
12 The PEPA Plug-in for Eclipse

In this lecture note we introduce the tool support which is available when modelling
with PEPA. Undertaking modelling studies of any reasonable size is only possible if the
modelling process has adequate support. PEPA is fortunate to be supported by a number
of different tools developed in Edinburgh and elsewhere. However in this note we will focus
on the PEPA Plug-in for Eclipse as this is the tool you will be using for your practical.

12.1 Representing PEPA is ASCII

In the lecture notes so far we have presented PEPA as a formal language which incor-
porates some distinctive characters, particularly the cooperation operator ��

L
, produced

using the typesetting package LaTeX. When we are writing a .pepa file for processing
by one of the tools we are restricted to use the standard ASCII character set, so some
modification of representation is necessary. The small table below shows how to represent
PEPA in ASCII.

Combinator LaTeX representation ASCII representation
Prefix (a, r).P (a, r).P

Choice P +Q P + Q

Cooperation P ��
{a}

Q P < a > Q

Parallel P ‖ Q P < > Q

Constant A
def
= (a, r).P A = (a, r).P;

Another difference from the formal representation, is that in the ASCII representation
each component definition must be terminated by a ”;”. The rates associated with
activities, may be given concrete values within the definition, e.g. (a, 6), or may be
expressed in terms of variables, e.g. (a, r). In this latter case the variable must be
assigned a value at the top of the .pepa file, e.g. r = 6;. You will find several example
.pepa files on the course webpage.

12.2 The PEPA Plug-in Project

The PEPA Plug-in Project is a software tool for reasoning about the various stages of
the Markovian analysis of PEPA models. The tool is implemented as a collection of
plug-ins for Eclipse, an extensible integrated development environment for a large variety
of programming and modelling languages such as Java, C++, Python and UML. This
framework was chosen for three main reasons. First, Eclipse is a freely available product.
Second, it is widely supported by a growing community of users and businesses. Third, it
can run on a variety of platforms, as it is implemented in Java and the graphical library
used for the user interface is available on many operating systems.

The functionalities of the tool are accessible both programmatically and through a
more user-friendly graphical interface. In this lecture note we focus on the latter method.
Resources of an Eclipse workspace can be manipulated using two main classes of tools,
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editors and views. The former follow the traditional open-save-close cycle pattern. The
latter are typically used to navigate resources, modify properties of a resource and provide
additional information on the resource being edited.

The PEPA Plug-in contributes an editor for the language and views which assist the
user during the entire cycle of model development. Static analysis is used for checking the
well-formedness of a model and detecting potential errors prior to inferring the derivation
graph of the system. A well-formed model can be derived, i.e. the underlying Markov
process is extracted and the corresponding state space can thus be navigated and filtered
via the State Space view. Finally, the CTMC view allows numerical steady-state analyses
such as activity throughput and component utilisation.

12.2.1 Editor

A PEPA editor is opened for files in the Eclipse workspace which have the pepa exten-
sion. The editor provides a convenient way to run a parser which translates the model
description in the PEPA language into an in-memory representation suitable for further
processing. This form is represented graphically in the AST view by means of a hierarchi-
cal structure for the model. The in-memory model also acts as an intermediate form for
converting PEPA models into external formats. In particular, the PEPA plugin project
provides an exporter to EMF, the de-facto standard for data exchange within the Eclipse
framework.

12.2.2 Static Analysis

Static analysis deals with checking the well-formedness of a PEPA model. Because of
its low computational cost, static analysis is performed every time the text of the model
description is saved. The output of this tool is a list of messages to the already existing
Eclipse Problem view. The information provided can be grouped into two categories:
warnings are messages about low priority problems which do not prevent further pro-
cessing; errors are instead critical problems which must be fixed in order to continue the
model development process. For instance, basic warning messages are about rate or pro-
cess definitions which are defined in the model description but never used; error messages
can be about rate or process names which are used but never defined.1

More advanced static analysis is carried out to detect potential local deadlocks, redun-
dant declaration of actions of the cooperation operator and unguarded component uses
giving rise to non-well-founded definitions of processes, i.e. self-containing processes. In
order to fulfil these tasks, the model’s in-memory representation is iteratively walked to
create two support data structures: complete action types set and used definition set.

