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Dynamic behaviour

The behaviour of a model is dictated by the semantic rules
governing the combinators of the language.

The possible evolutions of a model are captured by applying
these rules exhaustively, generating a labelled transition
system.

This can be viewed as a graph in which each node is a state
of the model (comprised of the local states of each of the
components) and the arcs represent the actions which can
cause the move from one state to another.

The language is also equipped with observational equivalence
which can be used to compare models.
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PEPA Eclipse Plug-In input

P1
def
= (start, r1).P2 P2

def
= (run, r2).P3 P3

def
= (stop, r3).P1

P1 ‖ P1
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PEPA Eclipse Plug-In input

P1
def
= (start, r1).P2 P2

def
= (run, r2).P3 P3

def
= (stop, r3).P1

P1 ‖ P1

State space

1 P1 ‖ P1

2 P1 ‖ P2

3 P2 ‖ P1

4 P1 ‖ P3

5 P2 ‖ P2

6 P3 ‖ P1

7 P3 ‖ P2

8 P3 ‖ P2

9 P3 ‖ P3
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PEPA Eclipse Plug-In input

P1
def
= (start, r1).P2 P2

def
= (run, r2).P3 P3

def
= (stop, r3).P1

P1 ‖ P1

CTMC representation computed by the plug-in

−2r1 r1 r1 0 0 0 0 0 0
0 −r1 − r2 0 r2 r1 0 0 0 0
0 0 −r1 − r2 0 r1 r2 0 0 0
r3 0 0 −r1 − r3 0 0 0 r1 0
0 0 0 0 −2r2 0 r2 r2 0
r3 0 0 0 0 −r1 − r3 r1 0 0
0 r3 0 0 0 0 −r2 − r3 0 r2
0 0 r3 0 0 0 0 −r2 − r3 r2
0 0 0 r3 0 r3 0 0 −2r3





Recap 11/ 193

The PEPA Eclipse Plug-in processing the model
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PEPA Case Studies (1)

Multiprocessor access-contention protocols (Gilmore, Hillston
and Ribaudo, Edinburgh and Turin)

Protocols for fault-tolerant systems (Clark, Gilmore, Hillston
and Ribaudo, Edinburgh and Turin)

Multimedia traffic characteristics (Bowman et al, Kent)

QoS protocols for mobile devices (Wang et al., EE
department, Edinburgh)

Software Architectures (Pooley, Bradley and Thomas,
Heriot-Watt and Durham)

Switch behaviour in active networks (Hillston, Kloul and
Mokhtari, Edinburgh and Versailles)
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PEPA Case Studies (2)

Task scheduling in a Grid-based processing system, (Benoit et
al., Edinburgh)

Probability of airbag deployment (Clark, Gilmore and
Tribastone, Edinburgh)

Crowd Interactions in Smart Environments (Harrison, Massink
and Latella, Newcastle and ISTI)

Spread of a computer virus via a computer network (Bradley,
Gilmore and Hillston, Imperial and Edinburgh)

Disease spread within animal populations (Benkrine, McCaig,
Norman and Shankland, Stirling)
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Roland the Gunslinger

This sequence of small examples are based around a character
called Roland Deschain.

Roland is a gunslinger and his life consists of wandering
around firing his gun.

We will consider Roland in a number of different scenarios.

These are not intended to be serious but they serve to

illustrate the main features of the language,
give you some experience of how models are constructed, and
demonstrate a variety of solution techniques.
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Roland alone

In the first scenario we consider Roland alone, with the single
activity of firing his gun which is a six-shooter. When his gun is
empty Roland will reload the gun and then continue shooting.

Roland6
def
= (fire, rfire).Roland5

Roland5
def
= (fire, rfire).Roland4

Roland4
def
= (fire, rfire).Roland3

Roland3
def
= (fire, rfire).Roland2

Roland2
def
= (fire, rfire).Roland1

Roland1
def
= (fire, rfire).Rolandempty

Rolandempty
def
= (reload, rreload).Roland6
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Roland with two guns

All self-respecting gun-slingers have one gun in each hand. If we
suppose that Roland has two guns then he should be allowed to
fire either gun independently. A simplistic model of this has two
instances of Roland in parallel:

Roland6 ‖ Roland6

But this does not capture the fact that Roland needs both hands
in order to reload either gun. The simplest solution is to assume
that Roland only reloads both guns when both are empty.

