
1/ 160

SPA for quantitative analysis:
Lecture 4 — Tackling State Space Explosion

Jane Hillston

LFCS, School of Informatics
The University of Edinburgh

Scotland

6th March 2013

2/ 160

Outline

1 Introduction

2 Model reduction
Numerical representation

3 Decomposed solutions

4 Simulation

5 Fluid Approximation

6 Summary

Introduction 3/ 160

Outline

1 Introduction

2 Model reduction
Numerical representation

3 Decomposed solutions

4 Simulation

5 Fluid Approximation

6 Summary

Introduction 4/ 160

State Space Explosion

The numerical solution of CTMC models such as those built using
stochastic Petri nets and stochastic process algebras, like PEPA,
relies on construction of the N × N infinitesimal generator matrix
Q, and the N-dimensional probability vector π, where N is the size
of the state space.

Unfortunately, the size of these entities often exceeds what can be
handled in memory.

This problem is known as state space explosion.

(All discrete state modelling approaches are prone to this problem.)

Introduction 5/ 160

State Space Explosion

The numerical solution of CTMC models such as those built using
stochastic Petri nets and stochastic process algebras, like PEPA,
relies on construction of the N × N infinitesimal generator matrix
Q, and the N-dimensional probability vector π, where N is the size
of the state space.

Unfortunately, the size of these entities often exceeds what can be
handled in memory.

This problem is known as state space explosion.

(All discrete state modelling approaches are prone to this problem.)

Introduction 6/ 160

State Space Explosion

The numerical solution of CTMC models such as those built using
stochastic Petri nets and stochastic process algebras, like PEPA,
relies on construction of the N × N infinitesimal generator matrix
Q, and the N-dimensional probability vector π, where N is the size
of the state space.

Unfortunately, the size of these entities often exceeds what can be
handled in memory.

This problem is known as state space explosion.

(All discrete state modelling approaches are prone to this problem.)

Introduction 7/ 160

A simple example: processors and resources

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0 ��
{task1}

Res0

Proc0 ��
{task1}

Res0

?
(task1, R)

Proc1 ��
{task1}

Res1

�
�
�	

(reset, r4)
@
@
@R
(task2, r2)

Proc1 ��
{task1}

Res0
�
�
�
�
�
�
��(task2, r2)

Proc0 ��
{task1}

Res1
A
A
A
A
A
A
AK (reset, r4)

R = min(r1, r3)

Q =


−R R 0 0

0 −(r2 + r4) r4 r2
r2 0 −r2 0
r4 0 0 −r4



Introduction 8/ 160

A simple example: processors and resources

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0 ��
{task1}

Res0

Proc0 ��
{task1}

Res0

?
(task1, R)

Proc1 ��
{task1}

Res1

�
�
�	

(reset, r4)
@
@
@R
(task2, r2)

Proc1 ��
{task1}

Res0
�
�
�
�
�
�
��(task2, r2)

Proc0 ��
{task1}

Res1
A
A
A
A
A
A
AK (reset, r4)

R = min(r1, r3)

Q =


−R R 0 0

0 −(r2 + r4) r4 r2
r2 0 −r2 0
r4 0 0 −r4



Introduction 9/ 160

A simple example: processors and resources

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0 ��
{task1}

Res0

Proc0 ��
{task1}

Res0

?
(task1, R)

Proc1 ��
{task1}

Res1

�
�
�	

(reset, r4)
@
@
@R
(task2, r2)

Proc1 ��
{task1}

Res0
�
�
�
�
�
�
��(task2, r2)

Proc0 ��
{task1}

Res1
A
A
A
A
A
A
AK (reset, r4)

R = min(r1, r3)

Q =


−R R 0 0

0 −(r2 + r4) r4 r2
r2 0 −r2 0
r4 0 0 −r4



Introduction 10/ 160

Simple example : multiple instances

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP] ��
{task1}

Res0[NR]

CTMC interpretation
Processors (NP) Resources (NR) States (2NP+NR)
1 1 4
2 1 8
2 2 16
3 2 32
3 3 64
4 3 128
4 4 256
5 4 512
5 5 1024
6 5 2048
6 6 4096
7 6 8192
7 7 16384
8 7 32768
8 8 65536
9 8 131072
9 9 262144
10 9 524288
10 10 1048576

The size of state space: 2NP × 2NR .

Introduction 11/ 160

Simple example : multiple instances

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP] ��
{task1}

Res0[NR]

CTMC interpretation
Processors (NP) Resources (NR) States (2NP+NR)
1 1 4
2 1 8
2 2 16
3 2 32
3 3 64
4 3 128
4 4 256
5 4 512
5 5 1024
6 5 2048
6 6 4096
7 6 8192
7 7 16384
8 7 32768
8 8 65536
9 8 131072
9 9 262144
10 9 524288
10 10 1048576

The size of state space: 2NP × 2NR .

Introduction 12/ 160

Simple example : multiple instances

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP] ��
{task1}

Res0[NR]

CTMC interpretation
Processors (NP) Resources (NR) States (2NP+NR)
1 1 4
2 1 8
2 2 16
3 2 32
3 3 64
4 3 128
4 4 256
5 4 512
5 5 1024
6 5 2048
6 6 4096
7 6 8192
7 7 16384
8 7 32768
8 8 65536
9 8 131072
9 9 262144
10 9 524288
10 10 1048576

The size of state space: 2NP × 2NR .

Introduction 13/ 160

Tackling state space explosion

To overcome state-space explosion problem in CTMCs, many
mathematical tools and approaches have been proposed.

We will use the stochastic process algebra, PEPA as an
example, and give an overview of three different approaches to
tackling the state space explosion problem.

state space reduction via aggregation;

decomposed solution techniques

stochastic simulation over the discrete state space;

fluid approximation of the state space.

Introduction 14/ 160

Tackling state space explosion

To overcome state-space explosion problem in CTMCs, many
mathematical tools and approaches have been proposed.

We will use the stochastic process algebra, PEPA as an
example, and give an overview of three different approaches to
tackling the state space explosion problem.

state space reduction via aggregation;

decomposed solution techniques

stochastic simulation over the discrete state space;

fluid approximation of the state space.

Introduction 15/ 160

Tackling state space explosion

To overcome state-space explosion problem in CTMCs, many
mathematical tools and approaches have been proposed.

We will use the stochastic process algebra, PEPA as an
example, and give an overview of three different approaches to
tackling the state space explosion problem.

state space reduction via aggregation;

decomposed solution techniques

stochastic simulation over the discrete state space;

fluid approximation of the state space.

Introduction 16/ 160

Tackling state space explosion

To overcome state-space explosion problem in CTMCs, many
mathematical tools and approaches have been proposed.

We will use the stochastic process algebra, PEPA as an
example, and give an overview of three different approaches to
tackling the state space explosion problem.

state space reduction via aggregation;

decomposed solution techniques

stochastic simulation over the discrete state space;

fluid approximation of the state space.

Introduction 17/ 160

Tackling state space explosion

To overcome state-space explosion problem in CTMCs, many
mathematical tools and approaches have been proposed.

