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Collective Dynamics

The behaviour of many systems can be interpreted as the result of
the collective behaviour of a large number of interacting entities.

For such systems we are often as interested in the population level
behaviour as we are in the behaviour of the individual entities.
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Collective Behaviour

In the natural world there are many instances of collective
behaviour and its consequences:
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Collective Behaviour

This is also true in the man-made and engineered world:

Spread of H1N1 virus in 2009
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Collective Behaviour

This is also true in the man-made and engineered world:

Love Parade, Germany 2006
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Collective Behaviour

This is also true in the man-made and engineered world:

Map of the Internet 2009
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Collective Behaviour

This is also true in the man-made and engineered world:

Self assessment tax returns 31st January each year
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Process Algebra and Collective Dynamics

Process algebra are well-suited to modelling such systems

Developed to represent concurrent behaviour compositionally;

Capture the interactions between individuals explicitly;

Incorporate formal apparatus for reasoning about the
behaviour of systems;

Stochastic extensions, such as PEPA, enable quantified
behaviour of the dynamics of systems.

In the CODA project we are developing stochastic process algebras
and associated theory, tailored to the construction and evaluation
of the collective dynamics of large systems of interacting entities.
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Performance as an emergent behaviour

A shift in perspective allows us to model the interactions between
individual components but then only the consider the system as a
whole as an interaction of populations.

This allows us to model much larger systems than previously
possible but in making the shift we are no longer able to collect
any information about individuals in the system.
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Performance as an emergent behaviour

We must instead think about the performance of the collective
point of view. Service providers often want to do this in any case.
For example making contracts in terms of service level agreements.

Example Service Level Agreement

90% of requests receive a response within 3 seconds.

Qualitative Service Level Agreement

Less than 1% of the responses received within 3 seconds will read
“System is overloaded, try again later”.
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Novelty

The novelty of the CODA project has been twofold:

Linking process algebra and continuous mathematical models
for dynamic evaluation represents a paradigm shift in how
such systems are studied.

The prospect of formally-based quantified evaluation of
dynamic behaviour could have significant impact in
application domains such as:
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The novelty of the CODA project has been twofold:

Linking process algebra and continuous mathematical models
for dynamic evaluation represents a paradigm shift in how
such systems are studied.

The prospect of formally-based quantified evaluation of
dynamic behaviour could have significant impact in
application domains such as:

Large scale software systems
Issues of scalability are important for user satisfaction and
resource efficiency but such issues are difficult to investigate using
discrete state models.
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Novelty

The novelty of the CODA project has been twofold:

Linking process algebra and continuous mathematical models
for dynamic evaluation represents a paradigm shift in how
such systems are studied.

The prospect of formally-based quantified evaluation of
dynamic behaviour could have significant impact in
application domains such as:

Biochemical signalling pathways
Understanding these pathways has the potential to improve the
quality of life through enhanced drug treatment and better drug
design.
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Novelty

The novelty of the CODA project has been twofold:

Linking process algebra and continuous mathematical models
for dynamic evaluation represents a paradigm shift in how
such systems are studied.

The prospect of formally-based quantified evaluation of
dynamic behaviour could have significant impact in
application domains such as:

Epidemiological systems
Improved modelling of these systems could lead to improved
disease prevention and treatment in nature and better security in
computer systems.
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Solving discrete state models

Under the SOS semantics a PEPA model is mapped to a
Continuous Time Markov Chain (CTMC) with global states
determined by the local states of all the participating components.

When the size of the state space is not too large they are
amenable to numerical solution (linear algebra) to determine a
steady state or transient probability distribution.

Alternatively they may be studied using stochastic simulation.
Each run generates a single trajectory through the state space.
Many runs are needed in order to obtain average behaviours.

As the size of the state space becomes large it becomes infeasible
to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.
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Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Use continuous state variables to approximate the discrete state
space.
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Use ordinary differential equations to represent the evolution of
those variables over time.
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Scaling Conditions

Scaling assumptions

We have a sequence X(N) of population CTMC, for increasing
total population N.

We normalize such models, dividing variables by N: X
(N)

= X
N

for each τ ∈ T (N), the normalized update is v̄ = v/N and the

rate function is r̄τ (X
(N)

) = Nfτ (X
(N)

) (density dependence).

Fluid ODE

The fluid ODE is ẋ = F (x), where

F (x) =
∑
τ∈T

vτ fτ (x)
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Fluid approximation theorem

Hypothesis

X
(N)

(t): a sequence of normalized population CTMC, residing
in E ⊂ Rn

∃x0 ∈ S such that X
(N)

(0)→ x0 in probability (initial
conditions)

x(t): solution of dx
dt = F (x), x(0) = x0, residing in E .

Theorem

For any finite time horizon T <∞, it holds that:

P( sup
0≤t≤T

||X(N)
(t)− x(t)|| > ε)→ 0.

T.G.Kurtz. Solutions of ordinary differential equations as limits of pure jump Markov processes.

