
Specifying Performance Measures for PEPA

Graham Clark, Stephen Gilmore, and Jane Hillston

Laboratory for Foundations of Computer Science,
The University of Edinburgh, Kings Buildings, Edinburgh EH9 3JZ.

Telephone: +44 131 650 1000. Fax: +44 131 667 7209.
Email: {gcla, stg, jeh}@dcs.ed.ac.uk

Abstract. Stochastic process algebras such as PEPA provide ample
support for the component-based construction of models. Tools compute
the numerical solution of these models; however, the stochastic process
algebra methodology lacks support for the specification and calculation
of complex performance measures. This paper addresses that problem
by presenting a performance specification language which supports high
level reasoning about PEPA models, allowing the description of equilib-
rium (steady-state) measures. The meaning of the specification language
can be made formal by examining its foundations in a stochastic modal
logic. A case-study is presented to illustrate the approach.

1 Introduction

Performance Evaluation Process Algebra (PEPA) [1] is an expressive formal
language for modelling distributed computer and telecommunications systems.
PEPA models are constructed by the composition of components which perform
individual activities or cooperate on shared ones. To each activity is attached
a stochastic estimate of the rate at which it may be performed. Using such a
model, a system designer can determine whether a candidate design meets both
the behavioural and the temporal requirements demanded of it.

Stochastic process algebras such as PEPA provide ample support for the
component-based construction of models. Robust tools such as the PEPA Work-
bench [2] facilitate the numerical solution of these models when calculating the
effective performance of the system under study. However, two important parts
of the modelling process are at present insufficiently well supported:

i). the specification and checking of performance properties which are to be
satisfied by a model; and

ii). the formulation and calculation of the complex performance measures which
are to be derived from the model’s numerical solution.

Without additional support for these parts of the modelling process there is a
danger that the difficulty of checking correctness and calculating the performance
measurements will discourage system designers from undertaking a quantitative
analysis. If this were the case, the benefits which are to be gained from a thorough
initial investigation of system correctness and responsiveness would be lost.

This paper presents the preliminary results of our attempts to remedy these
omissions through the creation of a companion language for PEPA which sup-
ports high-level reasoning about PEPA models and provides a suitably-tailored
syntax for the description of performance measures over them. This language
has foundations in a stochastic logic, the aim being to give a precise definition
to specifications in terms of a well-understood theory.

Simple models of a computer system can be constructed without explicit
notational support. However, as computer systems become more complex so do
their models and the use of a high-level language to aid in their expression be-
comes necessary. Stochastic process algebras offer attractive features which were
not available in previous performance modelling paradigms. The most important
of these are compositionality, the ability to model a system as the interaction of
subsystems, formality, giving a precise meaning to all terms in the language, and
abstraction, the ability to build up complex models from detailed components,
disregarding the details when it is appropriate to do so. Queueing networks of-
fer compositionality but not formality; stochastic extensions of Petri nets offer
formality but not compositionality; neither offer abstraction mechanisms.

Markovian process algebras are enhanced with information about the dura-
tion of activities and, via a race policy, their relative probabilities. Several such
languages have appeared in the literature; these include PEPA [1], TIPP [3]
and EMPA [4]. Essentially these all propose the same approach to performance
modelling: a corresponding continuous time Markov chain (CTMC) is generated
via a structured operational semantics; linear algebra can then be used to solve
the model in terms of equilibrium behaviour. This behaviour is represented as a
probability distribution over all the possible states of the model.

This distribution is seldom the ultimate goal of performance analysis; instead
the modeller is interested in performance measures which must be derived from
this distribution via a reward structure defined over the CTMC [5]. A recent
case study by first-time users of PEPA [6] reported that a significant proportion
of the effort was spent in deriving the performance measures once steady state
analysis was complete.

Earlier work by Clark proposed the use of a modal logic to define the reward
structure over a PEPA model [7, 8]. While demonstrating feasibility, this work
suffered from two major drawbacks. Firstly, the logic used did not include any
representation of the timing aspects of PEPA and consequently does not have
a clear relationship to the equivalence relations which have been established for
the language, such as Markovian bisimulation (which is also called strong equiva-
lence). Secondly, although the logic formalised an aspect of the PEPA modelling
methodology which had previously been carried out in an ad hoc manner, it
did so in a way which is inaccessible to system designers, the intended users
of PEPA. In the current work we aim to address these problems by developing
both a stochastic logic which takes full account of the random variables used to
represent the duration of activities in PEPA and a model specification language
designed to allow the modeller to express, in a high-level way, properties against
which the model should be checked.

1.1 Structure of this paper

In the next section we give a succinct summary of the PEPA language and
motivate the need for a formal notation for specifying the performance of a
PEPA model. Since we provide only a brief summary of PEPA here, the reader
should consult [1] for full details. In Section 3 we introduce a formal notation for
describing performance measures. This will allow the modeller to make queries
about the equilibrium behaviour of a PEPA model. A logical foundation for
the specification notation is illustrated in Section 4 where we reveal that the
language has a particular relationship to probabilistic modal logic. In Section 5
we illustrate our ideas with a simple, yet realistic, example. Finally, conclusions
and future directions for the work are presented at the end of the paper.

