
15 Tackling state space explosion in PEPA models

In this lecture note we consider different approaches that are used to try to overcome the
state space explosion problem in Markovian based models, using PEPA as an example.

Like all discrete state based modelling techniques, stochastic process algebra models
are subject to the problem of state space explosion — the generated models may be
intractable because of their size. A variety of techniques have been proposed for tackling
this problem in the context of stochastic process algebra. Below we briefly discuss three
of them:

• state space reduction via aggregation

• stochastic simulation over the state space

• fluid approximation of the state space.

15.1 State space reduction via aggregation

The state space explosion problem arises because although the compositionality of SPA
can greatly aid model construction, in general the compositionality does not assist in
the model solution and the resulting models may be too large to solve. This has led
to research into how model simplification and aggregation techniques can be applied in
the process algebra setting. Many such techniques are known in the context of Markov
processes but are based on conditions expressed in terms of the generator matrix. This
can mean that you have to construct the whole matrix before you can recognise that it
has a property that allows you to decompose it. Moreover application of these techniques
often relies on the expertise of the modeller. The challenge for SPA has been to define
such model manipulation techniques in the context of the process algebra, in such a way
that it can subsequently be applied automatically. Some significant results have been
achieved in this area through the use of equivalence relations which provide the basis for
comparing and manipulating models within a formal framework. Here we just consider a
simple approach to model aggregation.

15.1.1 Model aggregation

The basic idea of model aggregation is that you partition the state space of the model,
grouping together states that are in some way similar to each other. Formally this can
be expressed in terms of an equivalence relation, so that you are grouping together states
that have equivalent behaviour. Each partition is called a macro-state, since it represents
one or more of the original states in the state space. The aggregated process is then a new
stochastic process which operates only over the macro-states.

This approach has much intuitive appeal since it is conceptually simple and can lead
to dramatic reduction in the size of the state. However, in general the new stochastic
process that is created may bear little relationship to the original, and in particular, may
no longer be a Markov process. In order to avoid this problem the partition has to satisfy
a condition called lumpability. The technical details of lumpability are beyond the scope
of this course, but you need to be aware that without this condition aggregation may
provide a very poor approximation.

Performance Modelling LN-15

Figure 31: Schematic view of aggregation

15.1.2 State representation

The basis of aggregation is the observation that it can be sufficient to consider the be-
haviour of one element within an equivalence class of elements who all behave in the same
way. The simplest way in which such equivalence classes arise is if we have repeated
instances of identical components within the model. For this case, for PEPA models we
have developed an automatic method which generates the Markov process corresponding
to the equivalence classes, rather than the individual states, on-the-fly.

In order to apply this approach we must switch our state representation from being
the syntactic terms of the PEPA process to an alternative state representation. In the
new representation we simply count the number of components which are in each of their
local states or derivatives. If there is only one instance of each type of component then
this does not gain us anything, but when there are multiple instances the gain can be
considerable.

In the numerical vector form there is one entry for each local derivative of each type of
component in the model. The entries in the vector are no longer syntactic terms repre-
senting the local derivative of the sequential component, but the number of components
currently exhibiting this local derivative. This is essentially the same as the marking used
to capture the state of a SPN model. Because of the syntactic nature of SPA models the
identity of components is captured by default by their position in the syntactic expres-
sion. In this state representation we instead treat the components as identity-less, just
like tokens in an SPN.

To illustrate this new state representation consider the small example defined below,
consisting of interacting processors and resources. For simplicity here we assume that
both the processors and the resources have the same apparent rate for task1

Processor0
def
= (task1, r1).Processor1

Processor1
def
= (task2, r2).Processor0

Resource0
def
= (task1, r1).Resource1

Resource1
def
= (reset, s).Resource0

(Resource0 ‖ Resource0) ��
{task1}

(Processor0 ‖ Processor0)

In the numerical vector form, shown in Figure 32, the initial state is (2, 0, 2, 0) where
the entries in the vector are counting the number of Resource0, Resource1, Processor0,
Processor1 local derivatives respectively, exhibited in the current state. If we consider the

101

Performance Modelling LN-15

2(task2, r)

2(task2, 2r)

2(task2, 2r)
1(task1, r)

2(task2, 2r)

2
(task2, r)

1(task1, r)

(2, 0, 0, 2) (1, 1, 1, 1)

(0, 2, 0, 2)

(2, 0, 2, 0)

(2, 0, 1, 1)

(1, 1, 0, 2) (0, 2, 1, 1)

(1, 1, 2, 0)

(0, 2, 2, 0)

(reset, s)

(reset, s)

(reset, s)

(reset, 2s)

(reset, 2s)

(reset, 2s)