Journal of Applied Probability, 1970.
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New mathematical structures: differential equations

Use a more abstract state representation rather than the
CTMC complete state space.

Assume that these state variables are subject to continuous
rather than discrete change.

No longer aim to calculate the probability distribution over
the entire state space of the model.

Appropriate for models in which there are large numbers of
components of the same type, i.e. models of populations and
situations of collective dynamics

.



Continuous Approximation 50/ 192

New mathematical structures: differential equations

Use a more abstract state representation rather than the
CTMC complete state space.

Assume that these state variables are subject to continuous
rather than discrete change.

No longer aim to calculate the probability distribution over
the entire state space of the model.

Appropriate for models in which there are large numbers of
components of the same type, i.e. models of populations and
situations of collective dynamics

.



Continuous Approximation 51/ 192

New mathematical structures: differential equations

Use a more abstract state representation rather than the
CTMC complete state space.

Assume that these state variables are subject to continuous
rather than discrete change.

No longer aim to calculate the probability distribution over
the entire state space of the model.

Appropriate for models in which there are large numbers of
components of the same type, i.e. models of populations and
situations of collective dynamics

.



Continuous Approximation 52/ 192

New mathematical structures: differential equations

Use a more abstract state representation rather than the
CTMC complete state space.

Assume that these state variables are subject to continuous
rather than discrete change.

No longer aim to calculate the probability distribution over
the entire state space of the model.

Appropriate for models in which there are large numbers of
components of the same type, i.e. models of populations and
situations of collective dynamics.



Continuous Approximation 53/ 192

Simple example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r1).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] ��
{task1}

Res0[NR ]
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def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r1).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] ��
{task1}

Res0[NR ]

CTMC interpretation
Processors (NP ) Resources (NR ) States (2NP +NR )
1 1 4
2 1 8
2 2 16
3 2 32
3 3 64
4 3 128
4 4 256
5 4 512
5 5 1024
6 5 2048
6 6 4096
7 6 8192
7 7 16384
8 7 32768
8 8 65536
9 8 131072
9 9 262144
10 9 524288
10 10 1048576
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Simple example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r1).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] ��
{task1}

Res0[NR ]

ODE interpretation
dx1
dt = −r1 min(x1, x3) + r2 x1

x1 = no. of Proc1
dx2
dt = r1 min(x1, x3)− r2 x1

x2 = no. of Proc2
dx3
dt = −r1 min(x1, x3) + r4 x4

x3 = no. of Res0
dx4
dt = r1 min(x1, x3)− r4 x4

x4 = no. of Res1
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100 processors and 80 resources (simulation run A)
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100 processors and 80 resources (simulation run B)
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100 processors and 80 resources (simulation run C)
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100 processors and 80 resources (simulation run D)
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100 processors and 80 resources (average of 10 runs)
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100 Processors and 80 resources (average of 100 runs)
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100 processors and 80 resources (average of 1000 runs)
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100 processors and 80 resources (average of 10000 runs)
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100 processors and 80 resources (ODE solution)
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Deriving a Fluid Approximation of a PEPA model

The aim is to represent the CTMC implicitly (avoiding state space
explosion), and to generate the set of ODEs which are the fluid
limit of that CTMC.

The exisiting (CTMC) SOS semantics is not suitable for this
purpose because it constructs the state space of the CTMC
explicitly.

SPA
MODEL

SYMBOLIC
LABELLED

TRANSITION
SYSTEM

ABSTRACT
CTMC Q

or
ODEs FM(x)

- -
SOS rules generator

functions
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Deriving a Fluid Approximation of a PEPA model

The aim is to represent the CTMC implicitly (avoiding state space
explosion), and to generate the set of ODEs which are the fluid
limit of that CTMC.

The exisiting (CTMC) SOS semantics is not suitable for this
purpose because it constructs the state space of the CTMC
explicitly.
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The exisiting (CTMC) SOS semantics is not suitable for this
purpose because it constructs the state space of the CTMC
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Deriving a Fluid Approximation of a PEPA model
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limit of that CTMC.

The exisiting (CTMC) SOS semantics is not suitable for this
purpose because it constructs the state space of the CTMC
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Fluid Structured Operational Semantics

In order to get to the implicit representation of the CTMC we need
to:

1 Remove excess components (Context Reduction)

2 Collect the transitions of the reduced context (Jump Multiset)

3 Calculate the rate of the transitions in terms of an arbitrary
state of the CTMC.

Once this is done we can extract the vector field FM(x) from the
jump multiset.