We will use the stochastic process algebra, PEPA as an
example, and give an overview of three different approaches to
tackling the state space explosion problem.

state space reduction via aggregation;

decomposed solution techniques

stochastic simulation over the discrete state space;

fluid approximation of the state space.

Introduction 18/ 160

Tackling state space explosion

To overcome state-space explosion problem in CTMCs, many
mathematical tools and approaches have been proposed.

We will use the stochastic process algebra, PEPA as an
example, and give an overview of three different approaches to
tackling the state space explosion problem.

state space reduction via aggregation;

decomposed solution techniques

stochastic simulation over the discrete state space;

fluid approximation of the state space.

Model reduction 19/ 160

Outline

1 Introduction

2 Model reduction
Numerical representation

3 Decomposed solutions

4 Simulation

5 Fluid Approximation

6 Summary

Model reduction 20/ 160

Aggregation and lumpability

Model aggregation: partition the state space of a model, and
replace each set of states by one macro-state

This is not as straightforward as it may seem if we wish the
aggregated process to still be a Markov process — an arbitrary
partition will not in general preserve the Markov property.

In order to preserve the Markov property we must ensure that
the partition satisfies a condition called lumpability.

Model reduction 21/ 160

Aggregation and lumpability

Model aggregation: partition the state space of a model, and
replace each set of states by one macro-state

This is not as straightforward as it may seem if we wish the
aggregated process to still be a Markov process — an arbitrary
partition will not in general preserve the Markov property.

In order to preserve the Markov property we must ensure that
the partition satisfies a condition called lumpability.

Model reduction 22/ 160

Aggregation and lumpability

Model aggregation: partition the state space of a model, and
replace each set of states by one macro-state

This is not as straightforward as it may seem if we wish the
aggregated process to still be a Markov process — an arbitrary
partition will not in general preserve the Markov property.

In order to preserve the Markov property we must ensure that
the partition satisfies a condition called lumpability.

Model reduction 23/ 160

Reducing by lumpability

Arbitrarily lumping the states of a Markov chain, will typically give
rise to a stochastic process which no longer satisfies the Markov
condition.

Model reduction 24/ 160

Reducing by lumpability

Arbitrarily lumping the states of a Markov chain, will typically give
rise to a stochastic process which no longer satisfies the Markov
condition.

Model reduction 25/ 160

Reducing by lumpability

Arbitrarily lumping the states of a Markov chain, will typically give
rise to a stochastic process which no longer satisfies the Markov
condition.

Model reduction 26/ 160

Reducing by lumpability

Arbitrarily lumping the states of a Markov chain, will typically give
rise to a stochastic process which no longer satisfies the Markov
condition.

Model reduction 27/ 160

Losing identity

The syntactic nature of PEPA makes models easily understood by
humans, but not so convenient for approaches such as aggregation
and simulation.

In particular when we have many instances of the same component
type, in the PEPA expression these instances are distinguished by
their location (position from left to right) in the expression.

However, in general we do not care which such instance is involved
in an event, just that one of them is, i.e. it is sufficient to count
the instances that are in the possible local states.

Thus we change to a state representation which is a numerical
state vector.

Model reduction 28/ 160

Losing identity

The syntactic nature of PEPA makes models easily understood by
humans, but not so convenient for approaches such as aggregation
and simulation.

In particular when we have many instances of the same component
type, in the PEPA expression these instances are distinguished by
their location (position from left to right) in the expression.

However, in general we do not care which such instance is involved
in an event, just that one of them is, i.e. it is sufficient to count
the instances that are in the possible local states.

Thus we change to a state representation which is a numerical
state vector.

Model reduction 29/ 160

Losing identity

The syntactic nature of PEPA makes models easily understood by
humans, but not so convenient for approaches such as aggregation
and simulation.

In particular when we have many instances of the same component
type, in the PEPA expression these instances are distinguished by
their location (position from left to right) in the expression.

However, in general we do not care which such instance is involved
in an event, just that one of them is, i.e. it is sufficient to count
the instances that are in the possible local states.

Thus we change to a state representation which is a numerical
state vector.

Model reduction 30/ 160

Losing identity

The syntactic nature of PEPA makes models easily understood by
humans, but not so convenient for approaches such as aggregation
and simulation.

In particular when we have many instances of the same component
type, in the PEPA expression these instances are distinguished by
their location (position from left to right) in the expression.

However, in general we do not care which such instance is involved
in an event, just that one of them is, i.e. it is sufficient to count
the instances that are in the possible local states.

Thus we change to a state representation which is a numerical
state vector.

Model reduction 31/ 160

Reducing by lumpability

When we use the numerical vector state representation for PEPA
we group together those expressions that have the same counts for
each of the local states and we are certain that the partition that
we induce on the state space is lumpable and so the lumped
process is still a Markov process.

Model reduction 32/ 160

Example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r1).Res1

Res1
def
= (reset, s).Res0

(Res0 ‖ Res0) ��
{task1}

(Proc0 ‖ Proc0)

Model reduction 33/ 160

Numerical vector form

For our example model:

m = (m[Proc0],m[Proc1],m[Res0],m[Res1]) .

When NP = NR = 2, the system equation of the model determines
the starting state:

m = (NP , 0,NR , 0) = (2, 0, 2, 0)

We can apply the possible activities in each of the states until we
find all possible states.

s1 = (2, 0, 2, 0), s2 = (1, 1, 1, 1), s3 = (1, 1, 2, 0),
s4 = (1, 1, 0, 2), s5 = (0, 2, 1, 1), s6 = (2, 0, 1, 1),
s7 = (0, 2, 0, 2), s8 = (0, 2, 2, 0), s9 = (2, 0, 0, 2).

Model reduction 34/ 160

Numerical vector form

For our example model:

m = (m[Proc0],m[Proc1],m[Res0],m[Res1]) .

When NP = NR = 2, the system equation of the model determines
the starting state:

m = (NP , 0,NR , 0) = (2, 0, 2, 0)

We can apply the possible activities in each of the states until we
find all possible states.

s1 = (2, 0, 2, 0), s2 = (1, 1, 1, 1), s3 = (1, 1, 2, 0),
s4 = (1, 1, 0, 2), s5 = (0, 2, 1, 1), s6 = (2, 0, 1, 1),
s7 = (0, 2, 0, 2), s8 = (0, 2, 2, 0), s9 = (2, 0, 0, 2).

Model reduction 35/ 160

Numerical vector form

The initial state is (2, 0, 2, 0) where the entries in the vector are
counting the number of Res0, Res1, Proc0, Proc1 local derivatives
respectively, exhibited in the current state.

If we consider the state (1, 1, 1, 1) it is representing four distinct
syntactic states

(Res0,Res1,Proc0,Proc1)
(Res1,Res0,Proc0,Proc1)
(Res0,Res1,Proc1,Proc0)
(Res1,Res0,Proc1,Proc0)

Model reduction 36/ 160

Numerical vector form

The initial state is (2, 0, 2, 0) where the entries in the vector are
counting the number of Res0, Res1, Proc0, Proc1 local derivatives
respectively, exhibited in the current state.

