SPA for quantitative analysis:
Lecture 5 — Collective Dynamics

Jane Hillston

LFCS, School of Informatics
The University of Edinburgh
Scotland

7th March 2013

Outline

Introduction
m Collective Dynamics

Continuous Approximation

Fluid-Flow Semantics
m Convergence results

Case study
m Scalable Web Services

Hybrid approximation

Introduction

Outline

Introduction
m Collective Dynamics

Introduction Collective Dynamics

Collective Dynamics

The behaviour of many systems can be interpreted as the result of
the collective behaviour of a large number of interacting entities.

R

Introduction Collective Dynamics

Collective Dynamics

The behaviour of many systems can be interpreted as the result of
the collective behaviour of a large number of interacting entities.

R

For such systems we are often as interested in the population level
behaviour as we are in the behaviour of the individual entities.

Introduction Collective Dynamics

Collective Behaviour

In the natural world there are many instances of collective
behaviour and its consequences:

Introduction Collective Dynamics

Collective Behaviour

In the natural world there are many instances of collective
behaviour and its consequences:

Introduction Collective Dynamics

Collective Behaviour

This is also true in the man-made and engineered world:

Spread of HIN1 virus in 2009

Introduction Collective Dynamics

Collective Behaviour

This is also true in the man-made and engineered world:

Introduction Collective Dynamics

Collective Behaviour

This is also true in the man-made and engineered world:

Map of the Internet 2009

Introduction Collective Dynamics

Collective Behaviour

This is also true in the man-made and engineered world:

8eno HMRC: Login a
EE] [+ [nttps:/oniine.nmre.gov.uk/10gin?GAREASONCODE=-18GARESOURC - & | (Q~ Inland Revenue Tax Returns)
m Apple Yahoo! Google Maps YouTube Wikipedia News (1075)v Popular+

YouTube — The Secret Life of Cha... Midweek Rugby George Heriot's S... HMRC: Login

@ HM Revenue Online Services
&Customs HMRC home | Contactus | Help

Welcome to Online Services

Existing users ™\ New user
Please enter your User 1D and password, then click the To register for online services please click the 'Register’
‘Login' button below button below
Please note: Fields are not case sensitive. (Register)
User 1D: @ » Digital Certificate user
password: || » Frequently Asked Questions (FAQs}

» Computer requirements
» View a demo of HMRC's services
(Login) } Registration and Enrolment process

¥ Digital Certificate user

¥ Lost User ID?
¥ Lost password?
¥ Lost or expired Activation PIN?

» If you have lost both your User ID and password
please contact the HM Revenue & Customs (HMRC)
Online Services Helpdesk.

Self assessment tax returns 31st January each year

Introduction Collective Dynamics

Process Algebra and Collective Dynamics

Process algebra are well-suited to modelling such systems

Introduction Collective Dynamics

Process Algebra and Collective Dynamics

Process algebra are well-suited to modelling such systems

m Developed to represent concurrent behaviour compositionally;

Introduction Collective Dynamics

Process Algebra and Collective Dynamics

Process algebra are well-suited to modelling such systems
m Developed to represent concurrent behaviour compositionally;

m Capture the interactions between individuals explicitly;

Introduction Collective Dynamics

Process Algebra and Collective Dynamics

Process algebra are well-suited to modelling such systems
m Developed to represent concurrent behaviour compositionally;
m Capture the interactions between individuals explicitly;

m Incorporate formal apparatus for reasoning about the
behaviour of systems;

Introduction Collective Dynamics

Process Algebra and Collective Dynamics

Process algebra are well-suited to modelling such systems
m Developed to represent concurrent behaviour compositionally;
m Capture the interactions between individuals explicitly;

m Incorporate formal apparatus for reasoning about the
behaviour of systems;

m Stochastic extensions, such as PEPA, enable quantified
behaviour of the dynamics of systems.

Introduction Collective Dynamics

Process Algebra and Collective Dynamics

Process algebra are well-suited to modelling such systems
m Developed to represent concurrent behaviour compositionally;
m Capture the interactions between individuals explicitly;

m Incorporate formal apparatus for reasoning about the
behaviour of systems;

m Stochastic extensions, such as PEPA, enable quantified
behaviour of the dynamics of systems.

In the CODA project we are developing stochastic process algebras
and associated theory, tailored to the construction and evaluation
of the collective dynamics of large systems of interacting entities.

Introduction Collective Dynamics

Performance as an emergent behaviour

A shift in perspective allows us to model the interactions between
individual components but then only the consider the system as a
whole as an interaction of populations.

Introduction Collective Dynamics

Performance as an emergent behaviour

A shift in perspective allows us to model the interactions between
individual components but then only the consider the system as a
whole as an interaction of populations.

This allows us to model much larger systems than previously
possible but in making the shift we are no longer able to collect
any information about individuals in the system.

Introduction Collective Dynamics

Performance as an emergent behaviour

We must instead think about the performance of the collective
point of view. Service providers often want to do this in any case.
For example making contracts in terms of service level agreements.

Example Service Level Agreement

90% of requests receive a response within 3 seconds.

Introduction Collective Dynamics

Performance as an emergent behaviour

We must instead think about the performance of the collective
point of view. Service providers often want to do this in any case.
For example making contracts in terms of service level agreements.

Example Service Level Agreement

90% of requests receive a response within 3 seconds.

Qualitative Service Level Agreement

Less than 1% of the responses received within 3 seconds will read
“System is overloaded, try again later”.

Introduction Collective Dynamics

Novelty

The novelty of the CODA project has been twofold:

Introduction Collective Dynamics

Novelty

The novelty of the CODA project has been twofold:

m Linking process algebra and continuous mathematical models
for dynamic evaluation represents a paradigm shift in how
such systems are studied.

Introduction Collective Dynamics

Novelty

The novelty of the CODA project has been twofold:

m Linking process algebra and continuous mathematical models
for dynamic evaluation represents a paradigm shift in how
such systems are studied.

m The prospect of formally-based quantified evaluation of
dynamic behaviour could have significant impact in
application domains such as:

Introduction Collective Dynamics

Novelty

The novelty of the CODA project has been twofold:

m Linking process algebra and continuous mathematical models
for dynamic evaluation represents a paradigm shift in how
such systems are studied.

m The prospect of formally-based quantified evaluation of
dynamic behaviour could have significant impact in
application domains such as:

Large scale software systems

Issues of scalability are important for user satisfaction and
resource efficiency but such issues are difficult to investigate using
discrete state models.

Introduction Collective Dynamics

Novelty

The novelty of the CODA project has been twofold:

m Linking process algebra and continuous mathematical models
for dynamic evaluation represents a paradigm shift in how
such systems are studied.

m The prospect of formally-based quantified evaluation of
dynamic behaviour could have significant impact in
application domains such as:

Biochemical signalling pathways
Understanding these pathways has the potential to improve the
quality of life through enhanced drug treatment and better drug

design.