2 PEPA

PEPA (Performance Evaluation Process Algebra) extends classical process al-
gebra with the capacity to assign rates to activities, which are described in an
abstract model of a system. It is a concise formal language with a small number
of grammar rules which define the well-formed terms in the language. An ac-
tivity of action type α performed at rate r preceding P is denoted by (α, r).P .
Using the symbol ! instead of a rate denotes passive participation in a shared
activity. Choices are separated by +. Cooperation between P and Q over a set L
of action types is P !"

L
Q or P ‖ Q if L is empty. Hiding the activities in L and

thus denying their availability for cooperation gives the term P/L. The notation
for definitional equality is def=. The syntax may be formally introduced by means
of the following grammar:

S ::= (α, r).S | S + S | CS

P ::= P !"
L

P | P/L | C

where S denotes a sequential component and P denotes a model component
which executes in parallel. C stands for a constant which denotes either a se-
quential or a model component, as introduced in a definition. CS stands for
constants which denote sequential components. The effect of this syntactic sep-
aration between these types of constants is to constrain legal PEPA components
to be cooperations between sequential processes. PEPA is a high-level notation
for Markov modelling because it is possible to generate directly from a PEPA
model a continuous time Markov chain (CTMC) which faithfully encodes the
temporal aspects of the PEPA model.

One reason to fix on a formal notation for a task such as performance mod-
elling is to avoid misunderstanding and misinterpretation of a model. Of course,
even when a notation is carefully defined, as PEPA is, there may still be errors
of misrepresentation of parts of the system within the model but all of the users
of the model can at least agree on the correct interpretation of a given model
through recourse to the formal definition of the language. However, when we
come to undertake a careful consideration of properties of a model we see that

we now have a need for a formal notation for analysis of performance models
expressed in PEPA. Without this, we would not be able to state performance
measures precisely.

It is our intention that each of these specifications should be expressed with
reference to a PEPA model. This model is converted to an equivalent encoding
as a CTMC for analysis. Different types of analysis of the Markov process may
be performed, but for this work, we will require steady-state analysis. This is
done through the compilation of the infinitesimal generator matrix of the Markov
process and the solution of this by Gaussian elimination or another technique
from linear algebra. This leads to a steady state probability vector, expressing for
each state the long-run probability that the model will be found in that state.
For many performance measures, a reward vector can be specified, associating
particular rewards with particular states. The performance measure can be cal-
culated by the simple scalar product of the probability and reward vectors. For
example, if we are considering a lift system, utilisation can be calculated from a
steady state analysis, by considering those states in which the lift is utilised to
have a reward of 1, and otherwise 0. Timing measures, such as average waiting
time, cannot be found directly in this way but can be calculated via an applica-
tion of Little’s Law. However some performance measures cannot be calculated
from the steady state information. For example, the percentage of lift requests
satisfied in under two minutes requires a transient analysis, since we are not
interested in long-run probabilities in this case. A preliminary notation for the
expression of transient performance measures for PEPA models was given in [9],
but is not explored further here.

In earlier work we have considered the problem of specifying reward struc-
tures corresponding to PEPA models using a modal logic [7, 8]. However that
logic ignored the stochastic elements of the model, namely the random variables
used to specify activity durations. In this work we extend work on process logics
into this exciting new area, and show links between an established probabilistic
logic, and the specification language.

3 A high-level notation for steady state properties

Our objective is to design a high-level notation for expressing steady state prop-
erties of a PEPA model. This should provide a straightforward means for the
modeller to make quantitative queries about the behaviour of the model, without
having to descend into the details of the state space or a reward structure.

Clearly our language must be capable of expressing properties based on those
performance measures which can be computed directly by steady state analy-
sis. Typically we wish to know the probability that some condition holds. To
express this we use a combination of standard mathematical notation, notation
of equivalence relations from PEPA, and a new notation expressing the poten-
tial to perform an action of a given type. The use of equivalence relations in
this way can focus our queries directly on states, rather than actions. This is
unusual within the process algebra literature where notions of state are gener-

ally abstracted, and where only potential actions are used to distinguish models.
However in Markov processes there is no notion of actions, only states, and all
views of the behaviour of a process are phrased in terms of the states it can visit.
Stochastic process algebras sit between these two worlds and consequently it is
important that our notation has the capabilities to express properties that seem
natural within both.

A state based property may mean that we wish to specify the probability
that component P is in state P1—in our notation this is expressed simply as:
Pr(P = P1). Such a specification is interpreted relative to a model in which P
occurs and it succinctly describes the summation of the probabilities of the states
of the system where sub-component P is in state P1. To be pedantic, we should
write Pr(P ≡ P1) if we intend to require P to be literally P1 and not just isomor-
phic to P1. Similarly, we would write Pr(P ∼= P1) if we wished to denote the prob-
ability that P is in a state which is Markovian bisimilar to P1. These probabilities
may then be used in further calculation such as r × Pr(P = P1) and those re-
sults used in comparisons as in r × Pr(P = P1) > M . More complex descriptions
of states may be expressed via logical operations as in Pr(P = P1 ∧ Q = Q1)
or Pr(P = P1 ∨ P = P2). For clarity, we may negate relational operators with
Pr(P (≡ Q) instead of Pr(¬(P ≡ Q)).