If we consider the state (1, 1, 1, 1) it is representing four distinct
syntactic states

(Res0,Res1,Proc0,Proc1)
(Res1,Res0,Proc0,Proc1)
(Res0,Res1,Proc1,Proc0)
(Res1,Res0,Proc1,Proc0)

Model reduction 37/ 160

The resulting state space

()2,0,2,0 T

()1,1,2,0 T

()2,0,0,2 T

()2,0,1,1 T

()0,2,0,2 T

()1,1,1,1 T

()0,2,1,1 T()1,1,0,2 T

()0,2,2,0 T

task1

task1

task2

task2

reset

reset task2 reset

task1 task1

resettask2

task2

reset task2

reset

The size of the state space: (NP + dP − 1)dP−1 × (NR + dR − 1)dR−1.

Model reduction 38/ 160

Solution of an aggregated model

Once we have the state space of the aggregated model we
construct the CTMC in the obvious way — associating one state
with each node in the aggregated state transition diagram.

This CTMC will typically have a smaller state space than the one
derived from the original state representation as a derivative graph,
and certainly no larger.

The steady state probability distribution can then be derived in the
usual way by solving the global balance equations.

The solution gives you the probability of being in the set of states
that have the same behaviour.

Model reduction 39/ 160

Solution of an aggregated model

Once we have the state space of the aggregated model we
construct the CTMC in the obvious way — associating one state
with each node in the aggregated state transition diagram.

This CTMC will typically have a smaller state space than the one
derived from the original state representation as a derivative graph,
and certainly no larger.

The steady state probability distribution can then be derived in the
usual way by solving the global balance equations.

The solution gives you the probability of being in the set of states
that have the same behaviour.

Model reduction 40/ 160

Solution of an aggregated model

Once we have the state space of the aggregated model we
construct the CTMC in the obvious way — associating one state
with each node in the aggregated state transition diagram.

This CTMC will typically have a smaller state space than the one
derived from the original state representation as a derivative graph,
and certainly no larger.

The steady state probability distribution can then be derived in the
usual way by solving the global balance equations.

The solution gives you the probability of being in the set of states
that have the same behaviour.

Model reduction 41/ 160

Solution of an aggregated model

Once we have the state space of the aggregated model we
construct the CTMC in the obvious way — associating one state
with each node in the aggregated state transition diagram.

This CTMC will typically have a smaller state space than the one
derived from the original state representation as a derivative graph,
and certainly no larger.

The steady state probability distribution can then be derived in the
usual way by solving the global balance equations.

The solution gives you the probability of being in the set of states
that have the same behaviour.

Model reduction 42/ 160

Using this result in practice

There are well-known algorithms such as Paige and Tarjan for
finding the maximal partition of a graph according to some
equivalence.

However in practice we would much rather construct the
aggregated state space directly.

The first approach to this used canonical forms but still worked
syntactically to identify states. [Gilmore, Hillston and Ribaudo,
IEEE TSE 2001].

A more recent approach shifts to a numerical representation of
states and transitions. [Jie Ding, PhD thesis, Edin. 2010]

Model reduction 43/ 160

Using this result in practice

There are well-known algorithms such as Paige and Tarjan for
finding the maximal partition of a graph according to some
equivalence.

However in practice we would much rather construct the
aggregated state space directly.

The first approach to this used canonical forms but still worked
syntactically to identify states. [Gilmore, Hillston and Ribaudo,
IEEE TSE 2001].

A more recent approach shifts to a numerical representation of
states and transitions. [Jie Ding, PhD thesis, Edin. 2010]

Model reduction 44/ 160

Using this result in practice

There are well-known algorithms such as Paige and Tarjan for
finding the maximal partition of a graph according to some
equivalence.

However in practice we would much rather construct the
aggregated state space directly.

The first approach to this used canonical forms but still worked
syntactically to identify states. [Gilmore, Hillston and Ribaudo,
IEEE TSE 2001].

A more recent approach shifts to a numerical representation of
states and transitions. [Jie Ding, PhD thesis, Edin. 2010]

Model reduction 45/ 160

Using this result in practice

There are well-known algorithms such as Paige and Tarjan for
finding the maximal partition of a graph according to some
equivalence.

However in practice we would much rather construct the
aggregated state space directly.

The first approach to this used canonical forms but still worked
syntactically to identify states. [Gilmore, Hillston and Ribaudo,
IEEE TSE 2001].

A more recent approach shifts to a numerical representation of
states and transitions. [Jie Ding, PhD thesis, Edin. 2010]

Model reduction Numerical representation 46/ 160

Achieving aggregration

To overcome state-space explosion problem encountered in
performance analysis, many mathematical tools and
approaches have been proposed.

Syntactic nature of PEPA (as well as other SPAs) makes
models easily understood by humans, but not so convenient
for computers to directly apply these tools and approaches.

By shifting to a numerical state representation we can more
readily exploit results such as aggregation and access
mathematical interpretations (i.e. fluid approximation).

Model reduction Numerical representation 47/ 160

Numerical Vector Form [QEST 2005]

Definition

For an arbitrary PEPA model M with n component types
Ci , i = 1, 2, · · · , n, each with di distinct local derivatives, the
numerical vector form of M, m(M), is a vector with d =

∑n
i=1 di

entries. The entry m[Cij] records how many instances of the jth
local derivative of component type Ci are exhibited in the current
state.

The entries in the system vector or a sequential component’s
vector are no longer syntactic terms representing the local
derivative, but the number of components currently exhibiting this
local derivative.

Model reduction Numerical representation 48/ 160

Activity matrix

If the states are captured in a numerical form, it is appropriate to
also capture the transitions between them numerically.

The transitions arise from the activities in the PEPA model. Thus
we use the syntax of the process algebra to infer the impact of
each activity on the current state, numerically.

This information is represented in the activity matrix.

Model reduction Numerical representation 49/ 160

Activity matrix

If the states are captured in a numerical form, it is appropriate to
also capture the transitions between them numerically.

The transitions arise from the activities in the PEPA model. Thus
we use the syntax of the process algebra to infer the impact of
each activity on the current state, numerically.

This information is represented in the activity matrix.

Model reduction Numerical representation 50/ 160

Activity matrix

If the states are captured in a numerical form, it is appropriate to
also capture the transitions between them numerically.

The transitions arise from the activities in the PEPA model. Thus
we use the syntax of the process algebra to infer the impact of
each activity on the current state, numerically.

This information is represented in the activity matrix.

Model reduction Numerical representation 51/ 160

Activity matrix

()2,0,2,0 T

()1,1,2,0 T

()2,0,0,2 T

()2,0,1,1 T

()0,2,0,2 T

()1,1,1,1 T

()0,2,1,1 T()1,1,0,2 T

()0,2,2,0 T

task1

task1

task2

task2

reset

reset task2 reset

task1 task1

resettask2

task2

reset task2

reset

l task1 l task2 l reset

Proc0 −1 1 0
Proc1 1 −1 0
Res0 −1 0 1
Res1 1 0 −1

Each activity corresponds a transition vector. All transition vectors
form an activity matrix C. For example,

(2, 0, 2, 0)T+l task1 = (1, 1, 1, 1)T , (1, 1, 1, 1)T+l task2 = (2, 0, 1, 1)T .

