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Process Algebra

Models consist of agents which engage in actions.

α.P
�
��*

H
HHY

action type
or name

agent/
component

The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

Process algebra model Labelled transition system-
SOS rules

Choices are non-deterministic and time is abstracted.
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Example

Consider a web server which offers html pages for download:

Server
def
= get.download .rel .Server

Its clients might be web browsers, in a domain with a local cache of
frequently requested pages. Thus any display request might result
in an access to the server or in a page being loaded from the cache.

Browser
def
= display .(cache.Browser + get.download .rel .Browser)

A simple version of the Web can be considered to be the
interaction of these components:

W EB
def
=
(
Browser ‖ Browser

)
| Server
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Qualitative Analysis

The labelled transition system underlying a process algebra
model can be used for functional verification e.g.: reachability
analysis, specification matching and model checking.

Will the system arrive
in a particular state?
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Stochastic process algebras

Process algebras where models are decorated with quantitative
information used to generate a stochastic process are stochastic
process algebras (SPA).
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Interplay between process algebra and Markov process

The theoretical development underpinning PEPA has focused
on the interplay between the process algebra and the
underlying mathematical structure, the Markov process.

From the process algebra side the Markov chain had a
profound influence on the design of the language and in
particular on the interactions between components.

From the Markov chain perspective the process algebra
structure has been exploited to find aspects of independence
even between interacting components.
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Interplay with Performance Modelling

Model Construction: Compositionality leads to

ease of construction
reusable submodels
easy to understand models

Model Manipulation: Equivalence relations lead to

term rewriting/state space reduction techniques
aggregation techniques based on lumpability

Model Solution: Formal semantics: lead to

automatic identification of classes of models
susceptible to efficient solution
use of logics to express performance measures
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Integrated time stochastic process algebra

Models are constructed from components which engage in
durational activities.

(α, r).P
��
�* 6 HH

HY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language is used to generate a CTMC for performance
modelling. The activity (α, r) will happen before time t with
probability 1− e−rt .

PEPA
MODEL

LABELLED
LABELLED

MULTI-
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition

diagram
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PEPA

S ::= (α, r).S | S + S | A

P ::= S | P ��
L

P | P/L

PREFIX: (α, r).S designated first action

CHOICE: S + S competing components

CONSTANT: A
def
= S assigning names

COOPERATION: P ��
L

P α /∈ L individual actions

α ∈ L shared actions

HIDING: P/L abstraction α ∈ L⇒ α→ τ
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Example: Browsers, server and download

Server
def
= (get,>).(download , µ).(rel ,>).Server

Browser
def
= (display , pλ).(get, g).(download ,>).(rel , r).Browser

+ (display , (1− p)λ).(cache,m).Browser

WEB
def
=

(
Browser ‖ Browser

)
��
L

Server

where L = {get, download , rel}
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Structured Operational Semantics

PEPA is defined using a Plotkin-style structured operational
semantics (a “small step” semantics).

Prefix

(α, r).E
(α,r)
−−−→ E

Choice

E
(α,r)
−−−→ E ′

E + F
(α,r)
−−−→ E ′

F
(α,r)
−−−→ F ′

E + F
(α,r)
−−−→ F ′
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Structured Operational Semantics: Cooperation (α /∈ L)

Cooperation

E
(α,r)
−−−→ E ′

E ��
L

F
(α,r)
−−−→ E ′ ��

L
F

(α /∈ L)

F
(α,r)
−−−→ F ′

E ��
L

F
(α,r)
−−−→ E ��

L
F ′

(α /∈ L)
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Structured Operational Semantics: Cooperation (α ∈ L)

Cooperation
E

(α,r1)
−−−→ E ′ F

(α,r2)
−−−→ F ′

E ��
L

F
(α,R)
−−−→ E ′ ��

L
F ′

(α ∈ L)

where R =
r1

rα(E )

r2
rα(F )

min(rα(E ), rα(F ))
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Structured Operational Semantics: Cooperation (α ∈ L)