PEPA allows the modeller to replicate components so that there may be,
say, several copies of P in the system description. Thus, we introduce a notion
of situation (or location) of a copy of a component within a PEPA model. It
could be the case that the component of interest occurs as a sub-component of
another which has only one instance. If so, we use dot notation to identify the
sub-component. If not, we number the copies by following a pre-order traversal
of the abstract syntax tree of the term.

In order to describe properties in terms of the performance of activities we
introduce a term for the probability that a type of activity is enabled. We use the
notation Pr(α↑) for this, whenever the action type of the activity is α. Thus the
interpretation of an activity name as a predicate is that the predicate is satisfied
whenever the model is in a state S and there is both a state S′ and a rate r such
that S

(α,r)−→ S′. A convenient extension to this notation is Pr(α↑P), meaning that
activity α could be performed by component P of the model. However, we shall
regard these two forms of activity probability as simply convenient abbreviations
for a much more complex predicate where the components are constrained (or
a given component is constrained) to those states where they may perform an
activity of action type α. The cases where the meanings of these two expressions
would differ arise whenever the model is not PEPA live or not fully live [10].
A fully live PEPA model is one such that, for each reachable state, and each
syntactic occurrence of an activity within a sequential component, there exists
another state which is reachable where this occurrence of the activity can be
performed. For the remainder of this paper we restrict consideration to fully live
models.

We now have performance measure expressions ε, probability terms τ , pred-
icates φ and situations σ. These are expressed in the syntax presented in Fig. 1.

ε ::= ε + ε | ε − ε | ε × ε | ε/ε (arithmetic expressions)
| ε ≥ ε | ε > ε | ε ≤ ε | ε < ε (comparison expressions)
| R | τ (constants and terms)

τ ::= Pr(φ) (probability terms)
φ ::= φ ∨ φ | φ ∧ φ | ¬φ (logical operators)

| σ ≡ σ | σ = σ | σ ∼= σ (local state conditions)
| α↑ | α↑σ (activity predicates)

σ ::= σ !"
L

σ | σ/L | σ.C | C#N | C (situations)

Fig. 1. Syntax of notation for steady state properties

The characteristics of this notation are that it allows the modeller to inspect
internal local states of model components and to consider the steady state prob-
ability of attaining significant states of interest. Under the interpretation of
activity probabilities as abbreviations for more complex predicates over states
we may consider this notation to be entirely based on model states.

4 A logical foundation for the specification language

In this section, we illustrate how the specification language, introduced in Sec-
tion 3 may be seen to have a formal underpinning, in terms of a probabilistic
modal logic. In particular, the expression, and testing for satisfaction of equilib-
rium properties, can be seen to be closely related to the specification, and model
checking of a formula expressed in probabilistic modal logic (PML [11]). We give
a modified interpretation of such formulae suitable for reasoning about PEPA’s
continuous time models.

The study of temporal and modal logics in conjunction with models of con-
currency is well established. These logics express properties of systems which
have a number of states, and in which there is a relation of succession. A modal
logic is used to express a finite behaviour. In a temporal logic operators are
introduced to allow reasoning over infinite behaviour.

Over the last decade, work on probabilistic verification has accelerated in line
with stochastic extensions to models, as used in the performance community.
Various modifications to logics allow properties to be expressed which reflect the
additional model information. Recent work by Huth and Kwiatkowska [12] gives
the temporal logic the modal mu-calculus [13] a non-standard semantics, where
the meaning of a formula is a function from states to [0, 1]. This is intended to
express the ‘confidence’ that a formula is true, for a given state, although the
semantics cannot be interpreted directly as probabilities. Their approach results
in their model checking procedure giving lower bounds for the probabilities of
properties (these may serve the user as a ‘guarantee’). Further they note that the

work may be modified to deal with generative (essentially, autonomous) models
such as those described in PEPA. If it was possible to generate true probabilities
in this way, it would seem a useful first step in generating performance measures.
A differing approach is taken by Hansson and Jonsson [14], whereby probabilis-
tic operators are added to the temporal logic CTL. For example, the formula
[φ]>p is satisfied for a given state if a measure over the set of paths from the
state satisfying φ is greater than p. Since the formula will either be satisfied by
a state, or not, this leads to a classical predicative semantics. A variant of Hans-
son and Jonsson’s model checking procedure is used in the Probabilistic VERUS
tool [15]. This is a variant of VERUS, a BDD-based model checker for real-time
systems [16]. A VERUS program is a collection of sequential randomised pro-
cesses; the authors adapt the language to replace non-determinism with discrete
probability distributions. With a probabilistic logic similar to that mentioned
above, they are able to specify probabilistic properties, and to check whether
these properties are satisfied or not. However, as Huth and Kwiatkowska point
out, a user’s specification of the threshold probability may be inappropriate for
the task at hand, where the information required is such a threshold itself. These
varying styles of probabilistic verification suggest avenues of exploration for a
PEPA reward logic.