Introduction Collective Dynamics

Novelty

The novelty of the CODA project has been twofold:

m Linking process algebra and continuous mathematical models
for dynamic evaluation represents a paradigm shift in how
such systems are studied.

m The prospect of formally-based quantified evaluation of

dynamic behaviour could have significant impact in
application domains such as:

Epidemiological systems

Improved modelling of these systems could lead to improved
disease prevention and treatment in nature and better security in
computer systems.

Continuous Approximation

Outline

Continuous Approximation

Continuous Approximation

Solving discrete state models

Under the SOS semantics a PEPA model is mapped to a
Continuous Time Markov Chain (CTMC) with global states
determined by the local states of all the participating components.

Continuous Approximation

Solving discrete state models

Under the SOS semantics a PEPA model is mapped to a
Continuous Time Markov Chain (CTMC) with global states
determined by the local states of all the participating components.

When the size of the state space is not too large they are
amenable to numerical solution (linear algebra) to determine a
steady state or transient probability distribution.

Continuous Approximation

Solving discrete state models

Under the SOS semantics a PEPA model is mapped to a
Continuous Time Markov Chain (CTMC) with global states
determined by the local states of all the participating components.

When the size of the state space is not too large they are
amenable to numerical solution (linear algebra) to determine a
steady state or transient probability distribution.

Alternatively they may be studied using stochastic simulation.
Each run generates a single trajectory through the state space.
Many runs are needed in order to obtain average behaviours.

Continuous Approximation

Solving discrete state models

Under the SOS semantics a PEPA model is mapped to a
Continuous Time Markov Chain (CTMC) with global states
determined by the local states of all the participating components.

When the size of the state space is not too large they are
amenable to numerical solution (linear algebra) to determine a
steady state or transient probability distribution.

Alternatively they may be studied using stochastic simulation.
Each run generates a single trajectory through the state space.
Many runs are needed in order to obtain average behaviours.

As the size of the state space becomes large it becomes infeasible
to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.

Continuous Approximation

Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

Continuous Approximation

Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Continuous Approximation

Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Use continuous state variables to approximate the discrete state
space.

Continuous Approximation

Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Use continuous state variables to approximate the discrete state
space.

Continuous Approximation

Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Use continuous state variables to approximate the discrete state
space.

Continuous Approximation

Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Use continuous state variables to approximate the discrete state
space.

Continuous Approximation

Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Use continuous state variables to approximate the discrete state
space.

Continuous Approximation

Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Use continuous state variables to approximate the discrete state
space.

Continuous Approximation

Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Use continuous state variables to approximate the discrete state
space.

Continuous Approximation

Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Use continuous state variables to approximate the discrete state
space.

c 0 o o o o o o oo 0o o o o o o o

Continuous Approximation

Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Use continuous state variables to approximate the discrete state
space.

O=+-O0+-0-0+-0+-0+-0-00+0+ 0000000

Continuous Approximation

Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Use continuous state variables to approximate the discrete state
space.

OC00000OOOOOOOOOOLOLOLOOLOOOOOOOOOOOOOO

Continuous Approximation

Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Use continuous state variables to approximate the discrete state
space.

Continuous Approximation

Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Use continuous state variables to approximate the discrete state
space.

Use ordinary differential equations to represent the evolution of
those variables over time.

Continuous Approximation

Scaling Conditions

Scaling assumptions

m We have a sequence X(V) of population CTMC, for increasing
total population N.

m We normalize such models, dividing variables by N: X") = X

m for each 7 € T(M), the normalized update is ¥ = v/N and the

rate function is FT(X(N)) = NfT(i(N)) (density dependence).

Fluid ODE

The fluid ODE is x = F(x), where
FX) =D vrfr(x)

TET

Continuous Approximation

Fluid approximation theorem

Hypothesis

| X(N)(t): a sequence of normalized population CTMC, residing
in ECR"

m Ixo € S such that X' (0) — xg in probability (initial
conditions)

m x(t): solution of & = F(x), x(0) = xo, residing in E.

For any finite time horizon T < oo, it holds that:

P(sup [[X™M () = x(t)[| > £) — 0.
0<t<T

\

T.G.Kurtz. Solutions of ordinary differential equations as limits of pure jump Markov processes.
Journal of Applied Probability, 1970.

Continuous Approximation

New mathematical structures: differential equations

m Use a more abstract state representation rather than the
CTMC complete state space.

Continuous Approximation

New mathematical structures: differential equations

m Use a more abstract state representation rather than the
CTMC complete state space.

m Assume that these state variables are subject to continuous
rather than discrete change.

Continuous Approximation

New mathematical structures: differential equations

m Use a more abstract state representation rather than the
CTMC complete state space.

m Assume that these state variables are subject to continuous
rather than discrete change.

m No longer aim to calculate the probability distribution over
the entire state space of the model.

Continuous Approximation

New mathematical structures: differential equations

m Use a more abstract state representation rather than the
CTMC complete state space.

m Assume that these state variables are subject to continuous
rather than discrete change.

m No longer aim to calculate the probability distribution over
the entire state space of the model.

Appropriate for models in which there are large numbers of
components of the same type, i.e. models of populations and
situations of collective dynamics.

Continuous Approximation

Simple example revisited

Proco = (taskl,ri).Procy

Resy = (taskl,r).Res;

(

Proc; = (task2,r).Procg
(
(reset, ry).Reso

Resq

PFOCO[NP] by RESO[/VR]

{task1}

Continuous Approximation

Simple example revisited

CTMC interpretation

Processors (Np) Resources (Ng) States (2VPTNR)
4

8

16

32

64

128
256
512
1024
2048
4096
8192
16384
32768
65536
131072
262144
524288
1048576

Proco = (taskl,ri).Procy

Resy = (taskl,r).Res;

(

Proc; & (task2, rp).Procg
(
(reset, ry).Reso

def
Res; =

PFOCO[NP] by RESO[/VR]

{task1}

HHEHOQO®OONNOOTUAEDRWWNNH

o o
HOOOONNODUTORRWWNNR

o

Continuous Approximation

Simple example revisited

Proco = (taskl,ri).Procy

Proc; = (task2,r).Procg
(taskl, r).Resy
(reset, ry).Reso

Resg =
f
Res; =

PFOCO[NP] by RESO[/VR]

{task1}

ODE interpretation

—r; min(x1, x3) + r2 x1
x1 = no. of Proc;

r min(xl,X3) — X1
Xo = no. of Proc

—r; min(x1, x3) + ra xa
x3 = no. of Resy

ri min(xg,x3) — ra xq
X4 = no. of Res;

Continuous Approximation

100 processors and 80 resources (simulation run A)

105

value

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
time

M Proc_0 M Proc_l Res_0 Res_L

Continuous Approximation

100 processors and 80 resources (simulation run B)

value
‘*‘& ﬁf‘

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
time

M Proc_0 M Proc_l Res_0 Res_L

Continuous Approximation

100 processors and 80 resources (simulation run C)

value
w
=

a
P

» @fﬁm@é .WW*W%FR‘%@ ¢

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
time

M Proc_0 M Proc_l Res_0 Res_L

Continuous Approximation

100 processors and 80 resources (simulation run D)