M.Tribastone, S.Gilmore and J.Hillston. Scalable Differential Analysis of Process Algebra Models. IEEE TSE 2012.
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Fluid Structured Operational Semantics
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Context Reduction

Proc0
def
= (task1 , r1 ).Proc1

Proc1
def
= (task2 , r2 ).Proc0

Res0
def
= (task1 , r3 ).Res1

Res1
def
= (reset, r4 ).Res0

System
def
= Proc0 [NP ] ��

{task1}
Res0 [NR ]

⇓

R(System) = {Proc0 ,Proc1} ��
{task1}

{Res0 ,Res1}

Population Vector

ξ = (ξ1, ξ2, ξ3, ξ4)
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Context Reduction

Proc0
def
= (task1 , r1 ).Proc1

Proc1
def
= (task2 , r2 ).Proc0

Res0
def
= (task1 , r3 ).Res1

Res1
def
= (reset, r4 ).Res0

System
def
= Proc0 [NP ] ��

{task1}
Res0 [NR ]

⇓

R(System) = {Proc0 ,Proc1} ��
{task1}

{Res0 ,Res1}

Population Vector

ξ = (ξ1, ξ2, ξ3, ξ4)
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Location Dependency

System
def
= Proc0 [N ′C ] ��

{task1}
Res0 [NS ] ‖ Proc0 [N ′′C ]

⇓

{Proc0 ,Proc1} ��
{task1}

{Res0 ,Res1} ‖ {Proc0 ,Proc1}

Population Vector

ξ = (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6)
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Location Dependency

System
def
= Proc0 [N ′C ] ��

{task1}
Res0 [NS ] ‖ Proc0 [N ′′C ]

⇓

{Proc0 ,Proc1} ��
{task1}

{Res0 ,Res1} ‖ {Proc0 ,Proc1}

Population Vector

ξ = (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6)
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Location Dependency

System
def
= Proc0 [N ′C ] ��

{task1}
Res0 [NS ] ‖ Proc0 [N ′′C ]

⇓

{Proc0 ,Proc1} ��
{task1}

{Res0 ,Res1} ‖ {Proc0 ,Proc1}

Population Vector

ξ = (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6)
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Fluid Structured Operational Semantics by Example

Proc0
def
= (task1 , r1 ).Proc1

Proc1
def
= (task2 , r2 ).Proc0

Res0
def
= (task1 , r3 ).Res1

Res1
def
= (reset, r4 ).Res0

System
def
= Proc0 [NP ] ��

{task1}
Res0 [NR ]

ξ = (ξ1, ξ2, ξ3, ξ4)

Proc0
task1 ,r1−−−−−−→ Proc1

Proc0
task1 ,r1 ξ1−−−−−−−→∗ Proc1

Res0
task1 ,r3−−−−−−→ Res1

Res0
task1 ,r3 ξ3−−−−−−−→∗ Res1

Proc0 ��
{task1}

Res0
task1 ,r(ξ)
−−−−−−−→∗ Proc1 ��

{task1}
Res1
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Fluid Structured Operational Semantics by Example
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task1 ,r3 ξ3−−−−−−−→∗ Res1

Proc0 ��
{task1}

Res0
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−−−−−−−→∗ Proc1 ��

{task1}
Res1
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Fluid Structured Operational Semantics by Example
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Fluid Structured Operational Semantics by Example

Proc0
def
= (task1 , r1 ).Proc1

Proc1
def
= (task2 , r2 ).Proc0

Res0
def
= (task1 , r3 ).Res1

Res1
def
= (reset, r4 ).Res0

System
def
= Proc0 [NP ] ��

{task1}
Res0 [NR ]

ξ = (ξ1, ξ2, ξ3, ξ4)

Proc0
task1 ,r1−−−−−−→ Proc1

Proc0
task1 ,r1 ξ1−−−−−−−→∗ Proc1

Res0
task1 ,r3−−−−−−→ Res1

Res0
task1 ,r3 ξ3−−−−−−−→∗ Res1

Proc0 ��
{task1}

Res0
task1 ,r(ξ)
−−−−−−−→∗ Proc1 ��

{task1}
Res1
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Apparent Rate Calculation

Proc0
task1 ,r1−−−−−−→ Proc1

Proc0
task1 ,r1 ξ1−−−−−−−→∗ Proc1

Res0
task1 ,r3−−−−−−→ Res1

Res0
task1 ,r3 ξ3−−−−−−−→∗ Res1

Proc0 ��
{task1}

Res0
task1 ,r(ξ)
−−−−−−−→∗ Proc1 ��

{task1}
Res1

r(ξ) =
r1ξ1

r∗task1 (Proc0 , ξ)

r3ξ4

r∗task1 (Res0 , ξ)
min

(
r∗task1 (Proc0 , ξ) , r∗task1 (Res0 , ξ)

)
=

r1ξ1

r1ξ1

r3ξ3

r3ξ3
min

(
r1ξ1, r3ξ3

)
=min

(
r1ξ1, r3ξ3

)
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Apparent Rate Calculation

Proc0
task1 ,r1−−−−−−→ Proc1

Proc0
task1 ,r1 ξ1−−−−−−−→∗ Proc1

Res0
task1 ,r3−−−−−−→ Res1

Res0
task1 ,r3 ξ3−−−−−−−→∗ Res1

Proc0 ��
{task1}

Res0
task1 ,r(ξ)
−−−−−−−→∗ Proc1 ��

{task1}
Res1

r(ξ) =
r1ξ1

r∗task1 (Proc0 , ξ)

r3ξ4

r∗task1 (Res0 , ξ)
min

(
r∗task1 (Proc0 , ξ) , r∗task1 (Res0 , ξ)