An alternative approach to performance evaluation for stochastic process
algebras is described by Bernardo [17]. Instead of using a separate logical no-
tation, the author extends the syntax of the stochastic process algebra EMPA
such that activities include a notion of reward. In order to generate performance
measures, a reward structure for the underlying stochastic process is generated;
the reward assigned to each state is the sum of the rewards associated with the
activities the model enables in that state. By assigning different values (and dif-
ferent interpretations) to the reward field in appropriate activities, one is able to
calculate rewards several kinds of performance measure, such as utilisation and
throughput. The advantages of the method are that it is relatively simple to use
and apply, and is reasonably expressive. In addition, Bernardo has constructed
an equivalence relation which respects the additional reward information. An
extension of strong Markovian equivalence, for each pair of states in an equiv-
alence class, the total reward accrued by moving into another equivalence class
is the same for each state. This will allow the theory of EMPA to be extended
smoothly to incorporate rewards. However, we can argue that a specification
language based on a logical approach too has its advantages. Firstly, it has the
potential to be more expressive than an algebra-based technique. By exploiting
the operators a modal logic supplies, it is possible to be more discriminating
about which states should contribute to the reward measure. In particular, it
is possible to select a state based on model behaviour not immediately local to
the state. Some examples of such performance measures were presented in [7].
Philosophically, we may also take the point of view that structure for measuring
the performance of a model should be separated from the model itself. A dis-
advantage of a purely logic-based approach is that it may be seen by a user to
be esoteric, and requiring of more effort in order to understand and apply. This

motivates one of the aims of our current work, to provide a high-level specifica-
tion language which abstracts from an underlying logic, and provides the user
with a framework which is simpler to apply.

We proceed by describing the principle behind using a logic to generate a
performance measure. Following that, we highlight why PML may be a suitable
logic for our purposes.

4.1 Using logic to specify performance measures

Previous work by Clark [7] proposed an approach to generating measures using
traditional Hennessy-Milner logic (HML [18]). The idea was to capture the set
of ‘interesting’ states of the model by partitioning the state space with a formula
of the logic—those states that enjoy the property are then assigned a reward,
such as a number, or a value based on ‘local state’ information, such as the
rate at which the state may perform a particular activity. All uninteresting
states are given a reward of 0. In this way, a reward vector is formally specified,
and equilibrium measures such as utilisation and throughput may be calculated.
However, the method was not ideal for several reasons. Firstly, it was ad hoc—the
logic provided an initial partition only, meaning that a calculational technique
was required in addition, in order to assign reward values. Secondly, the logic was
qualitative only, in that it disregarded the rate at which a PEPA process could
perform an activity, and only captured the fact that an activity was possible. We
believe these issues can be addressed by using a more appropriate logic, namely
Larsen and Skou’s PML.

4.2 Probabilistic modal logic

The syntax of PML formulas is given by

F ::= tt | ∇α | ¬F | F1 ∧ F2 | 〈α〉µF

The models described in [11] are probabilistic, in that for any state P and
any action α, there is a (discrete) probability distribution over the α-successors
of P . Informally, the semantics of a formula ∇α is the set of states unable to
perform an α activity; and the semantics of 〈α〉µF is the set of states such that
each can make an α-transition with probability at least µ to a set of successors
each of which satisfies F . We choose to modify slightly the interpretation of these
formulae with respect to PEPA models. First we give a simple definition

Definition 1. P
(α,ν)−→S if and only if for all P ′ ∈ S, P

α−→ P ′, and
∑

{r |P (α,r)−→P ′, P ′ ∈ S} = ν.

Now let P be a model of a PEPA process. Then

P |= tt

P |= ¬F if P (|= F

P |= F1 ∧ F2 if P |= F1 and P |= F2

P |= ∇α if P (α−→

P |= 〈α〉µF if P
(α,ν)−→S for some ν ≥ µ, and for all P ′ ∈ S, P ′ |= F

Therefore, the subscript µ present in formulae of the form 〈α〉µF is now
interpreted as a rate rather than a probability; if a state P is capable of doing
activity α quickly enough arriving at a set of states S each of which satisfies F ,
then P satisfies 〈α〉µF .

4.3 Relation of PML to the specification language

If we use PML as a vehicle for the semantics of the specification language, it will
address one of the criticisms of the original PEPA reward language work—that
the logic was badly suited to the models. Now it is possible to distinguish model
states that differ only in the rate at which they may perform activities. But how
does this logic relate to the specification language? This can be made clearer by
first showing the precise nature of the relation of PML to PEPA. In [11], Larsen
and Skou show that PML exactly characterises probabilistic bisimulation, in the
sense that two probabilistic processes are bisimilar if and only if they satisfy
exactly the same set of PML formulae. With our modification to the semantics
of PML, an analogous result holds for PEPA processes:

Theorem 1 (Modal characterisation of strong equivalence). Let P be a
model of a PEPA process. Then

P ∼= Q if and only if for all F, P |= F iff Q |= F

That is to say that two PEPA processes are strongly equivalent (in particular,
their underlying Markov chains are lumpably equivalent [1]) if and only if they
both satisfy, in our modified setting, the same set of PML formulae.

