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Quantitative Analysis

Quantitative analysis analysis seeks to associate behaviours of
systems with quantified values.

Examples include performance analysis, dependability analysis,
availability analysis, etc. of computer and communication systems,
and dynamic study of biological processes in systems biology,
capacity planning in manufacturing systems, ....

It is sometimes termed non-functional analysis to emphasise that,
unlike functional analysis ensuring the correct behaviour of the
system is not the primary goal.
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Quantitative Modelling: Motivation

Quality of Service issues

Can the server maintain
reasonable response
times?
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Quantitative Modelling: Motivation

Scalability issues

How many times do we
have to replicate this
service to support all of
the subscribers?
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Quantitative Modelling: Motivation
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Scalability issues

Will the server withstand
a distributed denial of
service attack?
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Quantitative Modelling: Motivation

Service-level agreements

What percentage of
downloads do complete
within the time we
advertised?
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Quantitative Modelling: Motivation

............

Mobile Telephone Antenna

System Configuration

How many frequencies do
you need to keep blocking
probabilities low?
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Quantitative Modelling: Motivation

System Tuning

What speed of conveyor belt
will minimize robot idle time
and maximize throughput
whilst avoiding lost widgets?
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Performance Analysis

Performance modelling is concerned with the dynamic behaviour of
systems and quantified assessment of that behaviour.

There are often conflicting interests at play:

Users typically want to optimise external measurements of the
dynamics such as response time (as small as possible),
throughput (as high as possible) or blocking probability
(preferably zero);

In contrast, system managers may seek to optimize internal
measurements of the dynamics such as utilisation (reasonably
high, but not too high), idle time (as small as possible) or
failure rates (as low as possible).
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Key notions

A model can be constructed to represent some aspect of the
dynamic behaviour of a system.

Once constructed, such a model becomes a tool with which we can
investigate the behaviour of the system.
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Modelling computer systems: the challenges

Physical distance

Network latency

Partial failures

Server may be down
Routers may be down

Scale

Workload characterisation

Resource sharing

Network contention
CPU load
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Modelling computer systems: the challenges

Time What representation of time will we use?

Randomness What kind of random number distributions will we
use?

Probability How can we have probabilities in the model without
uncertainty in the results?

Scale How can we escape the state-space explosion
problem?

Percentages What can it mean to have a fraction of a process?
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Operational Laws

Operational laws are simple equations may be regarded as a
very abstract model of the average behaviour of almost any
system, based on the operational view of the system.

The laws are very general and make almost no assumptions
about the behaviour of the random variables characterising
the system.

Another advantage of the laws is their simplicity: this means
that they can be applied quickly without detailed knowledge.
We will use them sometimes to derive further data from the
output observed from models.
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Observable variables

REQUESTS

ARRIVE

REQUESTS

SATISFIEDSYSTEM

Operational laws are based on observable variables — values which
we could derive from watching a system over a finite period of time.

We assume that the system receives requests from its environment.

Each request generates a job or customer within the system.

When the job has been processed the system responds to the
environment with the completion of the corresponding request.
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Observations and measurements

If we observed such an abstract system we might measure the
following quantities:

T , the length of time we observe the system;

A, the number of request arrivals we observe;

C , the number of request completions we observe;

B, the total amount of time during which the system is
busy (B ≤ T );

N, the average number of jobs in the system.



Operational laws 36/ 208

Observations and measurements

If we observed such an abstract system we might measure the
following quantities:

T , the length of time we observe the system;

A, the number of request arrivals we observe;

C , the number of request completions we observe;

B, the total amount of time during which the system is
busy (B ≤ T );

N, the average number of jobs in the system.



Operational laws 37/ 208

Observations and measurements

If we observed such an abstract system we might measure the
following quantities:

T , the length of time we observe the system;

A, the number of request arrivals we observe;

C , the number of request completions we observe;

B, the total amount of time during which the system is
busy (B ≤ T );

N, the average number of jobs in the system.



Operational laws 38/ 208

Observations and measurements

If we observed such an abstract system we might measure the
following quantities:

T , the length of time we observe the system;

A, the number of request arrivals we observe;

C , the number of request completions we observe;

B, the total amount of time during which the system is
busy (B ≤ T );

N, the average number of jobs in the system.



Operational laws 39/ 208

Observations and measurements

If we observed such an abstract system we might measure the
following quantities:

T , the length of time we observe the system;

A, the number of request arrivals we observe;

C , the number of request completions we observe;

B, the total amount of time during which the system is
busy (B ≤ T );

N, the average number of jobs in the system.