Roland6 ��
{reload}

Roland6

From now on we restrict Roland to his shotgun, which has two
shots and requires both hands for firing.
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Roland meets an Enemy

Upon his travels Roland encounters some enemies and when
he does so he must fight them.

Roland is the wildest gunslinger in the west so we assume that
no enemy has the skill to seriously harm Roland.

Each time Roland fires he might miss or hit his target.

But with nothing to stop him he will keep firing until he
successfully hits (and kills) the enemy.

We assume that some sense of cowboy honour prevents any
enemy attacking Roland if he is already involved in a gun
fight.
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The model

Rolandidle
def
= (attack, rattack).Roland2

Roland2
def
= (hit, rhit).(reload, rreload).Rolandidle

+(miss, rmiss).Roland1

Roland1
def
= (hit, rhit).(reload, rreload).Rolandidle

+(miss, rmiss).Rolandempty

Rolandempty
def
= (reload, rreload).Roland2
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Parameter settings for the Roland2 model

parameter value explanation

rfire 1.0 Roland can fire the gun once
per-second

phit-success 0.8 Roland has an 80% success rate
rhit 0.8 rfire × phit-success

rmiss 0.2 rfire × (1− phit-success)
rreload 0.3 It takes Roland about 3 seconds

to reload
rattack 0.01 Roland is attacked once every

100 seconds
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Steady state analysis

We can calculate the probability that at arbitrary time Roland is
involved in a battle.

This can be based on the steady state probability that Roland is in
any of the states in which a battle is on-going, i.e. Roland2,
Roland1 and Rolandempty .

State Measure ’roland peaceful’

mean 9.5490716180e-01

State Measure ’roland in battle’

mean 0.0450928382e-01

> 95% chance that Roland is not currently involved in a gun
battle.
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Passage-Time Analysis

Passage-time analysis allows us to calculate measures such as the
probability that Roland has killed his enemy at a given time after
he is attacked.

This would involve calculating the probability that the model
performs a hit action within the given time after performing an
attack action.
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Passage-Time Analysis results
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Probability that Roland will have hit after an attack

The probability that Roland will successfully perform a hit action a given

time after an attack. Gun battles typically last about 5 seconds and occurs

about every 100 seconds. The probability that Roland has performed a hit

action five seconds after an attack action is ≈ 90%
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Passage-Time Analysis results
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Cooperation

In the previous model Roland’s enemies were represented only
implicitly.

We now consider a model in which the enemies appear
explicitly and allow them to fight back.

However for now we still assume that they are rather
ineffectual and so they never seriously injure Roland.

This model can be used to calculate properties such as the
likelihood that an enemy will manage to fire one shot before
they are killed by Roland.



Roland the Gunslinger 45/ 193

Cooperation

In the previous model Roland’s enemies were represented only
implicitly.

We now consider a model in which the enemies appear
explicitly and allow them to fight back.

However for now we still assume that they are rather
ineffectual and so they never seriously injure Roland.

This model can be used to calculate properties such as the
likelihood that an enemy will manage to fire one shot before
they are killed by Roland.



Roland the Gunslinger 46/ 193

Cooperation

In the previous model Roland’s enemies were represented only
implicitly.

We now consider a model in which the enemies appear
explicitly and allow them to fight back.

However for now we still assume that they are rather
ineffectual and so they never seriously injure Roland.

This model can be used to calculate properties such as the
likelihood that an enemy will manage to fire one shot before
they are killed by Roland.



Roland the Gunslinger 47/ 193

Cooperation

In the previous model Roland’s enemies were represented only
implicitly.

We now consider a model in which the enemies appear
explicitly and allow them to fight back.

However for now we still assume that they are rather
ineffectual and so they never seriously injure Roland.

This model can be used to calculate properties such as the
likelihood that an enemy will manage to fire one shot before
they are killed by Roland.



Roland the Gunslinger 48/ 193

Revised Model

Rolandidle
def
= (attack,>).Roland2

Roland2
def
= (hit, rhit).(reload, rreload).Rolandidle

+ (miss, rmiss).Roland1

Roland1
def
= (hit, rhit).(reload, rreload).Rolandidle

+ (miss, rmiss).Rolandempty

Rolandempty
def
= (reload, rreload).Roland2

Enemiesidle
def
= (attack, rattack).Enemiesattack

Enemiesattack
def
= (fire, re-miss).Enemiesattack

+ (hit,>).Enemiesidle

Rolandidle ��
{hit,attack}

Enemiesidle
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Additional parameters

parameter value explanation

rattack 0.01 Roland is attacked once every
100 seconds

re-miss 0.3 Enemies can fire only once every
3 seconds
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Levels of abstraction

Notice that in this model the behaviour of the enemy has
been simplified.