)
=

r1ξ1

r1ξ1

r3ξ3

r3ξ3
min

(
r1ξ1, r3ξ3

)
=min

(
r1ξ1, r3ξ3

)



Fluid-Flow Semantics 87/ 192

f (ξ, l , α) as the Generator Matrix of the Lumped CTMC

(P0 ‖ P0 ) ��
{task1}

(R0 ‖ R0 ‖ R0 )

(P1 ‖ P0 ) ��
{task1}

R1 ‖ R0 ‖ R0 )

(P1 ‖ P0 ) ��
{task1}

(R0 ‖ R1 ‖ R0 )

(P1 ‖ P0 ) ��
{task1}

(R0 ‖ R0 ‖ R1 )

(P0 ‖ P1 ) ��
{task1}

(R1 ‖ R0 ‖ R0 )

(P0 ‖ P1 ) ��
{task1}

(R0 ‖ R1 ‖ R0 )

(P0 ‖ P1 ) ��
{task1}

(R0 ‖ R0 ‖ R1 )
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min(2r1, 3r3) = 1
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f (ξ, l , α) as the Generator Matrix of the Lumped CTMC

(P0 ‖ P0 ) ��
{task1}
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{task1}
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{task1}
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f (ξ, l , α) as the Generator Matrix of the Lumped CTMC

(P0 ‖ P0 ) ��
{task1}

(R0 ‖ R0 ‖ R0 )

(P1 ‖ P0 ) ��
{task1}

R1 ‖ R0 ‖ R0 )

(P1 ‖ P0 ) ��
{task1}

(R0 ‖ R1 ‖ R0 )

(P1 ‖ P0 ) ��
{task1}

(R0 ‖ R0 ‖ R1 )

(P0 ‖ P1 ) ��
{task1}

(R1 ‖ R0 ‖ R0 )

(P0 ‖ P1 ) ��
{task1}

(R0 ‖ R1 ‖ R0 )

(P0 ‖ P1 ) ��
{task1}

(R0 ‖ R0 ‖ R1 )

�
�
�
�
�
�
�
��7r

�
�
�
�
��>

r

��
���

�:r

XXXXXXz
rZ

Z
Z
Z
ZZ~

r

S
S
S
S
S
S
S
Sw

r

r = r1

2r1

r3

3r3
min(2r1, 3r3) = 1

6 min(2r1, 3r3)



Fluid-Flow Semantics 90/ 192

f (ξ, l , α) as the Generator Matrix of the Lumped CTMC

(P0 ‖ P0 ) ��
{task1}

(R0 ‖ R0 ‖ R0 )

(P1 ‖ P0 ) ��
{task1}

(R1 ‖ R0 ‖ R0 )

(P1 ‖ P0 ) ��
{task1}

(R0 ‖ R1 ‖ R0 )

(P1 ‖ P0 ) ��
{task1}

(R0 ‖ R0 ‖ R1 )

(P0 ‖ P1 ) ��
{task1}

(R1 ‖ R0 ‖ R0 )

(P0 ‖ P1 ) ��
{task1}

(R0 ‖ R1 ‖ R0 )

(P0 ‖ P1 ) ��
{task1}

(R0 ‖ R0 ‖ R1 )
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(1, 1, 2, 1)



Fluid-Flow Semantics 91/ 192

Jump Multiset

Proc0 ��
{task1}

Res0
task1 ,r(ξ)−−−−−−−→∗ Proc1 ��

{task1}
Res1

r(ξ) = min
(
r1ξ1, r3ξ3

)

Proc1 ��
{task1}

Res0
task2 ,ξ2r2−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0
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Jump Multiset

Proc0 ��
{task1}

Res0
task1 ,r(ξ)−−−−−−−→∗ Proc1 ��

{task1}
Res1

r(ξ) = min
(
r1ξ1, r3ξ3

)

Proc1 ��
{task1}

Res0
task2 ,ξ2r2−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0
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Jump Multiset

Proc0 ��
{task1}

Res0
task1 ,r(ξ)−−−−−−−→∗ Proc1 ��

{task1}
Res1

r(ξ) = min
(
r1ξ1, r3ξ3

)

Proc1 ��
{task1}

Res0
task2 ,ξ2r2−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0
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Equivalent Transitions

Some transitions may give the same information:

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc1 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc1 ��

{task1}
Res0

i.e., Res1 may perform an action independently from the rest of
the system.