Operational laws 40/ 208

Four important quantities

From these observed values we can derive the following four
important quantities:

λ = A/T , the arrival rate;

X = C/T , the throughput or completion rate,

U = B/T , the utilisation;

S = B/C , the mean service time per completed job.
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Job flow balance

We will assume that the system is job flow balanced. This
means that the number of arrivals is equal to the number of
completions during an observation period, i.e. A = C .

This is a testable assumption because an analyst can always
test whether the assumption holds.

Note that if the system is job flow balanced the arrival rate
will be the same as the completion rate, that is, λ = X .
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Little’s Law

Little’s Law

N = XW

The average number of jobs in a system is equal to the product of
the throughput of the system and the average time spent in that
system by a job.
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Example

Consider a disk that serves 40 requests/second (X = 40) and
suppose that on average there are 4 requests present in the disk
system (waiting to be served or in service) (N = 4).

Little’s law tells us that the average time spent at the disk by a
request must be 4/40 = 0.1 seconds.

If we know that each request requires 0.0225 seconds of disk
service we can then deduce that the average queueing time is
0.0775 seconds.
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Subsystems within Systems

REQUESTS

ARRIVE

REQUESTS

SATISFIED

SYSTEM

SUBSYSTEM

SUBSYSTEM

SUBSYSTEM

SUBSYSTEM

A system may be regarded as being made up of a number of
devices or resources.

Each of these may be treated as a system in its own right
from the perspective of operational laws.
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Subsystems within Systems

REQUESTS

ARRIVE
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SATISFIED

SYSTEM

SUBSYSTEM

SUBSYSTEM

SUBSYSTEM

SUBSYSTEM

An external request generates a job within the system; this job
may then circulate between the resources until all necessary
processing has been done; as it arrives at each resource it is
treated as a request, generating a job internal to that resource.
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Visit count

REQUESTS

ARRIVE
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SATISFIED

SYSTEM
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SUBSYSTEM

In an observation interval we can count not only completions
external to the system, but also the number of completions at each
resource within the system.
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Visit count

REQUESTS

ARRIVE
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1
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V  = 24

1

SYSTEM
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We define the visit count, Vi , of the ith resource to be the ratio of
the number of completions at that resource to the number of
system completions Vi ≡ Ci/C .
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Visit count: example

For example, if, during an observation interval, we measure
10 system completions and 150 completions at a specific disk, then
on the average each system-level request requires
15 disk operations.
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Forced Flow Law

The forced flow law captures the relationship between the different
components within a system. It states that the throughputs or
flows, in all parts of a system must be proportional to one another.

Forced Flow Law

Xi = XVi

The throughput at the ith resource is equal to the product of the
throughput of the system and the visit count at that resource.
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Example

Consider a robotic workcell within a computerised
manufacturing system which processes widgets.

Suppose that processing each widget requires 4 accesses to
the lathe and 2 accesses to the press.

We know that the lathe processes 8 widgets in a minute and
we want to know the throughput of the press.

The throughput of the workcell will be proportional to the
lathe throughput, i.e. X = Xlathe/Vlathe = 8/4 = 2.

The throughput of the press will be
Xpress = X × Vpress = 2× 2 = 4.

Thus the press throughput is 4 widgets per minute.
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Interactive Response Time Law

Back when most processing was done on shared mainframes,
think time, Z , was quite literally the length of time that a
programmer spent thinking before submitting another job.

More generally in interactive systems, jobs spend time in the
system not engaged in processing, or waiting for processing:
this may be because of interaction with a human user, or may
be for some other reason.

The key feature of such a system is that the residence time
can no longer be taken as a true reflection of the response
time of the system.



Operational laws 67/ 208

Interactive Response Time Law

Back when most processing was done on shared mainframes,
think time, Z , was quite literally the length of time that a
programmer spent thinking before submitting another job.

More generally in interactive systems, jobs spend time in the
system not engaged in processing, or waiting for processing:
this may be because of interaction with a human user, or may
be for some other reason.

The key feature of such a system is that the residence time
can no longer be taken as a true reflection of the response
time of the system.



Operational laws 68/ 208

Interactive Response Time Law

Back when most processing was done on shared mainframes,
think time, Z , was quite literally the length of time that a
programmer spent thinking before submitting another job.