There is no running out of bullets or reloading.

This model can be thought of as an approximation to a more
complicated component similar to the one which models
Roland.

Here the rate at which the enemy fires encompasses all of the
actions, including the reloading of an empty gun.

We may choose to model a component in such an abstract
way when the focus of our modelling is really elsewhere in the
model.
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Model Validation

It is also sometimes useful to carry out a validation of the model
by calculating a metric which we believe we already know the value
of.

For example in this model we could make such a sanity check by
calculating the probability that the model is in a state in which
Roland is idle but the enemies are not, or vice versa.

This should never occur and hence the probability should be zero.
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Sensitivity Analysis

Sensitivity analysis studies how much influence particular
parameter values, such as activity rates, have on performance
metrics calculated for the system as a whole.

A single activity in a PEPA model may have a significant
impact on the dynamics of the model, or, conversely, may
exert very little influence.

Sensitivity analysis is performed by solving the model many
times while varying the rates slightly.

For this model we chose to vary three of the rates involved
and measured the passage time between an attack and a hit
activity, for each combintation of rates.
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Sensitivity Analysis: Results
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Sensitivity Analysis: Results
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Accurate Enemies

We now allow the enemies of Roland to actually hit him. This
means that Roland may die. It is important to note that this
has the consequence that the model will always deadlock. The
underlying Markov process is no longer ergodic.

We assume that the enemies can only hit Roland once every
50 seconds. This rate approximates the rate of a more detailed
model in which we would assign a process to the enemies
which is much like that of the process which describes Roland.

The only new parameter is re-hit which is assigned a value 0.02
to reflect this assumption.
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New Roland

Rolandidle
def
= (attack,>).Roland2

Roland2
def
= (hit, rhit).(reload, rreload).Rolandidle

+ (miss, rmiss).Roland1

+ (e-hit,>).Rolanddead

Roland1
def
= (hit, rhit).(reload, rreload).Rolandidle

+ (miss, rmiss).Rolandempty

+ (e-hit,>).Rolanddead

Rolandempty
def
= (reload, rreload).(reload, rreload).Roland2

+ (e-hit,>).Rolanddead

Rolanddead
def
= Stop
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New Enemy

Enemiesidle
def
= (attack, rattack).Enemiesattack

Enemiesattack
def
= (e-hit, re-hit).Enemiesidle

+ (hit,>).Enemiesidle

Rolandidle ��
{hit,attack,e-hit}

Enemiesidle
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Model Analysis

Steady-State Analysis Since there is an infinite supply of enemies
eventually Roland will always die and the model will
deadlock.

Transient Analysis Transient analysis on this model can be used to
calculate the probability that Roland is dead after a
given amount of time. As time increases this should
tend towards probability 1.

Passage-Time Analysis Passage-time analysis could be used to
calculate the probability of a given event happening
at a given time after another given event, e.g. from
an attack on Roland until he dies or wins the gun
fight.
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Roland makes a friend

In the next revision of the model we introduce an accomplice who
is befriended by Roland and who, when Roland is attacked, fights
alongside him.

In this scenario cooperation is used to synchronise between
components of the model such that they observe events which they
neither directly cause nor are directly affected by.

Whenever either Roland or the accomplice kills the enemy the
other must witness this action, so as to stop firing at a dead
opponent (it would be a waste of ammunition!).
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A new component for Roland

Rolandidle
def
= (attack,>).Roland2

+ (befriend, rbefriend).Rolandidle

Roland2
def
= (hit, rhit).Rolandhit + (miss, rmiss).Roland1

+ (a-hit,>).Rolandidle

Roland1
def
= (hit, rhit).Rolandhit

+ (miss, rmiss).Rolandempty

+ (a-hit,>).(reload, rreload).Rolandidle

Rolandhit
def
= (enemy-die,>).(reload, rreload).Rolandidle

Rolandempty
def
= (reload, rreload).Roland2

+ (a-hit,>).(reload, rreload).Rolandidle
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Synchronising Roland and the Accomplice

When there is an accomplice, he and Roland fight together
against the enemy.