Instantly, this gives us an understanding of the notation for specifying equilib-
rium properties. For example, probability terms may take the form Pr(P ∼= P1).
Model checking a logical characterisation of state P1 via PML would provably
capture all and only those states P which are strongly equivalent to P1, and
thus with the steady state vector would immediately lead to a computed value
for the term Pr(P ∼= P1). Another example is provided by the term Pr(α↑). We
can instantly characterise, up to strong equivalence, those states which should
be included in the computation of this measure—they are those which satisfy
the PML formula ¬∇α.

As discussed in Section 3, the performance specification language makes use
of the idea of model states, as well as model behaviour in a state. This can be

smoothly reconciled with the use of a probabilistic logic, and the computation
of the reward vector can thus be seen as a two-stage procedure. The method is
simple, and standard in the theory of process logics—it is to extend the syntax
of PML with a set of variables V , and for a given model P with state space S,
to extend the semantics with a valuation function V : V → 2S .

F ::= tt | ∇α | ¬F | F1 ∧ F2 | 〈α〉µF | X

P |= X iff P ∈ V(X)

The intuition is that a variable X ∈ V represents a property which is
true in a particular subset of the state space. This allows formulae such as
¬(〈transmit120〉FailState), where FailState is understood to represent an un-
desirable portion of the state space—“it is not the case that it is possible to effi-
ciently transmit a network packet and finish in a failure state”. Given a model,
and an expression given in the specification language, the two stage generation
of the reward vector can be understood as:

i). calculating the valuation function according to any ‘local state’ requirements,
by e.g. strong equivalence aggregation [1]; then

ii). computing the satisfaction of the PML formula corresponding to the speci-
fication, using a model-checking style technique.

The use of PML suggests ways in which the specification language could
be extended, if these features would be useful to users. It will certainly be
possible to reason about more complex behaviour than the ability to perform
a single activity, and it will be possible to reason directly about the rate at
which activities are performed. For example, a user may wish to verify that
the percentage of time that a component in his model is transmitting network
packets efficiently is higher than 40%. Our notation could be extended to allow
Pr((transmit, 120) ↑) ≥ 0.4. The states to be included in the computation of
the measure would be those captured by the formula 〈transmit〉120tt.

Due to the predicative semantics of PML, we note that it is straightforward
to specify utilisation and reliability measures using this approach. The relation
of PML to throughput measures is not so direct. This is because in previous
approaches, the reward structure for a throughput measure associates rates of
activity with particular states. In this paper, we choose not to formally develop
the link to throughput measures further. However, the specification language will
provide the necessary level of abstraction to generate throughput measures, and
could do so using PML as the underlying logic. For example, with our suggested
extension above, we may determine whether the throughput of our network is
greater than some threshold with the expression

r × Pr((transmit, r)↑) > M

Although the logic of Huth and Kwiatkowska [12] does not support a direct
interpretation of formulae as probabilities, we envisage making use of the under-
lying ideas to extend our approach in order to cover a wider range of equilibrium
measures.

Our choice of PML was motivated by its simplicity, and its link to PEPA’s
strong equivalence. Other research in the area of probabilistic verification has
links to our approach. Recent work by de Alfaro [19] addresses the problem of
specifying “long-run” average properties of probabilistic systems. The author
points out that logics such as those presented by Hansson and Jonsson [14] are
able to specify bounds on probabilistic properties, but crucially these are prob-
abilities over behaviours from a specified state. De Alfaro’s approach is inspired
by process algebraic tests; experiments are defined to represent interesting model
behaviour patterns. These experiments associate a real-valued outcome with a
pattern of behaviour, and are considered to occur infinitely often. The author
shows how these experiments can thus be used to specify long-run behaviour. His
looks to be a fruitful approach to the problem of probabilistic verification, and
we too plan to focus on a concept of stochastic test. Currently work in progress,
we are studying the specification of transient measures by considering a PEPA
model in cooperation with a stochastic test [9]. However our tests do not specify
long-run behaviour as do de Alfaro’s experiments; rather we seek to examine the
point at which a PEPA model first passes a test.

The next section demonstrates how a modeller may use the specification
language, by presenting a case study of a location tracking system.

5 Case study: a location tracking system

As an example here we consider the problem of modelling a system where the
location of people and equipment within a building is monitored by a central
tracking system. Such a system is being considered for the James Clerk Maxwell
Building at The University of Edinburgh. The building is notoriously confusing
to navigate and the tracking system would be helpful in finding those visitors
who get lost in the maze of corridors. The system would also help secretaries
find professors who may be in any number of teaching and meeting rooms or
colleagues’ offices and would be an invaluable aid in the hunt for the (non-
networked) laptop computers which can be borrowed for the secure preparation
of examination papers.

Location tracking systems such as these are implemented by the use of active
badges, credit-card sized devices which transmit unique infra-red signals which
are detected by networked sensors. Systems such as these are already in use in
several European universities and in research laboratories in the USA.

