
1/ 168

SPA for quantitative analysis:
Lecture 2 — SPA languages

Jane Hillston

LFCS, School of Informatics
The University of Edinburgh

Scotland

4th March 2013

2/ 168

Outline

1 Process algebra and Markov processes

2 The nature of synchronisation

3 Equivalence Relations

Process algebra and Markov processes 3/ 168

Outline

1 Process algebra and Markov processes

2 The nature of synchronisation

3 Equivalence Relations

Process algebra and Markov processes 4/ 168

Process Algebra

Models consist of agents which engage in actions.

α.P
�
��*

H
HHY

action type
or name

agent/
component

The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

Process algebra model Labelled transition system-
SOS rules

Choices are non-deterministic and time is abstracted.

Process algebra and Markov processes 5/ 168

Process Algebra

Models consist of agents which engage in actions.

α.P
�
��*

H
HHY

action type
or name

agent/
component

The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

Process algebra model Labelled transition system-
SOS rules

Choices are non-deterministic and time is abstracted.

Process algebra and Markov processes 6/ 168

Process Algebra

Models consist of agents which engage in actions.

α.P
�
��*

H
HHY

action type
or name

agent/
component

The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

Process algebra model Labelled transition system-
SOS rules

Choices are non-deterministic and time is abstracted.

Process algebra and Markov processes 7/ 168

Process Algebra

Models consist of agents which engage in actions.

α.P
�
��*

H
HHY

action type
or name

agent/
component

The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

Process algebra model Labelled transition system-
SOS rules

Choices are non-deterministic and time is abstracted.

Process algebra and Markov processes 8/ 168

Process Algebra

Models consist of agents which engage in actions.

α.P
�
��*

H
HHY

action type
or name

agent/
component

The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

Process algebra model

Labelled transition system-
SOS rules

Choices are non-deterministic and time is abstracted.

Process algebra and Markov processes 9/ 168

Process Algebra

Models consist of agents which engage in actions.

α.P
�
��*

H
HHY

action type
or name

agent/
component

The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

Process algebra model

Labelled transition system

-
SOS rules

Choices are non-deterministic and time is abstracted.

Process algebra and Markov processes 10/ 168

Process Algebra

Models consist of agents which engage in actions.

α.P
�
��*

H
HHY

action type
or name

agent/
component

The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

Process algebra model Labelled transition system-
SOS rules

Choices are non-deterministic and time is abstracted.

Process algebra and Markov processes 11/ 168

Process Algebra

Models consist of agents which engage in actions.

α.P
�
��*

H
HHY

action type
or name

agent/
component

The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

Process algebra model Labelled transition system-
SOS rules

Choices are non-deterministic and time is abstracted.

Process algebra and Markov processes 12/ 168

Example

Consider a web server which offers html pages for download:

Server
def
= get.download .rel .Server

Its clients might be web browsers, in a domain with a local cache of
frequently requested pages. Thus any display request might result
in an access to the server or in a page being loaded from the cache.

Browser
def
= display .(cache.Browser + get.download .rel .Browser)

A simple version of the Web can be considered to be the
interaction of these components:

W EB
def
=
(
Browser ‖ Browser

)
| Server

Process algebra and Markov processes 13/ 168

Example

Consider a web server which offers html pages for download:

Server
def
= get.download .rel .Server

Its clients might be web browsers, in a domain with a local cache of
frequently requested pages. Thus any display request might result
in an access to the server or in a page being loaded from the cache.

Browser
def
= display .(cache.Browser + get.download .rel .Browser)

A simple version of the Web can be considered to be the
interaction of these components:

W EB
def
=
(
Browser ‖ Browser

)
| Server

Process algebra and Markov processes 14/ 168

Example

Consider a web server which offers html pages for download:

Server
def
= get.download .rel .Server

Its clients might be web browsers, in a domain with a local cache of
frequently requested pages. Thus any display request might result
in an access to the server or in a page being loaded from the cache.

Browser
def
= display .(cache.Browser + get.download .rel .Browser)

A simple version of the Web can be considered to be the
interaction of these components:

W EB
def
=
(
Browser ‖ Browser

)
| Server

Process algebra and Markov processes 15/ 168

Qualitative Analysis

The labelled transition system underlying a process algebra
model can be used for functional verification e.g.: reachability
analysis, specification matching and model checking.

Will the system arrive
in a particular state?

e ee e e ehee e
- - -

?
����

���

-

���Does system behaviour
match its specification?

e
e e e

e
-

6

-

?

�
���

≡?
e ee e e eee e
- - -

?
����

���

-

���Does a given property φ
hold within the system?

φ �
��
��

��
�

PPPPPPPP

e ee e e eee e
- - -

?
����

���

-

���

Process algebra and Markov processes 16/ 168

Qualitative Analysis

The labelled transition system underlying a process algebra
model can be used for functional verification e.g.: reachability
analysis, specification matching and model checking.

Will the system arrive
in a particular state?

e ee e e ehee e
- - -

?
����

���

-

���

Does system behaviour
match its specification?

e
e e e

e
-

6

-

?

�
���

≡?
e ee e e eee e
- - -

?
����

���

-

���Does a given property φ
hold within the system?

φ �
��
��

��
�

PPPPPPPP

e ee e e eee e
- - -

?
����

���

-

���

Process algebra and Markov processes 17/ 168

Qualitative Analysis

The labelled transition system underlying a process algebra
model can be used for functional verification e.g.: reachability
analysis, specification matching and model checking.

Will the system arrive
in a particular state?

e ee e e ehee e
- - -

?
����

���

-

���

Does system behaviour
match its specification?

e
e e e

e
-

6

-

?

�
���

≡?
e ee e e eee e
- - -

?
����

���

-

���

Does a given property φ
hold within the system?

φ �
��
��

��
�

PPPPPPPP

e ee e e eee e
- - -

?
����

���

-

���

Process algebra and Markov processes 18/ 168

Qualitative Analysis

The labelled transition system underlying a process algebra
model can be used for functional verification e.g.: reachability
analysis, specification matching and model checking.

Will the system arrive
in a particular state?

e ee e e ehee e
- - -

?
����

���

-

���Does system behaviour
match its specification?

e
e e e

e
-

6

-

?

�
���

≡?
e ee e e eee e
- - -

?
����

���

-

���

Does a given property φ
hold within the system?

φ �
��

��
��
�

PPPPPPPP

e ee e e eee e
- - -

?
����

���

-

���

Process algebra and Markov processes 19/ 168

Stochastic process algebras

Process algebras where models are decorated with quantitative
information used to generate a stochastic process are stochastic
process algebras (SPA).

Process algebra and Markov processes 20/ 168

SPA Languages

SPA

SPASPA �
�
�
�

�
�
�
�

@
@
@
@@

integrated timeintegrated timeintegrated time

orthogonal timeorthogonal time

�
�
�
�

�
�
�
�

@
@
@
@

�
�
�
�

Q
Q
Q
Q

exponential onlyexponential onlyexponential only
PEPA, Sπ-calculus, SCCPPEPA, Sπ-calculus, SCCP

exponential + instantaneousexponential + instantaneous
EMPA, Markovian TIPPEMPA, Markovian TIPP

general distributionsgeneral distributions
TIPP, SPADES, GSMPATIPP, SPADES, GSMPA

exponential onlyexponential only
IMCIMC

general distributionsgeneral distributions
IGSMP, ModestIGSMP, Modest

Process algebra and Markov processes 21/ 168

SPA Languages

SPA

SPA

SPA

�
�
�
�

�
�
�
�

@
@
@
@@

integrated time

integrated timeintegrated time

orthogonal time

orthogonal time

�
�
�
�

�
�
�
�

@
@
@
@

�
�
�
�

Q
Q
Q
Q

exponential onlyexponential onlyexponential only
PEPA, Sπ-calculus, SCCPPEPA, Sπ-calculus, SCCP

exponential + instantaneousexponential + instantaneous
EMPA, Markovian TIPPEMPA, Markovian TIPP

general distributionsgeneral distributions
TIPP, SPADES, GSMPATIPP, SPADES, GSMPA