(2, 0, 1, 1)T + l reset = (2, 0, 2, 0)T .

Model reduction Numerical representation 52/ 160

Activity matrix

()2,0,2,0 T

()1,1,2,0 T

()2,0,0,2 T

()2,0,1,1 T

()0,2,0,2 T

()1,1,1,1 T

()0,2,1,1 T()1,1,0,2 T

()0,2,2,0 T

task1

task1

task2

task2

reset

reset task2 reset

task1 task1

resettask2

task2

reset task2

reset

l task1 l task2 l reset

Proc0 −1 1 0
Proc1 1 −1 0
Res0 −1 0 1
Res1 1 0 −1

Each activity corresponds a transition vector. All transition vectors
form an activity matrix C. For example,

(2, 0, 2, 0)T+l task1 = (1, 1, 1, 1)T , (1, 1, 1, 1)T+l task2 = (2, 0, 1, 1)T .

(2, 0, 1, 1)T + l reset = (2, 0, 2, 0)T .

Model reduction Numerical representation 53/ 160

Activity matrix

()2,0,2,0 T

()1,1,2,0 T

()2,0,0,2 T

()2,0,1,1 T

()0,2,0,2 T

()1,1,1,1 T

()0,2,1,1 T()1,1,0,2 T

()0,2,2,0 T

task1

task1

task2

task2

reset

reset task2 reset

task1 task1

resettask2

task2

reset task2

reset

l task1 l task2 l reset

Proc0 −1 1 0
Proc1 1 −1 0
Res0 −1 0 1
Res1 1 0 −1

Each activity corresponds a transition vector. All transition vectors
form an activity matrix C. For example,

(2, 0, 2, 0)T+l task1 = (1, 1, 1, 1)T , (1, 1, 1, 1)T+l task2 = (2, 0, 1, 1)T .

(2, 0, 1, 1)T + l reset = (2, 0, 2, 0)T .

Decomposed solutions 54/ 160

Outline

1 Introduction

2 Model reduction
Numerical representation

3 Decomposed solutions

4 Simulation

5 Fluid Approximation

6 Summary

Decomposed solutions 55/ 160

Characterising efficient solution

PEPA MODEL

MARKOV Q =

.....
.....

.....
.....

.....

..........
.....

PROCESS

.....= EQUILIBRIUM PROBABILITY
DISTRIBUTIONp , p , p , , p

N21 3

Storing and manipulating the
matrix which represents the
Markov process places limitations
on the size of model which
can be analysed.

Decomposed solutions 56/ 160

Characterising efficient solution

PEPA MODEL

MARKOV
Q =

.....
.....

.....
.....

.....

..........
.....

PROCESS

MARKOV Q =

.....
.....

.....
.....

.....

..........
.....

PROCESS
MARKOV Q =

.....
.....

.....
.....

.....

..........
.....

PROCESS

.....

.....

.....

(p,p,p,p,......p) (p,p,p,p,......p)

= EQUILIBRIUM PROBABILITY
DISTRIBUTIONp , p , p , , pN21 3

Certain structures in the matrix are
known to be amenable to efficient,
decomposed solution.

Decomposed solutions 57/ 160

Characterising efficient solution

PEPA MODEL

MARKOV Q =

.....
.....

.....
.....

.....

..........
.....

PROCESS
MARKOV Q =

.....
.....

.....
.....

.....

..........
.....

PROCESS
.....

.....

.....

.....

(p,p,p,p,......p)(p,p,p,p,......p)

= EQUILIBRIUM PROBABILITY
DISTRIBUTIONp , p , p , , pN21 3

PEPA

SUBMODELS

Finding the corresponding structures in the process
algebra means that these techniques can be applied
automatically, before the monolithic matrix is formed.

Decomposed solutions 58/ 160

Decomposed solution: product form models

���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������

p(M)
��������������������������������������

��������������������������������������

M

M = (m ,m , ..., m)

m m

p(M) = G x p(m) x p(m) x ... x p(m)

submodels m , m , ..., m
statistically independent
Partition the model M into n

each of the submodels m
state distribution p for
In isolation, find the steady Form the steady state

distribution of M as the product of
the solutions for each submodel m

1 2 n

1 2

1 n2

and a normalising constant
i i1 2 n

When do PEPA components behave as if they were statistically
independent...?

Decomposed solutions 59/ 160

Product Form PEPA Models

P ≡ S1 ‖ S2
�����

HHHHj

Add restricted direct interaction
between components with a
particular structure

P ≡ S1 ��
L

S2

S1, S2 and L all restricted

Quasi-reversibility

Reversibility

Routing process approach

Add indirect interaction via a third
component with a particular
structure and type of interaction

P ≡ (S1 ‖ S2) ��
L

R

L and R restricted (wrt S1 and S2)

Boucherie resource contention

Queueing discipline models

Quasi-separability

Decomposed solutions 60/ 160

Product Form PEPA Models

P ≡ S1 ‖ S2
�����

HHHHj

Add restricted direct interaction
between components with a
particular structure

P ≡ S1 ��
L

S2

S1, S2 and L all restricted

Quasi-reversibility

Reversibility

Routing process approach

Add indirect interaction via a third
component with a particular
structure and type of interaction

P ≡ (S1 ‖ S2) ��
L

R

L and R restricted (wrt S1 and S2)

Boucherie resource contention

Queueing discipline models

Quasi-separability

Decomposed solutions 61/ 160

Product Form PEPA Models

P ≡ S1 ‖ S2
�����

HHHHj

Add restricted direct interaction
between components with a
particular structure

P ≡ S1 ��
L

S2

S1, S2 and L all restricted

Quasi-reversibility

Reversibility

Routing process approach

Add indirect interaction via a third
component with a particular
structure and type of interaction

P ≡ (S1 ‖ S2) ��
L

R

L and R restricted (wrt S1 and S2)

Boucherie resource contention

Queueing discipline models

Quasi-separability

Decomposed solutions 62/ 160

Product Form PEPA Models

P ≡ S1 ‖ S2
�����

HHHHj

Add restricted direct interaction
between components with a
particular structure

P ≡ S1 ��
L

S2

S1, S2 and L all restricted

Quasi-reversibility

Reversibility

Routing process approach

Add indirect interaction via a third
component with a particular
structure and type of interaction

P ≡ (S1 ‖ S2) ��
L

R

L and R restricted (wrt S1 and S2)

Boucherie resource contention

Queueing discipline models

Quasi-separability

Decomposed solutions 63/ 160

Product Form PEPA Models

P ≡ S1 ‖ S2
�����

HHHHj

Add restricted direct interaction
between components with a
particular structure

P ≡ S1 ��
L

S2

S1, S2 and L all restricted

Quasi-reversibility

Reversibility

Routing process approach

Add indirect interaction via a third
component with a particular
structure and type of interaction

P ≡ (S1 ‖ S2) ��
L

R

L and R restricted (wrt S1 and S2)