1

2(task1, r)
1

(task1, 2r)

(task2, r)

Figure 32: Numerical vector form state representation

state (1, 1, 1, 1) it is representing four distinct syntactic states

(Resource0,Resource1,Processor0,Processor1)
(Resource1,Resource0,Processor0,Processor1)
(Resource0,Resource1,Processor1,Processor0)
(Resource1,Resource0,Processor1,Processor0)

It is clear here to see that all the four syntactic states will have exactly the same
behaviour in terms of which activities they are able to do and the rates at which they will
do them. In this case, it follows very straightforwardly that the condition of lumpability
is satisfied and the stochastic process based on the numerical vector form is a Markov
process. The lumpability condition also guarantees that the solution of the aggregated
process (i.e. that based on the numerical vector form) is exact, in the sense that the
steady state probability that it calculates for being in a macro-state is exactly the same
as the steady state probability of the corresponding original states in the original Markov
process.

15.2 Stochastic simulation over the state space

The aggregated Markov process underlying a PEPA model can be much more compact
than the direct representation of the derivation graph in the naive Markov process. Nev-
ertheless it can still rapidly exceed the capabilities of current numerical solution tools,
especially in circumstances when there are large numbers of instances of components
within the model. In this situation it may be possible to switch to alternative means
of analysis to derive performance measures. For example, stochastic simulation may be
used to study the system, rather than numerical solution to find the probability distri-
bution. As we saw in a previous lecture note, this has the disadvantage that each run of
the simulation generates only a single trajectory within the state space, rather than the
consideration of all possible behaviours which is encompassed in the numerical solution.
Thus simulation necessitates multiple runs of the model in order to derive statistically
significant results. However in situations when numerical solution becomes infeasible be-
cause the state space is too large, simulation’s ability to avoid explicit representation of
the entire state space is invaluable.

102

Performance Modelling LN-15

When we use stochastic simulation as a means to solve large PEPA models we can
take advantage of the fact that the stochastic process underlying the model is a Markov
process. The memoryless property of the Markov process means that we do not need to
maintain an event list. The definition of a Markov process and the memoryless property
means that in order to know what might happen next we only need to know the current
state and the possible activities in that state. In this case the simulation algorithm is
particularly simple and relatively efficient. In the PEPA Plug-in for Eclipse tool the
stochastic simulation is based on the numerical vector form rather than the syntactic
states.

To see how the simulation algorithm works consider a PEPA model which enables a
number of possible activities (α1, r1), (α2, r2), . . . , (αn, rn). Using the superposition prin-
ciple of exponential distributions, we know that the time until something happens is the
minimum of the exponential distributions governing each of the activities, which is itself
an exponential distribution with rate r1 + r2 + · · ·+ rn. Thus we make one sample from
the random number distribution and use it to create a random variate sample for the
exponential distribution with parameter r1 + r2 + · · · + rn. Simulation time is advanced
to the current time plus the value of this sample.

Next we draw a second random number sample and use it to select which of the activities
has been completed. Let R = r1 + r2 + · · ·+ rn and let ρ be the sample from the random
number generator. If ρ ≤ r1

R
then perform activity α1; if r1

R
< ρ ≤ r1+r2

R
, perform activity

α2; etc. Performing the activity will lead to a new state of the PEPA model and the
algorithm can be applied again considering the activities that are enabled in that state,
(β1, s1), (β2, s2), . . . , (βm, sm), etc.

Thus we need only draw two random numbers for each step of the simulation algorithm:

• the first determines the delay until the next activity completes,

• the second determines which activity that will be.

Stochastic simulation is one of the options on offer in the PEPA Plug-in for Eclipse
under the Scalable analysis option, or if you want to produce graphs you should use the
Time Series Wizard to help you. Figure 33 shows the results of a simulation analysis of
the simple web service example from Lecture Note 11, with many more copies of both the
application and the web service.

15.3 Fluid Approximation

Recent work on PEPA has developed another form of approximation for PEPA models
based on the internal representation in numerical vector form, which is particularly suit-
able for systems which are comprised of multiple instances of components. This fluid
approximation is capable of handling models which are many orders of magnitude larger
than what can be solved numerically and is significantly more efficient than stochastic
simulation. The crucial step in the approximation is to treat the state variable, the nu-
merical vector form, as being subject to continuous rather than discrete change. Once
this step is taken the evolution of the system through the state space can be represented
by a set of ordinary differential equations (ODEs).

103

Performance Modelling LN-15

Figure 33: The results of a simulation analysis of the simple web service example from
Lecture Note 11, with many more copies of both the application and the web service.

