 > 1 then C2 carries out longer (i.e., slower)
CPU-bound operations. The states UseCpu and UseDb of
the two classes of components are synchronisation points
with the following two-state server components

ξ8 Cpu Execute
def
= (useCpu, c).Cpu Log

ξ9 Cpu Log
def
= (log , lc).Cpu Execute

ξ10 Db Execute
def
= (useDb, d).Db Log

ξ11 Db Log
def
= (log , ld).Db Execute

The action type log represents a synchronising activity
with the component

ξ12 Logger Log
def
= (log , l).Logger Log

The resource-sharing nature of this activity is captured
by the composition

(Cpu Execute ‖ Db Execute) BC
{log}

Logger Log (21)

Finally, the description of the whole system under study
combines (21) with the user components

System
def
= (C1 Think [NC1 ] ‖ C2 Think [NC2 ])

BC
{useCpu,useDb}

(
(Cpu Execute[NC ] ‖ Db Execute[ND])

BC
{log}

Logger Log [NL]
)

(22)

The densities used for this validation were of the form
(A, 0, 0, 0, B, 0, 0, C, 0, D, 0, E), where A,B,C, D, E were
chosen randomly in {1, . . . 10}. The rate parameters were
drawn from uniform distributions in [0.1, 50]. The ratios
d1 and d2 were drawn from uniform distributions in
[0, 1] and [1, 10], respectively. The following reward func-
tions were used for the validation:

ThuseCpu(ω) = min(c1ω2 + c2ω6, cω8)

CUCpu(ω) =
min(c1ω2 + c2ω6, cω8) + lcω9

cω8 + lcω9

ThuseDb(ω) = min(d1 c1ω3 + d2 c2ω7, dω10)

CUDb(ω) =
min(d1 c1ω3 + d2 c2ω7, dω10) + ldω11

dω10 + ldω11

LC1 (ω) = ω2 + ω3

λC1 (ω) = (1− p)t1ω1 + t ′1ω4

LC2 (ω) = ω6 + ω7

λC2 (ω) = t2ω5

(23)
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where Ci = {Ci UseCpu,Ci UseDb} , i = 1, 2. LC1 and
λC1 (respectively, LC2 and λC2 ) are combined as in (18)
for the calculation of the average response time WC1

(re-
spectively, WC2

). The throughput measures refer to the
aggregate throughput of the actions useCpu and useDb,
but similar results could be obtained by considering the
location-aware throughputs of the two distinct classes of
users.

The model is computationally demanding for large
scale factors. For instance, the state space size when
the population levels are all set to one is 48 states,
whereas it is over one million states for NC1 = 10, NC2 =
ND = NC = NL = 8. This suggests that the solution
of the CTMC based on explicit state-space enumeration
is infeasible for scale factors n = 10 and n = 100. For
this reason, stochastic simulation was used instead. Each
model instance was simulated until the 95% confidence
intervals of the equilibrium distribution dropped below
1% of the statistical mean.

7.2 Numerical Results

Table 3 shows the statistics (i.e., 5% quantile, average,
median, and 95% quantile) for the percentage relative
approximation errors for each of the performance indices
in (23). Equation (11) was used to compute the errors.
Overall, the results show that each statistic decreases as a
function of n. For n = 1, there are model instances which
lead to particularly high errors, however the accuracy
of the approximation is already good for n = 10, and
mostly within 1% for n = 100. For all n and for each
performance index, the median error is smaller than the
average value, indicating that the distribution is shifted
towards smaller values. In particular, in some cases
models were found to have extremely good accuracy, as
indicated by the generally low values for the 5% quan-
tiles, even for n = 1. For comparison, the approximation
errors for some of the model components are shown
in Table 4. These results indicate that the accuracy of
the performance indices is qualitatively similar, since the
error statistics are of comparable magnitude in all cases.

A further inspection of the validation data set reveals
other reasonably predictable properties of the fluid ap-
proximation. One property is that, for a given model
instance, knowing the quality of the approximation for
a specific performance index is not indicative of the
behaviour of the model with respect to other indices.
For instance, the model instance which gave the worst
accuracy for WC2

at n = 1 (i.e., about 140%) had an
error of about 9% for WC1

and an error of about 5% for
CUCpu . On the other hand, there were model instances
which gave bad accuracy in two or more performance
indices. For example, the two worst models for ThuseCpu

(with errors of about 100% and 53%, respectively) were
also the worst cases for ThuseDb (with errors of about
100% and 44%).

Another noteworthy property of this approximation
regards the rate of convergence. There were models

which showed a particularly fast convergence rate for
some of the performance indices. For instance, the model
with the worst accuracy for ThuseCpu at n = 1 had an
approximation error of about 0.023% for n = 100, which
is a value close to the median error (0.016%, see Table 3).
Other model instances were found to be more resistant
to convergence. For example, one model instance had
an error of 1.399% for ThuseCpu at n = 1 (sensibly less
than the median value). This instance became then the
worst model for ThuseCpu at n = 10 and n = 100 with
errors 8.807% and 2.345%, respectively. Incidentally, this
also highlights that the error may increase with n. The
theoretical results of convergence are only asymptotic
and do not exclude nonmonotonic error trends for finite
n. However, cases such as this one occurred quite rarely
in the validation data set considered in this study. In only
five cases, the difference between the approximation
error at n = 10 and the approximation error at n = 1 was
substantial, i.e., more than 3%. Cases with marginal (i.e.,
less than 0.2%) positive differences were more frequent,
although these are likely to be due to the fact that
the confidence level used for terminating the stochastic
simulation algorithm (i.e., 1%) was large compared to
those error differences.