B Ve

60 | R
Y o e i
3 5" R

£ % 5 5
w P SR
D e
25 g
20 geﬁé

15 o

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
time

M Proc_0 M Proc_l Res_0 Res_L

Continuous Approximation

100 processors and 80 resources (average of 10 runs)

105

10 P

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
time

M Proc_0 M Proc_l Res_0 Res_L

Continuous Approximation

100 Processors and 80 resources (average of 100 runs)

105

value

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
time

M Proc_0 M Proc_l Res_0 Res_L

Continuous Approximation 62/ 192

100 processors and 80 resources (average of 1000 runs)

105

value

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
time

M Proc_0 M Proc_l Res_0 Res_L

Continuous Approximation 63/ 192

100 processors and 80 resources (average of 10000 runs)

value
w
=

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
time

M Proc_0 M Proc_l Res_0 Res_L

Continuous Approximation

100 processors and 80 resources (ODE solution)

105

value

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
time

M Proc_0 M Proc_l Res_0 Res_L

Fluid-Flow Semantics

Outline

Fluid-Flow Semantics
m Convergence results

Fluid-Flow Semantics

Deriving a Fluid Approximation of a PEPA model

The aim is to represent the CTMC implicitly (avoiding state space
explosion), and to generate the set of ODEs which are the fluid
limit of that CTMC.

Fluid-Flow Semantics

Deriving a Fluid Approximation of a PEPA model

The aim is to represent the CTMC implicitly (avoiding state space
explosion), and to generate the set of ODEs which are the fluid
limit of that CTMC.

The exisiting (CTMC) SOS semantics is not suitable for this

purpose because it constructs the state space of the CTMC
explicitly.

Fluid-Flow Semantics

Deriving a Fluid Approximation of a PEPA model

The aim is to represent the CTMC implicitly (avoiding state space
explosion), and to generate the set of ODEs which are the fluid
limit of that CTMC.

The exisiting (CTMC) SOS semantics is not suitable for this

purpose because it constructs the state space of the CTMC
explicitly.

spA SOS rules LABELLED state transition
— TRANSITION -
MODEL SYSTEM diagram

CTMC Q

Fluid-Flow Semantics

Deriving a Fluid Approximation of a PEPA model

The aim is to represent the CTMC implicitly (avoiding state space
explosion), and to generate the set of ODEs which are the fluid
limit of that CTMC.

The exisiting (CTMC) SOS semantics is not suitable for this
purpose because it constructs the state space of the CTMC
explicitly.

We define a structured operational semantics which defines the pos-
sible transitions of an arbitrary abstract state and from this derive
the ODEs.

Fluid-Flow Semantics

Deriving a Fluid Approximation of a PEPA model

The aim is to represent the CTMC implicitly (avoiding state space
explosion), and to generate the set of ODEs which are the fluid
limit of that CTMC.

The exisiting (CTMC) SOS semantics is not suitable for this
purpose because it constructs the state space of the CTMC
explicitly.

We define a structured operational semantics which defines the pos-
sible transitions of an arbitrary abstract state and from this derive
the ODEs.

SYMBOLIC ABSTRACT
spA SOS rules LABELLED generator CTMC Q
MODEL TRANSITION functions or
SYSTEM ODEs F(x)

Fluid-Flow Semantics

Fluid Structured Operational Semantics

In order to get to the implicit representation of the CTMC we need
to:

Fluid-Flow Semantics

Fluid Structured Operational Semantics

In order to get to the implicit representation of the CTMC we need
to:

Remove excess components (Context Reduction)

Fluid-Flow Semantics

Fluid Structured Operational Semantics

In order to get to the implicit representation of the CTMC we need
to:

Remove excess components (Context Reduction)

Collect the transitions of the reduced context (Jump Multiset)

Fluid-Flow Semantics

Fluid Structured Operational Semantics

In order to get to the implicit representation of the CTMC we need
to:

Remove excess components (Context Reduction)
Collect the transitions of the reduced context (Jump Multiset)

Calculate the rate of the transitions in terms of an arbitrary
state of the CTMC.

Fluid-Flow Semantics

Fluid Structured Operational Semantics

In order to get to the implicit representation of the CTMC we need
to:

Remove excess components (Context Reduction)
Collect the transitions of the reduced context (Jump Multiset)

Calculate the rate of the transitions in terms of an arbitrary
state of the CTMC.

Once this is done we can extract the vector field F(x) from the
jump multiset.

M. Tribastone, S.Gilmore and J.Hillston. Scalable Differential Analysis of Process Algebra Models. IEEE TSE 2012.

Fluid-Flow Semantics

Context Reduction

Procy = (taskl,rj).Proc;
Proc; & (task2,r2).Procg
Resp < (taskl,rs3).Res;
Res; £ (reset,rs).Resp

System = Procy[Np] {tzﬂ}ReSO[NR]
4

R(System) = {Procp, Proc;} P {Resp, Res;}

{task1}

Fluid-Flow Semantics

Context Reduction

Procy = (taskl,rj).Proc;
Proc; & (task2,r2).Procg
Resp < (taskl,rs3).Res;
Res; £ (reset,rs).Resp

System = Procy[Np] {tzﬂ}ReSO[NR]
4

R(System) = {Procp, Proc;} P {Resp, Res;}

{task1}

Population Vector

£ =(£1,8,83,64)

Fluid-Flow Semantics

Location Dependency

System £ Procy[N] 23, Reso[Ns] || Proco[N¢

task1}

Fluid-Flow Semantics

Location Dependency

System £ Procy[N] 23, Reso[Ns] || Proco[N¢

task1}

4
{Procg, Proc;} B {Resp, Res;} || {Proco, Proc;}

{task1}

Fluid-Flow Semantics

Location Dependency

System £ Procy[Ny] DX Resy[Ns] || Proco[NZ

{task1}

4
{Procg, Proc;} B {Resp, Res;} || {Proco, Proc;}

{task1}

Population Vector

£ =(&1,42,83,64,85,86)

Fluid-Flow Semantics

Fluid Structured Operational Semantics by Example

Procy = (taskl,r;).Proc;
Proc; ¥ (task2, r2).Procg
Res, & (taskl1,rs).Res;
Res; & (reset, rq).Resp

System = Procy[Np] B>J Resp[Ng]

{task1}

§=(£1,6,8.8)

Fluid-Flow Semantics

Fluid Structured Operational Semantics by Example

Procy = (taskl,r;).Proc;
Proc; &t (task2, r2).Procg

Resg = (taskl1,rs).Res;

Res; & (reset, rq).Resp

def
System = Procy[Np] {Esﬂ} Resp[NRg]
5 = (€17 525 533 54)
Procg m Proc;

taskl,r.
Procy —15—%* Proc;