This involves some cooperation between them.

However we do not want to leave Roland vulnerable when
there is no accomplice present because some of his actions
become blocked.

To prevent this we introduce a dummy component
representing the absence of an accomplice.

In this state the accomplice component will passively
participate in any attack which Roland makes.

Acmplabs
def
= (befriend, rbefriend).Acmplidle

+ (hit,>).Acmplabs

+ (attack,>).Acmplabs
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Component for the Accomplice

Acmplidle
def
= (attack,>).Acmpl2

Acmpl2
def
= (a-hit, ra-hit).Acmplhit + (hit,>).Acmplidle

+ (miss, rmiss).Acmpl1
+ (enemy-hit,>).Acmplabs

Acmpl1
def
= (a-hit, ra-hit).Acmplhit

+ (hit,>).(reload, ra-reload).Acmplidle

+ (miss, rmiss).Acmplempty

+ (enemy-hit,>).Acmplabs

Acmplhit
def
= (enemy-die,>).(reload, ra-reload).Acmplidle

Acmplempty
def
= (reload, ra-reload).Acmpl2
+ (enemy-hit,>).Acmplabs

+ (hit,>).(reload, ra-reload).Acmplidle
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Parameter Settings for the Accomplice

parameter value explanation

rbefriend 0.001 Roland befriends a stranger
once every 1000 seconds

ra-fire 1.0 the accomplice can also fire once
per second

pa-hit-success 0.6 the accomplice has a 60 percent
accuracy

ra-hit 0.6 rfire × phit-success

ra-miss 0.4 rfire × (1.0− phit-success)
ra-reload 0.25 it takes the accomplice 4 seconds

to reload
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Component for the Enemy

The component representing the enemy is similar to before.

Enemiesidle
def
= (attack, rattack).Enemiesattack

Enemiesattack
def
= (enemy-hit, re-hit).Enemiesattack

+ (enemy-die, rdie).Enemiesidle

The system equation is as follows:

(Roland2 ��
{attack,hit,a-hit,befriend}

Acmplabs) ��
{attack,enemy-die,enemy-hit}

Enemiesidle
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Model Analysis

Steady-State Analysis

As before we can determine the probability that Roland is
involved in a gun battle at an arbitrary time.

We could also determine the likelihood that Roland has an
accomplice at an arbitrary time.

Since Roland cannot perform a befriending action while
currently involved in a battle, the probabilty that Roland is in
such a battle clearly affects the probability that he is alone in
his quest.

So, for example, if Roland’s success rate is reduced then gun
battles will take longer to resolve, hence Roland will be
involved in a gun battle more often, and therefore he will
befriend fewer accomplices.
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Model Analysis

Transient Analysis

An example transient analysis would be to determine the expected
time after Roland has set off before he meets his first accomplice.
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Model Analysis

Passage-Time Analysis

An example analysis would be to calculate the passage-time
from an attack action until the death of the enemy or of the
accomplice.

Since all gun battles now end in the enemy being killed
stopping the analysis there would give us the expected
duration of any one gun battle.

There is also the possibility to start the analysis from the
befriend action and stop it with the death of the accomplice.
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Hiding

Currently there is nothing in the model to stop an enemy from
disrupting the interaction between Roland and his accomplice,
e.g. by performing a befriend action.

One way to avoid this is to ‘hide’ those actions only Roland
and the accomplice should cooperate on.

To do this for our model we can simply change the system
equation:

((Roland2 ��
L1

Acmpl)/L1) ��
L2

Enemiesidle

where L1 = {hit, a-hit, befriend} and
L2 = {attack, enemy-die, enemy-hit}.
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The PEPA Eclipse Plug-in

Calculating by hand the transitions of a PEPA model and
subsequently expressing these in a form which was suitable for
solution was a tedious task prone to errors. The PEPA Eclipse
Plug-in relieves the modeller of this work.
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The PEPA Eclipse Plug-in: functionality

The plug-in will report errors in the model function:

deadlock,

absorbing states,

static synchronisation mismatch (cooperations which do not
involve active participants).

The plug-in also generates the transition graph of the model,
computes the number of states, formulates the Markov process
matrix QQQ and communicates the matrix to a solver.

The plug-in provides a simple pattern language for selecting states
from the stationary distribution.
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The PEPA Eclipse Plug-in processing the model
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The PEPA website

http://www.dcs.ed.ac.uk/pepa

From the website the PEPA Eclipse Plug-in and some other tools
are available for download.