Cooperation
E
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−−−→ E ′ F

(α,r2)
−−−→ F ′

E ��
L

F
(α,R)
−−−→ E ′ ��

L
F ′
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where R =
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Apparent Rate

rα((β, r).P) =

{
r β = α
0 β 6= α

rα(P + Q) = rα(P) + rα(Q)

rα(A) = rα(P) where A
def
= P

rα(P ��
L

Q) =

{
rα(P) + rα(Q) α /∈ L
min(rα(P), rα(Q)) α ∈ L

rα(P/L) =

{
rα(P) α /∈ L
0 α ∈ L
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Structured Operational Semantics: Hiding

Hiding

E
(α,r)
−−−→ E ′

E/L
(α,r)
−−−→ E ′/L

(α /∈ L)

E
(α,r)
−−−→ E ′

E/L
(τ,r)
−−−→ E ′/L

(α ∈ L)
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Structured Operational Semantics: Hiding

Hiding

E
(α,r)
−−−→ E ′

E/L
(α,r)
−−−→ E ′/L

(α /∈ L)

E
(α,r)
−−−→ E ′

E/L
(τ,r)
−−−→ E ′/L

(α ∈ L)
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Structured Operational Semantics: Constants

Constant

E
(α,r)−→ E ′

A
(α,r)−→ E ′

(A
def
= E )
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Properties of the definition (1)

PEPA has no “nil” (a deadlocked process).

This is because the PEPA language is intended for modelling
non-stop processes (such as Web servers, operating systems, or
manufacturing processes) rather than for modelling terminating
processes (a compilation, a sorting routine, and so forth).
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Creating a deadlocked process

When we are interested in transient behaviour we use the
deadlocked process Stop to signal a component which performs no
further actions.

Stop
def
=

((
(a, r).Stop

)
��
{a,b}

(
(b, r).Stop

))
/{ a, b }
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Properties of the definition (2)

Cooperation in PEPA is multi-way. Two, three, four or more
partners may cooperate, and they all need to synchronise for the
activity to happen.

This comes from the fact that synchronisation has the form
a, a→ a (as in CSP) instead of a, ā→ τ (as in CCS and the
π-calculus).

This is used to have “witnesses” to events (known as stochastic
probes).
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Properties of the definition (3)

Because of its mapping onto a CTMC, PEPA has an
interleaving semantics.

Other modelling formalisms based on CTMCs are also based
on an interleaving semantics (e.g. Generalised Stochastic Petri
nets).

As we have seen a continuous time Markov chain (CTMC) is
generated from a PEPA model via its structured operational
semantics.

Linear algebra is used to solve the model in terms of
equilibrium behaviour.

The resulting probability distribution is seldom the ultimate
goal of performance analysis; a modeller derives performance
measures from this distribution via a reward structure.
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Dynamic behaviour

C omp
def
= (f irst, f ).((slow , r/3).C omp + (quick, r).(rapid , r).(fast, r).Comp)

α.P
α−→ P

P
α−→ P ′

P + Q
α−→ P ′

Q
α−→ Q ′

P + Q
α−→ Q ′

C omp

?
(first, f )

(slow , r/3).C omp + (quick, r).(rapid , r).(fast, r).C omp

?
(quick , r)

�
�
��(slow , r/3)

(download , r).(rel , r).C omp

?
(rapid , r)

(fast, r).C omp

(fast, r)

�
�
�
�
�
�
�
�
�
HH

HH
HH

HH
HY
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Integrated analysis

Qualitative verification can now be complemented by quantitative
verification.
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Integrated analysis: Reachability analysis

How long will it take
for the system to arrive

in a particular state?

f f
f f f fif

f f
- - -

?
��
��

���

-

���
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Integrated analysis: Specification matching

With what probability
does system behaviour
match its specification?

f
f f f

f
-

6

-

?

�
�
��

∼=
?

f f
f f f ff

f f
- - -

?
��
��

���

-

���
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Integrated analysis: Specification matching

Does the “frequency
profile” of the

system match that
of the specification?

f
f f f0.5

f 0.5

-

6

-

?

�
�
��

�

f f
f f f f0.6

f0.4f f
- - -

?
��
��

���

-

���
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Integrated analysis: Model checking

Does a given property φ
hold within the system

with a given probability?
φ
��

��
��
��

��

PPPPPPPPPP

f f
f f f ff

f f
- - -

?
��
��

���

-

���
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Integrated analysis: Model checking

For a given starting state
how long is it until

a given property φ holds?
φ
��

��
��
��

��

PPPPPPPPPP

f f
f f f ff

f f
- - -

?
��
��

���

-

���
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The Importance of Being Exponential

@
@
@R

�
�

��	

?