Fluid-Flow Semantics

Fluid Structured Operational Semantics by Example

Procy = (taskl,r;).Proc;
Proc; ¥ (task2, r2).Procg
Res, & (taskl1,rs).Res;
Res; & (reset, rq).Resp
d
System = Procy[Np] {Esﬂ} Resp[NRg]
5 = (€17 525 533 54)
Procg 4>t35k1’r1 Proc; Resg taskl,rs Res;

task1,r1&;

taskl,r:
Procy ——">%,_ Procy Resy _taskl,rsés

+ Resy

Fluid-Flow Semantics

Fluid Structured Operational Semantics by Example

Procy &f (taskl,r1).Procy
Proc; ¥ (task2, r2).Procg
(taskl1,rs).Res;
Res; & (reset, rq).Resp

System = Procy[Np] B>J Resp[Ng]

{task1}

§=(£1,6,8.8)

Resp =

taskl,r task1,r
Procy —="%3 Proc; Resg %5 Res;
taskl,r. taskl,r:
Procy taskl,nby Proc; Resy taskl,rsés Res;

task1,r(&
Procg {Pﬂ} Resg —()>* Proc; {Pﬂ} Res;

Fluid-Flow Semantics

Apparent Rate Calculation

task1,r; taskl,r3

Procg ——— Proc; Resg Res;
taskl1,r task1,r:
Procy ekl proc; Resp ekl Res,

task1,r(&)
—_—

x >
Procg = Resp « Proc; = Res;

Fluid-Flow Semantics

Apparent Rate Calculation

taskl1,r taskl,r
Procy ——"13 Proc; Resy °5 Res;
taskl1,r task1,r:
Procy 25118, proc, Resy 55, Res;

taskl,r
Procg {Pﬂ} Resp —(§)>* Proc; {Pfll} Res;

rié rséa .
r(¢) = min (riq; (Proco, &), i (Reso,
(5) r:;s[d (Pl’OCo,f) r:;Skl (RESO7§) (taskl (0 5) taskl (0 5))
~ rié1 r3é3

_”1751 ?53 min (f1§1> r3§3)

=min (r1&1, rs&s)

Fluid-Flow Semantics

f(&, 1, a) as the Generator Matrix of the Lumped CTMC

(P11l Po) B Ri |l Ro |l Ro)
(P1 [Po)
v
r (Pl Po) B (Ro |l Ro |l Ri1)

{task1}

B4 (Ro || R1 || Ro)

{task1}

(Po |l Po) B (Ro || Ro || Ro)

{task1} r

“(Po |l P1)

.
(Po || P1) I

P (Re | Ro Il Ro)

(Ro [l R1 || Ro)

{task1}

(Po |l P1) B (Ro |l Ro |l R1)

Fluid-Flow Semantics

f(&, 1, a) as the Generator Matrix of the Lumped CTMC

(P11l Po) P Rl Ro |l Ro)

{task1 }
(P11 Po) B (Ro | R1 |l Ro)
r
r (Pl Po) B (Ro |l Ro |l Ri)
(Po Il Po) 21 (Ro || Ro || Ro) ,
T(Poll P1) B (Ri [Ro |l Ro)
~
(Po |l Pz) B (Ro | R1 || Ro)
r
r=gk4=min(2r,3r) = g min(2n,3r) (Po | P1) B3 (Ro || Ro || Ry)

Fluid-Flow Semantics

f(&, 1, a) as the Generator Matrix of the Lumped CTMC

(Po || Po) P4

—nh 3
r = 2 313 min

{task1}

(2[’1, 3!’3) =

(Ro || Ro || Ro)

$min(2ry,3n3)

-

(P11l Po) P Rl Ro |l Ro)

{task1}
(P11 Po) B (Ro | R1 |l Ro)
el
| (P11 Po) B (Ro |l Ro || Ri)
(Po |l P1) B (Ri [Ro |l Ro)
N
(Po |l Pz) B (Ro | R1 || Ro)

(Po |l P1) B (Ro |l Ro |l R1)

Fluid-Flow Semantics 90/ 192

f(&, 1,) as the Generator Matrix of the Lumped CTMC

(P1 |l Po) (R1 |l Ro |l Ro)

/hsd‘

min(2r1, 3[‘3)

RN

(2,0,3,0) (1,1,2,1)

1 || Po) (Ro |l R1 |l Ro)

IH}

/(Pl I'Po) B (Ro || Ro Il Re)
(Po [l Po) P (Ro || Ro || Ro)

(Po || P1) B (Ry || Ro || Ro)

{task1}

Y/

(Po [l P1) B (Ro || R [l Ro)

{ task1}

r = z-3>min(2r,3r;) = £ min(2r1,3r3) (Po |l P1) 4%} (Ro |l Ro || R1)

Fluid-Flow Semantics 91/ 192

Jump Multiset

K1,
Proco Dﬁ Resy —2* ©) N Proc1 Dﬁ Res;

taskl} task1}

r(&) = min (r1&1, rs&3)

Fluid-Flow Semantics

Jump Multiset

K1,
Proco Dﬁ Resy —2* ©) N Proc1 Dﬁ Res;

taskl} task1}

r(&) = min (r1&1, rs&3)

task2,£ar;
Proc; Dﬂ}R O#M Procy Dﬂ}Reso

Fluid-Flow Semantics

Jump Multiset

K1,
Proco Dﬁ Resy —2* ©) N Proc1 Dﬁ Res;

taskl} task1}

r(&) = min (r1&1, rs&3)

task2,2r2

Proc; Dﬂ} Resg ————="—, Procy Dﬂ} Resg
reset r.
Procg Dﬂ}Re 1 &,‘ Procy Dﬂ}R S0

Fluid-Flow Semantics

Equivalent Transitions

Some transitions may give the same information:

t?
Procy {Dﬂ} Res; —— bars « Procg {Dﬁl} Resg
t
Proc; Dﬂ} Res; M)* Proc; Dﬂ} Resp
i.e., Res; may perform an action independently from the rest of

the system.

This is captured by the procedure used for the construction of the
generator function (&, /,)

Fluid-Flow Semantics

Construction of (&, 1,)

reset,£ar.
Procy ™1 Res; S0 « Procp

B>
{task1} } Reso

{ task1

m Take / =(0,0,0,0)

Fluid-Flow Semantics

Construction of (&, 1,)

reset,£ar.
Procy ™1 Res; S0 « Procp

B>
{task1} } Reso

{ task1

m Take / =(0,0,0,0)

m Add —1 to all elements of / corresponding to the indices of
the components in the |hs of the transition

I =(-1,0,0,-1)

Fluid-Flow Semantics

Construction of (&, 1,)

reset,&ary

Procy ™1 Res; « Proco 1 Resy

{task1} {task1}

m Take / =(0,0,0,0)
m Add —1 to all elements of / corresponding to the indices of
the components in the |hs of the transition

I =(-1,0,0,-1)

m Add +1 to all elements of / corresponding to the indices of
the components in the rhs of the transition

|=(~=1+1,0,41,—-1) = (0,0, +1,—1)

Fluid-Flow Semantics

Construction of (&, 1,)

reset,&ary

Procy ™1 Res; « Proco 1 Resy

{taskl} {task1}

m Take / =(0,0,0,0)
m Add —1 to all elements of / corresponding to the indices of
the components in the |hs of the transition