There is also information about people involved in the PEPA
project, projects undertaken and a collection of published papers.
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Web Service Composition: Introduction

We consider an example of a business application which is
composed from a number of offered web services.

A user accesses the application via an SMS message requesting
directions to the nearest facility (post-office, restaurant, bank etc.)
and receives a response as an MMS message containing a map.

Since the application involves a users’ current location there is an
access control issue since it must be ensured that the web service
consumer has the requisite authority to execute the web service it
requests.

Moreover the service provider imposes a restriction that only one
request may be handled for each SMS message received.
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Schematic view
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The PEPA model

The PEPA model of the system consists of four components:

The user;

The web service provider;

The web service consumer, and

The policy access provider.

The Web Service Provider consists of three distinct elements but
the web service consumer is associated with a session which
accesses each element in sequence.

Concurrency is introduced into the model by allowing multiple
sessions rather than by representing the constituent web services
separately.
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Component Customer

The customer’s behaviour is simply modelled with two local states.

Customer
def
= (getSMS , r1).Customer1

Customer1
def
= (getMap,>).Customer

+ (get404 ,>).Customer

We associate the user-perceived system performance with the
throughput of the getMap action which can be calculated directly
from the steady state probability distribution of the underlying
Markov chain.
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throughput of the getMap action which can be calculated directly
from the steady state probability distribution of the underlying
Markov chain.
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Component WSConsumer

Once a session has been started, it initiates a request for the user’s
current location and waits for a response.

For valid requests, location is returned and used to compute the
appropriate map, which is then sent via an MMS message, using
the web service.

WSConsumer
def
= (notify ,>).WSConsumer2

WSConsumer2
def
= (locReq, r4).WSConsumer3

WSConsumer3
def
= (locRes,>).WSConsumer4

+ (locErr ,>).WSConsumer

WSConsumer4
def
= (compute, r7).WSConsumer5

WSConsumer5
def
= (sendMMS , r9).WSConsumer
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Component WSProvider

The use of sessions restricts a user’s access to the services of the
Web Service Provider to be sequential.

We assume that there is a distinct instance of the component
WSProvider for each distinct session.

The checkValid action is represented twice, to capture the two
possible distinct outcomes of the action.

If the check is successful the location must be returned to the
Web Service Consumer in the form of a map (getMap).

If the check revealed an invalid request (locErr) then an error
must be returned to the Web Service Consumer (get404) and
the session terminated (stopSession).
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Component WSProvider

WSProvider
def
= (getSMS ,>).WSProvider2

WSProvider2
def
= (startSession, r2).WSProvider3

WSProvider3
def
= (notify , r3).WSProvider4

WSProvider4
def
= (locReq,>).WSProvider5

WSProvider5
def
= (checkValid , 99 · >).WSProvider6

+ (checkValid ,>).WSProvider10
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Component WSProvider cont.

WSProvider6
def
= (locRes, r6).WSProvider7

WSProvider7
def
= (sendMMS ,>).WSProvider8

WSProvider8
def
= (getMap, r8).WSProvider9

WSProvider9
def
= (stopSession, r2).WSProvider

WSProvider10
def
= (locErr , r6).WSProvider11

WSProvider11
def
= (get404 , r8).WSProvider9
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Component PAProvider

We consider a stateless implementation of the policy access
provider.

PAProvider
def
= (startSession,>).PAProvider

+ (checkValid , r5).PAProvider

+ (stopSession,>).PAProvider
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Model Component WSComp

The complete system is composed of some number of instances of
the components interacting on their shared activities:

WSComp
def
=

(
(Customer [NC ] ��

L1
WSProvider [NWSP ])

��
L2

WSConsumer [NWSC ]
)

��
L3

PAProvider [NPAP ]

where the cooperation sets are

L1 = {getSMS , getMap, get404}
L2 = {notify , locReq, locRes, locErr , sendMMS}
L3 = {startSession, checkValid , stopSession}
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Parameter Values

param. value explanation
r1 0.0010 rate customers request maps
r2 0.5 rate session can be started
r3 0.1 notification exchange between consumer and provider
r4 0.1 rate requests for location can be satisfied
r5 0.05 rate the provider can check the validity of the request
r6 0.1 rate location information can be returned to consumer
r7 0.05 rate maps can be generated
r8 0.02 rate MMS messages can be sent from provider to customer
r9 10.0 ∗ r8 rate MMS messages can be sent via the Web Service
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Steady State Analysis for System Tuning

Suppose that we want to design the system in such a way that
it can handle 30 independent customers.