�
�
�	

@
@
@@R

Stop ‖ (β, s).Stop (α, r).Stop ‖ Stop

Stop ‖ Stop

(α, r).Stop ‖ (β, s).Stop

(β, s)

(α, r) (β, s)

(α, r) (β, s)

(α, r)
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The Importance of Being Exponential
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The Importance of Being Exponential
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The Importance of Being Exponential

@
@
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�
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?
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�	

@
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Stop ‖ (β, s).Stop (α, r).Stop ‖ Stop

Stop ‖ Stop

(α, r).Stop ‖ (β, s).Stop

(β, s)

(α, r) (β, s)

(α, r) (β, s)

(α, r)

The memoryless property of the negative exponential distribution
means that residual times do not need to be recorded.
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The exponential distribution and the expansion law

We retain the expansion law of classical process algebra:

(α, r).Stop ‖ (β, s).Stop =

(α, r).(β, s).(Stop ‖ Stop) + (β, s).(α, r).(Stop ‖ Stop)

only if the negative exponential distribution is used.
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Parallel Composition

Parallel composition is the basis of the compositionality in a
process algebra

— it defines which components interact and
how.

In classical process algebra is it often associated with
communication.

When the activities of the process algebra have a duration the
definition of parallel composition becomes more complex.

The issue of what it means for two timed activities to
synchronise is a vexed one....
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Who Synchronises...?

Even within classical process algebras there is variation in the
interpretation of parallel composition:

CCS-style

Actions are partitioned into
input and output pairs.
Communication or
synchronisation takes places
between conjugate pairs.
The resulting action has
silent type τ .

CSP-style

No distinction between input
and output actions.
Communication or
synchronisation takes place
on the basis of shared names.
The resulting action has the
same name.

Most stochastic process algebras adopt CSP-style synchronisation.
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Communication or
synchronisation takes places
between conjugate pairs.
The resulting action has
silent type τ .

CSP-style

No distinction between input
and output actions.
Communication or
synchronisation takes place
on the basis of shared names.
The resulting action has the
same name.

Most stochastic process algebras adopt CSP-style synchronisation.
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Timed Synchronisation

P1
r1
s 1

P2
r2
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Barrier Synchronisation
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Timed Synchronisation
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s is no longer exponentially distributed
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Timed Synchronisation
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algebraic considerations limit choices
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TIPP: new rate is product of individual rates
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Timed Synchronisation
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EMPA: one participant is passive
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Timed Synchronisation
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r2
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1 2r = min(r  , r  )

bounded capacity: new rate is the minimum of the rates
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Cooperation in PEPA

In PEPA each component has a bounded capacity to carry out
activities of any particular type, determined by the apparent
rate for that type.

Synchronisation, or cooperation cannot make a component
exceed its bounded capacity.

Thus the apparent rate of a cooperation is the minimum of
the apparent rates of the co-operands.
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Apparent rate

The total capacity of a component P to carry out activities of type
α is termed the apparent rate of α in P, denoted rα(P).

It is defined as:
rα(P) =

∑
P

(α,λi )

−−−→

λi

where λi ∈ R+ ∪ {n> | n ∈ Q, n > 0}.

n> is shorthand for n×> and > represents the passive action rate
that inherits the rate of the coaction from the cooperating
component.
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Properties of > (the “unspecified” symbol)

> requires the following arithmetic rules:

m> < n> : for m < n and m, n ∈ Q
r < n> : for all r ∈ R, n ∈ Q

m>+ n> = (m + n)> : m, n ∈ Q
m>
n>

=
m

n
: m, n ∈ Q

Note that (r + n>) is undefined for all r ∈ R in PEPA therefore
disallowing components which enable both active and passive
actions in the same action type at the same time, e.g.
(α, λ).P + (α,>).P ′.
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Equivalence relations in Performance Modelling

Equivalence relations are used, often informally, in performance
modelling to manipulate models into an alternative form which is
somehow easier to solve:

Model simplification: use a model-model equivalence to substitute
one model by another which is more attractive from
a solution point of view, e.g. smaller state space,
special class of model, etc.