Boucherie resource contention

Queueing discipline models

Quasi-separability

Decomposed solutions 64/ 160

Product Form PEPA Models

P ≡ S1 ‖ S2
�����

HHHHj

Add restricted direct interaction
between components with a
particular structure

P ≡ S1 ��
L

S2

S1, S2 and L all restricted

Quasi-reversibility

Reversibility

Routing process approach

Add indirect interaction via a third
component with a particular
structure and type of interaction

P ≡ (S1 ‖ S2) ��
L

R

L and R restricted (wrt S1 and S2)

Boucherie resource contention

Queueing discipline models

Quasi-separability

Decomposed solutions 65/ 160

Product Form PEPA Models

P ≡ S1 ‖ S2
�����

HHHHj

Add restricted direct interaction
between components with a
particular structure

P ≡ S1 ��
L

S2

S1, S2 and L all restricted

Quasi-reversibility

Reversibility

Routing process approach

Add indirect interaction via a third
component with a particular
structure and type of interaction

P ≡ (S1 ‖ S2) ��
L

R

L and R restricted (wrt S1 and S2)

Boucherie resource contention

Queueing discipline models

Quasi-separability

Decomposed solutions 66/ 160

Product Form PEPA Models

P ≡ S1 ‖ S2
�����

HHHHj

Add restricted direct interaction
between components with a
particular structure

P ≡ S1 ��
L

S2

S1, S2 and L all restricted

Quasi-reversibility

Reversibility

Routing process approach

Add indirect interaction via a third
component with a particular
structure and type of interaction

P ≡ (S1 ‖ S2) ��
L

R

L and R restricted (wrt S1 and S2)

Boucherie resource contention

Queueing discipline models

Quasi-separability

Decomposed solutions 67/ 160

Product Form PEPA Models

P ≡ S1 ‖ S2
�����

HHHHj

Add restricted direct interaction
between components with a
particular structure

P ≡ S1 ��
L

S2

S1, S2 and L all restricted

Quasi-reversibility

Reversibility

Routing process approach

Add indirect interaction via a third
component with a particular
structure and type of interaction

P ≡ (S1 ‖ S2) ��
L

R

L and R restricted (wrt S1 and S2)

Boucherie resource contention

Queueing discipline models

Quasi-separability

Decomposed solutions 68/ 160

Approximate solutions

Numerical solution of the full Markov process is regarded as the
exact result and aggregation based on lumpability is also regarded
as being exact.

However due to the difficulties of staying within the confines of the
Markov property most techniques for tackling state space explosion
are not exact.

We are sometimes prepared to trade exactness for tractability.

Decomposed solutions 69/ 160

Approximate solutions

Numerical solution of the full Markov process is regarded as the
exact result and aggregation based on lumpability is also regarded
as being exact.

However due to the difficulties of staying within the confines of the
Markov property most techniques for tackling state space explosion
are not exact.

We are sometimes prepared to trade exactness for tractability.

Decomposed solutions 70/ 160

Approximate solutions

Numerical solution of the full Markov process is regarded as the
exact result and aggregation based on lumpability is also regarded
as being exact.

However due to the difficulties of staying within the confines of the
Markov property most techniques for tackling state space explosion
are not exact.

We are sometimes prepared to trade exactness for tractability.

Decomposed solutions 71/ 160

Other decomposition results

Other forms of decomposed solution of SPA models have also been
developed which give approximate results:

Time Scale Decomposition: Based on a well-established technique in the
underlying CTMC, this approach partitions the states of
the process according to the rates at which they undertake
activities. Fast interacting states are modelled in detail in
isolation, and an aggregated model captures the
transitions between the clusters of states.

Throughput Approximation: The model is partitioned into two in such a
way that there is a one flow each way between them. Each
is solved to give an estimate of the flow into the other and
alternate solutions are iterated until convergence.

Decomposed solutions 72/ 160

Other decomposition results

Other forms of decomposed solution of SPA models have also been
developed which give approximate results:

Time Scale Decomposition: Based on a well-established technique in the
underlying CTMC, this approach partitions the states of
the process according to the rates at which they undertake
activities. Fast interacting states are modelled in detail in
isolation, and an aggregated model captures the
transitions between the clusters of states.

Throughput Approximation: The model is partitioned into two in such a
way that there is a one flow each way between them. Each
is solved to give an estimate of the flow into the other and
alternate solutions are iterated until convergence.

Simulation 73/ 160

Outline

1 Introduction

2 Model reduction
Numerical representation

3 Decomposed solutions

4 Simulation

5 Fluid Approximation

6 Summary

Simulation 74/ 160

Introduction

SYSTEM

PERFORMANCE
MEASURES

SIMULATION
MODELS

ANALYTICAL
MODELS

abstraction
mathematicalalgorithmic

abstraction

observation
execution &

& derivation
analysis)

(mathematical
solution

Simulation 75/ 160

State space and sample paths

Simulation 76/ 160

State space and sample paths

Simulation 77/ 160

State space and sample paths

Simulation 78/ 160

State space and sample paths

Simulation 79/ 160

Sample paths and runs

Using the analytic approach of Markov processes we
characterised all possible sample paths by the global balance
equations.

Using simulation we investigate the sample paths directly.

We allow the model to trace out a sample path over the state
space.

Each run of the simulation model will generate another,
usually distinct, sample path.

Simulation 80/ 160

Sample paths and runs

Using the analytic approach of Markov processes we
characterised all possible sample paths by the global balance
equations.

Using simulation we investigate the sample paths directly.

We allow the model to trace out a sample path over the state
space.

Each run of the simulation model will generate another,
usually distinct, sample path.

Simulation 81/ 160

Sample paths and runs

Using the analytic approach of Markov processes we
characterised all possible sample paths by the global balance
equations.

Using simulation we investigate the sample paths directly.

We allow the model to trace out a sample path over the state
space.

Each run of the simulation model will generate another,
usually distinct, sample path.

Simulation 82/ 160

Sample paths and runs

Using the analytic approach of Markov processes we
characterised all possible sample paths by the global balance
equations.

Using simulation we investigate the sample paths directly.

We allow the model to trace out a sample path over the state
space.

Each run of the simulation model will generate another,
usually distinct, sample path.

Simulation 83/ 160

Simulation in PEPA

When we simulate PEPA models we are simulating the underlying
Markov process, avoiding the construction of the whole state space
at once, instead finding the states step-by-step as the simulation
progresses.

Because we are working in the Markovian context we can take
advantage of the memoryless property.

This means that we do not need to maintain an event list.

In this case the simulation algorithm is particularly simple and
relatively efficient.

Simulation 84/ 160

Simulation in PEPA

When we simulate PEPA models we are simulating the underlying
Markov process, avoiding the construction of the whole state space
at once, instead finding the states step-by-step as the simulation
progresses.

Because we are working in the Markovian context we can take
advantage of the memoryless property.

This means that we do not need to maintain an event list.

In this case the simulation algorithm is particularly simple and
relatively efficient.