More generally in interactive systems, jobs spend time in the
system not engaged in processing, or waiting for processing:
this may be because of interaction with a human user, or may
be for some other reason.

The key feature of such a system is that the residence time
can no longer be taken as a true reflection of the response
time of the system.



Operational laws 69/ 208

Example

For example, if we are studying a cluster of workstations with
a central file server to investigate the load on the file server,
the think time might represent the average time that each
workstation spends processing locally without access to the
file server.

At the end of this non-processing period the job generates a
fresh request.
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Think time, residence time, response time

The think time represents the time between processing being
completed and the job becoming available as a request again.

Thus the residence time of the job, as calculated by Little’s
Law as the time from arrival to completion, is greater than
the system’s response time.
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Interactive Response Time Law

The interactive response time law reflects this: it calculates the
response time, R as follows:

Interactive Response Time Law

R = N/X − Z

The response time in an interactive system is the residence time
minus the think time.

Note that if the think time is zero, Z = 0 and R = W , then the
interactive response time law simply becomes Little’s Law.
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Interactive Response Time Law: Example

Suppose that the library catalogue system has 64 interactive
users connected via Browsers, that the average think time is
30 seconds, and that system throughput is 2
interactions/second.

Then the interactive response time law tells us that the
response time must be 64/2− 30 = 2 seconds.
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The discrete event view

In general we wish to have a more detailed (mechanistic) view of
the system under study than that presented by the operational
laws. In this course we will consider discrete event systems.

The state of the system is characterised by variables which take
distinct values and which change by discrete events, i.e. at a
distinct time something happens within the system which results in
a change in one or more of the state variables.
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The discrete event view: example

We might be interested in the number of nodes in a communication
network which are currently waiting to send a message, N.

If a node, which was not previously waiting, generates a
message and is now waiting to send then N → N + 1, or

If a node, which was previously waiting, successfully transmits
its message then N → N − 1.
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Discrete time vs. Continuous time

Within discrete event systems there is a distinction between a
discrete time representation and a continuous time representation:

Discrete time: such models only consider the system at
predetermined moments in time, which are typically
evenly spaced, eg. at each clock “tick”.

Continuous time: such models consider the system at the time of
each event so the time parameter in such models is
conceptually continuous.

At levels of abstraction above the hardware clock continuous time
models are generally appropriate for computer and communication
systems.
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Quantitative modelling

When systems are modelled to verify their functional behaviour
(correctness), all definite values are abstracted away — qualitative
modelling.

In contrast, performance modelling is quantitative modelling as we
must take into account explicit values for time (latency, service
time etc.) and probability (choices, alternative outcomes, mixed
workload).

Probability will be used to represent randomness (e.g. from human
users) but also as an abstraction over unknown values (e.g. service
times).
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Random experiments and events

To apply probability theory to the process under study, we
view it as a random experiment.

The sample space of a random experiment is the set of all
individual outcomes of the experiment.

These individual outcomes are also called sample points or
elementary events.

An event is a subset of a sample space.



CTMC-based performance modelling 89/ 208

Random experiments and events

To apply probability theory to the process under study, we
view it as a random experiment.

The sample space of a random experiment is the set of all
individual outcomes of the experiment.

These individual outcomes are also called sample points or
elementary events.

An event is a subset of a sample space.



CTMC-based performance modelling 90/ 208

Random experiments and events

To apply probability theory to the process under study, we
view it as a random experiment.

The sample space of a random experiment is the set of all
individual outcomes of the experiment.

These individual outcomes are also called sample points or
elementary events.

An event is a subset of a sample space.



CTMC-based performance modelling 91/ 208

Random experiments and events

To apply probability theory to the process under study, we
view it as a random experiment.

The sample space of a random experiment is the set of all
individual outcomes of the experiment.

These individual outcomes are also called sample points or
elementary events.

An event is a subset of a sample space.



CTMC-based performance modelling 92/ 208

Random variables

We are interested in the dynamics of a system as events happen
over time.

A function which associates a (real-valued) number with the
outcome of an experiment is known as a random variable.