exponential onlyexponential only
IMCIMC

general distributionsgeneral distributions
IGSMP, ModestIGSMP, Modest

Process algebra and Markov processes 22/ 168

SPA Languages

SPA

SPA

SPA

�
�
�
�

�
�
�
�

@
@
@
@@

integrated time

integrated time

integrated time

orthogonal time

orthogonal time

�
�
�
�

�
�
�
�

@
@
@
@

�
�
�
�

Q
Q
Q
Q

exponential only

exponential onlyexponential only
PEPA, Sπ-calculus, SCCPPEPA, Sπ-calculus, SCCP

exponential + instantaneous

exponential + instantaneous
EMPA, Markovian TIPPEMPA, Markovian TIPP

general distributions

general distributions
TIPP, SPADES, GSMPATIPP, SPADES, GSMPA

exponential onlyexponential only
IMCIMC

general distributionsgeneral distributions
IGSMP, ModestIGSMP, Modest

Process algebra and Markov processes 23/ 168

SPA Languages

SPA

SPA

SPA

�
�
�
�

�
�
�
�

@
@
@
@@

integrated time

integrated time

integrated time

orthogonal time

orthogonal time

�
�
�
�

�
�
�
�

@
@
@
@

�
�
�
�

Q
Q
Q
Q

exponential only

exponential onlyexponential only
PEPA, Sπ-calculus, SCCPPEPA, Sπ-calculus, SCCP

exponential + instantaneous

exponential + instantaneous
EMPA, Markovian TIPPEMPA, Markovian TIPP

general distributions

general distributions
TIPP, SPADES, GSMPATIPP, SPADES, GSMPA

exponential only

exponential only
IMCIMC

general distributions

general distributions
IGSMP, ModestIGSMP, Modest

Process algebra and Markov processes 24/ 168

SPA Languages

SPA

SPA

SPA

�
�
�
�

�
�
�
�

@
@
@
@@

integrated time

integrated time

integrated time

orthogonal time

orthogonal time

�
�
�
�

�
�
�
�

@
@
@
@

�
�
�
�

Q
Q
Q
Q

exponential only

exponential only

exponential only

PEPA, Sπ-calculus, SCCP

PEPA, Sπ-calculus, SCCP

exponential + instantaneous

exponential + instantaneous

EMPA, Markovian TIPPEMPA, Markovian TIPP

general distributions

general distributions

TIPP, SPADES, GSMPATIPP, SPADES, GSMPA

exponential only

exponential only

IMCIMC

general distributions

general distributions

IGSMP, ModestIGSMP, Modest

Process algebra and Markov processes 25/ 168

SPA Languages

SPA

SPA

SPA

�
�
�
�

�
�
�
�

@
@
@
@@

integrated time

integrated time

integrated time

orthogonal time

orthogonal time

�
�
�
�

�
�
�
�

@
@
@
@

�
�
�
�

Q
Q
Q
Q

exponential only

exponential only

exponential only

PEPA, Sπ-calculus, SCCP

PEPA, Sπ-calculus, SCCP

exponential + instantaneous

exponential + instantaneous
EMPA, Markovian TIPP

EMPA, Markovian TIPP

general distributions

general distributions

TIPP, SPADES, GSMPATIPP, SPADES, GSMPA

exponential only

exponential only

IMCIMC

general distributions

general distributions

IGSMP, ModestIGSMP, Modest

Process algebra and Markov processes 26/ 168

SPA Languages

SPA

SPA

SPA

�
�
�
�

�
�
�
�

@
@
@
@@

integrated time

integrated time

integrated time

orthogonal time

orthogonal time

�
�
�
�

�
�
�
�

@
@
@
@

�
�
�
�

Q
Q
Q
Q

exponential only

exponential only

exponential only

PEPA, Sπ-calculus, SCCP

PEPA, Sπ-calculus, SCCP

exponential + instantaneous

exponential + instantaneous
EMPA, Markovian TIPP

EMPA, Markovian TIPP

general distributions

general distributions
TIPP, SPADES, GSMPA

TIPP, SPADES, GSMPA

exponential only

exponential only

IMCIMC

general distributions

general distributions

IGSMP, ModestIGSMP, Modest

Process algebra and Markov processes 27/ 168

SPA Languages

SPA

SPA

SPA

�
�
�
�

�
�
�
�

@
@
@
@@

integrated time

integrated time

integrated time

orthogonal time

orthogonal time

�
�
�
�

�
�
�
�

@
@
@
@

�
�
�
�

Q
Q
Q
Q

exponential only

exponential only

exponential only

PEPA, Sπ-calculus, SCCP

PEPA, Sπ-calculus, SCCP

exponential + instantaneous

exponential + instantaneous
EMPA, Markovian TIPP

EMPA, Markovian TIPP

general distributions

general distributions
TIPP, SPADES, GSMPA

TIPP, SPADES, GSMPA

exponential only

exponential only
IMC

IMC

general distributions

general distributions

IGSMP, ModestIGSMP, Modest

Process algebra and Markov processes 28/ 168

SPA Languages

SPA

SPA

SPA

�
�
�
�

�
�
�
�

@
@
@
@@

integrated time

integrated time

integrated time

orthogonal time

orthogonal time

�
�
�
�

�
�
�
�

@
@
@
@

�
�
�
�

Q
Q
Q
Q

exponential only

exponential only

exponential only

PEPA, Sπ-calculus, SCCP

PEPA, Sπ-calculus, SCCP

exponential + instantaneous

exponential + instantaneous
EMPA, Markovian TIPP

EMPA, Markovian TIPP

general distributions

general distributions
TIPP, SPADES, GSMPA

TIPP, SPADES, GSMPA

exponential only

exponential only
IMC

IMC

general distributions

general distributions
IGSMP, Modest

IGSMP, Modest

Process algebra and Markov processes 29/ 168

SPA Languages

SPASPA

SPA

�
�
�
�

�
�
�
�

@
@
@
@@

integrated timeintegrated time

integrated time

orthogonal time

orthogonal time

�
�
�
�

�
�
�
�

@
@
@
@

�
�
�
�

Q
Q
Q
Q

exponential onlyexponential only

exponential only

PEPA, Sπ-calculus, SCCP

PEPA, Sπ-calculus, SCCP

exponential + instantaneous

exponential + instantaneous

EMPA, Markovian TIPP

EMPA, Markovian TIPP

general distributions

general distributions

TIPP, SPADES, GSMPA

TIPP, SPADES, GSMPA

exponential only

exponential only

IMC

IMC

general distributions

general distributions

IGSMP, Modest

IGSMP, Modest

Process algebra and Markov processes 30/ 168

Interplay between process algebra and Markov process

The theoretical development underpinning PEPA has focused
on the interplay between the process algebra and the
underlying mathematical structure, the Markov process.

From the process algebra side the Markov chain had a
profound influence on the design of the language and in
particular on the interactions between components.

From the Markov chain perspective the process algebra
structure has been exploited to find aspects of independence
even between interacting components.

Process algebra and Markov processes 31/ 168

Interplay between process algebra and Markov process

The theoretical development underpinning PEPA has focused
on the interplay between the process algebra and the
underlying mathematical structure, the Markov process.

From the process algebra side the Markov chain had a
profound influence on the design of the language and in
particular on the interactions between components.

From the Markov chain perspective the process algebra
structure has been exploited to find aspects of independence
even between interacting components.

Process algebra and Markov processes 32/ 168

Interplay between process algebra and Markov process

The theoretical development underpinning PEPA has focused
on the interplay between the process algebra and the
underlying mathematical structure, the Markov process.

From the process algebra side the Markov chain had a
profound influence on the design of the language and in
particular on the interactions between components.

From the Markov chain perspective the process algebra
structure has been exploited to find aspects of independence
even between interacting components.

Process algebra and Markov processes 33/ 168

Interplay with Performance Modelling

Model Construction: Compositionality leads to

ease of construction
reusable submodels
easy to understand models

Model Manipulation: Equivalence relations lead to

term rewriting/state space reduction techniques
aggregation techniques based on lumpability

Model Solution: Formal semantics: lead to

automatic identification of classes of models
susceptible to efficient solution
use of logics to express performance measures

Process algebra and Markov processes 34/ 168

Interplay with Performance Modelling

Model Construction: Compositionality leads to

ease of construction
reusable submodels
easy to understand models

Model Manipulation: Equivalence relations lead to

term rewriting/state space reduction techniques
aggregation techniques based on lumpability

Model Solution: Formal semantics: lead to

automatic identification of classes of models
susceptible to efficient solution
use of logics to express performance measures

Process algebra and Markov processes 35/ 168

Interplay with Performance Modelling

Model Construction: Compositionality leads to

ease of construction
reusable submodels
easy to understand models

Model Manipulation: Equivalence relations lead to

term rewriting/state space reduction techniques
aggregation techniques based on lumpability

Model Solution: Formal semantics: lead to

automatic identification of classes of models
susceptible to efficient solution
use of logics to express performance measures

Process algebra and Markov processes 36/ 168

Integrated time stochastic process algebra

Models are constructed from components which engage in
durational activities.

(α, r).P
��
�* 6 HH

HY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language is used to generate a CTMC for performance
modelling. The activity (α, r) will happen before time t with
probability 1− e−rt .

PEPA
MODEL

LABELLED
LABELLED

MULTI-
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition

diagram

Process algebra and Markov processes 37/ 168

Integrated time stochastic process algebra

Models are constructed from components which engage in
durational activities.

(α, r).P
��
�* 6 HH

HY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language is used to generate a CTMC for performance
modelling. The activity (α, r) will happen before time t with
probability 1− e−rt .

PEPA
MODEL

LABELLED
LABELLED

MULTI-
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition

diagram

Process algebra and Markov processes 38/ 168

Integrated time stochastic process algebra

Models are constructed from components which engage in
durational activities.

(α, r).P
��
�* 6 HH

HY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language is used to generate a CTMC for performance
modelling. The activity (α, r) will happen before time t with
probability 1− e−rt .

PEPA
MODEL

LABELLED
LABELLED

MULTI-
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition

diagram

Process algebra and Markov processes 39/ 168

Integrated time stochastic process algebra

Models are constructed from components which engage in
durational activities.

(α, r).P
��
�* 6 HH

HY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language is used to generate a CTMC for performance
modelling. The activity (α, r) will happen before time t with
probability 1− e−rt .

PEPA
MODEL

LABELLED
LABELLED

MULTI-
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition

diagram

Process algebra and Markov processes 40/ 168

Integrated time stochastic process algebra

Models are constructed from components which engage in
durational activities.