This is captured by the procedure used for the construction of the
generator function f (ξ, l , α)
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Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

Take l = (0, 0, 0, 0)

Add −1 to all elements of l corresponding to the indices of
the components in the lhs of the transition

l = (−1, 0, 0,−1)

Add +1 to all elements of l corresponding to the indices of
the components in the rhs of the transition

l = (−1 + 1, 0,+1,−1) = (0, 0,+1,−1)

f
(
ξ, (0, 0,+1,−1), reset

)
= ξ4r4
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Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

Take l = (0, 0, 0, 0)

Add −1 to all elements of l corresponding to the indices of
the components in the lhs of the transition

l = (−1, 0, 0,−1)

Add +1 to all elements of l corresponding to the indices of
the components in the rhs of the transition

l = (−1 + 1, 0,+1,−1) = (0, 0,+1,−1)

f
(
ξ, (0, 0,+1,−1), reset

)
= ξ4r4
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Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��
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Res0

Take l = (0, 0, 0, 0)

Add −1 to all elements of l corresponding to the indices of
the components in the lhs of the transition
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f
(
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)
= ξ4r4
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Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

Take l = (0, 0, 0, 0)

Add −1 to all elements of l corresponding to the indices of
the components in the lhs of the transition

l = (−1, 0, 0,−1)

Add +1 to all elements of l corresponding to the indices of
the components in the rhs of the transition

l = (−1 + 1, 0,+1,−1) = (0, 0,+1,−1)

f
(
ξ, (0, 0,+1,−1), reset

)
= ξ4r4
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Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res0
task1 ,r(ξ)−−−−−−−→∗ Proc1 ��

{task1}
Res1

Proc1 ��
{task1}

Res0
task2 ,ξ2r ′2−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

f (ξ, (−1,+1,−1,+1), task1) = r(ξ)

f (ξ, (+1,−1, 0, 0), task2) = ξ2r2

f (ξ, (0, 0,+1,−1), reset) = ξ4r4
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Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res0
task1 ,r(ξ)−−−−−−−→∗ Proc1 ��

{task1}
Res1

Proc1 ��
{task1}

Res0
task2 ,ξ2r ′2−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

f (ξ, (−1,+1,−1,+1), task1) = r(ξ)

f (ξ, (+1,−1, 0, 0), task2) = ξ2r2

f (ξ, (0, 0,+1,−1), reset) = ξ4r4
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Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res0
task1 ,r(ξ)−−−−−−−→∗ Proc1 ��

{task1}
Res1

Proc1 ��
{task1}

Res0
task2 ,ξ2r ′2−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

f (ξ, (−1,+1,−1,+1), task1) = r(ξ)

f (ξ, (+1,−1, 0, 0), task2) = ξ2r2

f (ξ, (0, 0,+1,−1), reset) = ξ4r4
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Capturing behaviour in the Generator Function

Proc0
def
= (task1 , r1 ).Proc1

Proc1
def
= (task2 , r2 ).Proc0

Res0
def
= (task1 , r3 ).Res1

Res1
def
= (reset, r4 ).Res0

System
def
= Proc0 [NP ] ��

{task1}
Res0 [NR ]

Numerical Vector Form

ξ = (ξ1, ξ2, ξ3, ξ4) ∈ N4, ξ1 + ξ2 = NP and ξ3 + ξ4 = NR

Generator Function

f (ξ, l , α) :
f (ξ, (−1, 1,−1, 1), task1) = min (r1ξ1, r3ξ3)

f (ξ, (1,−1, 0, 0), task2) = r2ξ2

f (ξ, (0, 0, 1,−1), reset) = r4ξ4
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Capturing behaviour in the Generator Function

Proc0
def
= (task1 , r1 ).Proc1

Proc1
def
= (task2 , r2 ).Proc0

Res0
def
= (task1 , r3 ).Res1

Res1
def
= (reset, r4 ).Res0

System
def
= Proc0 [NP ] ��

{task1}
Res0 [NR ]

Numerical Vector Form

ξ = (ξ1, ξ2, ξ3, ξ4) ∈ N4, ξ1 + ξ2 = NP and ξ3 + ξ4 = NR

Generator Function

f (ξ, l , α) :
f (ξ, (−1, 1,−1, 1), task1) = min (r1ξ1, r3ξ3)

f (ξ, (1,−1, 0, 0), task2) = r2ξ2

f (ξ, (0, 0, 1,−1), reset) = r4ξ4
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Capturing behaviour in the Generator Function

Proc0
def
= (task1 , r1 ).Proc1

Proc1
def
= (task2 , r2 ).Proc0

Res0
def
= (task1 , r3 ).Res1

Res1
def
= (reset, r4 ).Res0

System
def
= Proc0 [NP ] ��

{task1}
Res0 [NR ]

Numerical Vector Form

ξ = (ξ1, ξ2, ξ3, ξ4) ∈ N4, ξ1 + ξ2 = NP and ξ3 + ξ4 = NR

Generator Function

f (ξ, l , α) :
f (ξ, (−1, 1,−1, 1), task1) = min (r1ξ1, r3ξ3)

f (ξ, (1,−1, 0, 0), task2) = r2ξ2

f (ξ, (0, 0, 1,−1), reset) = r4ξ4
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Extraction of the ODE from f