Some parameters such as the network delays may be
constrained by the available technology.

However, there are a number of degrees of freedom which let
us vary, for example, the number of threads of control of the
components of the system.

The aim of the analysis is to deliver a satisfactory service in a
cost-effective way.

The simplest example of a cost function may be a linearly
dependency on the number of copies of a component or the
rate at which an activity is performed.
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Throughput of the getMap action
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Throughput of the getMap action

Under heavy load increasing the number of providers initially
leads to a sharp increase in the throughput. However the gain
deteriorates so that the system with four copies is just 8.7%
faster than the system with three.

In the following we settle on three copies of WSProvider .
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Throughput of getMap action
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Throughput of getMap action

Every line starts to plateau at approximately r1 = 0.010
following an initial sharp increase. This suggests that the user
is the bottle next in the system when the arrival rate is lower.
Conversely, at high rates the system becomes congested.

Whilst having two copies of WSConsumer , corresponding to
two operating threads of control, improves performance
significantly, the subsequent increase with three copies is less
pronounced.

So we set the number of copies of WSConsumer to 2.
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Optimising the number of copies of PAProvider

Here we are particularly interested in the overall impact of the
rate at which the validity check is performed.

Slower rates may mean more computationally expensive
validation.

Faster rates may involve less accuracy and lower security of
the system.
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Throughput of getMap action
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Throughput of getMap action

A sharp increase followed by a constant levelling off suggests
that optimal rate values lie on the left of the plateau, as faster
rates do not improve the system considerably.

As for the optimal number of copies of PAProvider , deploying
two copies rather than one dramatically increases the quality
of service of the overall system.

With a similar approach as previously discussed, the modeller
may want to consider the trade-off between the cost of adding
a third copy and the throughput increase.
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An alternative design for PAProvider

The original design of PAProvider is stateless.

Any of its services can be called at any point, the correctness
of the system being guaranteed by implementation-specific
constraints such as session identifiers being uniquely assigned
to the clients and passed as parameters of the method calls.

Alternatively we may consider a stateful implementation,
modelled as a sequential component with three local states.

This implementation has the consequence that there can
never be more than NPAP WSProvider which have started a
session with a PAProvider
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Component PAProvider — Stateful Version

It maintains a thread for each session and carries out the validity
check on behalf of the Web Service Provider.

PAProvider
def
= (startSession,>).PAProvider2

PAProvider2
def
= (checkValid , r5).PAProvider3

PAProvider3
def
= (stopSession,>).PAProvider
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Throughput of getMap action
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Throughput of getMap action

In this case the incremental gain in adding more copies has
become more marked.

However, the modeller may want to prefer the original version,
as three copies of the stateful provider deliver about as much
as the throughput of only one copy of the stateless
implementation.
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Querying models

So far we have focussed on the construction of the model and
demonstrated the use of some particular examples to derive
quantitative measures.

PEPA is complemented by a couple of formal approaches to query
models.

stochastic model checking based on CSL formulae; and

(eXtended) stochastic probes within the PEPA model.
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Model checking

Model checking requires two inputs:

a description of the system, usually given in some high-level
modelling formalism such as a process algebra description, or
a Petri net;

a specification of one or more desired properties of the system,
normally using termporal logics such as CTL (Computational
Tree Logic) or LTL (Linear-time Temporal Logic).
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Model checking

From the high-level description the model checker constructs a
labelled transition system which captures all possible behaviours of
the system.

The model checking algorithms then automatically verify whether
or not each property is satisfied in the system.
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Stochastic model checking

In stochastic model checking it is assumed that the labelled
transition system is a Continuous Time Markov Chain (CTMC).

This makes stochastic process algebras suitable high-level language
for stochastic model checking.

The logic is also enhanced to query not just logical behaviour
(whether some property is satisfied or not) but also quantified
behaviour (e.g. the probability that a property is satisfied at a
particular time).
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Model checking

There are two broad approaches to model checking:

Explicit state model checking (exhaustive exploration for all
possible states/executions): exact results obtained via
numerical computation.

Statistical model-checking (discrete event simulation and
sampling over multiple runs): approximate results.
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PRISM model and model checking

Probabilistic model checking in PRISM is based on a CTMC
and the logic CSL.