8 CONCLUSION

This paper developed a framework in which a Marko-
vian reward structure for a PEPA model may be related
to some real function of the chain’s deterministic limit.
Results of convergence demonstrate that the approxima-
tion is sound asymptotically. This framework has been
applied to the definition of three important performance
indices: throughput, utilisation, and average response
time. Interestingly, these indices are defined as functions
of process algebra terms, and their interpretations as
Markovian reward and real functions of the fluid limit
are directly inferred from the operational semantics of
the language. Owing to the formality of the language,
these results of convergence are not tied to a particular
PEPA model, rather they hold in general. The conditions
under which convergence holds appear to be mild, inso-
much that further useful metrics may be built upon this
framework.

The numerical results presented in this paper confirm
the validity of ODE approximation for the estimation of
indices of performance in general. The analysis becomes
more accurate as the size of the system under scrutiny
grows. As with the behaviour of the accuracy for the
population levels, this approach is particularly desirable
for large-scale systems, where approximation errors are
consistently within a few percent.

8.1 Cost of the Analysis
Importantly, this kind of analysis is usually possible at a
small fraction of the computational effort required for
stochastic evaluation. When large-scale models are to
be analysed, the numerical solution of CTMC quickly
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TABLE 3: Percentage relative approximation errors for the performance indices over 300 random model instances.

Performance Index n = 1 n = 10 n = 100

5% Avg. Median 95% 5% Avg. Median 95% 5% Avg. Median 95%

ThuseCpu 0.105 5.547 2.364 18.857 0.005 0.511 0.137 2.233 � 0.001 0.066 0.016 0.193
ThuseDb 0.053 6.510 3.221 21.343 0.004 0.567 0.142 2.722 0.001 0.068 0.024 0.248
CUCpu � 0.001 8.261 4.559 28.450 � 0.001 1.264 0.318 6.071 � 0.001 0.143 0.022 0.531
CUDb 0.017 10.548 7.134 32.889 � 0.001 1.386 0.577 5.003 � 0.001 0.154 0.062 0.504
WC1 0.139 14.776 5.251 47.473 0.006 1.442 0.436 6.940 0.002 0.184 0.050 0.529
WC2 0.056 10.868 5.792 39.961 0.008 1.442 0.217 6.872 0.002 0.195 0.031 0.618

TABLE 4: Percentage relative approximation errors for the population levels over the model instances of Table 3.

Model Component n = 1 n = 10 n = 100

5% Avg. Median 95% 5% Avg. Median 95% 5% Avg. Median 95%

C1 Think 0.075 7.503 3.418 29.499 0.005 0.891 0.355 3.661 0.001 0.113 0.038 0.384
C1 UseCpu 0.021 13.015 3.106 75.269 0.002 2.074 0.177 10.291 � 0.001 0.410 0.020 0.629
C1 UseDb 0.111 19.481 6.534 83.890 0.006 4.022 0.366 23.958 0.002 0.553 0.067 1.756
C2 Think 0.042 7.171 4.235 24.674 0.003 0.656 0.179 2.827 0.001 0.080 0.022 0.322

C2 UseCpu 0.018 12.483 2.704 59.959 0.002 1.960 0.116 8.150 0.001 0.341 0.015 0.542
C2 UseDb 0.029 29.713 12.509 92.269 0.003 6.011 0.298 46.506 0.001 0.738 0.035 2.752

Cpu Execute 0.042 7.112 1.352 37.282 0.001 1.447 0.097 7.821 � 0.001 0.193 0.008 0.434
Db Execute 0.005 4.846 0.936 22.383 0.001 0.664 0.041 4.038 � 0.001 0.089 0.005 0.405

becomes infeasible due to state-space explosion, as il-
lustrated in Section 7.1. Therefore, stochastic simulation
represents the most viable route. It is interesting to note
that the computational cost of simulation is dependent
upon the number of performance indices to be evalu-
ated, hereinafter denoted by K. If transient indices are
required, then the method of independent replications is
a reasonable simulation algorithm to be used (e.g., [33]).
Here, K statistic estimators must be set up and the model
must be simulated until it reaches the time point of
interest. For each replication, K evaluations (one for each
performance index) must be performed. The results must
be stored by the estimators for the final computation
of distributional statistics such as the expected value.
If R replications are required to reach convergence, the
sole process of computing the performance indices will
require at least K × R evaluations of the reward struc-
tures. If the analysis concerns steady-state indices, then
a simulation algorithm based on the method of batch
means (or variants thereof) seems more appropriate, as
discussed in Section 3.3. In this case, the K evaluations
must be performed at every advance of simulated time.
If T total time steps are required to reach convergence,
then a total of K × T evaluations must be performed.

In contrast, the fluid analysis is carried out by nu-
merical integration of the initial value problem until a
specified time point for transient measures, or over a
sufficiently long time period for steady-state measures,
as discussed in Section 3.3. In either case, this is done to
obtain a solution vector and no computation concerns
the evaluation of performance metrics. Only after the
solution vector of the ODE is obtained, the computation
of K performance metrics requires only K evaluations of
the reward structures. In addition, if further performance

metrics are to be analysed, the same solution vector
can be used for those. In practice, stochastic simulation
turned out to have an average runtime approximately
four orders of magnitude slower than ODE analysis for
the case study of Section 7.
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