(α, r).P
��
�* 6 HH

HY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language is used to generate a CTMC for performance
modelling. The activity (α, r) will happen before time t with
probability 1− e−rt .

PEPA
MODEL

LABELLED
LABELLED

MULTI-
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition

diagram

Process algebra and Markov processes 41/ 168

Integrated time stochastic process algebra

Models are constructed from components which engage in
durational activities.

(α, r).P
��
�* 6 HH

HY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language is used to generate a CTMC for performance
modelling. The activity (α, r) will happen before time t with
probability 1− e−rt .

PEPA
MODEL

LABELLED
LABELLED

MULTI-
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition

diagram

Process algebra and Markov processes 42/ 168

Integrated time stochastic process algebra

Models are constructed from components which engage in
durational activities.

(α, r).P
��
�* 6 HH

HY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language is used to generate a CTMC for performance
modelling. The activity (α, r) will happen before time t with
probability 1− e−rt .

PEPA
MODEL

LABELLED
LABELLED

MULTI-
TRANSITION

SYSTEM
CTMC Q

-

-

SOS rules

state transition

diagram

Process algebra and Markov processes 43/ 168

Integrated time stochastic process algebra

Models are constructed from components which engage in
durational activities.

(α, r).P
��
�* 6 HH

HY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language is used to generate a CTMC for performance
modelling. The activity (α, r) will happen before time t with
probability 1− e−rt .

PEPA
MODEL

LABELLED

LABELLED
MULTI-

TRANSITION
SYSTEM

CTMC Q

-

-

SOS rules

state transition

diagram

Process algebra and Markov processes 44/ 168

Integrated time stochastic process algebra

Models are constructed from components which engage in
durational activities.

(α, r).P
��
�* 6 HH

HY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language is used to generate a CTMC for performance
modelling. The activity (α, r) will happen before time t with
probability 1− e−rt .

PEPA
MODEL

LABELLED

LABELLED
MULTI-

TRANSITION
SYSTEM

CTMC Q

- -
SOS rules state transition

diagram

Process algebra and Markov processes 45/ 168

Integrated time stochastic process algebra

Models are constructed from components which engage in
durational activities.

(α, r).P
��
�* 6 HH

HY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language is used to generate a CTMC for performance
modelling. The activity (α, r) will happen before time t with
probability 1− e−rt .

PEPA
MODEL

LABELLED

LABELLED
MULTI-

TRANSITION
SYSTEM

CTMC Q- -
SOS rules state transition

diagram

Process algebra and Markov processes 46/ 168

Integrated time stochastic process algebra

Models are constructed from components which engage in
durational activities.

(α, r).P
��
�* 6 HH

HY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language is used to generate a CTMC for performance
modelling. The activity (α, r) will happen before time t with
probability 1− e−rt .

PEPA
MODEL

LABELLED

LABELLED
MULTI-

TRANSITION
SYSTEM

CTMC Q- -
SOS rules state transition

diagram

Process algebra and Markov processes 47/ 168

PEPA

S ::= (α, r).S | S + S | A

P ::= S | P ��
L

P | P/L

PREFIX: (α, r).S designated first action

CHOICE: S + S competing components

CONSTANT: A
def
= S assigning names

COOPERATION: P ��
L

P α /∈ L individual actions

α ∈ L shared actions

HIDING: P/L abstraction α ∈ L⇒ α→ τ

Process algebra and Markov processes 48/ 168

PEPA

S ::= (α, r).S | S + S | A

P ::= S | P ��
L

P | P/L

PREFIX: (α, r).S designated first action

CHOICE: S + S competing components

CONSTANT: A
def
= S assigning names

COOPERATION: P ��
L

P α /∈ L individual actions

α ∈ L shared actions

HIDING: P/L abstraction α ∈ L⇒ α→ τ

Process algebra and Markov processes 49/ 168

PEPA

S ::= (α, r).S | S + S | A

P ::= S | P ��
L

P | P/L

PREFIX: (α, r).S designated first action

CHOICE: S + S competing components

CONSTANT: A
def
= S assigning names

COOPERATION: P ��
L

P α /∈ L individual actions

α ∈ L shared actions

HIDING: P/L abstraction α ∈ L⇒ α→ τ

Process algebra and Markov processes 50/ 168

PEPA

S ::= (α, r).S | S + S | A

P ::= S | P ��
L

P | P/L

PREFIX: (α, r).S designated first action

CHOICE: S + S competing components

CONSTANT: A
def
= S assigning names

COOPERATION: P ��
L

P α /∈ L individual actions

α ∈ L shared actions

HIDING: P/L abstraction α ∈ L⇒ α→ τ

Process algebra and Markov processes 51/ 168

PEPA

S ::= (α, r).S | S + S | A

P ::= S | P ��
L

P | P/L

PREFIX: (α, r).S designated first action

CHOICE: S + S competing components

CONSTANT: A
def
= S assigning names

COOPERATION: P ��
L

P α /∈ L individual actions

α ∈ L shared actions

HIDING: P/L abstraction α ∈ L⇒ α→ τ

Process algebra and Markov processes 52/ 168

PEPA

S ::= (α, r).S | S + S | A

P ::= S | P ��
L

P | P/L

PREFIX: (α, r).S designated first action

CHOICE: S + S competing components

CONSTANT: A
def
= S assigning names

COOPERATION: P ��
L

P α /∈ L individual actions

α ∈ L shared actions

HIDING: P/L abstraction α ∈ L⇒ α→ τ

Process algebra and Markov processes 53/ 168

Example: Browsers, server and download

Server
def
= (get,>).(download , µ).(rel ,>).Server

Browser
def
= (display , pλ).(get, g).(download ,>).(rel , r).Browser

+ (display , (1− p)λ).(cache,m).Browser

WEB
def
=

(
Browser ‖ Browser

)
��
L

Server

where L = {get, download , rel}

Process algebra and Markov processes 54/ 168

Structured Operational Semantics

PEPA is defined using a Plotkin-style structured operational
semantics (a “small step” semantics).

Prefix

(α, r).E
(α,r)
−−−→ E

Choice

E
(α,r)
−−−→ E ′

E + F
(α,r)
−−−→ E ′

F
(α,r)
−−−→ F ′

E + F
(α,r)
−−−→ F ′

Process algebra and Markov processes 55/ 168

Structured Operational Semantics

PEPA is defined using a Plotkin-style structured operational
semantics (a “small step” semantics).

Prefix

(α, r).E
(α,r)
−−−→ E

Choice

E
(α,r)
−−−→ E ′

E + F
(α,r)
−−−→ E ′

F
(α,r)
−−−→ F ′

E + F
(α,r)
−−−→ F ′

Process algebra and Markov processes 56/ 168

Structured Operational Semantics

PEPA is defined using a Plotkin-style structured operational
semantics (a “small step” semantics).

Prefix

(α, r).E
(α,r)
−−−→ E

Choice

E
(α,r)
−−−→ E ′

E + F
(α,r)
−−−→ E ′

F
(α,r)
−−−→ F ′

E + F
(α,r)
−−−→ F ′

Process algebra and Markov processes 57/ 168

Structured Operational Semantics: Cooperation (α /∈ L)

Cooperation

E
(α,r)
−−−→ E ′

E ��
L

F
(α,r)
−−−→ E ′ ��

L
F

(α /∈ L)

F
(α,r)
−−−→ F ′

E ��
L

F
(α,r)
−−−→ E ��

L
F ′

(α /∈ L)

Process algebra and Markov processes 58/ 168

Structured Operational Semantics: Cooperation (α /∈ L)

Cooperation

E
(α,r)
−−−→ E ′

E ��
L

F
(α,r)
−−−→ E ′ ��

L
F

(α /∈ L)

F
(α,r)
−−−→ F ′

E ��
L

F
(α,r)
−−−→ E ��

L
F ′

(α /∈ L)

Process algebra and Markov processes 59/ 168

Structured Operational Semantics: Cooperation (α ∈ L)

Cooperation
E

(α,r1)
−−−→ E ′ F

(α,r2)
−−−→ F ′

E ��
L

F
(α,R)
−−−→ E ′ ��

L
F ′

(α ∈ L)

where R =
r1

rα(E)

r2
rα(F)

min(rα(E), rα(F))

Process algebra and Markov processes 60/ 168

Structured Operational Semantics: Cooperation (α ∈ L)

Cooperation
E

(α,r1)
−−−→ E ′ F

(α,r2)
−−−→ F ′

E ��
L

F
(α,R)
−−−→ E ′ ��

L
F ′

(α ∈ L)

where R =
r1

rα(E)

r2
rα(F)

min(rα(E), rα(F))

Process algebra and Markov processes 61/ 168

Apparent Rate

rα((β, r).P) =

{
r β = α
0 β 6= α

rα(P + Q) = rα(P) + rα(Q)

rα(A) = rα(P) where A
def
= P

rα(P ��
L

Q) =

{
rα(P) + rα(Q) α /∈ L
min(rα(P), rα(Q)) α ∈ L

rα(P/L) =

{
rα(P) α /∈ L
0 α ∈ L

Process algebra and Markov processes 62/ 168

Structured Operational Semantics: Hiding

Hiding

E
(α,r)
−−−→ E ′

E/L
(α,r)
−−−→ E ′/L

(α /∈ L)

E
(α,r)
−−−→ E ′

E/L
(τ,r)
−−−→ E ′/L

(α ∈ L)

Process algebra and Markov processes 63/ 168

Structured Operational Semantics: Hiding

Hiding

E
(α,r)
−−−→ E ′

E/L
(α,r)
−−−→ E ′/L

(α /∈ L)

E
(α,r)
−−−→ E ′

E/L
(τ,r)
−−−→ E ′/L

(α ∈ L)

Process algebra and Markov processes 64/ 168

Structured Operational Semantics: Constants

Constant

E
(α,r)−→ E ′

A
(α,r)−→ E ′

(A
def
= E)

Process algebra and Markov processes 65/ 168

Properties of the definition (1)

PEPA has no “nil” (a deadlocked process).