Simulation 85/ 160

Simulation in PEPA

When we simulate PEPA models we are simulating the underlying
Markov process, avoiding the construction of the whole state space
at once, instead finding the states step-by-step as the simulation
progresses.

Because we are working in the Markovian context we can take
advantage of the memoryless property.

This means that we do not need to maintain an event list.

In this case the simulation algorithm is particularly simple and
relatively efficient.

Simulation 86/ 160

Simulation in PEPA

When we simulate PEPA models we are simulating the underlying
Markov process, avoiding the construction of the whole state space
at once, instead finding the states step-by-step as the simulation
progresses.

Because we are working in the Markovian context we can take
advantage of the memoryless property.

This means that we do not need to maintain an event list.

In this case the simulation algorithm is particularly simple and
relatively efficient.

Simulation 87/ 160

The Gillespie Stochastic Simulation Algorithm

Instead of an event list the simulation engine keeps the state of the
system and so knows for each component what activity or
activities it currently enables (for shared activities it will check that
all participating components are able to undertake the actions).

From this list of possible activities it will select one to execute
according to the race policy and then update the state accordingly,
modifying the list of current activities as necessary.

Simulation 88/ 160

The Gillespie Stochastic Simulation Algorithm

Instead of an event list the simulation engine keeps the state of the
system and so knows for each component what activity or
activities it currently enables (for shared activities it will check that
all participating components are able to undertake the actions).

From this list of possible activities it will select one to execute
according to the race policy and then update the state accordingly,
modifying the list of current activities as necessary.

Simulation 89/ 160

Two Observations

If we have a number of possible activities
(α1, r1), (α2, r2), . . . , (αn, rn) enabled in the current state, then we
know from the superposition principle for the exponential
distribution that the time until something happens is governed by
an exponential distribution with rate r1 + r2 + · · ·+ rn.

We also know that the probability that it is the activity of type αi

is
ri

r1 + r2 + · · ·+ rn
.

Simulation 90/ 160

Two Observations

If we have a number of possible activities
(α1, r1), (α2, r2), . . . , (αn, rn) enabled in the current state, then we
know from the superposition principle for the exponential
distribution that the time until something happens is governed by
an exponential distribution with rate r1 + r2 + · · ·+ rn.

We also know that the probability that it is the activity of type αi

is
ri

r1 + r2 + · · ·+ rn
.

Simulation 91/ 160

The Gillespie Stochastic Simulation Algorithm

Thus we need only draw two random numbers for each step of the
simulation algorithm:

the first determines the delay until the next activity completes,

the second determines which activity that will be.

Simulation 92/ 160

The Gillespie Stochastic Simulation Algorithm

Thus we need only draw two random numbers for each step of the
simulation algorithm:

the first determines the delay until the next activity completes,

the second determines which activity that will be.

Simulation 93/ 160

The Gillespie Stochastic Simulation Algorithm

Thus we need only draw two random numbers for each step of the
simulation algorithm:

the first determines the delay until the next activity completes,

the second determines which activity that will be.

Simulation 94/ 160

100 processors and 80 resources (simulation run A)

Simulation 95/ 160

100 processors and 80 resources (simulation run B)

Simulation 96/ 160

100 processors and 80 resources (simulation run C)

Simulation 97/ 160

100 processors and 80 resources (simulation run D)

Simulation 98/ 160

100 processors and 80 resources (average of 10 runs)

Simulation 99/ 160

100 Processors and 80 resources (average of 100 runs)

Simulation 100/ 160

100 processors and 80 resources (average of 1000 runs)

Fluid Approximation 101/ 160

Outline

1 Introduction

2 Model reduction
Numerical representation

3 Decomposed solutions

4 Simulation

5 Fluid Approximation

6 Summary

Fluid Approximation 102/ 160

Fluid Approximation

The fourth approach to tackling state space explosion that we
consider is the use of fluid or continuous approximation.

Here the key idea is to approximate the behaviour of a discrete
event system which jumps between discrete states by a continuous
system which moves smoothly over a continuous state space.

Fluid Approximation 103/ 160

Fluid Approximation

The fourth approach to tackling state space explosion that we
consider is the use of fluid or continuous approximation.

Here the key idea is to approximate the behaviour of a discrete
event system which jumps between discrete states by a continuous
system which moves smoothly over a continuous state space.

Fluid Approximation 104/ 160

Continuously varying counting variables

When this is applied in performance models the state space is
usually characterised by counting variables:

the number of customers in a queue,

the number of servers who are busy, or

the number of local derivatives in a particular state in a PEPA
model.

Allowing continuous variables for these quantities might seem odd
to begin with — what does it mean for 0.65 servers to be busy?
— but when we think of it as the expectation it becomes easier to
interpret.

Fluid Approximation 105/ 160

Continuously varying counting variables

When this is applied in performance models the state space is
usually characterised by counting variables:

the number of customers in a queue,

the number of servers who are busy, or

the number of local derivatives in a particular state in a PEPA
model.

Allowing continuous variables for these quantities might seem odd
to begin with — what does it mean for 0.65 servers to be busy?
— but when we think of it as the expectation it becomes easier to
interpret.

Fluid Approximation 106/ 160

Fluid approximation

In a PEPA model the state at any current time is the local
derivative or state of each component of the model.

We can represent the state of the system as the count of the
current number of each possible local derivative or component
type.

We can approximate the behaviour of the model by treating
each count as a continuous variable, and the state of the
model as a whole as the set of such variables.

The evolution of each count variable can then be described by
an ordinary differential equation

(assuming rates are
deterministic).

Appropriate for models in which there are large numbers of
components of the same type.

Fluid Approximation 107/ 160

Fluid approximation

In a PEPA model the state at any current time is the local
derivative or state of each component of the model.

We can represent the state of the system as the count of the
current number of each possible local derivative or component
type.

We can approximate the behaviour of the model by treating
each count as a continuous variable, and the state of the
model as a whole as the set of such variables.

The evolution of each count variable can then be described by
an ordinary differential equation (assuming rates are
deterministic).

Appropriate for models in which there are large numbers of
components of the same type.

Fluid Approximation 108/ 160

Fluid approximation

In a PEPA model the state at any current time is the local
derivative or state of each component of the model.

We can represent the state of the system as the count of the
current number of each possible local derivative or component
type.

We can approximate the behaviour of the model by treating
each count as a continuous variable, and the state of the
model as a whole as the set of such variables.

The evolution of each count variable can then be described by
an ordinary differential equation (assuming rates are
deterministic).

Appropriate for models in which there are large numbers of
components of the same type.

Fluid Approximation 109/ 160

Fluid approximation

In a PEPA model the state at any current time is the local
derivative or state of each component of the model.

We can represent the state of the system as the count of the
current number of each possible local derivative or component
type.

We can approximate the behaviour of the model by treating
each count as a continuous variable, and the state of the
model as a whole as the set of such variables.

The evolution of each count variable can then be described by
an ordinary differential equation (assuming rates are
deterministic).

Appropriate for models in which there are large numbers of
components of the same type.

Fluid Approximation 110/ 160

Differential equations from PEPA models

The PEPA definitions of the component specify the activities
which can increase or decrease the number of components
exhibited in the current state.