Model aggregation: use a state-state equivalence to establish a
partition of the state space of a model, and replace
each set of states by one macro-state, i.e. take a
different stochastic representation of the same model.
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Aggregation and lumpability

Model aggregation: use a state-state equivalence to establish
a partition of the state space of a model, and replace each set
of states by one macro-state.

This is not as straightforward as it may seem if we wish the
aggregated process to still be a Markov process — an arbitrary
partition will not in general preserve the Markov property.

A lumpable partition is the only partition of a Markov process
which preserves the Markov property.
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Reducing by lumpability
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Reducing by lumpability

As appealling as this is, it is not the case that it is always
mathematically legitimate.

In particular, arbitarily lumping the states of a Markov chain, will
typically give rise to a stochastic process which no longer satisfies
the Markov condition.
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Equivalence Relations in Process Algebras

It is standard for a process algebra to be equipped with an
equivalence relation based on the semantics.

Many different styles of equivalences have been defined, but
the most fundamental is perhaps the bisimulation.

Bisimulation is based on the notion of observability.

An external observer should not be able to distinguish
between two equivalent processes.
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Bisimulation

In classical process algebras such as CCS a bisimulation has the
following form:

A relation R is a strong bisimulation relation if (P,Q) ∈ R implies

1 whenever P
α−→ P ′, then there exists Q ′ such that Q

α−→ Q ′,
and (P ′,Q ′) ∈ R;

2 whenever Q
α−→ Q ′, then there exists P ′ such that P

α−→ P ′,
and (P ′,Q ′) ∈ R.

Strong bisimulation ∼ is the largest strong bisimulation, i.e.

∼ =
⋃
R.
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Strong Equivalence in PEPA

Strong equivalence in PEPA is a bisimulation in the style of Larsen
of Skou.

Observability is assumed to include the ability to record timing
information over a number of runs.

Two processes are equivalent if they can undertake the same
actions, at the same rate, and arrive at processes that are
equivalent.

Expressed as rates to equivalence classes of processes
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Strong Equivalence in PEPA (Markovian Bisimulation)

Definition

An equivalence relation R ⊆ C × C is a strong equivalence if
whenever (P,Q) ∈ R then for all α ∈ A and for all S ∈ C/R

q[P, S , α] = q[Q,S , α].

where
q[Ci ,S , α] =

∑
Cj∈S

q(Ci ,Cj , α)

Strong equivalence ∼ is ∼ =
⋃
R.
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Axiomatization

P1 + P2 ∼ P2 + P1

(P1 + P2) + P3 ∼ P1 + (P2 + P3)

(α, r1).P + (α, r2).P ∼ (α, r1 + r2).P

P1 ��
L

P2 ∼ P2 ��
L

P1

(α, r1).P1 ��
L

(α, r2).P2 ∼


(α, r1).(P1 ��

L
(α, r2).P2)+

(α, r2).((α, r1).P1 ��
L

P2) if α /∈ L

(α, r1).(P1 ��
L

P2) if α ∈ L

(P1 + P2)/L ∼ P1/L + P2/L

((α, r).P)/L ∼
{

(α, r).(P/L) if α /∈ L
(τ, r).(P/L) if α ∈ L

Note that there is no longer the idempotency law from classical
process algebras, P + P ∼ P.
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Strong Equivalence and Lumpability

Given this definition it is fairly straightforward to show that if
we consider strong equivalence of states within a single model,
it induces an ordinarily lumpable partition on the state space
of the underlying Markov chain.

Moreover it can be shown that strong equivalence is a
congruence.

This means that aggregation based on lumpability can be
applied component by component, avoiding the previous
problem of having to construct the complete state space in
order to find the lumpable partitions.
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A logical foundation for the specification language

The expression, and testing for satisfaction of equilibrium
properties, can be seen to be closely related to the specification,
and model checking of a formula expressed in Larsen and Skou’s
probabilistic modal logic (PML). We give a modified interpretation
of such formulae suitable for reasoning about PEPA’s continuous
time models.