This is because the PEPA language is intended for modelling
non-stop processes (such as Web servers, operating systems, or
manufacturing processes) rather than for modelling terminating
processes (a compilation, a sorting routine, and so forth).

Process algebra and Markov processes 66/ 168

Creating a deadlocked process

When we are interested in transient behaviour we use the
deadlocked process Stop to signal a component which performs no
further actions.

Stop
def
=

((
(a, r).Stop

)
��
{a,b}

(
(b, r).Stop

))
/{ a, b }

Process algebra and Markov processes 67/ 168

Properties of the definition (2)

Cooperation in PEPA is multi-way. Two, three, four or more
partners may cooperate, and they all need to synchronise for the
activity to happen.

This comes from the fact that synchronisation has the form
a, a→ a (as in CSP) instead of a, ā→ τ (as in CCS and the
π-calculus).

This is used to have “witnesses” to events (known as stochastic
probes).

Process algebra and Markov processes 68/ 168

Properties of the definition (2)

Cooperation in PEPA is multi-way. Two, three, four or more
partners may cooperate, and they all need to synchronise for the
activity to happen.

This comes from the fact that synchronisation has the form
a, a→ a (as in CSP) instead of a, ā→ τ (as in CCS and the
π-calculus).

This is used to have “witnesses” to events (known as stochastic
probes).

Process algebra and Markov processes 69/ 168

Properties of the definition (2)

Cooperation in PEPA is multi-way. Two, three, four or more
partners may cooperate, and they all need to synchronise for the
activity to happen.

This comes from the fact that synchronisation has the form
a, a→ a (as in CSP) instead of a, ā→ τ (as in CCS and the
π-calculus).

This is used to have “witnesses” to events (known as stochastic
probes).

Process algebra and Markov processes 70/ 168

Properties of the definition (3)

Because of its mapping onto a CTMC, PEPA has an
interleaving semantics.

Other modelling formalisms based on CTMCs are also based
on an interleaving semantics (e.g. Generalised Stochastic Petri
nets).

As we have seen a continuous time Markov chain (CTMC) is
generated from a PEPA model via its structured operational
semantics.

Linear algebra is used to solve the model in terms of
equilibrium behaviour.

The resulting probability distribution is seldom the ultimate
goal of performance analysis; a modeller derives performance
measures from this distribution via a reward structure.

Process algebra and Markov processes 71/ 168

Properties of the definition (3)

Because of its mapping onto a CTMC, PEPA has an
interleaving semantics.

Other modelling formalisms based on CTMCs are also based
on an interleaving semantics (e.g. Generalised Stochastic Petri
nets).

As we have seen a continuous time Markov chain (CTMC) is
generated from a PEPA model via its structured operational
semantics.

Linear algebra is used to solve the model in terms of
equilibrium behaviour.

The resulting probability distribution is seldom the ultimate
goal of performance analysis; a modeller derives performance
measures from this distribution via a reward structure.

Process algebra and Markov processes 72/ 168

Properties of the definition (3)

Because of its mapping onto a CTMC, PEPA has an
interleaving semantics.

Other modelling formalisms based on CTMCs are also based
on an interleaving semantics (e.g. Generalised Stochastic Petri
nets).

As we have seen a continuous time Markov chain (CTMC) is
generated from a PEPA model via its structured operational
semantics.

Linear algebra is used to solve the model in terms of
equilibrium behaviour.

The resulting probability distribution is seldom the ultimate
goal of performance analysis; a modeller derives performance
measures from this distribution via a reward structure.

Process algebra and Markov processes 73/ 168

Properties of the definition (3)

Because of its mapping onto a CTMC, PEPA has an
interleaving semantics.

Other modelling formalisms based on CTMCs are also based
on an interleaving semantics (e.g. Generalised Stochastic Petri
nets).

As we have seen a continuous time Markov chain (CTMC) is
generated from a PEPA model via its structured operational
semantics.

Linear algebra is used to solve the model in terms of
equilibrium behaviour.

The resulting probability distribution is seldom the ultimate
goal of performance analysis; a modeller derives performance
measures from this distribution via a reward structure.

Process algebra and Markov processes 74/ 168

Properties of the definition (3)

Because of its mapping onto a CTMC, PEPA has an
interleaving semantics.

Other modelling formalisms based on CTMCs are also based
on an interleaving semantics (e.g. Generalised Stochastic Petri
nets).

As we have seen a continuous time Markov chain (CTMC) is
generated from a PEPA model via its structured operational
semantics.

Linear algebra is used to solve the model in terms of
equilibrium behaviour.

The resulting probability distribution is seldom the ultimate
goal of performance analysis; a modeller derives performance
measures from this distribution via a reward structure.

Process algebra and Markov processes 75/ 168

Dynamic behaviour

C omp
def
= (f irst, f).((slow , r/3).C omp + (quick, r).(rapid , r).(fast, r).Comp)

α.P
α−→ P

P
α−→ P ′

P + Q
α−→ P ′

Q
α−→ Q ′

P + Q
α−→ Q ′

C omp

?
(first, f)

(slow , r/3).C omp + (quick, r).(rapid , r).(fast, r).C omp

?
(quick , r)

�
�
��(slow , r/3)

(download , r).(rel , r).C omp

?
(rapid , r)

(fast, r).C omp

(fast, r)

�
�
�
�
�
�
�
�
�
HH

HH
HH

HH
HY

Process algebra and Markov processes 76/ 168

Dynamic behaviour

C omp
def
= (f irst, f).((slow , r/3).C omp + (quick, r).(rapid , r).(fast, r).Comp)

α.P
α−→ P

P
α−→ P ′

P + Q
α−→ P ′

Q
α−→ Q ′

P + Q
α−→ Q ′

C omp

?
(first, f)

(slow , r/3).C omp + (quick, r).(rapid , r).(fast, r).C omp

?
(quick , r)

�
�
��(slow , r/3)

(download , r).(rel , r).C omp

?
(rapid , r)

(fast, r).C omp

(fast, r)

�
�
�
�
�
�
�
�
�
HH

HH
HH

HH
HY

Process algebra and Markov processes 77/ 168

Dynamic behaviour

C omp
def
= (f irst, f).((slow , r/3).C omp + (quick, r).(rapid , r).(fast, r).Comp)

α.P
α−→ P

P
α−→ P ′

P + Q
α−→ P ′

Q
α−→ Q ′

P + Q
α−→ Q ′

C omp

?
(first, f)

(slow , r/3).C omp + (quick, r).(rapid , r).(fast, r).C omp

?
(quick , r)

�
�
��(slow , r/3)

(download , r).(rel , r).C omp

?
(rapid , r)

(fast, r).C omp

(fast, r)

�
�
�
�
�
�
�
�
�
HH

HH
HH

HH
HY

Process algebra and Markov processes 78/ 168

Dynamic behaviour

C omp
def
= (f irst, f).((slow , r/3).C omp + (quick, r).(rapid , r).(fast, r).Comp)

α.P
α−→ P

P
α−→ P ′

P + Q
α−→ P ′

Q
α−→ Q ′

P + Q
α−→ Q ′

C omp

?
(first, f)

(slow , r/3).C omp + (quick, r).(rapid , r).(fast, r).C omp

?
(quick , r)

�
�
��(slow , r/3)

(download , r).(rel , r).C omp

?
(rapid , r)

(fast, r).C omp

(fast, r)

�
�
�
�
�
�
�
�
�
HH

HH
HH

HH
HY

Process algebra and Markov processes 79/ 168

Dynamic behaviour

C omp
def
= (f irst, f).((slow , r/3).C omp + (quick, r).(rapid , r).(fast, r).Comp)

α.P
α−→ P

P
α−→ P ′

P + Q
α−→ P ′

Q
α−→ Q ′

P + Q
α−→ Q ′

C omp

?
(first, f)

(slow , r/3).C omp + (quick, r).(rapid , r).(fast, r).C omp

?
(quick , r)

�
�
��(slow , r/3)

(download , r).(rel , r).C omp

?
(rapid , r)

(fast, r).C omp

(fast, r)

�
�
�
�
�
�
�
�
�
HH

HH
HH

HH
HY

Process algebra and Markov processes 80/ 168

Dynamic behaviour

C omp
def
= (f irst, f).((slow , r/3).C omp + (quick, r).(rapid , r).(fast, r).Comp)

α.P
α−→ P

P
α−→ P ′

P + Q
α−→ P ′

Q
α−→ Q ′

P + Q
α−→ Q ′

C omp

?
(first, f)

(slow , r/3).C omp + (quick, r).(rapid , r).(fast, r).C omp

?
(quick , r)

�
�
��(slow , r/3)

(download , r).(rel , r).C omp

?
(rapid , r)