The cooperations show when the number of instances of
another component will have an influence on the evolution of
this component.

Fluid Approximation 111/ 160

Example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r1).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP] ��
{task1}

Res0[NR]

We can capture exactly this relationship between activities and
components the activity matrix which has one row for each
component and one column for each activity.

Fluid Approximation 112/ 160

Example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r1).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP] ��
{task1}

Res0[NR]

task1 decreases Proc0 and Res0

task1 increases Proc1 and Res1

task2 decreases Proc1 and
increases Proc0

reset decreases Res1 and
increases Res0

We can capture exactly this relationship between activities and
components the activity matrix which has one row for each
component and one column for each activity.

Fluid Approximation 113/ 160

Example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r1).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP] ��
{task1}

Res0[NR]

ODE interpretation
dx1
dt = −r1 min(x1, x3) + r2 x2

x1 = no. of Proc1
dx2
dt = r1 min(x1, x3)− r2 x2

x2 = no. of Proc2
dx3
dt = −r1 min(x1, x3) + r4 x4

x3 = no. of Res0
dx4
dt = r1 min(x1, x3)− r4 x4

x4 = no. of Res1

We can capture exactly this relationship between activities and
components the activity matrix which has one row for each
component and one column for each activity.

Fluid Approximation 114/ 160

Differential equations from PEPA models

As we have already seen in deriving the activity matrix, the
PEPA definitions of the component specify the activities
which can increase or decrease the number of components
exhibited in the current state.

The cooperations show when the number of instances of
another component will have an influence on the evolution of
this component.

Fluid Approximation 115/ 160

Differential equations from PEPA models

Let N(Cij , t) denote the number of Cij type components at time t.

Fluid Approximation 116/ 160

Differential equations from PEPA models

Let N(Cij , t) denote the number of Cij type components at time t.

Consider the change in a small time δt:

N(Cij , t + δt) − N(Cij , t) =

−
∑

(α,r)∈Ex(Cij)

r × min
Ckl∈pre(α,r)

(N(Ckl , t))

︸ ︷︷ ︸
exit activities

δt

+
∑

(α,r)∈En(Cij)

r × min
Ckl∈pre(α,r)

(N(Ckl , t))

︸ ︷︷ ︸
entry activities

δt

Fluid Approximation 117/ 160

Differential equations from PEPA models

Let N(Cij , t) denote the number of Cij type components at time t.

Consider the change in a small time δt:

N(Cij , t + δt) − N(Cij , t) =

−
∑

(α,r)∈Ex(Cij)

r × min
Ckl∈pre(α,r)

(N(Ckl , t))

︸ ︷︷ ︸
exit activities

δt

+
∑

(α,r)∈En(Cij)

r × min
Ckl∈pre(α,r)

(N(Ckl , t))

︸ ︷︷ ︸
entry activities

δt

Fluid Approximation 118/ 160

Differential equations from PEPA models

Let N(Cij , t) denote the number of Cij type components at time t.

Consider the change in a small time δt:

N(Cij , t + δt) − N(Cij , t) =

−
∑

(α,r)∈Ex(Cij)

r × min
Ckl∈pre(α,r)

(N(Ckl , t))

︸ ︷︷ ︸
exit activities

δt

+
∑

(α,r)∈En(Cij)

r × min
Ckl∈pre(α,r)

(N(Ckl , t))

︸ ︷︷ ︸
entry activities

δt

Fluid Approximation 119/ 160

Differential equations from PEPA models

Let N(Cij , t) denote the number of Cij type components at time t.

Consider the change in a small time δt:

N(Cij , t + δt) − N(Cij , t) =

−
∑

(α,r)∈Ex(Cij)

r × min
Ckl∈pre(α,r)

(N(Ckl , t))

︸ ︷︷ ︸
exit activities

δt

+
∑

(α,r)∈En(Cij)

r × min
Ckl∈pre(α,r)

(N(Ckl , t))

︸ ︷︷ ︸
entry activities

δt

Fluid Approximation 120/ 160

Differential equations from PEPA models

Let N(Cij , t) denote the number of Cij type components at time t.

Consider the change in a small time δt:

N(Cij , t + δt) − N(Cij , t) =

−
∑

(α,r)∈Ex(Cij)

r × min
Ckl∈pre(α,r)

(N(Ckl , t))

︸ ︷︷ ︸
exit activities

δt

+
∑

(α,r)∈En(Cij)

r × min
Ckl∈pre(α,r)

(N(Ckl , t))

︸ ︷︷ ︸
entry activities

δt

Fluid Approximation 121/ 160

Differential equations from PEPA models

Let N(Cij , t) denote the number of Cij type components at time t.

Dividing by δt and taking the limit, δt −→ 0:

dN(Cij , t)

dt
= −

∑
(α,r)∈Ex(Cij)

r × min
Ckl∈pre(α,r)

(N(Ckl , t))

+
∑

(α,r)∈En(Cij)

r × min
Ckl∈pre(α,r)

(N(Ckl , t))

Fluid Approximation 122/ 160

Activity matrix

Derivation of the system of ODEs representing the PEPA model
can proceed via the activity matrix which records the influence of
each activity on each component type/derivative.

The matrix has one row for each component type and one column
for each activity type.

One ODE is generated corresponding to each row of the matrix,
taking into account the negative entries in the non-zero columns as
these are the components for which this is an exit activity.

Fluid Approximation 123/ 160

Activity matrix for the small example

task1 task2 reset

Proc0 −1 +1 0 x1
Proc1 +1 −1 0 x2

Res0 −1 0 +1 x3
Res1 +1 0 −1 x4

Fluid Approximation 124/ 160

Activity matrix to ODEs

The entry in the (i , j)-th position in the matrix can be −1, 0, or 1.

If the entry is -1 it means that this local state undertakes an
activity of that type and so when the activity is completed
there will be one less instance of this local state.

If the entry is 0 this local state is not involved in this activity.

If the entry is 1 it means that this local state is produced
when the activity of that type is completed, so there will be
one more instance of this local state.

Fluid Approximation 125/ 160

Activity matrix to ODEs

The entry in the (i , j)-th position in the matrix can be −1, 0, or 1.

If the entry is -1 it means that this local state undertakes an
activity of that type and so when the activity is completed
there will be one less instance of this local state.

If the entry is 0 this local state is not involved in this activity.

If the entry is 1 it means that this local state is produced
when the activity of that type is completed, so there will be
one more instance of this local state.

Fluid Approximation 126/ 160

Activity matrix to ODEs

The entry in the (i , j)-th position in the matrix can be −1, 0, or 1.

If the entry is -1 it means that this local state undertakes an
activity of that type and so when the activity is completed
there will be one less instance of this local state.

If the entry is 0 this local state is not involved in this activity.

If the entry is 1 it means that this local state is produced
when the activity of that type is completed, so there will be
one more instance of this local state.