Generator Function

f (ξ, (−1, 1,−1, 1), task1) = min (r1ξ1, r3ξ3)
f (ξ, (1,−1, 0, 0), task2) = r2ξ2

f (ξ, (0, 0, 1,−1), reset) = r4ξ4

Differential Equations

dx

dt
= FM(x) =

∑
l∈Zd

l
∑
α∈A

f (x , l , α)

= (−1, 1,−1, 1) min (r1x1, r3x3) + (1,−1, 0, 0)r2x2

+ (0, 0, 1,−1)r4x4
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Extraction of the ODE from f

Generator Function

f (ξ, (−1, 1,−1, 1), task1) = min (r1ξ1, r3ξ3)
f (ξ, (1,−1, 0, 0), task2) = r2ξ2

f (ξ, (0, 0, 1,−1), reset) = r4ξ4

Differential Equations

dx1

dt
= −min (r1x1, r3x3) + r2 x2

dx2

dt
= min (r1x1, r3x3)− r2 x2

dx3

dt
= −min (r1x1, r3x3) + r4 x4

dx4

dt
= min (r1x1, r3x3)− r4 x4
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Density Dependence

Density dependence of parametric apparent rates

Let r∗α (P, ξ) be the parametric apparent rate of action type α in
process P. For any n ∈ N and α ∈ A,

r∗α (P, ξ) = n · r?α (P, ξ/n)

Density dependence of parametric transition rates

If P
(α,r(ξ))−−−−−→∗ Q then, for any n ∈ N, r(ξ) = n · r(ξ/n)

Generating functions give rise to density dependent rates

Let M be a PEPA model with generating functions f (ξ, l , α)
derived as demonstrated. Then the corresponding sequence of
CTMCs will be density dependent.
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Lipschitz continuity

Since Lipschitz continuity is preserved by summation, in order to
verify that the vector field FM(x) is Lipschitz it suffices to prove
that any parametric rate generated by the semantics is Lipschitz.

Lipschitz continuity of parametric apparent rates

Let r∗α (P, ξ) be the parametric apparent rate of action type α in
process P. There exists a constant L ∈ R such that for all
x , y ∈ Rd , x 6= y ,

‖r?α (P, x)− r?α (P, y)‖
‖x − y‖

≤ L

Lipschitz continuity of rate functions

If P
(α,r(x))−−−−−→∗ P ′ then r(x) ≤ r∗α (P, x) and thus it follows that

r(x) is Lipschitz continuous.
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Kurtz’s Theorem

Kurtz’s Theorem for PEPA

Let x(t), 0 ≤ t ≤ T satisfy the initial value problem
dx
dt = F (x(t)), x(0) = δ, specified from a PEPA model.

Let {Xn(t)} be a family of CTMCs with parameter n ∈ N
generated as explained and let Xn(0) = n · δ. Then,

∀ε > 0 lim
n→∞

P

(
sup
t≤T
‖Xn(t)/n − x(t)‖ > ε

)
= 0.

Moreover Lipschitz continuity of the vector field guarantees
existence and uniqueness of the solution to the initial value
problem.

M.Tribastone, S.Gilmore and J.Hillston. Scalable Differential Analysis of Process Algebra Models. IEEE TSE 2012.
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Eclipse Plug-in for PEPA
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Virtual University Scenario

A Virtual University is a federation of real universities, each
contributing courses and degrees.

Sharing of knowledge is promoted by providing students with
a wider selection of subjects.

Services are replicated across the physical sites.

By agreement in the university, students may connect to any
site to download content and use services, not just the one
which is geographically closest.
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Case Study: A Virtual University
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Location, Time, and Size
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Replicating Web Services

Two viable approaches to cope with increasing user demand:

use a service broker for routing

decentralised routing
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Decentralised Routing

Fig. 1. The configuration of servers and services at the five sites

is usually the bandwidth to the Internet Service Provider which is the limiting
factor on download rate in any case. The metric used by the dynamic discov-
ery service attempts to take location, bandwidth and load factors into account
in order to be able to make a good selection of content host for the content
requestor.

Below we describe in the SOCK calculus the policy which would be used at
the Bologna site to determine the selection of content server. Each of the content
servers provides a service getLoad which, when invoked returns the current load
on the server as a integer value in the range 0 (no load, available for use) to
100 (fully loaded, unavailable for use). Lower numbers are better. The policy at
the Bologna site (UNIBO) compares its own load with the load at Pisa (UPISA),
Florence (UNIFI), Munich (LMU) and Edinburgh (UEDIN) before returning the
name of the server to download from. The remote servers are checked in a priority
order, with geographically nearer servers being checked before those which are
further away. A graphical representation of the system is shown in Figure 1.