The complete action type set ~A of a component is the set of all the action types which
can performed by the component during its evolution. This set can be calculated according
to Table 4. For example, if we consider the model in Figure 27 (for the sake of clarity
we omit the actual rate values) then the complete action type sets of its constants are as

1It is worthwhile noting that rate names must be declared before using them in a prefix definition.
However, there is no such a rule with regards to process definitions.
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P1
def
= (sendsucc, r).P2 + (sendfail, s).P3

P2
def
= (new-data, t).P1

P3
def
= (reset, u).P1

Q1
def
= (sendsucc,>).Q2 + (sendfail,>).Q3

Q2
def
= (file-data, v).Q1

Q3
def
= (error, w).Q1

P1 ��
{sendsucc,sendfail}

Q1

Figure 27: An example of PEPA model.

Table 4: Rules for deriving the complete action type set

Constant A
def
= P ~A(A) = ~A(P)

Prefix (α, r).P ~A
(
(α, r).P

)
= {α} ∪ ~A(P )

Choice P + Q ~A(P +Q) = ~A(P ) ∪ ~A(Q)

Cooperation P ��
L

Q ~A(P ��
L

Q) = ~A(P ) ∪ ~A(Q)

Hiding P\{L} ~A(P\{L}) = ~A(P )− L

follows:
~A(P1 ) = {sendsucc, sendfail, new-data, reset}
~A(P2 ) = {sendsucc, sendfail, new-data, reset}
~A(P3 ) = {sendsucc, sendfail, new-data, reset}
~A(Q1 ) = {sendsucc, sendfail, file-data, error}
~A(Q2 ) = {sendsucc, sendfail, file-data, error}
~A(Q3 ) = {sendsucc, sendfail, file-data, error}

(12.1)

The used definition set ~U of a component is the set of all the constants representing
local states which the component reaches during its evolution. This set can be calculated
according to the rules in Table 5. The used definition sets of the constants of the model
in Figure 27 are as follows:

~U(P1 ) = {P1 ,P2 ,P3}
~U(P2 ) = {P1 ,P2 ,P3}
~U(P3 ) = {P1 ,P2 ,P3}
~U(Q1 ) = {Q1 ,Q2 ,Q3}
~U(Q2 ) = {Q1 ,Q2 ,Q3}
~U(Q3 ) = {Q1 ,Q2 ,Q3}

(12.2)

Let us consider two processes which cooperate over a non-empty set of action types. A
local deadlock is a condition that may occur when one process cannot proceed because
it is in a state where it is synchronised on an activity which can never be performed by
its partner. The model in Figure 28 exhibits a local deadlock in the initial state, because
the action type α cannot be performed by either Q1 or Q2 . Local deadlock conditions
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Table 5: Rules for deriving the used definition set

Constant A
def
= P {P} ∪ ~U(P )

Prefix (α, r).P ~U(P )

Choice P + Q ~U(P ) ∪ ~U(Q)

Cooperation P ��
L

Q ~U(Q) ∪ ~U(R)

Hiding P\{L} ~U(P)

P1
def
= (α, r).P2

P2
def
= (γ, t).P1

Q1
def
= (β, s).Q2

Q2
def
= (ε, v).Q1

P1 ��
{α}

Q1

Figure 28: Example of a PEPA model with local deadlock

are critical errors which can be statically detected by examining the used definition set of
each cooperation of a model. In particular, a cooperation P ��

L
Q gives rise to a deadlock

on the action α if the following condition holds:

∃α ∈ L : α 6∈ ~A(P ) ∩ ~A(Q), α ∈ ~A(P ) ∪ ~A(Q) (12.3)