I =(-1,0,0,-1)

m Add +1 to all elements of / corresponding to the indices of
the components in the rhs of the transition

|=(~=1+1,0,41,—-1) = (0,0, +1,—1)

f(£7(070a+17_1)’reset) :§4r4 J

Fluid-Flow Semantics

Construction of (¢, /, a)

task1,r(&)

Procy B4 Resy, —— "3, Proc;

Res;
{task1}

B>
{task1}

f(&,(—1,+1,—1,+1), taskl) = r(&)

Fluid-Flow Semantics

Construction of (¢, /, a)

taskl,r
Procy X1 Resy —(5)>* Proc; X1 Res;
{task1} {task1}
task2,&or)
Proc; B Resy ———25, Procy B Resy
{task1} {task1}

f(&,(—1,+1,—1,+1), taskl) = r(&)

f(€7 (+17 _17 07 0)7 t35k2) = €2I’2

Fluid-Flow Semantics

Construction of (¢, /, a)

taskl,r
Procy X1 Resy —(5)>* Proc; X1 Res;
{task1} {task1}
task2,&or)
Proc; B Resy ———25, Procy B Resy
{task1} {task1}
reset,&ar.
Procg B Res; ﬂn Procy 1 Resy
{task1} {task1}

f(&,(—1,+1,—1,+1), taskl) = r(&)

f(€7 (+17 _17 07 0)7 t35k2) = €2I’2

f(&,(0,0,41,—1), reset) = &ary

Fluid-Flow Semantics

Capturing behaviour in the Generator Function

Procy = (taskl,r;).Proc;
Proc; g (task2, r2).Procy
Resg & (taskl,r3).Res;
Res; o (reset, ry).Resp

System = Procy[Np] {Dﬂ Resg[Ng]

taskl }

Fluid-Flow Semantics

Capturing behaviour in the Generator Function

Procy = (taskl,r;).Proc;

(

Proc; &f (task2, r2).Procy
(
(

Resp = (taskl,rs).Res;
Res; o reset, ry).Resp
System £ Procy[Np] {Ef” Resg[Ng]

Numerical Vector Form

g = (51,52753754) € N4» gl +£2 = NP and 53 +£4 = NR

Fluid-Flow Semantics

Capturing behaviour in the Generator Function

Procy = (taskl,r;).Proc;
Proc; g (task2, r2).Procy
Resg & (taskl,r3).Res;
Res; o (reset, ry).Resp

System £ Procy[Np] {Dﬂ Resg[Ng]

taskl }

Numerical Vector Form

g = (61,62753754) € N4’ gl +£2 = NP and 53 +£4 = NR

Generator Function

(& (-1,1,-1,1),taskl) = min(ré&, n&s)
f(€7 /,Oé) : f(fa(17_1a0a0)7t35k2) - r2§2
f(£,(0,0,1,—1), reset) = rés

Fluid-Flow Semantics 105/ 192

Extraction of the ODE from f

Generator Function
(& (—1,1,—-1,1), taskl) = min(ré&,rss)
f(§ (—-1,0 O), task2) = né
(&, (0,0 1,—1),reset) = néa

Differential Equations
d_ g)=> 1> flx 1 a)
dt - M - AR

lezd acA
= (71, 15 *17 1) min (rlxla I’3X3) + (17 71, 05 O)I’2X2
= (0, 0, 1, —1)r4X4

Fluid-Flow Semantics 106/ 192

Extraction of the ODE from f

Generator Function

f(&,(—1,1,-1,1),taskl) = min(né1,rsé3)
f(§ (1 0 O), task2) = rgfz
f

(ga (070717) reset) = r4£4

Differential Equations

da
dt
dxo ;
—= =min(rxi, Bx3) — r2x
dt
b
dt
C|X4

dt

= —min (rxy, 3x3) + r2xs

= —min (nxy, nx3) + raxs

= min (rixy, r3x3) — raxa

Fluid-Flow Semantics Convergence results

Density Dependence

Density dependence of parametric apparent rates

Let rX (P, &) be the parametric apparent rate of action type « in
process P. For any n € N and a € A,

ro(P,§) =n-r5(P,&/n)

Fluid-Flow Semantics Convergence results

Density Dependence

Density dependence of parametric apparent rates

Let rX (P, &) be the parametric apparent rate of action type « in
process P. For any n € N and a € A,

ro(P,§) =n-r5(P,&/n)

Density dependence of parametric transition rates

If P M* Q then, for any n €N, r(§) =n-r(&/n)

Fluid-Flow Semantics Convergence results

Density Dependence

Density dependence of parametric apparent rates

Let rX (P, &) be the parametric apparent rate of action type « in
process P. For any n € N and a € A,

ro(P,§) =n-r5(P,&/n)

Density dependence of parametric transition rates

If P M* Q then, for any n €N, r(§) =n-r(&/n)

Generating functions give rise to density dependent rates

Let M be a PEPA model with generating functions (&, /,)
derived as demonstrated. Then the corresponding sequence of
CTMCs will be density dependent.

Fluid-Flow Semantics Convergence results

Lipschitz continuity

Since Lipschitz continuity is preserved by summation, in order to
verify that the vector field Fo((x) is Lipschitz it suffices to prove
that any parametric rate generated by the semantics is Lipschitz.

Fluid-Flow Semantics Convergence results

Lipschitz continuity

Since Lipschitz continuity is preserved by summation, in order to
verify that the vector field Fo((x) is Lipschitz it suffices to prove
that any parametric rate generated by the semantics is Lipschitz.

Lipschitz continuity of parametric apparent rates

Let r* (P, &) be the parametric apparent rate of action type « in
process P. There exists a constant L € R such that for all
x,y €RY x £y,

[r& (P, x) — 5 (P, y)

<1
[x =yl

Fluid-Flow Semantics Convergence results

Lipschitz continuity

Since Lipschitz continuity is preserved by summation, in order to
verify that the vector field Fo((x) is Lipschitz it suffices to prove
that any parametric rate generated by the semantics is Lipschitz.

Lipschitz continuity of parametric apparent rates

Let r* (P, &) be the parametric apparent rate of action type « in
process P. There exists a constant L € R such that for all

x,y €ERY x#y,
lrs (P, x) —r5 (P,y)ll
Ix =yl

<L

| ‘\

Lipschitz continuity of rate functions

if P L2 B then r(x) < r* (P, x) and thus it follows that
r(x) is Lipschitz continuous.

Fluid-Flow Semantics Convergence results

Kurtz's Theorem

Kurtz's Theorem for PEPA

Let x(t),0 < t < T satisfy the initial value problem

9 = F(x(t)), x(0) = 6, specified from a PEPA model.

Let {X,(t)} be a family of CTMCs with parameter n € N
generated as explained and let X,(0) = n-J. Then,

Ve >0 lim P <sup||X,,(t)/n —x(t)|| > 5) =0.
n—o0 tST

Fluid-Flow Semantics Convergence results 114/ 192

Kurtz's Theorem

Kurtz's Theorem for PEPA
Let x(t),0 < t < T satisfy the initial value problem
9 = F(x(t)), x(0) = 6, specified from a PEPA model.