(fast, r).C omp

(fast, r)

�
�
�
�
�
�
�
�
�
HH

HH
HH

HH
HY

Process algebra and Markov processes 81/ 168

Dynamic behaviour

C omp
def
= (f irst, f).((slow , r/3).C omp + (quick, r).(rapid , r).(fast, r).Comp)

α.P
α−→ P

P
α−→ P ′

P + Q
α−→ P ′

Q
α−→ Q ′

P + Q
α−→ Q ′

C omp

?
(first, f)

(slow , r/3).C omp + (quick, r).(rapid , r).(fast, r).C omp

?
(quick , r)

�
�
��(slow , r/3)

(download , r).(rel , r).C omp

?
(rapid , r)

(fast, r).C omp

(fast, r)

�
�
�
�
�
�
�
�
�
HH

HH
HH

HH
HY

Process algebra and Markov processes 82/ 168

Dynamic behaviour

C omp
def
= (f irst, f).((slow , r/3).C omp + (quick, r).(rapid , r).(fast, r).Comp)

α.P
α−→ P

P
α−→ P ′

P + Q
α−→ P ′

Q
α−→ Q ′

P + Q
α−→ Q ′

C omp

?
(first, f)

(slow , r/3).C omp + (quick, r).(rapid , r).(fast, r).C omp

?
(quick , r)

�
�
��(slow , r/3)

(download , r).(rel , r).C omp

?
(rapid , r)

(fast, r).C omp

(fast, r)

�
�
�
�
�
�
�
�
�
HH

HH
HH

HH
HY

Process algebra and Markov processes 83/ 168

Integrated analysis

Qualitative verification can now be complemented by quantitative
verification.

Process algebra and Markov processes 84/ 168

Integrated analysis: Reachability analysis

How long will it take
for the system to arrive

in a particular state?

f f
f f f fif

f f
- - -

?
��
��

���

-

���

Process algebra and Markov processes 85/ 168

Integrated analysis: Specification matching

With what probability
does system behaviour
match its specification?

f
f f f

f
-

6

-

?

�
�
��

∼=
?

f f
f f f ff

f f
- - -

?
��
��

���

-

���

Process algebra and Markov processes 86/ 168

Integrated analysis: Specification matching

Does the “frequency
profile” of the

system match that
of the specification?

f
f f f0.5

f 0.5

-

6

-

?

�
�
��

�

f f
f f f f0.6

f0.4f f
- - -

?
��
��

���

-

���

Process algebra and Markov processes 87/ 168

Integrated analysis: Model checking

Does a given property φ
hold within the system

with a given probability?
φ
��

��
��
��

��

PPPPPPPPPP

f f
f f f ff

f f
- - -

?
��
��

���

-

���

Process algebra and Markov processes 88/ 168

Integrated analysis: Model checking

For a given starting state
how long is it until

a given property φ holds?
φ
��

��
��
��

��

PPPPPPPPPP

f f
f f f ff

f f
- - -

?
��
��

���

-

���

Process algebra and Markov processes 89/ 168

The Importance of Being Exponential

@
@
@R

�
�

��	

?

�
�
�	

@
@
@@R

Stop ‖ (β, s).Stop (α, r).Stop ‖ Stop

Stop ‖ Stop

(α, r).Stop ‖ (β, s).Stop

(β, s)

(α, r) (β, s)

(α, r) (β, s)

(α, r)

Process algebra and Markov processes 90/ 168

The Importance of Being Exponential

@
@
@R

�
�

��	

?

�
�
�	

@
@
@@R

Stop ‖ (β, s).Stop (α, r).Stop ‖ Stop

Stop ‖ Stop

(α, r).Stop ‖ (β, s).Stop

(β, s)

(α, r) (β, s)

(α, r) (β, s)

(α, r)

Process algebra and Markov processes 91/ 168

The Importance of Being Exponential

@
@
@R

�
�

��	

?

�
�
�	

@
@
@@R

Stop ‖ (β, s).Stop (α, r).Stop ‖ Stop

Stop ‖ Stop

(α, r).Stop ‖ (β, s).Stop

(β, s)

(α, r) (β, s)

(α, r) (β, s)

(α, r)

Process algebra and Markov processes 92/ 168

The Importance of Being Exponential

@
@
@R

�
�

��	
?

�
�
�	

@
@
@@R

Stop ‖ (β, s).Stop (α, r).Stop ‖ Stop

Stop ‖ Stop

(α, r).Stop ‖ (β, s).Stop

(β, s)

(α, r) (β, s)(α, r) (β, s)

(α, r)

Process algebra and Markov processes 93/ 168

The Importance of Being Exponential

@
@
@R

�
�

��	

?

�
�
�	

@
@
@@R

Stop ‖ (β, s).Stop (α, r).Stop ‖ Stop

Stop ‖ Stop

(α, r).Stop ‖ (β, s).Stop

(β, s)

(α, r) (β, s)

(α, r) (β, s)

(α, r)

Process algebra and Markov processes 94/ 168

The Importance of Being Exponential

@
@
@R

�
�

��	

?

�
�
�	

@
@
@@R

Stop ‖ (β, s).Stop (α, r).Stop ‖ Stop

Stop ‖ Stop

(α, r).Stop ‖ (β, s).Stop

(β, s)

(α, r) (β, s)

(α, r) (β, s)

(α, r)

Process algebra and Markov processes 95/ 168

The Importance of Being Exponential

@
@
@R

�
�

��	

?

�
�
�	

@
@
@@R

Stop ‖ (β, s).Stop (α, r).Stop ‖ Stop

Stop ‖ Stop

(α, r).Stop ‖ (β, s).Stop

(β, s)

(α, r) (β, s)

(α, r) (β, s)

(α, r)

Process algebra and Markov processes 96/ 168

The Importance of Being Exponential

@
@
@R

�
�

��	

?

�
�
�	

@
@
@@R

Stop ‖ (β, s).Stop (α, r).Stop ‖ Stop

Stop ‖ Stop

(α, r).Stop ‖ (β, s).Stop

(β, s)

(α, r) (β, s)

(α, r) (β, s)

(α, r)

The memoryless property of the negative exponential distribution
means that residual times do not need to be recorded.

Process algebra and Markov processes 97/ 168

The exponential distribution and the expansion law

We retain the expansion law of classical process algebra:

(α, r).Stop ‖ (β, s).Stop =

(α, r).(β, s).(Stop ‖ Stop) + (β, s).(α, r).(Stop ‖ Stop)

only if the negative exponential distribution is used.

The nature of synchronisation 98/ 168

Outline

1 Process algebra and Markov processes

2 The nature of synchronisation

3 Equivalence Relations

The nature of synchronisation 99/ 168

Parallel Composition

Parallel composition is the basis of the compositionality in a
process algebra

— it defines which components interact and
how.

In classical process algebra is it often associated with
communication.

When the activities of the process algebra have a duration the
definition of parallel composition becomes more complex.

The issue of what it means for two timed activities to
synchronise is a vexed one....

The nature of synchronisation 100/ 168

Parallel Composition

Parallel composition is the basis of the compositionality in a
process algebra — it defines which components interact and
how.

In classical process algebra is it often associated with
communication.

When the activities of the process algebra have a duration the
definition of parallel composition becomes more complex.

The issue of what it means for two timed activities to
synchronise is a vexed one....

The nature of synchronisation 101/ 168

Parallel Composition

Parallel composition is the basis of the compositionality in a
process algebra — it defines which components interact and
how.

In classical process algebra is it often associated with
communication.

When the activities of the process algebra have a duration the
definition of parallel composition becomes more complex.

The issue of what it means for two timed activities to
synchronise is a vexed one....

The nature of synchronisation 102/ 168

Parallel Composition

Parallel composition is the basis of the compositionality in a
process algebra — it defines which components interact and
how.

In classical process algebra is it often associated with
communication.

When the activities of the process algebra have a duration the
definition of parallel composition becomes more complex.

The issue of what it means for two timed activities to
synchronise is a vexed one....

The nature of synchronisation 103/ 168

Parallel Composition

Parallel composition is the basis of the compositionality in a
process algebra — it defines which components interact and
how.

In classical process algebra is it often associated with
communication.

When the activities of the process algebra have a duration the
definition of parallel composition becomes more complex.

The issue of what it means for two timed activities to
synchronise is a vexed one....

The nature of synchronisation 104/ 168

Who Synchronises...?

Even within classical process algebras there is variation in the
interpretation of parallel composition:

CCS-style

Actions are partitioned into
input and output pairs.
Communication or
synchronisation takes places
between conjugate pairs.
The resulting action has
silent type τ .

CSP-style

No distinction between input
and output actions.
Communication or
synchronisation takes place
on the basis of shared names.
The resulting action has the
same name.

Most stochastic process algebras adopt CSP-style synchronisation.

The nature of synchronisation 105/ 168

Who Synchronises...?

Even within classical process algebras there is variation in the
interpretation of parallel composition:

CCS-style

Actions are partitioned into
input and output pairs.
Communication or
synchronisation takes places
between conjugate pairs.
The resulting action has
silent type τ .

CSP-style

No distinction between input
and output actions.
Communication or
synchronisation takes place
on the basis of shared names.
The resulting action has the
same name.

Most stochastic process algebras adopt CSP-style synchronisation.

The nature of synchronisation 106/ 168

Who Synchronises...?