Formally, a random variable X is a real-valued function defined on
a sample space Ω.
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Measurable functions

If X is a random variable, and x is a real number, we write X ≤ x
for the event

{ω : ω ∈ Ω and X (ω) ≤ x }

and we write X = x for the event

{ω : ω ∈ Ω and X (ω) = x }

We require that for a random variable X , the set X ≤ x is an event
for each real x . This is necessary so that probability calculations
can be made. A function having this property is said to be a
measurable function or measurable in the Borel sense.
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Distribution function

For each random variable X we define its distribution function F
for each real x by

F (x) = Pr[X ≤ x ]

We associate another function p(·), called the probability mass
function, with X (pmf), for each x :

p(x) = Pr[X = x ]

A random variable X is continuous if p(x) = 0 for all real x .

(If X is a continuous random variable, then X can assume
infinitely many values, and so it is reasonable that the probability
of its assuming any specific value we choose beforehand is zero.)
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Exponential random variables, distribution function

The random variable X is said to be an exponential random
variable with parameter λ (λ > 0) or to have an exponential
distribution with parameter λ if it has the distribution function

F (x) =

{
1− e−λx for x > 0
0 for x ≤ 0

Some authors call this distribution the negative exponential
distribution.
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The random variable X is said to be an exponential random
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Exponential random variables, density function

The density function f = dF/dx is given by

f (x) =

{
λe−λx if x > 0
0 if x ≤ 0
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Mean, or expected value

If X is a continuous random variable with density function f (·), we
define the mean or expected value of X , µ = E [X ] by

µ = E [X ] =

∫ ∞
−∞

xf (x)dx

If X is a discrete random variable with probability mass function
p(·), we define the mean or expected value of X ∈ S , µ = E [X ] by

E (X ) =
∑
x∈S

xp(x)
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Mean, or expected value, of the exponential distribution

Suppose X has an exponential distribution with parameter λ > 0.

Then

µ = E [X ] =

∫ ∞
−∞

xλe−λxdx =
1

λ
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Exponential inter-event time distribution

The time interval between successive events can also be deduced.

Let F (t) be the distribution function of T , the time between
events. Consider Pr(T > t) = 1− F (t):

Pr(T > t) = Pr(No events in an interval of length t)

= 1− F (t)

= 1− (1− e−λt)

= e−λt
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Memoryless property of the exponential distribution

The memoryless property of the exponential distribution is so
called because the time to the next event is independent of when
the last event occurred.
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Memoryless property of the exponential distribution

Suppose that the last event was at time 0. What is the probability
that the next event will be after t + s, given that time t has
elapsed since the last event, and no events have occurred?

Pr(T > t + s | T > t) =
Pr(T > t + s and T > t)

Pr(T > t)

=
e−λ(t+s)

e−λt

= e−λs

This value is independent of t (and so the time already spent has
not been remembered).
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Continuous-Time Markov Chains (CTMCs)

A Markov process with discrete state space and discrete index set
is called a Markov chain. The future behaviour of a Markov chain
depends only on its current state, and not on how that state was
reached. This is the Markov, or memoryless, property.

Pr(X (tn+1) = xn+1 | X (tn) = xn, . . . ,X (t0) = x0)
= Pr(X (tn+1) = xn+1 | X (tn) = xn)
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Performance Modelling using CTMC

SYSTEM MARKOV Q = 
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Performance Modelling using CTMC
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Performance Modelling using CTMC

DIAGRAM
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q(j,l)
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A negative exponentially distributed duration is associated with each transition.
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Performance Modelling using CTMC

MARKOV Q = 

.....
.....

.....
.....

.....

..........
.....

PROCESS
DIAGRAM

TRANSITION
STATE

sm

s i
s

k

sl

sj

DIAGRAM
TRANSITION

STATE

sm

s i

DIAGRAM
TRANSITION

STATE

q(i,j) q(j,k)

q(j,l)

q(k,l)
q(m,j)

q(m,i)

these parameters form the entries of the infinitesimal generator matrix Q
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Performance Modelling using CTMC
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In steady state the probability flux out of a state is balanced by the flux in.

= EQUILIBRIUM PROBABILITY
DISTRIBUTIONp , p , p ,  , p

N21 3
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Performance Modelling using CTMC
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Performance Modelling using CTMC
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Performance Modelling using CTMC
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e.g. throughput, response time, utilisation

e.g. queueing networks and
stochastic Petri nets

= EQUILIBRIUM PROBABILITY
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PERFORMANCE MEASURES

HIGH−LEVEL
MODELLING FORMALISM
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The PEPA project

The PEPA project started in Edinburgh in 1991.

It was motivated by problems encountered when carrying out
performance analysis of large computer and communication
systems, based on numerical analysis of Markov processes.