The tool emits warning messages if it discovers the existence of redundant definition of
action types in cooperation sets. A cooperation specifies a redundant action type α if the
following condition holds:

∃α ∈ L : α 6∈ ~A(P ) ∪ ~A(Q) (12.4)

The used definition set allows for the detection of non-guarded recursive definitions of
components. Figure 29 shows a model exhibiting such a condition. A subset of the infinite
labelled transition system of component P1 is:

P1
(γ,t)→ P2 ‖ P3 ‖ P3
(γ,t)→ P2 ‖ P3 ‖ P3 ‖ P3
(γ,t)→ P2 ‖ P3 ‖ P3 ‖ P3 ‖ P3
(γ,t)→ · · ·

This gives rise to an infinite-state Markov chain. We wish to work with finite-state Markov
chains so we reject definitions such as these as being ill-formed.

The used definition set is calculated for each process constant A
def
= P which defines

a cooperation (in the example, ~U(P1 ) would be calculated). Such a constant is not
well-formed if the following condition holds:

A ∈ ~U(A) (12.5)
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. . .

P1
def
= P2 ‖ P3

P2
def
= (γ, t).P1

. . .

Figure 29: Example of a PEPA model with non-guarded recursive definitions of compo-
nents

Table 6: Tabular representation of the state space of the example model

State Number First Component Second Component
1 P1 Q1
2 P3 Q3
3 P3 Q1
4 P1 Q3
5 P2 Q2
6 P2 Q1
7 P1 Q2

12.2.3 State Space Derivation

The PEPA Plug-in project provides a tool for state space derivation, i.e. the process of
extracting a Markov process from the labeled transition system of the PEPA model. The
output of the tool is the state space and the corresponding infinitesimal generator of the
Markov process. The state space can be navigated and filtered via the State Space view.
The state space is represented in a tabular form: the first column is the state number;
then follow as many columns as the number of top-level components of the system. The
tabular representation of the state space of the model in Figure 27 would be as in Table 6.

A variety of filter options is available in order to narrow down the number of states
shown in the view. The user can exclude/include states which have a sequential component
in a particular local state or states which contain unnamed processes (i.e., prefixes). More
precise filtering can be obtained by means of a pattern language which allows the user
to match local states which contain given top-level component local states at specified
positions. The components are separated by vertical bars and a wild-card is used to
disregard positions which are of no interest. According to the example in Figure 27, the
pattern P1 | * would match the states whose first top-level component is in state P1,
thus displaying states 1,4,7; the pattern * | Q2 would match states 5,7. For a more
concise description of the filter, the generic pattern P is considered as an abbreviation of
P | * | ... | *.

Additionally, the plug-in provides the Single Step Navigator, a tool for walking over
the state space. This is particularly useful for debugging purposes. It consists of two
tables containing the list of incoming and outgoing states. The sequential components
which cause the transition to be performed are highlighted and an option allows the user
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to make filtered states not walkable.

12.2.4 Steady-state Analysis

A model whose state space is derived successfully is amenable to performance analysis
which can be carried out by calculating the steady-state probability distribution of the
CTMC over the state space. The user interface provides a dialogue wizard which guides
the user through this process. The wizard is a graphical interface to the MTJ toolkit, the
library used for the numerical solution of the Markov chain, allowing the user to choose
and tune the parameters of an extensive selection of solvers and preconditioners.

After the model is successfully solved, the State Space view is updated with information
on the obtained steady-state probability distribution which is shown on an additional
column. Additional analysis can be carried out via the Performance Evaluation view,
which permits throughput and utilisation analysis.

In order to better illustrate these metrics, let us consider the model in Figure 30 con-
sisting of one single sequential component evolving through three local states. With rates
r = 2, s = 1, t = 1 the utilisation figures are P1 = 0.2, P2 = 0.4, P3 = 0.4 whereas
throughput is 0.4 for each action.

P1
def
= (start, r).P2

P2
def
= (run, s).P3

P3
def
= (stop, t).P1

Figure 30: A tiny PEPA model with one sequential component
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