The University of Edinburgh issues “smart” enrolment cards at the start of
each academic year. These are used both for electronic cash and as swipe-cards
for door entry. It is planned that these would be superseded by cards which may
also be used for location tracking. The battery life of such a device has typically
been found to be around a year [20] so it is necessary to tune the performance
of the system by adjusting the rate at which registration is performed in order
to conserve battery power while simultaneously ensuring that the system gives
accurate location information.

A Markovian stochastic process algebra such as PEPA is well suited to mod-
elling this system because exponential registration intervals are used to prevent
the repeated collisions between transmitting badges which would result in lost
messages [21]. This is the same use of randomness as found in the Aloha packet-
switching network: without it, a collision would inevitably be followed by another
collision.

To keep the example small we will consider the simple case of tracking the
progress of a single person around a single floor of a building. The floor has three
corridors which are numbered 14, 15 and 16, and we assume that there is only
a single sensor in each corridor. The corridors are arranged in a U-shape so that
it is possible to go from the 14 corridor to the 15 corridor and then to the 16
corridor (and the other way, of course) but it is not possible to go from the 14
to the 16 corridor directly.

The behaviour of a person P who is wearing an active badge can be described
in terms of their movement from one corridor to a neighbouring one and the
registration of their badge with the nearest sensor.

P14
def= (reg14, r).P14 + (move15, m).P15

P15
def= (reg15, r).P15 + (move14, m).P14 + (move16, m).P16

P16
def= (reg16, r).P16 + (move15, m).P15

Sensors accept registration information and report this back to the central
database.

S14
def= (reg14, !).(rep14, s).S14

S15
def= (reg15, !).(rep15, s).S15

S16
def= (reg16, !).(rep16, s).S16

For a system with only one person to be tracked the database need only store
the most recently reported position.

DB14
def= (rep14, !).DB14 + (rep15, !).DB15 + (rep16, !).DB16

DB15
def= (rep14, !).DB14 + (rep15, !).DB15 + (rep16, !).DB16

DB16
def= (rep14, !).DB14 + (rep15, !).DB15 + (rep16, !).DB16

In the complete system the badge-wearer will move asynchronously but will
register with the sensors. The sensors are independent but they all report back
to the database. We can initialise the system in any state we wish, perhaps with
the badge-wearer in the 14 corridor and the database also recording this.

P
def= P14 DB def= DB14 System def= P !"

{regi}
(S14 ‖ S15 ‖ S16) !"

{repi}
DB

5.1 Analysing the performance of the location tracking system

In tuning the system to provide the best balance between accuracy and in-
creased battery life we would investigate the probability of the database incor-
rectly recording the position of the badge-wearer and increase or decrease the

registration rate in order to attain an acceptable threshold. Moreover, failure to
register a move is not the only source of inaccurate data within the system. It
is possible that reports to the database occur in the wrong order, giving a false
impression of the location of the badge wearer. In either case the error can be
characterised by the wearer being able to register in a location and the database
not recording their presence there. If it has been decided that an acceptable level
of accuracy is to have a 1% error rate then, in our high level notation, we would
investigate the adequacy of our implementation as follows:

Pr(reg14 ↑ ∧ DB (≡ DB14)
+ Pr(reg15 ↑ ∧ DB (≡ DB15)
+ Pr(reg16 ↑ ∧ DB (≡ DB16) ≥ 0.01

We have investigated the alteration of the probability of error as the rates of
badge registration and sensor reporting (variables r and s) are changed while
the rate of movement of the badge-wearer (variable m) remains constant. The
results are presented in Fig. 2. With the values chosen, the probability of error
in the system varies between 0.02 and 0.18. These values were computed by
first using the PEPA Workbench to investigate the state space of the location
tracking system and then using the PEPA State Finder to select the states of
interest. We then used the Maple computer algebra package both to find the
steady-state probability distribution of the system and to plot the results.

As a consistency check on our work we also used the PEPA State Finder
to compute the probability that the database correctly recorded the location
of the badge-wearer and checked that the probabilities of database correctness
and incorrectness summed to 1, which they did. The PEPA State Finder at
present only implements a subset of the specification language which is described
here but it is our intention to extend this to a complete implementation of the
language.

The location tracking system with only a single person is a very simple system
with only 72 states but we have also considered the effect of adding another
person, with a correspondingly more complex database model. The state space
of the system increases quickly, of course, and the extended system has 2187
states. More complex performance measures are applicable to the more complex
model.

6 Further work and discussion

We are confident that the notion of probabilistic logic can be used to give a for-
mal semantics to the specification language as described in Section 3. However,
the utility of PML in interpreting transient specifications, as initially proposed
in [9] has not been investigated, and remains as future work. Furthermore, we
are currently developing the theory behind calculating transient measures. The
satisfaction of a transient property is determined by the construction of an ap-
propriate stochastic test, consisting of an ancillary PEPA process; the analysis

1
2

3
4

5

r
20

40
60

80

s

0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18

p

Fig. 2. Investigation of the probability p of error against rates r and s (with m = 0.1)

of the original model is done in concert with the stochastic test. Therefore, the
longer term aim is to provide the PEPA user and modeller with a rigorous and
formally defined specification language for the computation of both equilibrium
and transient performance measures.