Process algebras offered a compositional description technique
supported by apparatus for formal reasoning.

Performance Evaluation Process Algebra (PEPA) sought to
address these problems by the introduction of a suitable
process algebra.

We have sought to investigate and exploit the interplay
between the process algebra and the continuous time Markov
chain (CTMC).
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Performance Evaluation Process Algebra

PEPA (Performance Evaluation Process Algebra) is a
high-level modelling language for distributed systems. It can
be used to develop models of existing systems (abstraction) or
designs for proposed ones (specification).

PEPA can capture performance information in a process
algebra setting. It is a stochastic process algebra.

For technical details the definitive reference is A
Compositional Approach to Performance Modelling, Hillston,
Cambridge University Press, 1996.
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Strengths of stochastic process algebras

SPAs have strengths in the areas of semantic definition, inherent
compositionality and the existence of important equivalence
relations (including bisimulation). This relation provides the basis
for aggregation of PEPA models.
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Terminology

The components in a PEPA model engage, cooperatively or
individually, in activities.

Each activity has an action type which corresponds to the actions
of the system being modelled.

To represent unimportant or unknown actions there is a
distinguished action type, τ .
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Quantitative aspects

Every activity in PEPA has an associated activity rate which may
be any positive real number, or the distinguished symbol “>”,
meaning unspecified, read as ‘top’.

Components and activities are primitives. PEPA also provides a
small set of combinators.
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PEPA syntax

S ::= (α, r).S (prefix)

| S1 + S2 (choice)

| X (variable)

C ::= C1
��
L

C2 (cooperation)

| C / L (hiding)

| S (sequential)
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PEPA: informal semantics (sequential sublanguage)

(α, r).S
The activity (α, r) takes time ∆t (drawn from the
exponential distribution with parameter r).

S1 + S2
In this choice either S1 or S2 will complete an
activity first. The other is discarded.
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PEPA: informal semantics (combinators)

C1
��
L

C2

All activities of C1 and C2 with types in L are
shared: others remain individual.
NOTATION: write C1 ‖ C2 if L is empty.

C / L
Activities of C with types in L are hidden (τ type
activities) to be thought of as internal delays.
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Expansion Law

P ��
L
Q =

∑
{(α, r).(P ′ ��

L
Q) : P

(α,r)−→ P ′; α /∈ L} +

∑
{(α, r).(P ��

L
Q ′) : Q

(α,r)−→ Q ′; α /∈ L} +

∑
{(α, r).(P ′ ��

L
Q ′) : P

(α,r1)−→ P ′; Q
(α,r2)−→ Q ′; α ∈ L}
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Example: M/M/1/N/N queue

Arrival0
def
= (accept, λ).Arrival1

Arrival i
def
= (accept, λ).Arrival i + 1 + (serve,>).Arrival i − 1

(0 < i < N)
ArrivalN

def
= (serve,>).ArrivalN − 1

Server
def
= (serve, µ).Server



PEPA 144/ 208

Example: M/M/1/N/N queue

Queue0 Queue1

� �
� �N

(accept, λ)

H

(serve, µ)

�
�

I
(accept, λ)

N

(serve, µ)

. . .

�(accept, λ)

�
(serve, µ)

J

H
QueueN − 1

� �
� �

H

(accept, λ)

N

(serve, µ)

QueueN

Queue i ≡ Arrival i ��
{serve}

Server
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Synchronisation

What should be the impact of synchronisation on rate? There are
many possibilities.

Restrict synchronisations to have one active partner and one
passive partner.

Choose a function which satisfies a small number of algebraic
properties.

Have the rate limited by the slowest participant in terms of
apparent rate. This is the approach adopted by PEPA.
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Bounded capacity

Within the cooperation framework, PEPA assumes bounded
capacity: that is, a component cannot be made to perform an
activity faster by cooperation, so the rate of a shared activity is the
minimum of the apparent rates of the activity in the cooperating
components.
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PEPA activities and rates

When enabled, an activity, a = (α, λ), will delay for a period
determined by its associated distribution function, i.e. the
probability that the activity a happens within a period of time of
length t is Fa(t) = 1− e−λt .
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PEPA activities and rates

We can think of this as the activity setting a timer whenever
it becomes enabled.

The time allocated to the timer is determined by the rate of
the activity.

If several activities are enabled at the same time each will
have its own associated timer.

When the first timer finishes, that activity takes place—the
activity is said to complete or succeed.