Formally the mapping from PEPA is based on the structured
operational semantics, generating the underlying CTMC in the
usual way.

In practice PEPA is an input language for PRISM with a
direct mapping between PEPA components and the
interacting, reactive modules of the PRISM input language.

Note, however, that this places a restriction to have
synchronisations in which only one participant is active as
PRISM cannot handle the apparent rate based calculations of
cooperation in PEPA.
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The CSL logic

The syntax of CSL is as follows:

φ ::= true | a | ¬φ | φ ∧ φ |
P∼p[φ UI φ] | S∼p[φ] |
R∼r [I=t ] | R∼r [C≤t ] | R∼r [F φ] | R∼r [S]

where a is an atomic proposition, ∼∈ {<,≤,≥, >}, p ∈ [0, 1], I is
an interval of R≥0 and r , t ∈ R≥0.

P and S are probabilistic operators which include a probabilistic
bound ∼p.

R is a reward operator with a reward bound ∼ r .
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Probabilistic operators

A formula P∼p[φ UI φ] is true in a state s if the probability of the
formula (φ UI φ) being satisfied from state s meets the bound ∼p.

A formula of type φ1 UI φ2 is an until formula.

It is true of a path σ through the state space if, for some time
instant t ∈ I , at time t in the path σ the CSL subformula φ2 is
true and the subformula φ1 is true at all preceding time instants.

A formula S∼p[φ] is true in state s if the probability that the
formula φ being satisfied in a steady state reached from state s
meets the bound ∼p.
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The CSL Reward operator

The CSL reward operator R is used to express properties
concerning the expected value of rewards.

R∼r [I=t ] asserts that the expected value of the state reward at
time instant t meets the bound ∼ r .

R∼r [C≤t ] refers to the expected reward accumulated up until t.

R∼r [F φ] asserts that the expected reward accumulated before a
state satisfying φ is reached meets the bound ∼ r .

R∼r [S] asserts that the long-run/steady state expected reward
meets the bound ∼ r .
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Computation in PRISM

The underlying computation in PRISM for explicit state model
checking involves a combination of:

graph-theoretical algorithms, for conventional temporal logic
model checking and qualitative probabilistic model
checking;

numerical computation, for quantitative probabilistic model
checking, i.e. calculation of probabilities and reward
values.
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Statistical model checking

The basic idea of statistical model checking is to simulate the
system for finitely many runs, and use statistics to infer whether
the samples provide evidence for the satisfaction or violation of the
property of interest.
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Advantages of statistical model checking

Much larger models can be handled since the state space does
not need to be constructed and stored all at once.

Since the approach is based on observations and samples it
can be applied to any system which is executable — the
underlying stochastic process does not need to be a CTMC.

Since many independent samples are required it is susceptible
to coarse-grained parallelization.



Querying models 184/ 193

Advantages of statistical model checking

Much larger models can be handled since the state space does
not need to be constructed and stored all at once.

Since the approach is based on observations and samples it
can be applied to any system which is executable — the
underlying stochastic process does not need to be a CTMC.

Since many independent samples are required it is susceptible
to coarse-grained parallelization.



Querying models 185/ 193

Advantages of statistical model checking

Much larger models can be handled since the state space does
not need to be constructed and stored all at once.

Since the approach is based on observations and samples it
can be applied to any system which is executable — the
underlying stochastic process does not need to be a CTMC.

Since many independent samples are required it is susceptible
to coarse-grained parallelization.



Querying models 186/ 193

Advantages of statistical model checking

Much larger models can be handled since the state space does
not need to be constructed and stored all at once.

Since the approach is based on observations and samples it
can be applied to any system which is executable — the
underlying stochastic process does not need to be a CTMC.

Since many independent samples are required it is susceptible
to coarse-grained parallelization.

These advantages are off-set by the disadvantage that is it an
approximation compared with the exact, explicit state approach.
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General framework

Consider a CTMC X and a property φ.

An execution or run of X is a, possibly infinite, sequence of states
in X .

We wish to decide P∼p[φ], i.e. whether X satisfies φ with
probability satisfying the bound ∼ p.

The result of each execution is taken to be the result of a Bernoulli
trial, 0 or 1, according to whether φ is satisfied or not.

Let q be the probability that φ is satisfied, then we seek to
establish if q ∼ p.
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Schematic for statistical model checking
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