4.1 Model in SOCK

In this section we present the SOCK behaviour of the services involved in the
system, together with their deployment in terms of SOCK service engines concur-
rently composed within the process System. The names UNIBO, UPISA, UNIFI,
LMU and UEDIN abstractly represent the location of the services provided by
the universities of Bologna, Pisa, Firenze, Munich and Edinburgh, respectively.
In particular, three behaviours are described: the clientBehaviour, the UniBoBe-
haviour and the ObjServerBehaviour.

The clientBehaviour models the behaviour of a client which sends a request
to the service of the University of Bologna by exploiting the Solicit-Response
getServer@UNIBO and, as a reply, it receives the address of the service to in-
voke for retrieving the e-learning object it is looking for. If the response message
contains a valid address (here we model a fault reply message with the value -1),
the client downloads the e-learning object by invoking the getObject operation

1 A client contacts a university site to download content.

2 The site either serves the request or forwards it to another site.

3 The decision in made in accord with the local service policy.
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Model in PEPA

Clients

Client i
def
= (connect1, c1,i ).(download1, d1,i ).Idle i

+ (connect2, c2,i ).(download2, d2,i ).Idle i

. . .
+ (connectm, cm,i ).(downloadm, dm,i ).Idle i

+ (overload ,>).Client i

Idle i
def
= (idle, ridle,i ).Client i

(1 ≤ i ≤ k)
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Model in PEPA

Content mirrors

Mirror j
def
=

(
connect j , fj (s)

)
.MirrorUploading j

MirrorUploading j
def
=

(
download j ,>

)
.Mirror j

(1 ≤ j ≤ m)
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Service policies as functional rates in PEPA

The Bologna policy

Serve all requests while load is less than 75%. If more, and the
loads at UNIFI, UPISA, LMU and UEDIN are at least 60%,
60%, 40% and 20% then serve the request if load is less than 95%.

fUNIBO =



> if MirrorUploadingUNIBO < 75
> if MirrorUploadingUNIBO < 95,

MirrorUploadingUNIFI ≥ 60,
MirrorUploadingUPISA ≥ 60,

MirrorUploadingLMU ≥ 40,
MirrorUploadingUEDIN ≥ 20

0 otherwise
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Model in PEPA

Dealing with overload

Overload
def
=

(
overload , o(s)

)
.Overload

o(s) =

{
> fi (s) = 0, 1 ≤ i ≤ m
0 otherwise

The system as a whole with client and mirror site populations

(
Client1[p1] ‖ Client2[p2] ‖ . . . ‖ Clientk [pk ]

)
��

L

(
Mirror 1[q1] ‖ Mirror 2[q2] ‖ . . . ‖ Mirror m[qm]

)
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Numerical Results

ridle = 0.001
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Numerical Results

ridle = 0.01
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Numerical Results

ridle = 0.02
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Numerical Results

ridle = 0.03
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Numerical Results

ridle = 0.04
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Numerical Results

ridle = 0.05
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Numerical Results

ridle = 0.06
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Motivation: Alternative Representations
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Overview

PEPA has two-level syntax

sequential components: S ::= (a, r).S | S + S
parallel components: P ::= P ��

L
P | S

assume sequential components: S =
∑q

j=1(aj , rj ).S
′

mapping

P def
=

T =

S1 S2 · · · Sn
��
L2

��
L3

��
Ln

T1 T2 · · · Tn⊕L2 ⊕L3 ⊕Ln
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Transition-driven stochastic hybrid automata (TDSHA)

subset of piecewise deterministic Markov processes (PDMPs)

set of (control) modes: Q = {q1, . . . , qm}

set of variables: X = {X1, . . . ,Xn}

set of events/actions: A = {a1, a2, . . .}

initial state: (q, (x1, . . . , xn))

multiset of continuous transitions:
(q, (z1, . . . , zn), f , a) where f : Rn → R

multiset of stochastic transitions
(qs , qt , true,

∧
(X ′k = ρk (X)), h, a) where h : Rn → R
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TDSHA behaviour

continuous trace with stochastic jumps

continuous behaviour in mode q described by ODEs

dX/dt =
∑
{(z1, . . . , zn)f (X) | (q, (z1, . . . , zn), f , a)}

stochastic transition from mode qs and qt with resets

(qs , qt , true,
∧

(X ′k = ρk (X)), g , a)

happens with rate

λ(q,X) =
∑
{h(X) | (qs , qt , true,R, h, a)}

and probability g(X)/λ(q,X)
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TDSHA synchronised product