104

Performance Modelling LN-15

This shift from the discrete, stochastic representation of a Markov process to the con-
tinuous, deterministic representation of a set of ODEs may seem surprising at first. The
use of continuous variables is clearly an approximation since a variable of the system, for
example the number of idle servers, or the number of occupied threads, will always be a
natural number in reality. The events which impact on a variable such as the number of
idle servers (e.g. the arrival of a customer) cause a discrete change in the system. In fact
the effect of an activity is at most to increment or decrement elements of the numerical
vector in steps of one. Nevertheless, when there are large numbers of instances of entities
in the system, these changes are relatively small and we can approximate the behaviour
by considering the movement between states to be continuous, rather than occurring in
discontinuous jumps. Moreover when there are many, many components in the system the
events will be occurring very frequently, further justifying the continuous approximation
and the relative impact of the events mean that treating these changes as continuous is
justified. In PEPA models with many instances of components the variability within the
system grows less and the stochastic system tends to behaviour more and more like its
average, or expected, behaviour. This is exactly the behaviour that is captured by the
set of ODEs.

The numerical vector form of state representation is an intermediate step to achieving
the fluid approximation. Considering these states of the process and the activities which
are enabled, and the states they lead to, we are able to construct an activity matrix which
records the impact of each activity type on the number of each component type. From
this the appropriate system of ODEs is derived.

The sets of ODEs generated are rarely amenable to analytical solution but they are
readily solved using numerical integration. Such analysis produces a time series of values
for each of the continuous variables. Related to the conventional performance analyses
conducted based on numerical solution of Markov processes these values correspond to
the number of instances of each of the local states of the components of the model, which
can be regarded as a form of utilisation. However, we have also been able to develop
rigorous methods to derive more sophisticated performance indices such as throughput
and average response time, from the numerical integration of the ODEs, although these
will not be discussed here.

15.3.1 Small example revisited

Let us consider again the small example considered earlier, assuming now that there are
large numbers of processors and resources:

Processor0
def
= (task1, r1).Processor1

Processor1
def
= (task2, r2).Processor0

Resource0
def
= (task1, r1).Resource1

Resource1
def
= (reset, s).Resource0

Processor0[NP] ��
{task1}

Resource0[NR]

Let x1 denote the number of Processor0 entities, x2 the number of Processor1 entities,

105

Performance Modelling LN-15

task1 task2 reset
Processor0 −1 +1 0 x1
Processor1 +1 −1 0 x2
Resource0 −1 0 +1 x3
Resource1 +1 0 −1 x4

Figure 34: Activity matrix for the simple Processor-Resource model

x3 the number of Res0 entities and x4 the number of Resource1 entities. The activity
matrix corresponding the component definitions is shown in Figure 34.

The activity matrix has a row for each local state and a column for each action type in
the model. The entry in the (i, j)-th position in the matrix can be −1, 0, or 1.

• If the entry is -1 it means that this local state undertakes an activity of that type
and so when the activity is completed there will be one less instance of this local
state.

• If the entry is 0 this local state is not involved in this activity.

• If the entry is 1 it means that this local state is produced when the activity of that
type is completed, so there will be one more instance of this local state.

From the matrix, we derive each differential equation in turn. For state variable xi,
consider row i. Each non-zero entry in the row will result in one term within the equation.
The negative entries in the column will show which other local states are involved in this
activity.

dx1(t)

dt
= −r1 min(x1(t), x3(t)) + r2x2(t)

dx2(t)

dt
= r1 min(x1(t), x3(t))− r2x2(t)

dx3(t)

dt
= −r1 min(x1(t), x3(t)) + sx4(t)

dx4(t)

dt
= x1 min(x1(t), x3(t))− sx4(t)

Note that the form of the system of ODEs is independent of the number of components
included in the initial configuration of the model. The only impact of changing the number
of instances of each component type is to alter the initial conditions. Thus, if there are
initially 1024 processors, all starting in state Processor0 and 512 resources, all of which
start in state Resource0, the initial conditions will be:

x1(0) = 1024 x2(0) = 0 x3(0) = 512 x4(0) = 0

106

Performance Modelling LN-15

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100

Processor0
Processor1
Resource0
Resource1

Figure 35: Graph showing the changing numbers of copies of Processor0, Processor1,
Resource0 and Resource1 as a function of time, obtained by numerically integrating the
differential equations for this system. The values of the rates were r1 = 0.125, r2 = 0.003
and s = 0.1.

Numerically integrating the differential equations for this system to generate a time series
plot for the first 100 seconds of the system evolution starting from the above initial value
problem produces the graph shown in Figure 35.

Jane Hillston 〈Jane.Hillston@ed.ac.uk〉. November 12, 2012.

107