We exploit the operators of modal logic to be more discriminating
about which states contribute to the reward measure. In particular,
we can select a state based on model behaviour which is not
immediately local to the state.
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Larsen and Skou’s PML

F ::= tt (truth)

| ∇α (inability)

| ¬F (negation)

| F1 ∧ F2 (conjunction)

| 〈α〉µF (“at least”)
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Relation to PEPA

Defn. P
(α,ν)
−−−→ S if for all P ′ ∈ S , P

α
−−→ P ′ and∑
{r | P

(α,r)
−−−→ P ′,P ′ ∈ S} = ν.

Let P be a model of a PEPA process.

P |= tt

P |= ¬F if P 6|= F

P |= F1 ∧ F2 if P |= F1 and P |= F2

P |= ∇α if P 6α−→

P |= 〈α〉µF if P
(α,ν)
−−−→ S for some ν ≥ µ,

and for all P ′ ∈ S ,P ′ |= F



Equivalence Relations 160/ 168

Relation to PEPA

Defn. P
(α,ν)
−−−→ S if for all P ′ ∈ S , P

α
−−→ P ′ and∑
{r | P

(α,r)
−−−→ P ′,P ′ ∈ S} = ν.

Let P be a model of a PEPA process.

P |= tt

P |= ¬F if P 6|= F

P |= F1 ∧ F2 if P |= F1 and P |= F2

P |= ∇α if P 6α−→

P |= 〈α〉µF if P
(α,ν)
−−−→ S for some ν ≥ µ,

and for all P ′ ∈ S ,P ′ |= F



Equivalence Relations 161/ 168

Relation to PEPA

Defn. P
(α,ν)
−−−→ S if for all P ′ ∈ S , P

α
−−→ P ′ and∑
{r | P

(α,r)
−−−→ P ′,P ′ ∈ S} = ν.

Let P be a model of a PEPA process.

P |= tt

P |= ¬F if P 6|= F

P |= F1 ∧ F2 if P |= F1 and P |= F2

P |= ∇α if P 6α−→

P |= 〈α〉µF if P
(α,ν)
−−−→ S for some ν ≥ µ,

and for all P ′ ∈ S ,P ′ |= F



Equivalence Relations 162/ 168

Relation to PEPA

Defn. P
(α,ν)
−−−→ S if for all P ′ ∈ S , P

α
−−→ P ′ and∑
{r | P

(α,r)
−−−→ P ′,P ′ ∈ S} = ν.

Let P be a model of a PEPA process.

P |= tt

P |= ¬F if P 6|= F

P |= F1 ∧ F2 if P |= F1 and P |= F2

P |= ∇α if P 6α−→

P |= 〈α〉µF if P
(α,ν)
−−−→ S for some ν ≥ µ,

and for all P ′ ∈ S ,P ′ |= F



Equivalence Relations 163/ 168

Relation to PEPA

Defn. P
(α,ν)
−−−→ S if for all P ′ ∈ S , P

α
−−→ P ′ and∑
{r | P

(α,r)
−−−→ P ′,P ′ ∈ S} = ν.

Let P be a model of a PEPA process.

P |= tt

P |= ¬F if P 6|= F

P |= F1 ∧ F2 if P |= F1 and P |= F2

P |= ∇α if P 6α−→

P |= 〈α〉µF if P
(α,ν)
−−−→ S for some ν ≥ µ,

and for all P ′ ∈ S ,P ′ |= F



Equivalence Relations 164/ 168

Relation to PEPA

Defn. P
(α,ν)
−−−→ S if for all P ′ ∈ S , P

α
−−→ P ′ and∑
{r | P

(α,r)
−−−→ P ′,P ′ ∈ S} = ν.

Let P be a model of a PEPA process.

P |= tt

P |= ¬F if P 6|= F

P |= F1 ∧ F2 if P |= F1 and P |= F2

P |= ∇α if P 6α−→

P |= 〈α〉µF if P
(α,ν)
−−−→ S for some ν ≥ µ,

and for all P ′ ∈ S ,P ′ |= F



Equivalence Relations 165/ 168

Modal characterisation of strong equivalence

Let P be a model of a PEPA process. Then

P ∼= Q iff for all F , P |= F iff Q |= F

i.e. two PEPA processes are strongly equivalent (in particular, their
underlying Markov chains are lumpably equivalent) if and only if
they both satisfy, in the setting where rates are quantified, the
same set of PML formulae.
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