Even within classical process algebras there is variation in the
interpretation of parallel composition:

CCS-style

Actions are partitioned into
input and output pairs.
Communication or
synchronisation takes places
between conjugate pairs.
The resulting action has
silent type τ .

CSP-style

No distinction between input
and output actions.
Communication or
synchronisation takes place
on the basis of shared names.
The resulting action has the
same name.

Most stochastic process algebras adopt CSP-style synchronisation.

The nature of synchronisation 107/ 168

Who Synchronises...?

Even within classical process algebras there is variation in the
interpretation of parallel composition:

CCS-style

Actions are partitioned into
input and output pairs.
Communication or
synchronisation takes places
between conjugate pairs.
The resulting action has
silent type τ .

CSP-style

No distinction between input
and output actions.
Communication or
synchronisation takes place
on the basis of shared names.
The resulting action has the
same name.

Most stochastic process algebras adopt CSP-style synchronisation.

The nature of synchronisation 108/ 168

Timed Synchronisation

P1
r1
s 1

P2
r2
s 2

s?

r?

The nature of synchronisation 109/ 168

Timed Synchronisation

P1
r1
s 1

P2
r2
s 2

r1
s 1

r2
s 2

s = max(s , s)1 2

Barrier Synchronisation

The nature of synchronisation 110/ 168

Timed Synchronisation

P1
r1
s 1

P2
r2
s 2

r1
s 1

r2
s 2

s = max(s , s)1 2

s is no longer exponentially distributed

The nature of synchronisation 111/ 168

Timed Synchronisation

P1
r1
s 1

P2
r2
s 2

s?

r?

algebraic considerations limit choices

The nature of synchronisation 112/ 168

Timed Synchronisation

P1
r1
s 1

P2
r2
s 2

r1
s 1

r2
s 2

r = r x r1 2

TIPP: new rate is product of individual rates

The nature of synchronisation 113/ 168

Timed Synchronisation

P1
r =?1

P2
r2
s 2

r2
s 2

r = r 2

r =?1

EMPA: one participant is passive

The nature of synchronisation 114/ 168

Timed Synchronisation

P1
r1
s 1

P2
r2
s 2

r1
s 1

r2
s 2

1 2r = min(r , r)

bounded capacity: new rate is the minimum of the rates

The nature of synchronisation 115/ 168

Cooperation in PEPA

In PEPA each component has a bounded capacity to carry out
activities of any particular type, determined by the apparent
rate for that type.

Synchronisation, or cooperation cannot make a component
exceed its bounded capacity.

Thus the apparent rate of a cooperation is the minimum of
the apparent rates of the co-operands.

The nature of synchronisation 116/ 168

Cooperation in PEPA

In PEPA each component has a bounded capacity to carry out
activities of any particular type, determined by the apparent
rate for that type.

Synchronisation, or cooperation cannot make a component
exceed its bounded capacity.

Thus the apparent rate of a cooperation is the minimum of
the apparent rates of the co-operands.

The nature of synchronisation 117/ 168

Cooperation in PEPA

In PEPA each component has a bounded capacity to carry out
activities of any particular type, determined by the apparent
rate for that type.

Synchronisation, or cooperation cannot make a component
exceed its bounded capacity.

Thus the apparent rate of a cooperation is the minimum of
the apparent rates of the co-operands.

The nature of synchronisation 118/ 168

Apparent rate

The total capacity of a component P to carry out activities of type
α is termed the apparent rate of α in P, denoted rα(P).

It is defined as:
rα(P) =

∑
P

(α,λi)

−−−→

λi

where λi ∈ R+ ∪ {n> | n ∈ Q, n > 0}.

n> is shorthand for n×> and > represents the passive action rate
that inherits the rate of the coaction from the cooperating
component.

The nature of synchronisation 119/ 168

Apparent rate

The total capacity of a component P to carry out activities of type
α is termed the apparent rate of α in P, denoted rα(P).

It is defined as:
rα(P) =

∑
P

(α,λi)

−−−→

λi

where λi ∈ R+ ∪ {n> | n ∈ Q, n > 0}.

n> is shorthand for n×> and > represents the passive action rate
that inherits the rate of the coaction from the cooperating
component.

The nature of synchronisation 120/ 168

Apparent rate

The total capacity of a component P to carry out activities of type
α is termed the apparent rate of α in P, denoted rα(P).

It is defined as:
rα(P) =

∑
P

(α,λi)

−−−→

λi

where λi ∈ R+ ∪ {n> | n ∈ Q, n > 0}.

n> is shorthand for n×> and > represents the passive action rate
that inherits the rate of the coaction from the cooperating
component.

The nature of synchronisation 121/ 168

Properties of > (the “unspecified” symbol)

> requires the following arithmetic rules:

m> < n> : for m < n and m, n ∈ Q
r < n> : for all r ∈ R, n ∈ Q

m>+ n> = (m + n)> : m, n ∈ Q
m>
n>

=
m

n
: m, n ∈ Q

Note that (r + n>) is undefined for all r ∈ R in PEPA therefore
disallowing components which enable both active and passive
actions in the same action type at the same time, e.g.
(α, λ).P + (α,>).P ′.

The nature of synchronisation 122/ 168

Properties of > (the “unspecified” symbol)

> requires the following arithmetic rules:

m> < n> : for m < n and m, n ∈ Q
r < n> : for all r ∈ R, n ∈ Q

m>+ n> = (m + n)> : m, n ∈ Q
m>
n>

=
m

n
: m, n ∈ Q

Note that (r + n>) is undefined for all r ∈ R in PEPA therefore
disallowing components which enable both active and passive
actions in the same action type at the same time, e.g.
(α, λ).P + (α,>).P ′.

Equivalence Relations 123/ 168

Outline

1 Process algebra and Markov processes

2 The nature of synchronisation

3 Equivalence Relations

Equivalence Relations 124/ 168

Equivalence relations in Performance Modelling

Equivalence relations are used, often informally, in performance
modelling to manipulate models into an alternative form which is
somehow easier to solve:

Model simplification: use a model-model equivalence to substitute
one model by another which is more attractive from
a solution point of view, e.g. smaller state space,
special class of model, etc.

Model aggregation: use a state-state equivalence to establish a
partition of the state space of a model, and replace
each set of states by one macro-state, i.e. take a
different stochastic representation of the same model.

Equivalence Relations 125/ 168

Equivalence relations in Performance Modelling

Equivalence relations are used, often informally, in performance
modelling to manipulate models into an alternative form which is
somehow easier to solve:

Model simplification: use a model-model equivalence to substitute
one model by another which is more attractive from
a solution point of view, e.g. smaller state space,
special class of model, etc.

Model aggregation: use a state-state equivalence to establish a
partition of the state space of a model, and replace
each set of states by one macro-state, i.e. take a
different stochastic representation of the same model.

Equivalence Relations 126/ 168

Aggregation and lumpability

Model aggregation: use a state-state equivalence to establish
a partition of the state space of a model, and replace each set
of states by one macro-state.

This is not as straightforward as it may seem if we wish the
aggregated process to still be a Markov process — an arbitrary
partition will not in general preserve the Markov property.

A lumpable partition is the only partition of a Markov process
which preserves the Markov property.

Equivalence Relations 127/ 168

Aggregation and lumpability

Model aggregation: use a state-state equivalence to establish
a partition of the state space of a model, and replace each set
of states by one macro-state.

This is not as straightforward as it may seem if we wish the
aggregated process to still be a Markov process — an arbitrary
partition will not in general preserve the Markov property.

A lumpable partition is the only partition of a Markov process
which preserves the Markov property.

Equivalence Relations 128/ 168

Aggregation and lumpability

Model aggregation: use a state-state equivalence to establish
a partition of the state space of a model, and replace each set
of states by one macro-state.

This is not as straightforward as it may seem if we wish the
aggregated process to still be a Markov process — an arbitrary
partition will not in general preserve the Markov property.

A lumpable partition is the only partition of a Markov process
which preserves the Markov property.

Equivalence Relations 129/ 168

Reducing by lumpability

Equivalence Relations 130/ 168

Reducing by lumpability

Equivalence Relations 131/ 168

Reducing by lumpability

As appealling as this is, it is not the case that it is always
mathematically legitimate.

In particular, arbitarily lumping the states of a Markov chain, will
typically give rise to a stochastic process which no longer satisfies
the Markov condition.

Equivalence Relations 132/ 168

Reducing by lumpability

As appealling as this is, it is not the case that it is always
mathematically legitimate.

In particular, arbitarily lumping the states of a Markov chain, will
typically give rise to a stochastic process which no longer satisfies
the Markov condition.

Equivalence Relations 133/ 168

Equivalence Relations in Process Algebras

It is standard for a process algebra to be equipped with an
equivalence relation based on the semantics.

Many different styles of equivalences have been defined, but
the most fundamental is perhaps the bisimulation.

Bisimulation is based on the notion of observability.

An external observer should not be able to distinguish
between two equivalent processes.

Equivalence Relations 134/ 168

Bisimulation

In classical process algebras such as CCS a bisimulation has the
following form:

A relation R is a strong bisimulation relation if (P,Q) ∈ R implies

1 whenever P
α−→ P ′, then there exists Q ′ such that Q

α−→ Q ′,
and (P ′,Q ′) ∈ R;

2 whenever Q
α−→ Q ′, then there exists P ′ such that P

α−→ P ′,
and (P ′,Q ′) ∈ R.