This means that the activity is considered to “happen”: an
external observer will witness the event of activity of type α.

An activity may be preempted, or aborted, if another one
completes first.
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PEPA and Markov processes

In a PEPA model if we define the stochastic process X (t), such
that X (t) = C i indicates that the system behaves as component
C i at time t, then X (t) is a Markov process which can be
characterised by a matrix, QQQ.

A stationary or equilibrium probability distribution, π(·), exists for
every time-homogeneous irreducible Markov process whose states
are all positive-recurrent.

This distribution is found by solving the global balance equation

πQQQ = 0

subject to the normalisation condition∑
π(C i ) = 1.
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PEPA and time

All PEPA models are time-homogeneous since all activities are
time-homogeneous: the rate and type of activities enabled by a
component are independent of time.
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PEPA and irreducibility and positive-recurrence

The other conditions, irreducibility and positive-recurrence, are
easily expressed in terms of the derivation graph of the PEPA
model.

We only consider PEPA models with a finite number of states so if
the model is irreducible then all states must be positive-recurrent
i.e. the derivation graph is strongly connected.

In terms of the PEPA model this means that all behaviours of the
system must be recurrent; in particular, for every choice, whichever
path is chosen it must eventually return to the point where the
choice can be made again, possibly with a different outcome.
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Upgrading a PC LAN

Recall we wish to determine the mean waiting time for data
packets at a PC connected to a local area network, operating as a
token ring.

The transmission medium supports no more than one transmission
at any given time. To resolve conflicts, a token is passed round the
network from one node to another in round robin order.

A node can transmit, only whilst it holds the token.
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Upgrading a PC LAN

There are currently four PCs (or similar devices) connected to the
LAN in a small office, but the company has recently recruited two
new employees, each of whom will have a PC. Our task is to find
out how the delay experienced by data packets at each PC will be
affected if another two PCs are added.
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Modelling Assumptions

Each PC can only store one data packet waiting for
transmission at a time.

When the token arrives either there is one packet waiting or
no packet waiting.

The average rate that a PC generates data packets is λ.

The mean duration of a data packet transmission is d
(d = 1/µ), and the mean time for the token to pass from one
PC to the next is m (m = 1/ω).

Transmission is gated: each PC can transmit at most one
data packet per visit of the token.
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Modelling the system: choosing components

The first stage in developing a model of the system in PEPA is to
determine the components of the system and the actions which
they can undertake.

It seems clear that one type of component should be used to
represent the PCs. The components representing the four/six PCs
with have essentially the same behaviour. But since token visits
the nodes in order we will need to distinguish the components.

We will need another component to represent the medium. As
remarked previously, the medium can be represented solely by the
token.
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Modelling the system: choosing actvities

The description of the PC is very simple in this case. It only has
two activities which it can undertake:

generate a data packet;

transmit a data packet.

Moreover we are told that it can only hold one data packet at a
time and so these activities must be undertaken sequentially.

This suggests the following PEPA component for the ith PC:

PCi0
def
= (arrive, λ).PCi1

PCi1
def
= (transmit i , µ).PCi0

This will need some refinement when we consider interaction with
the token.
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Modelling the system: choosing activities

For the token we can think of its current state being characterised
by its current position. Thus, if there are N PCs in the network the
states of the token correspond to the values {1, 2, . . .N}.

When it is at the ith PC then the token may

transmit a data packet if there is one to transmit and then
walk on; or

walk on at once if there is no data packet waiting.

Tokeni
def
= (walkoni+1, ω).Tokeni+1 +

(transmit i , µ).(walk i+1, ω).Tokeni+1
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Refining the components

In order to ensure that the token’s choice is made dependent on
the state of PC being visited, we add a walkon action to the PC
when it is empty, and impose a cooperation between the PC and
the Token for both walkon and transmit.