Fluid Approximation 127/ 160

ODEs

dx1(t)

dt
= −r1 min(x1(t), x3(t)) + r2x2(t)

dx2(t)

dt
= r1 min(x1(t), x3(t))− r2x2(t)

dx3(t)

dt
= −r1 min(x1(t), x3(t)) + sx4(t)

dx4(t)

dt
= x1 min(x1(t), x3(t))− sx4(t)

The form of ODEs is independent of the number of instances
of components in the model.

The only impact of changing the number of instances is to
alter the initial conditions.

Fluid Approximation 128/ 160

ODEs

dx1(t)

dt
= −r1 min(x1(t), x3(t)) + r2x2(t)

dx2(t)

dt
= r1 min(x1(t), x3(t))− r2x2(t)

dx3(t)

dt
= −r1 min(x1(t), x3(t)) + sx4(t)

dx4(t)

dt
= x1 min(x1(t), x3(t))− sx4(t)

The form of ODEs is independent of the number of instances
of components in the model.

The only impact of changing the number of instances is to
alter the initial conditions.

Fluid Approximation 129/ 160

Initialising the ODEs

Consider the model Proc0[100] ��
{task1}

Res0[80].

There are initially 100 processors, all starting in state Proc0 and 80
resources, all of which start in state Res0.

Then we set the initial conditions of the ODEs to be:

x1(0) = 100 x2(0) = 0 x3(0) = 80 x4(0) = 0

The system of ODEs can then be given to any suitable numerical
solver as an initial value problem.

Fluid Approximation 130/ 160

Initialising the ODEs

Consider the model Proc0[100] ��
{task1}

Res0[80].

There are initially 100 processors, all starting in state Proc0 and 80
resources, all of which start in state Res0.

Then we set the initial conditions of the ODEs to be:

x1(0) = 100 x2(0) = 0 x3(0) = 80 x4(0) = 0

The system of ODEs can then be given to any suitable numerical
solver as an initial value problem.

Fluid Approximation 131/ 160

Initialising the ODEs

Consider the model Proc0[100] ��
{task1}

Res0[80].

There are initially 100 processors, all starting in state Proc0 and 80
resources, all of which start in state Res0.

Then we set the initial conditions of the ODEs to be:

x1(0) = 100 x2(0) = 0 x3(0) = 80 x4(0) = 0

The system of ODEs can then be given to any suitable numerical
solver as an initial value problem.

Fluid Approximation 132/ 160

100 processors and 80 resources (simulation run A)

Fluid Approximation 133/ 160

100 processors and 80 resources (simulation run B)

Fluid Approximation 134/ 160

100 processors and 80 resources (simulation run C)

Fluid Approximation 135/ 160

100 processors and 80 resources (simulation run D)

Fluid Approximation 136/ 160

100 processors and 80 resources (average of 10 runs)

Fluid Approximation 137/ 160

100 Processors and 80 resources (average of 100 runs)

Fluid Approximation 138/ 160

100 processors and 80 resources (average of 1000 runs)

Fluid Approximation 139/ 160

100 processors and 80 resources (average of 10000 runs)

Fluid Approximation 140/ 160

100 processors and 80 resources (ODE solution)

Summary 141/ 160

Outline

1 Introduction

2 Model reduction
Numerical representation

3 Decomposed solutions

4 Simulation

5 Fluid Approximation

6 Summary

Summary 142/ 160

Deriving quantitative data

PEPA models can be analysed for quantified dynamic behaviour in
a number of different ways.

Each of these has tool support so that the underlying model is
derived automatically according to the predefined rules.

Summary 143/ 160

Deriving quantitative data

PEPA models can be analysed for quantified dynamic behaviour in
a number of different ways.

The language may be used to generate a Markov Process (CTMC).

PEPA
MODEL

LABELLED
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition

diagram

Each of these has tool support so that the underlying model is
derived automatically according to the predefined rules.

Summary 144/ 160

Deriving quantitative data

PEPA models can be analysed for quantified dynamic behaviour in
a number of different ways.

The language may be used to generate a Markov Process (CTMC).

PEPA
MODEL

LABELLED
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition

diagram

Each of these has tool support so that the underlying model is
derived automatically according to the predefined rules.

Summary 145/ 160

Deriving quantitative data

PEPA models can be analysed for quantified dynamic behaviour in
a number of different ways.

The language also may be used to generate a stochastic simulation.

PEPA
MODEL

NUMERICAL
STATE

REPRESENTATION

STOCHASTIC
SIMULATION

- -
syntactic

analysis

Gillespie’s

algorithm

Each of these has tool support so that the underlying model is
derived automatically according to the predefined rules.

Summary 146/ 160

Deriving quantitative data

PEPA models can be analysed for quantified dynamic behaviour in
a number of different ways.

The language also may be used to generate a stochastic simulation.

PEPA
MODEL

NUMERICAL
STATE

REPRESENTATION

STOCHASTIC
SIMULATION

- -
syntactic

analysis

Gillespie’s

algorithm

Each of these has tool support so that the underlying model is
derived automatically according to the predefined rules.

Summary 147/ 160

Deriving quantitative data

PEPA models can be analysed for quantified dynamic behaviour in
a number of different ways.

The language may be used to generate a system of ordinary differ-
ential equations (ODEs).

PEPA
MODEL

ACTIVITY
MATRIX

ODEs- -
syntactic

analysis

continuous

interpretation

Each of these has tool support so that the underlying model is
derived automatically according to the predefined rules.

Summary 148/ 160

Deriving quantitative data

PEPA models can be analysed for quantified dynamic behaviour in
a number of different ways.

The language may be used to generate a system of ordinary differ-
ential equations (ODEs).

PEPA
MODEL

ACTIVITY
MATRIX

ODEs- -
syntactic

analysis

continuous

interpretation

Each of these has tool support so that the underlying model is
derived automatically according to the predefined rules.

Summary 149/ 160

Deriving quantitative data

PEPA models can be analysed for quantified dynamic behaviour in
a number of different ways.

The language may be used to generate a system of ordinary differ-
ential equations (ODEs).

PEPA
MODEL

ACTIVITY
MATRIX

ODEs- -
syntactic

analysis

continuous

interpretation

Each of these has tool support so that the underlying model is
derived automatically according to the predefined rules.

Summary 150/ 160

References

Product form results for SPA have been developed by Clark,
Harrison, Hillston, Thomas and Sereno. A survey of some of the
earlier results can be found in the tutorial chapter Exploiting
Structure in Solution: Decomposing Composed Models, FMPA
Lecture Notes, Springer Verlag [60].

Decomposition techniques are also summarised in the above chapter
but the definitive reference is Vassilis Mertsiotakis’s PhD thesis
from the University of Erlangen, 1997.

Numerical representation, activity matrix and fluid approximation
first appeared in the paper Fluid flow approximation of PEPA
models, Proc. of 2nd Int. Conf. on the Quantitative Evaluation of
Systems, September 2005. IEEE Computer Society Press [116].

Labelled activity matrix, results about relationship between steady
state in ODEs and CTMC are contained in Jie Ding’s PhD thesis,
University of Edinburgh 2010.

	Introduction
	Model reduction
	Numerical representation

	Decomposed solutions
	Simulation
	Fluid Approximation
	Summary