Strong bisimulation ∼ is the largest strong bisimulation, i.e.

∼ =
⋃
R.

Equivalence Relations 135/ 168

Bisimulation

In classical process algebras such as CCS a bisimulation has the
following form:

A relation R is a strong bisimulation relation if (P,Q) ∈ R implies

1 whenever P
α−→ P ′, then there exists Q ′ such that Q

α−→ Q ′,
and (P ′,Q ′) ∈ R;

2 whenever Q
α−→ Q ′, then there exists P ′ such that P

α−→ P ′,
and (P ′,Q ′) ∈ R.

Strong bisimulation ∼ is the largest strong bisimulation, i.e.

∼ =
⋃
R.

Equivalence Relations 136/ 168

Bisimulation

In classical process algebras such as CCS a bisimulation has the
following form:

A relation R is a strong bisimulation relation if (P,Q) ∈ R implies

1 whenever P
α−→ P ′, then there exists Q ′ such that Q

α−→ Q ′,
and (P ′,Q ′) ∈ R;

2 whenever Q
α−→ Q ′, then there exists P ′ such that P

α−→ P ′,
and (P ′,Q ′) ∈ R.

Strong bisimulation ∼ is the largest strong bisimulation, i.e.

∼ =
⋃
R.

Equivalence Relations 137/ 168

Bisimulation

In classical process algebras such as CCS a bisimulation has the
following form:

A relation R is a strong bisimulation relation if (P,Q) ∈ R implies

1 whenever P
α−→ P ′, then there exists Q ′ such that Q

α−→ Q ′,
and (P ′,Q ′) ∈ R;

2 whenever Q
α−→ Q ′, then there exists P ′ such that P

α−→ P ′,
and (P ′,Q ′) ∈ R.

Strong bisimulation ∼ is the largest strong bisimulation, i.e.

∼ =
⋃
R.

Equivalence Relations 138/ 168

Bisimulation

In classical process algebras such as CCS a bisimulation has the
following form:

A relation R is a strong bisimulation relation if (P,Q) ∈ R implies

1 whenever P
α−→ P ′, then there exists Q ′ such that Q

α−→ Q ′,
and (P ′,Q ′) ∈ R;

2 whenever Q
α−→ Q ′, then there exists P ′ such that P

α−→ P ′,
and (P ′,Q ′) ∈ R.

Strong bisimulation ∼ is the largest strong bisimulation, i.e.

∼ =
⋃
R.

Equivalence Relations 139/ 168

Strong Equivalence in PEPA

Strong equivalence in PEPA is a bisimulation in the style of Larsen
of Skou.

Observability is assumed to include the ability to record timing
information over a number of runs.

Two processes are equivalent if they can undertake the same
actions, at the same rate, and arrive at processes that are
equivalent.

Expressed as rates to equivalence classes of processes

Equivalence Relations 140/ 168

Strong Equivalence in PEPA

Strong equivalence in PEPA is a bisimulation in the style of Larsen
of Skou.

Q
(a,r)

(a,r)
(b,s)

(c,t) (d,u)

P

(d,u)
(c,t)

(b,s)
(a,r)

Observability is assumed to include the ability to record timing
information over a number of runs.

Two processes are equivalent if they can undertake the same
actions, at the same rate, and arrive at processes that are
equivalent.

Expressed as rates to equivalence classes of processes

Equivalence Relations 141/ 168

Strong Equivalence in PEPA

Strong equivalence in PEPA is a bisimulation in the style of Larsen
of Skou.

Q
(a,r)

(a,r)
(b,s)

(c,t) (d,u)

P

(d,u)
(c,t)

(b,s)
(a,r)

Observability is assumed to include the ability to record timing
information over a number of runs.

Two processes are equivalent if they can undertake the same
actions, at the same rate, and arrive at processes that are
equivalent.

Expressed as rates to equivalence classes of processes

Equivalence Relations 142/ 168

Strong Equivalence in PEPA

Strong equivalence in PEPA is a bisimulation in the style of Larsen
of Skou.

Q
(a,r)

(a,r)
(b,s)

(c,t) (d,u)

P

(d,u)
(c,t)

(b,s)
(a,r)

Observability is assumed to include the ability to record timing
information over a number of runs.

Two processes are equivalent if they can undertake the same
actions, at the same rate, and arrive at processes that are
equivalent.

Expressed as rates to equivalence classes of processes

Equivalence Relations 143/ 168

Strong Equivalence in PEPA

Strong equivalence in PEPA is a bisimulation in the style of Larsen
of Skou.

Q
(a,r)

(a,r)
(b,s)

(c,t) (d,u)

P

(d,u)
(c,t)

(b,s)
(a,r)

Observability is assumed to include the ability to record timing
information over a number of runs.

Two processes are equivalent if they can undertake the same
actions, at the same rate, and arrive at processes that are
equivalent.

Expressed as rates to equivalence classes of processes

Equivalence Relations 144/ 168

Strong Equivalence in PEPA

Strong equivalence in PEPA is a bisimulation in the style of Larsen
of Skou.

Q
(a,r)

(a,r)
(b,s)

(c,t) (d,u)

P

(d,u)
(c,t)

(b,s)
(a,r)

Observability is assumed to include the ability to record timing
information over a number of runs.

Two processes are equivalent if they can undertake the same
actions, at the same rate, and arrive at processes that are
equivalent.

Expressed as rates to equivalence classes of processes

Equivalence Relations 145/ 168

Strong Equivalence in PEPA

Strong equivalence in PEPA is a bisimulation in the style of Larsen
of Skou.

Q
(a,r)

(a,r)
(b,s)

(c,t) (d,u)

P

(d,u)
(c,t)

(b,s)
(a,r)

Observability is assumed to include the ability to record timing
information over a number of runs.

Two processes are equivalent if they can undertake the same
actions, at the same rate, and arrive at processes that are
equivalent.

Expressed as rates to equivalence classes of processes

Equivalence Relations 146/ 168

Strong Equivalence in PEPA

Strong equivalence in PEPA is a bisimulation in the style of Larsen
of Skou.

Q
(a,r)

(a,r)
(b,s)

(c,t) (d,u)

P

(d,u)
(c,t)

(b,s)
(a,r)

Observability is assumed to include the ability to record timing
information over a number of runs.

Two processes are equivalent if they can undertake the same
actions, at the same rate, and arrive at processes that are
equivalent.

Expressed as rates to equivalence classes of processes

Equivalence Relations 147/ 168

Strong Equivalence in PEPA

Strong equivalence in PEPA is a bisimulation in the style of Larsen
of Skou.

Q
(a,r)

(a,r)
(b,s)

(c,t) (d,u)

P

(d,u)
(c,t)

(b,s)
(a,r)

Observability is assumed to include the ability to record timing
information over a number of runs.

Two processes are equivalent if they can undertake the same
actions, at the same rate, and arrive at processes that are
equivalent.

Expressed as rates to equivalence classes of processes

Equivalence Relations 148/ 168

Strong Equivalence in PEPA

Strong equivalence in PEPA is a bisimulation in the style of Larsen
of Skou.

Q
(a,r)

(a,r)
(b,s)

(c,t) (d,u)

P

(d,u)
(c,t)

(b,s)
(a,r)

Observability is assumed to include the ability to record timing
information over a number of runs.

Two processes are equivalent if they can undertake the same
actions, at the same rate, and arrive at processes that are
equivalent.

Expressed as rates to equivalence classes of processes

Equivalence Relations 149/ 168

Strong Equivalence in PEPA (Markovian Bisimulation)

Definition

An equivalence relation R ⊆ C × C is a strong equivalence if
whenever (P,Q) ∈ R then for all α ∈ A and for all S ∈ C/R

q[P, S , α] = q[Q,S , α].

where
q[Ci ,S , α] =

∑
Cj∈S

q(Ci ,Cj , α)

Strong equivalence ∼ is ∼ =
⋃
R.

Equivalence Relations 150/ 168

Strong Equivalence in PEPA (Markovian Bisimulation)

Definition

An equivalence relation R ⊆ C × C is a strong equivalence if
whenever (P,Q) ∈ R then for all α ∈ A and for all S ∈ C/R

q[P, S , α] = q[Q,S , α].

where
q[Ci ,S , α] =

∑
Cj∈S

q(Ci ,Cj , α)

Strong equivalence ∼ is ∼ =
⋃
R.

Equivalence Relations 151/ 168

Axiomatization

P1 + P2 ∼ P2 + P1

(P1 + P2) + P3 ∼ P1 + (P2 + P3)

(α, r1).P + (α, r2).P ∼ (α, r1 + r2).P

P1 ��
L

P2 ∼ P2 ��
L

P1

(α, r1).P1 ��
L

(α, r2).P2 ∼

(α, r1).(P1 ��

L
(α, r2).P2)+

(α, r2).((α, r1).P1 ��
L

P2) if α /∈ L

(α, r1).(P1 ��
L

P2) if α ∈ L

(P1 + P2)/L ∼ P1/L + P2/L

((α, r).P)/L ∼
{

(α, r).(P/L) if α /∈ L
(τ, r).(P/L) if α ∈ L

Note that there is no longer the idempotency law from classical
process algebras, P + P ∼ P.