Initial work on this notation for specifying performance measures was carried
out in a feature interaction framework. We view a feature as being a significant
aspect or property of the system which could be used to compare this one to
another. Most importantly, features are qualities which can interact and which
can be measured. Therefore the feature interaction framework represents the idea
that a system may be built by composing a number of well-engineered features,
and is a useful paradigm for both system designers—who are concerned with a
compositional or structured approach to the construction of a system—and to
system users—who wish to learn and understand complex systems in terms of
substantive concepts. The widespread acceptance of the importance of features
makes them a very desirable concept to build into a specification language since
one of the uses of a specification language can be to provide a common working
language between designers and users. Our original setting meant that by using
the specification language, a user could formally describe within the model a
particular feature enjoyed by the system.

7 Conclusions

Despite impressive improvements in the computational power which is now avail-
able to end-users of computer systems, computer equipment remains expensive
to purchase and maintain. Consequently, making cost-effective use of limited re-
sources remains one of the motivating concerns of computer system managers.
Analysis of computer systems through construction and solution of descriptive
models is a hugely profitable activity: brief analysis of a model can provide as
much insight as hours of simulation and measurement [22].

We have presented a notation for the description of performance specifica-
tions which relate to stochastic process algebra models expressed in the PEPA
modelling notation. Our notation for performance specification focuses on mod-
els in equilibrium, and concentrates on internally measurable quantities of the
system. We are currently developing the framework for specifying transient mea-
sures, which will focus on externally observable patterns in the system’s transient
behaviour. Further, in this paper, we have highlighted how a meaning may be
given to equilibrium specifications by using the probabilistic modal logic PML.
The location tracking case study illustrates the way in which a modeller would
use the PEPA specification language to reason about the performance of a model.

Acknowledgements

Graham Clark and Jane Hillston are supported by the EPSRC ‘COMPA’ grant.
Stephen Gilmore is supported by the ‘Distributed Commit Protocols’ grant from
the EPSRC and by Esprit Working group FIREworks.

References

1. J. Hillston. A Compositional Approach to Performance Modelling. Cambridge
University Press, 1996.

2. S. Gilmore and J. Hillston. The PEPA Workbench: A Tool to Support a Process
Algebra-based Approach to Performance Modelling. In G. Haring and G. Kotsis,
editors, Proceedings of 7th Conf. on Mod. Techniques and Tools for Computer Perf.
Eval., volume 794 of LNCS, pages 353–368, 1994.

3. N. Götz, U. Herzog, and M. Rettelbach. Multiprocessor and Distributed System
Design: The Integration of Functional Specification and Performance Analysis us-
ing Stochastic Process Algebras. In Performance’93, 1993.

4. M. Bernardo, L. Donatiello, and R. Gorrieri. Integrating Performance and Func-
tional Analysis of Concurrent Systems with EMPA. Technical Report UBLCS-95-
14, University of Bologna, 1995.

5. R. A. Howard. Dynamic Probabilistic Systems, volume II: Semi-Markov and Deci-
sion Processes, chapter 13, pages 851–915. John Wiley & Sons, New York, 1971.

6. H. Bowman. Analysis of a Multimedia Stream using Stochastic Process Algebra.
In Priami [23], pages 51–69.

7. G. Clark. Formalising the Specification of Rewards with PEPA. In Proceedings of
the Fourth Process Algebras and Performance Modelling Workshop, pages 139–160,
July 1996.

8. G. Clark and J. Hillston. Towards Automatic Derivation of Performance Measures
from PEPA Models. Proceedings of UKPEW, September 1996.

9. S. Gilmore and J. Hillston. Feature Interaction in PEPA. In Priami [23], pages
17–26.

10. S. Gilmore, J. Hillston, and L. Recalde. Elementary structural analysis for PEPA.
Technical Report ECS-LFCS-97-377, Laboratory for Foundations of Computer Sci-
ence, Department of Computer Science, The University of Edinburgh, 1997.

11. K. G. Larsen and A. Skou. Bisimulation through probabilistic testing. Information
and Computation, 94(1):1–28, September 1991.

12. M. Huth and M. Kwiatkowska. Quantitative analysis and model checking. In
Proceedings, Twelth Annual IEEE Symposium on Logic in Computer Science, pages
111–122, Warsaw, Poland, 29 June–2 July 1997. IEEE Computer Society Press.

13. D. Kozen. Results on the propositional mu-calculus. Theoretical Computer Science,
27:333–354, 1983.

14. H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal
Aspects of Computing, 6(5):512–535, 1994.

15. V. Hartonas-Garmhausen. Probabilistic Symbolic Model Checking with Engineering
Models and Applications. PhD thesis, Carnegie Mellon University, 1998.

16. S. Campos, E. Clarke, and M. Minea. The Verus tool: A quantitative approach to
the formal verification of real-time systems. Lecture Notes in Computer Science,
1254, 1997.