Let {X,h(t)} be a family of CTMCs with parameter n € N
generated as explained and let X,(0) = n-J. Then,

Ve >0 lim P <sup||X,,(t)/n —x(t)|| > 5) = 0.
n—o0 tST

Moreover Lipschitz continuity of the vector field guarantees
existence and uniqueness of the solution to the initial value
problem.

M. Tribastone, S.Gilmore and J.Hillston. Scalable Differential Analysis of Process Algebra Models. IEEE=TSE 2012.

Fluid-Flow Semantics

Eclipse Plug-

Convergence results

in for PEPA

& PEPA

EIEl

Fle Edt Navigate Search Project Run PEPA Windaw Help
i 7 QL- B4 e ERd [| ot pERa |8 dava
5 Havigator 3 = O || b=l model.pepa D= finalisation.pepa D] webservice.pepa 2 . 4 = B[5 outine] Performance Evaluat £3 . = B
= VebService securing = |encryptResponse ws, r_us_enc b .VebServi & =3
5% WepService_responding = (response_ws, r_we_resp_k) . WebService_i Utisaton | Tryoughput | Population
= = pepa WebService method = |execute_ws, r_ws_exec).WebService_returnin
Di{d -project VebService returning = [result_ws, r_us_res).VebService idle;
finslsation.pepa // End component definition: Uek Service
D1 madel pepa
madel.pepa.fikers
B models. pepa !
oS pep: (SecondPartyClient_idle[1000]
= models.peps.crdl <request_, response_p> Broker_idle[1000])
itsevicelend <request_ws, response ws
(WebService_idle[2000]
<imvoke_ws, result_ws> FirstPartyClient_idle[1000])
) v
< B
[2 Problems | 7 state Space view | = Graph Yiew 22 . [asT view| & console =8
-+ Exprt T
Chart 1
Graph 1
1,000
00
e00
700
600
500
400
00
200
100
ol

175 200 225 250 275 300 325 350 375 400 425 450 475 500 52
Time

000 025 050 075 100 125 1.50

lient_enc

| lient_sending lient_wraiiing lient_idie lient_dec

Case study

Outline

Case study
m Scalable Web Services

Case study Scalable Web Services

Virtual University Scenario

m A Virtual University is a federation of real universities, each
contributing courses and degrees.

Case study Scalable Web Services

Virtual University Scenario

m A Virtual University is a federation of real universities, each
contributing courses and degrees.

m Sharing of knowledge is promoted by providing students with
a wider selection of subjects.

Case study Scalable Web Services

Virtual University Scenario

m A Virtual University is a federation of real universities, each
contributing courses and degrees.

m Sharing of knowledge is promoted by providing students with
a wider selection of subjects.

m Services are replicated across the physical sites.

Case study Scalable Web Services

Virtual University Scenario

m A Virtual University is a federation of real universities, each
contributing courses and degrees.

m Sharing of knowledge is promoted by providing students with
a wider selection of subjects.

m Services are replicated across the physical sites.

m By agreement in the university, students may connect to any
site to download content and use services, not just the one
which is geographically closest.

Case study Scalable Web Services 121/ 192

Case Study: A Virtual University

e
4
’,’University of Edinbur

- Y

- UL A
UniversityTof Pisa .
=8 4

e <

) :

Case study Scalable Web Services

Location, Time, and Size

e
4
’,’University of Edinbur

- Y

\T"\

- UL A
UniversityTof Pisa .
sl < ‘

2 "

122/ 192

Case study Scalable Web Services

Replicating Web Services

Two viable approaches to cope with increasing user demand:

Service
Broker
;? uDDI,
WSDL) wsDL)
SOAP] P&’B
-
Service Service

Reguester Provider

Case study Scalable Web Services

Replicating Web Services

Two viable approaches to cope with increasing user demand:

m use a service broker for routing

Service
Broker
;? uDDI,
WSDL) wsDL)
SOAP] P&’B
jne
Service Service

Reguester Provider

Case study Scalable Web Services

Replicating Web Services

Two viable approaches to cope with increasing user demand:

m use a service broker for routing

Service
Broker
;? uDDI,
WSDL WSDL,
SOAP] P&’B
-
Service Service
Reguester Provider

m decentralised routing

Case study Scalable Web Services

Replicating Web Services

Two viable approaches to cope with increasing user demand:

m use a service broker for routing

Service
Broker
;? uDDI,
WSDL WSDL,
SOAP] P&’B
-
Service Service
Reguester Provider

m decentralised routing

Case study Scalable Web Services

Decentralised Routing

sublLoad_ /'//-];)\\\\ ’/_\\\
] FIL)
r /'E\\. J
—/f geﬁerverhk ff
i P :
\\.[/ C N —} Bo
start \\ 7/4’1.7 — /‘ !
le ge1O!J>c‘F'*'// gelLoad-“‘
\,:T B I“\
getObject .

A client contacts a university site to download content.

Case study Scalable Web Services

Decentralised Routing

subLoadr‘/"//BO 7\\\ ’,"’/’/F\\\\““.\
\.... load J r /} ‘
r/,g\\ getid ! j #add_oad ! ~—
) I\ [/ ! _
> v /
o getServer \w\)‘J‘ k Fl \
\ N P AN
S ¢ =—Fmo\ =
N = /
start \TT 77'\ / gelload! (m
i getObject = /
L LN
e —— ™
getobiect 5 (FD)/
\ \\»,/,r"

A client contacts a university site to download content.

The site either serves the request or forwards it to another site.

Case study Scalable Web Services

Decentralised Routing

subLoadr‘/"//BO 7\\\ ’,"’/’/F\\\\““.\
\.... load J r /} ‘
r /.g\\ geﬂdWTﬁ addLoad | !
) Wi =~
> W
o getServer \w\)‘J‘ | k H \
N P AN
S ¢ =—Fmo\ =
N A— /
start \TT —77'\ / gelload! (m
i getObject = /
L LN
E— —A
getobiect 5 (FD)/
N

A client contacts a university site to download content.
The site either serves the request or forwards it to another site.

The decision in made in accord with the local service policy.