Equivalence Relations 152/ 168

Axiomatization

P1 + P2 ∼ P2 + P1

(P1 + P2) + P3 ∼ P1 + (P2 + P3)

(α, r1).P + (α, r2).P ∼ (α, r1 + r2).P

P1 ��
L

P2 ∼ P2 ��
L

P1

(α, r1).P1 ��
L

(α, r2).P2 ∼

(α, r1).(P1 ��

L
(α, r2).P2)+

(α, r2).((α, r1).P1 ��
L

P2) if α /∈ L

(α, r1).(P1 ��
L

P2) if α ∈ L

(P1 + P2)/L ∼ P1/L + P2/L

((α, r).P)/L ∼
{

(α, r).(P/L) if α /∈ L
(τ, r).(P/L) if α ∈ L

Note that there is no longer the idempotency law from classical
process algebras, P + P ∼ P.

Equivalence Relations 153/ 168

Strong Equivalence and Lumpability

Given this definition it is fairly straightforward to show that if
we consider strong equivalence of states within a single model,
it induces an ordinarily lumpable partition on the state space
of the underlying Markov chain.

Moreover it can be shown that strong equivalence is a
congruence.

This means that aggregation based on lumpability can be
applied component by component, avoiding the previous
problem of having to construct the complete state space in
order to find the lumpable partitions.

Equivalence Relations 154/ 168

Strong Equivalence and Lumpability

Given this definition it is fairly straightforward to show that if
we consider strong equivalence of states within a single model,
it induces an ordinarily lumpable partition on the state space
of the underlying Markov chain.

Moreover it can be shown that strong equivalence is a
congruence.

This means that aggregation based on lumpability can be
applied component by component, avoiding the previous
problem of having to construct the complete state space in
order to find the lumpable partitions.

Equivalence Relations 155/ 168

Strong Equivalence and Lumpability

Given this definition it is fairly straightforward to show that if
we consider strong equivalence of states within a single model,
it induces an ordinarily lumpable partition on the state space
of the underlying Markov chain.

Moreover it can be shown that strong equivalence is a
congruence.

This means that aggregation based on lumpability can be
applied component by component, avoiding the previous
problem of having to construct the complete state space in
order to find the lumpable partitions.

Equivalence Relations 156/ 168

A logical foundation for the specification language

The expression, and testing for satisfaction of equilibrium
properties, can be seen to be closely related to the specification,
and model checking of a formula expressed in Larsen and Skou’s
probabilistic modal logic (PML). We give a modified interpretation
of such formulae suitable for reasoning about PEPA’s continuous
time models.

We exploit the operators of modal logic to be more discriminating
about which states contribute to the reward measure. In particular,
we can select a state based on model behaviour which is not
immediately local to the state.

Equivalence Relations 157/ 168

A logical foundation for the specification language

The expression, and testing for satisfaction of equilibrium
properties, can be seen to be closely related to the specification,
and model checking of a formula expressed in Larsen and Skou’s
probabilistic modal logic (PML). We give a modified interpretation
of such formulae suitable for reasoning about PEPA’s continuous
time models.

We exploit the operators of modal logic to be more discriminating
about which states contribute to the reward measure. In particular,
we can select a state based on model behaviour which is not
immediately local to the state.

Equivalence Relations 158/ 168

Larsen and Skou’s PML

F ::= tt (truth)

| ∇α (inability)

| ¬F (negation)

| F1 ∧ F2 (conjunction)

| 〈α〉µF (“at least”)

Equivalence Relations 159/ 168

Relation to PEPA

Defn. P
(α,ν)
−−−→ S if for all P ′ ∈ S , P

α
−−→ P ′ and∑
{r | P

(α,r)
−−−→ P ′,P ′ ∈ S} = ν.

Let P be a model of a PEPA process.

P |= tt

P |= ¬F if P 6|= F

P |= F1 ∧ F2 if P |= F1 and P |= F2

P |= ∇α if P 6α−→

P |= 〈α〉µF if P
(α,ν)
−−−→ S for some ν ≥ µ,

and for all P ′ ∈ S ,P ′ |= F

Equivalence Relations 160/ 168

Relation to PEPA

Defn. P
(α,ν)
−−−→ S if for all P ′ ∈ S , P

α
−−→ P ′ and∑
{r | P

(α,r)
−−−→ P ′,P ′ ∈ S} = ν.

Let P be a model of a PEPA process.

P |= tt

P |= ¬F if P 6|= F

P |= F1 ∧ F2 if P |= F1 and P |= F2

P |= ∇α if P 6α−→

P |= 〈α〉µF if P
(α,ν)
−−−→ S for some ν ≥ µ,

and for all P ′ ∈ S ,P ′ |= F

Equivalence Relations 161/ 168

Relation to PEPA

Defn. P
(α,ν)
−−−→ S if for all P ′ ∈ S , P

α
−−→ P ′ and∑
{r | P

(α,r)
−−−→ P ′,P ′ ∈ S} = ν.

Let P be a model of a PEPA process.

P |= tt

P |= ¬F if P 6|= F

P |= F1 ∧ F2 if P |= F1 and P |= F2

P |= ∇α if P 6α−→

P |= 〈α〉µF if P
(α,ν)
−−−→ S for some ν ≥ µ,

and for all P ′ ∈ S ,P ′ |= F

Equivalence Relations 162/ 168

Relation to PEPA

Defn. P
(α,ν)
−−−→ S if for all P ′ ∈ S , P

α
−−→ P ′ and∑
{r | P

(α,r)
−−−→ P ′,P ′ ∈ S} = ν.

Let P be a model of a PEPA process.

P |= tt

P |= ¬F if P 6|= F

P |= F1 ∧ F2 if P |= F1 and P |= F2

P |= ∇α if P 6α−→

P |= 〈α〉µF if P
(α,ν)
−−−→ S for some ν ≥ µ,

and for all P ′ ∈ S ,P ′ |= F

Equivalence Relations 163/ 168

Relation to PEPA

Defn. P
(α,ν)
−−−→ S if for all P ′ ∈ S , P

α
−−→ P ′ and∑
{r | P

(α,r)
−−−→ P ′,P ′ ∈ S} = ν.

Let P be a model of a PEPA process.

P |= tt

P |= ¬F if P 6|= F

P |= F1 ∧ F2 if P |= F1 and P |= F2

P |= ∇α if P 6α−→

P |= 〈α〉µF if P
(α,ν)
−−−→ S for some ν ≥ µ,

and for all P ′ ∈ S ,P ′ |= F

Equivalence Relations 164/ 168

Relation to PEPA

Defn. P
(α,ν)
−−−→ S if for all P ′ ∈ S , P

α
−−→ P ′ and∑
{r | P

(α,r)
−−−→ P ′,P ′ ∈ S} = ν.

Let P be a model of a PEPA process.

P |= tt

P |= ¬F if P 6|= F

P |= F1 ∧ F2 if P |= F1 and P |= F2

P |= ∇α if P 6α−→

P |= 〈α〉µF if P
(α,ν)
−−−→ S for some ν ≥ µ,

and for all P ′ ∈ S ,P ′ |= F

Equivalence Relations 165/ 168

Modal characterisation of strong equivalence

Let P be a model of a PEPA process. Then

P ∼= Q iff for all F , P |= F iff Q |= F

i.e. two PEPA processes are strongly equivalent (in particular, their
underlying Markov chains are lumpably equivalent) if and only if
they both satisfy, in the setting where rates are quantified, the
same set of PML formulae.

Equivalence Relations 166/ 168

Modal characterisation of strong equivalence

Let P be a model of a PEPA process. Then

P ∼= Q iff for all F , P |= F iff Q |= F

i.e. two PEPA processes are strongly equivalent (in particular, their
underlying Markov chains are lumpably equivalent) if and only if
they both satisfy, in the setting where rates are quantified, the
same set of PML formulae.

Equivalence Relations 167/ 168

References

U. Herzog, Formal description, time and performance analysis: A
framework, Technical Report 15/90, IMMD VII,
Friedrich-Alexander-Universität, Erlangen- Nürnberg, (Sept 1990)

M. Bernardo and R. Gorrieri, A Tutorial on EMPA: A Theory of
Concurrent Processes with Nondeterminism, Priorities, Probabilities
and Time, in Theoretical Computer Science, 202(1–2), pp. 1–54,
1998.

L. Bortolussi, Stochastic Concurrent Constraint Programming, in
Proc. of 4th Intl. Workshop of Quantitative Aspects of
Programming Languages, QAPL 2006, ENTCS 164-3, Wien,
Austria, April 2006.

N. Götz, U. Herzog, M. Rettelbach, TIPP — a language for timed
processes and performance evaluation. Technical Report 4/92,
IMMD7, University of Erlangen- Nürnberg, (Nov 1992)

Equivalence Relations 168/ 168

References

H. Hermanns, Interactive Markov Chains: The Quest for Quantified
Quality, Volume 2428 of LNCS. Springer (2002)

C. Priami, Stochastic π-Calculus, in The Computer Journal, 38(7),
578–589, 1995.

R. Milner, Communication and Concurrency, Prentice-Hall (1989)

C. Hoare, Communicating Sequential Processes, Prentice-Hall
(1985)

J. Hillston, The Nature of Synchronisation, in 2nd Workshop of
Process Algebras and Performance Modelling Workshop, 1994.

	Process algebra and Markov processes
	The nature of synchronisation
	Equivalence Relations