17. M. Bernardo. An Algebra-Based Method to Associate Rewards with EMPA Terms.
In to appear in 24th Int. Colloquium on Automata, Languages and Programming,
July 1997.

18. M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency.
Journal of the ACM, 32(1):137–161, January 1985.

19. L. de Alfaro. How to specify and verify the long-run average behavior of proba-
bilistic systems. In LICS: IEEE Symposium on Logic in Computer Science, 1998.

20. A. Harter and A. Hopper. A distributed location system for the active office. IEEE
Network Magazine, 8(1):62–70, 1994.

21. Y-B. Lin and P. Lin. Performance modeling of location tracking systems. Mobile
Computing and Communications Review, 2(3):24–27, 1998.

22. I. Mitrani. Probabilistic Modelling. Cambridge University Press, 1998.
23. C. Priami, editor. Proceedings of the Sixth International Workshop on Process

Algebras and Performance Modelling, Nice, France, September 1998.

A Proof of modal characterisation of strong equivalence

Case 1 Assume P ∼= Q. We proceed by induction on the size of F , as in [11].
Case F ≡ 〈a〉µG: Let P |= F . Then by definition, there exists a set S such

that P
(a,ν)−→S, where ν ≥ µ, and for all P ′ ∈ S, P ′ |= G.

Since P ∼= Q, there exists some strong equivalence R, such that for all
a ∈ A, for all S ∈ C/R, q[P, S, a] = q[Q, S, a]. For each P ′ ∈ S, let
RP ′ be the equivalence class in C/R which contains P ′. Furthermore, let
S′′ =

⋃
P ′∈S RP ′ . Now, for each P ′′ ∈ S′′, P ′′RP ′, and thus P ′′ ∼= P ′,

for some P ′ ∈ S, and so by the hypothesis, for all P ′′ ∈ S′′, P ′′ |= G.

Since S ⊆ S′′, P
(a,ν′)−→ S′′, where ν ′ ≥ ν. Since PRQ, for all T ∈ C/R,

q[P, T, a] = q[Q, T, a]. However, note that for all s, s′ ∈ S, Rs = R′
s or

Rs ∩Rs′ = ∅. Therefore, by construction of S′′, q[P, S′′, a] = q[Q, S′′, a].

Therefore, Q
(a,ν′)−→ S′′, where ν ′ ≥ ν ≥ µ; and for all Q′ ∈ S′′, Q′ |= G.

Therefore, Q |= 〈a〉µF . By symmetry of ∼=, this case is complete.

Case F ≡ ∇a: Let P |= F . Therefore P (a−→. Since P ∼= Q it is the case that
for some strong equivalence R, for all a ∈ A, for all S ∈ C/R, q[P, S, a] =
q[Q, S, a]. However, for all S′ ⊆ 2C, q[P, S′, a] = 0. Since for all S ∈ C/R,
S ⊆ 2C , it is the case that q[Q, S, a] = q[P, S, a] = 0 for any S ∈ C/R,
for any R which is a strong equivalence. Therefore there does not exist
a C such that q[Q, C, a] > 0 and therefore, Q (a−→. By symmetry of ∼=,
this case is complete. All other cases are straightforward.

Case 2 Assume that for all F , P |= F if and only if Q |= F . Let R = {(P, Q) |
for all F , P |= F if and only if Q |= F}. The result will hold if R can
be shown to be a strong equivalence. By simple inspection, R is clearly an
equivalence relation. Thus, it must be shown that for all a ∈ A, for all
S ∈ C/R, q[P, S, a] = q[Q, S, a].

Let S ∈ C/R. Assume that for some a ∈ A, P
(a,µ)−→S for some µ. Now consider

the a-derivatives of Q, labelled Q′
1, . . . , Q′

m, Q′
m+1, . . . , Q′

n, where n ≥ 0,
0 ≤ m ≤ n. These derivatives are labelled such that Q′

1, . . . , Q′
m ∈ S and

Q′
m+1, . . . , Q′

n (∈ S . For each Q′
i, let the rate at which Q makes an a-

transition to Q′
i be denoted by µi. Since S is an equivalence class under R,

it is the case that for each Q′
j, m + 1 ≤ j ≤ n, there exists a formula F ′

j

such that Q′
j |= F ′

j, and for each Q′
i, 0 ≤ i ≤ m, Q′

i (|= F ′
j. From a lemma

by Larsen and Skou [11], it is possible to construct a dual formula to each
F ′

j, named here F
′
j such that for Q′

j , m + 1 ≤ j ≤ n, Q′
j |= F ′

j if and only
if Q′

j (|= F
′
j . Now it is the case that Q |= 〈a〉µ′(F ′

m+1 ∧ . . . ∧ F
′
n), where

µ′ =
∑m

i=1 µi. However, by the initial assumption, it is also the case that
P |= 〈a〉µ′(F

′
m+1 ∧ . . . ∧ F

′
n) , and therefore, µ′ ≥ µ. This then gives that

q[Q, S, a] = µ′ ≥ µ . However, R is symmetrical, and so by such an argument,
it is the case that µ ≥ µ′, and thus that µ = µ′. Hence q[P, S, a] = q[Q, S, a],
as required. #