PCi0
def
= (arrive, λ).PCi1 + (walkon2, ω).PCi0

PCi1
def
= (transmit i , µ).PCi0
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Complete model: four PC case

PC10
def
= (arrive, λ).PC11 + (walkon2, ω).PC10

PC11
def
= (transmit1, µ).PC10

PC20
def
= (arrive, λ).PC21 + (walkon3, ω).PC20

PC21
def
= (transmit2, µ).PC20

PC30
def
= (arrive, λ).PC31 + (walkon4, ω).PC30

PC31
def
= (transmit3, µ).PC30

PC40
def
= (arrive, λ).PC41 + (walkon1, ω).PC40

PC41
def
= (transmit4, µ).PC40



Upgrading a PC LAN 187/ 208

Token1
def
= (walkon2, ω).Token2 + (transmit1, µ).(walk2, ω).Token2

Token2
def
= (walkon3, ω).Token3 + (transmit2, µ).(walk3, ω).Token3

Token3
def
= (walkon4, ω).Token4 + (transmit3, µ).(walk4, ω).Token4

Token4
def
= (walkon1, ω).Token1 + (transmit4, µ).(walk1, ω).Token1

LAN
def
= (PC10 ‖ PC20 ‖ PC30 ‖ PC40) ��

L
Token1

where L = {walkon1,walkon2,walkon3,walkon4,
transmit1, transmit2 , transmit3, transmit4}.

Here we have arbitrarily chosen a starting state in which all the
PCs are empty and the Token is at PC1.
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State space size

N 2 3 4 5 6 8

|S | 16 48 128 320 768 4096

N 20 30

|S | 4.194304× 107 6.442450× 1010

Current tools can analyse models up the size of approximately 107

states.
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Performance results

In order to calculate performance measures from the model we
must first assign values to the parameters.

The following values were assigned to parameters of the model in
both cases (the unit of time is assumed to be milliseconds),

λ = 0.01 d = 10 µ = 0.1 m = 1.0 ω = 1.0

We wish to calculate the average waiting time of data packets at
any PC in the network. Since all the PCs are statistically identical,
we can arbitrary choose one as representative—we select PC1.
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Derivation of performance measures

There are three different ways in which performance measures can
be derived from the steady state distribution of the Markov
process, corresponding to different types of measure:

state-based measures, e.g. utilisation;

rate-based measures, e.g. throughput;

other measures which fall outside the above categories, e.g.
response time.
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State-based measures

State-based measures are those which clearly correspond to the
probability that the model is in a state, or a subset of states, which
satisfy some condition.

For example, utilisation will correspond to those states where a
resource is in use.

Thus in order to calculate utilisation we sum the steady state
probabilities of being in any of the states where the resource is in
use.



Upgrading a PC LAN 195/ 208

State-based measures

State-based measures are those which clearly correspond to the
probability that the model is in a state, or a subset of states, which
satisfy some condition.

For example, utilisation will correspond to those states where a
resource is in use.

Thus in order to calculate utilisation we sum the steady state
probabilities of being in any of the states where the resource is in
use.



Upgrading a PC LAN 196/ 208

State-based measures

State-based measures are those which clearly correspond to the
probability that the model is in a state, or a subset of states, which
satisfy some condition.

For example, utilisation will correspond to those states where a
resource is in use.

Thus in order to calculate utilisation we sum the steady state
probabilities of being in any of the states where the resource is in
use.



Upgrading a PC LAN 197/ 208

Rate-based measures

Rate-based measures are those which correspond to the predicted
rate at which some event occurs.

This will be the product of the rate of the event, and the
probability that the event is enabled, i.e. the probability of being in
one of the states from which the event can occur.

Thus to calculate the throughput of the transmission we consider
the probability of being a state where tranmission can occur and
multiply it by µ the transmission rate.
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Calculating waiting time

Waiting time, which is the residence time of a data packet at the
interface minus the transmission time cannot be derived directly
from the steady state distribution since it is neither a state-based
nor a rate-based performance measure.

However, if we know the average number of data packets at the
interface, and the average throughput, we can apply Little’s law to
calculate residence time

R =
N
X
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Calculating waiting time

Once we have the residence time the waiting time can be
calculated as:

W =
N
X
− 1/µ

There will be a data packet waiting in the interface whenever the
first PC is occupied. So the average number of data packets, N , is
the total probability of being in one of these states.

Similarly, a data transmission can occur whenever there is a data
packet waiting for transmission and the token is at PC1. So the
average throughput X will be the rate at which transmission
occurs, µ, multiplied by the total probability of being in one of
these states.
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Predicted waiting time

Based on these expressions and the calculated steady state
distributions we find the following values:
for 4 PCs

average waiting time, W =
0.1333

0.008666
− 1

0.1
= 15.3862− 10 = 5.3862

for 6 PCs

average waiting time, W =
0.1719

0.00828
− 1

0.1
= 20.7678− 10 = 10.7678

Thus the average waiting time for data packets will almost double
when two more PCs are added to the network.
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