Case study Scalable Web Services

Model in PEPA

Client; % (connecty, c1,;).(downloady, di ;).ldle;

+ (connecty, ¢z j).(download>, ds ;).Idle;
+ (connectp,, cm i).(download p,, dpm ;). ldle;
+ (overload, T).Client;

&
0y

Idle,-

(idle, rigie,i). Client;

(1<i<k)

Case study Scalable Web Services

Model in PEPA

Client; % (connecty, c1,;).(downloady, di ;).ldle;

+ (connecty, ¢z j).(download>, ds ;).Idle;
+ (connectp,, cm i).(download p,, dpm ;). ldle;
+ (overload, T).Client;

&
0y

Idle,-

(idle, rigie,i). Client;

(1<i<k)

Case study Scalable Web Services

Model in PEPA

Client; % (connecty, ¢y j).(downloady, di ;).ldle;

+ (connecty, ¢ j).(download>, d- ;).Idle;
+ (connectp, ¢y i).(download p,, dp, ;). ldle;
+ (overload, T).Client;

def

Idle,-

(idle, rigie ;). Client;

(1<i<k)

Case study Scalable Web Services

Model in PEPA

Content mirrors

Mirror &f (connectj, 6(5)) -MirrorUploading ;
MirrorUploading = (down/oad i T) -Mirror;

(1<j<m)

Case study Scalable Web Services

Model in PEPA

Content mirrors

Mirror &f (connectj,rj-(s)).l\/lirrorUploadingj
MirrorUploading = (down/oad i T) -Mirror;

(1<j<m)

Case study Scalable Web Services

Service policies as functional rates in PEPA

The Bologna policy

Serve all requests while load is less than 75%. If more, and the
loads at UNIFI, UPISA, LMU and UEDIN are at least 60%,
60%, 40% and 20% then serve the request if load is less than 95%.

Case study Scalable Web Services 136/ 192

Service policies as functional rates in PEPA

The Bologna policy

Serve all requests while load is less than 75%. If more, and the
loads at UNIFI, UPISA, LMU and UEDIN are at least 60%,
60%, 40% and 20% then serve the request if load is less than 95%.

(T if MirrorUploadingynipo < 75
T if MirrorUploading ynigo < 95,
MirrorUploadingynrr = 60,
funiBo = MirrorUploadingpisa > 60,
MirrorUploadingy iy > 40,
MirrorUploading ygpin = 20
0 otherwise

Case study Scalable Web Services

Model in PEPA

Dealing with overload

Overload < (overload, o(s)).Overload

os)= | T Fl)=0 1<i<m
~] 0 otherwise

Case study Scalable Web Services 138/ 192

Model in PEPA

Dealing with overload

Overload < (overload, o(s)).Overload

os)= | T Fl)=0 1<i<m
~] 0 otherwise

The system as a whole with client and mirror site populations

(Clienty[p1] || Clienta[po] || - .. || Clientk[pk])
B> (Mirror1[qu] || Mirrora[qo] || - .. || Mirror m[qm])

Case study Scalable Web Services

Numerical Results

Fidle = 0.001
100,
80
3
g 60 —LMU
e —— UEDIN
= UNIBO
z UNIF]
3 40 —— UPISA
20
0 .
0 100 200 300 400

Time (s)

Case study Scalable Web Services

Numerical Results

Fidle = 0.01
100
80
3
2 60 — MU
g —— UEDIN
[UNIBO
2 UNIFI
3 40 —— UPISA
20
0
0 100 200 300 400

Time (s)

Case study

Scalable Web Services

Numerical Results

Active Threads

100

80

60

40

20

Fidle =0.02

—LMU

= UEDIN
UNIBO
UNIFI

—— UPISA

0 100 200 300

Time (s)

400

Case study

Scalable Web Services

Numerical Results

Active Threads

100

80

60

40

20

Fidle = 0.03

q

—LMU

— UEDIN
UNIBO
UNIFI

—— UPISA

100

200
Time (s)

300

400

Case study

Scalable Web Services

Numerical Results

Active Threads

100

80

60

40

20

Fidle = 0.04

—LMU

— UEDIN
UNIBO
UNIFI

—— UPISA

0 100

200
Time (s)

300

400

Case study

Scalable Web Services

Numerical Results

Active Threads

100

80

60

40

20

Fidle =0.05

—LMU

= UEDIN
UNIBO
UNIFI

—— UPISA

0 100 200 300

Time (s)

400

Case study

Scalable Web Services

Numerical Results

Active Threads

100

80

60

40

20

Fidle = 0.06

—LMU

= UEDIN
UNIBO
UNIFI

—— UPISA

0 100 200 300

Time (s)

400

Hybrid approximation

Outline

Hybrid approximation

Hybrid approximation

Motivation: Alternative Representations

ODEs
Large
PEPA model
Stochastic
Simulation

CTMC

Hybrid approximation 148/ 192

Motivation: Alternative Representations

ODEs population view

Large
PEPA model

Stochastic

Simulation
CTMC

individual view

Hybrid approximation

Motivation: Alternative Representations

ODEs

Large
PEPA model

~ TDHSA hybrid view

Stochastic

Simulation
CTMC

Hybrid approximation

Overview

m PEPA has two-level syntax

m sequential components: S ::=
m parallel components: P::= P BIP | S

Hybrid approximation

Overview

m PEPA has two-level syntax

m sequential components: S ::=(a,r).S| S+ S
m parallel components: P ::= P qu P|S

: 6N (5. r)
m assume sequential components: 5 =37 ,(aj, r;).S

Hybrid approximation

Overview

m PEPA has two-level syntax
m sequential components: S ::=(a,r).S| S+ S

m parallel components: P ::= P qu P|S

: 6N (5. r)
m assume sequential components: 5 =37 ,(aj, r;).S

B mapping

P def S Y S5 < ... > Sh

Hybrid approximation

Overview

m PEPA has two-level syntax
m sequential components: S ::=(a,r).S| S+ S
m parallel components: P ::= P qu P|S
m assume sequential components: S = Zj’:l(aj, rj).S'

B mapping

51 52 . Sn

Hybrid approximation

Overview

m PEPA has two-level syntax
m sequential components: S ::=(a,r).S| S+ S
m parallel components: P P qu P|S
m assume sequential components: S = Zj’:l(aj, rj).S'

B mapping

51 52 . Sn

Hybrid approximation

Overview

m PEPA has two-level syntax
m sequential components: S ::=(a,r).S| S+ S
m parallel components: P ::= P qu P|S

: 6N (5. r)
m assume sequential components: 5 =37 ,(aj, r;).S

B mapping

Hybrid approximation

Overview

m PEPA has two-level syntax
m sequential components: S ::=(a,r).S| S+ S
m parallel components: P P qu P|S

: 6N (5. r)
m assume sequential components: 5 =37 ,(aj, r;).S

B mapping

T1 D, Tz Dz - DL, Tn

Hybrid approximation

Overview

m PEPA has two-level syntax
m sequential components: S ::=(a,r).S| S+ S
m parallel components: P P qu P|S

: 6N (5. r)
m assume sequential components: 5 =37 ,(aj, r;).S

B mapping

T = Ti D, To @ - DL, T

Hybrid approximation

Overview

m PEPA has two-level syntax
m sequential components: S ::=(a,r).S| S+ S
m parallel components: P P qu P|S

: 6N (5. r)
m assume sequential components: 5 =37 ,(aj, r;).S

B mapping

P def S Y S5 < ... > Sh

T = Ti D, To @ - DL, T

Hybrid approximation 159/ 192

Transition-driven stochastic hybrid automata (TDSHA)

m subset of piecewise deterministic Markov processes (PDMPs)