T = T1 ⊕L T2 has Q = Q1 × Q2 and X = X1 ∪ X2

continuous transitions: extend vector to cover X
a /∈ L: (q1, q2) has every transition from q1 and from q2

a ∈ L: (q1, q2) has every transition from q1 and q2 with a and
new function is PEPA cooperation rate (i.e. bounded capacity)

stochastic transitions:

a /∈ L: (q1, q2) has every transition from q1 and from q2

a ∈ L: (q1, q2) has every transition that both q1 and q2 have
with a, new rate is PEPA cooperation rate and conjunction of
resets is taken
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Clients and servers example

clients

Cr
def
= (request, rrq).Ct

Ct
def
= (think, rth).Cr

servers
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Clients and servers example

clients

Cr
def
= (request, rrq).Ct

Ct
def
= (think, rth).Cr

servers

Sr
def
= (request, rrp).Sl + (break, rbk ).Sb

Sl
def
= (log, rlg ).Sr + (remove, rrm).Sm

Sm
def
= (maint, rmn).Sr + (replace, rrc).Sr

Sb
def
= (fix, rfx ).St

St
def
= (test, rts).St + (compl, rcm).Sr



Hybrid approximation 172/ 192

Clients and servers example

clients
Cr

request

think
Ct

servers

Sr
request

log

fix

break compl

test

maintreplace remove

Sl

Sm
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Clients and servers example

clients

Cr
def
= (request, rrq).Ct

Ct
def
= (think, rth).Cr

servers

Sr
def
= (request, rrp).Sl + (break , rbk ).Sb

Sl
def
= (log, rlg ).Sr + (remove, rrm).Sm

Sm
def
= (maint, rmn).Sr + (replace, rrc).Sr

Sb
def
= (fix , rfx ).St

St
def
= (test, rts).St + (compl , rcm).Sr
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Mapping to TDSHA

continuous sequential components: Cr,Ct,Sr,Sl,Sm

integral sequential components: Sb, St

population vector: (#Cr,#Ct,#Sr,#Sl,#Sm,#Sb,#St)

PEPA is conservative: both NC = #Cr + #Ct and
NS = #Sr + #Sl + #Sm + #Sb + #St are invariant

TDSHA

modes: (#Sb,#St) ∈ {0, . . . ,NS} × {0, . . . ,NS}
variables: (XCr,XCt,XSr,XSl,XSm)
initial state: ((#Sb,#St), (#Cr,#Ct,#Sr,#Sl,#St))
continuous and stochastic transitions
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Continuous transitions between continuous components

Sr
(request,rrp ·#Sr)−−−−−−−−−−→? Sl

continuous transition: flow is determined by ODEs

0

1

2

3

4

#

dSb
dt

dSt
dt Sr Sl Sm

((#Sb,#St), (0, 0,−1, 1, 0), rrp ·#Sr, request)
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Continuous transition at a discrete component

St
(test,rts ·#St)−−−−−−−−→? St

continuous transition: no flow because single component

0

1

2

3

4

#

dSb
dt

dSt
dt Sr Sl Sm

((#Sb,#St), (0, 0, 0, 0, 0), rts ·#St, request)
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Discrete transitions between discrete components

Sb
(fix ,rfx ·#Sb)−−−−−−−→? St

stochastic transition: unit quantity is shifted

0

1

2

3

4

#

dSb
dt

dSt
dt Sr Sl Sm

((#Sb,#St), (#Sb − 1,#St + 1), true, true, rfx ·#Sb, fix)
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Discrete transition from discrete to continuous component

St
(compl ,rcm·#St)−−−−−−−−−−→? Sr

stochastic transition: unit quantity is shifted

0

1

2

3

4

#

dSb
dt

dSt
dt Sr Sl Sm

((#Sb,#St), (#Sb,#St − 1), true,R, rcm ·#St, compl) with
R = (X ′Sr = XSr + 1)
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Discrete transition from continuous to discrete component

Sr
(break,rbk ·#Sr)−−−−−−−−−→? Sb

stochastic transition: unit quantity is shifted proportionally

0

1

2

3

4

#

dSb
dt

dSt
dt Sr Sl Sm

((#Sb,#St), (#Sb + 1,#St), true,R, rbk ·#Sr, break) with
R = (X ′Sr = XSr − zr ) ∧ (X ′Sl = XSl − zl ) ∧ (X ′Sm = XSm − zm)
and zr + zl + zm = 1
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Discrete transition between continuous components

Sm
(maint,rmn·#Sm)−−−−−−−−−−→? Sr

stochastic transition: unit quantity is shifted proportionally

0

1

2

3

4

#

dSb
dt

dSt
dt Sr Sl Sm
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Discrete transition between continuous components

((#Sb,#St), (#Sb,#St), true,R, rmn ·#Sm,maint) where
R = (X ′Sr = XSr−zr +1)∧(X ′Sl = XSl−zl )∧(X ′Sm = XSm−zm)
and zr + zl + zm = 1

0

1

2

3

4

#

dSb
dt

dSt
dt Sr Sl Sm
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Continuous determinstic simulation

 0

 5

 10

 15

 20

 25

 30

 0  10  20  30  40  50

Time

#Sr
#Sl

#Sm
#Sb
#St
#Ct



Hybrid approximation 191/ 192

Hybrid simulation
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