Hybrid approximation

Transition-driven stochastic hybrid automata (TDSHA)

m subset of piecewise deterministic Markov processes (PDMPs)
m set of (control) modes: Q@ = {q1,...,qm}
m set of variables: X = {Xj,..., X,}

m set of events/actions: A = {a1,ay,...}

Hybrid approximation

Transition-driven stochastic hybrid automata (TDSHA)

m subset of piecewise deterministic Markov processes (PDMPs)
m set of (control) modes: Q@ = {q1,...,qm}

m set of variables: X = {Xj,..., X,}

m set of events/actions: A = {a1,ay,...}

m initial state: (g, (x1,...,%n))

Hybrid approximation 162/

Transition-driven stochastic hybrid automata (TDSHA)

m subset of piecewise deterministic Markov processes (PDMPs)
m set of (control) modes: Q@ = {q1,...,qm}

m set of variables: X = {Xj,..., X,}

m set of events/actions: A = {a1,ay,...}

m initial state: (g, (x1,...,%n))

m multiset of continuous transitions:
(g,(z1,.-.,2n),f,a) where f : R" - R

Hybrid approximation

Transition-driven stochastic hybrid automata (TDSHA)

m subset of piecewise deterministic Markov processes (PDMPs)
m set of (control) modes: Q@ = {q1,...,qm}

m set of variables: X = {Xj,..., X,}

m set of events/actions: A = {a1,ay,...}

m initial state: (g, (x1,...,%n))

m multiset of continuous transitions:
(g,(z1,.-.,2n),f,a) where f : R" - R

m multiset of stochastic transitions
(gs, gz, true, A(X; = pk(X)), h, a) where h: R" — R

Hybrid approximation

TDSHA behaviour

m continuous trace with stochastic jumps

Hybrid approximation

TDSHA behaviour

m continuous trace with stochastic jumps

m continuous behaviour in mode g described by ODEs

dX/dt = {(z1,...,z2)f(X) | (q,(21,- .., 20), f, 2)}

Hybrid approximation 166/ 192

TDSHA behaviour

m continuous trace with stochastic jumps

m continuous behaviour in mode g described by ODEs

dX/dt = {(z1,...,z2)f(X) | (q,(21,- .., 20), f, 2)}

m stochastic transition from mode g5 and g; with resets

(q57 qs, true, /\(Xli = pk(x))7g7 a)

happens with rate

A, X) =Y {h(X)| (s, g, true, R, h, a)}

and probability g(X)/A(g, X)

Hybrid approximation

TDSHA synchronised product

mT=T1® T has Q= Q1 Xx @ and X = X3 U X>

Hybrid approximation

TDSHA synchronised product

mT=T1® T has Q= Q1 Xx @ and X = X3 U X>

m continuous transitions: extend vector to cover X
m a¢ L (q1,q2) has every transition from g; and from g,
m a €< L: (q1,q) has every transition from ¢; and g, with a and
new function is PEPA cooperation rate (i.e. bounded capacity)

Hybrid approximation

TDSHA synchronised product

mT=T1® T has Q= Q1 Xx @ and X = X3 U X>

m continuous transitions: extend vector to cover X
m a¢ L (q1,q2) has every transition from g; and from g,
m a €< L: (q1,q) has every transition from ¢; and g, with a and
new function is PEPA cooperation rate (i.e. bounded capacity)

m stochastic transitions:

m a¢ L (g1, q2) has every transition from g; and from ¢

m a € L: (g1, g2) has every transition that both g; and g, have
with a, new rate is PEPA cooperation rate and conjunction of
resets is taken

Hybrid approximation

Clients and servers example

m clients

Cr = (request, r,q).Ct

lef

Ct & (think, r¢p).Cr

Hybrid approximation

Clients and servers example

m clients

Cr = (request, r,q).Ct
Ct < (think, ry).Cr

m servers
Sr ¥ (request, ryp).SI + (break, rpx).Sb
s £ (log, rig).Sr + (remove, rym).Sm
Sm ¥ (maint, rmp).Sr + (replace, rc).Sr
Sb ::e: (fix, re).St
= ts cm
St (test, res).St + (compl, rem).Sr

Hybrid approximation

Clients and servers example

m clients request

think

H servers

replace/ /maint remove

Hybrid approximation

Clients and servers example

m clients mm\
v\thiw

Hybrid approximation

Clients and servers example

m clients m
‘\thiw

Hybrid approximation

Clients and servers example

m clients m
‘\thiw

H servers

Hybrid approximation

Clients and servers example

m clients m
‘\thiw

H servers

Hybrid approximation

Clients and servers example

m clients m
‘\thiw

H servers

Hybrid approximation

Clients and servers example

m clients m
‘\thiw

H servers

Hybrid approximation

Clients and servers example

m clients

Cr & (request, rrq).Ct
ct ¥ (think, re).Cr

m servers
St (request, r,).S1+ (break, rpy).Sh
SI = (log, rjg).Sr + (remove, ryy,).Sm
Sm = (maint, rmn).St + (replace, rc).Sr
Sb = (fix, re).St
St = (test, res).St 4 (compl, rem).St

Hybrid approximation

Mapping to TDSHA

m continuous sequential components: Cr, Ct, Sr, SI, Sm

m integral sequential components: Sb, St

Hybrid approximation

Mapping to TDSHA

m continuous sequential components: Cr, Ct, Sr, SI, Sm
m integral sequential components: Sb, St

m population vector: (#Cr, #Ct, #Sr, #S1, #Sm, #Sb, # St)

Hybrid approximation

Mapping to TDSHA

m continuous sequential components: Cr, Ct, Sr, SI, Sm
m integral sequential components: Sb, 5t
m population vector: (#Cr, #Ct, #Sr, #S1, #Sm, #Sb, # St)

m PEPA is conservative: both N¢ = #Cr + #Ct and
Ns = #Sr + #S1 + #Sm + #Sb + #St are invariant

m TDSHA
m modes: (#5Sb, #5t) € {0,...,Ns} x {0,..., Ns}
m variables: (Xcy, Xct, Xsr, Xs1, Xsm)
m initial state: ((#Sb, #5t), (#Cr, #Ct, #Sr, #S1, #5t))
m continuous and stochastic transitions

Hybrid approximation 183/ 192

Continuous transitions between continuous components

(request, rrp-#5Sr)
_—

m Sr + Sl
m continuous transition: flow is determined by ODEs
— -
4
3
2
1
0
b d3t St Sl Sm

m ((#Sb,#5t),(0,0,—1,1,0), ryp - #5r, request)

Hybrid approximation

Continuous transition at a discrete component

(test, res-#St)
_—

m St « St
m continuous transition: no flow because single component
— -
4
3
2
1
0
% % Sr Sl Sm

m ((#Sb,#5t),(0,0,0,0,0), rts - #St, request)

Hybrid approximation

Discrete transitions between discrete components

s Sh (fix,rpc-#Sb) N St

m stochastic transition: unit quantity is shifted
- -

L{ib % Sr S1 Sm

m ((#Sb, #5St), (#Sb — 1, #5t + 1), true, true, rs. - #5b, fix)

Hybrid approximation

Discrete transition from discrete to continuous component

(compl,rem-#St)
—

m St » or

m stochastic transition: unit quantity is shifted
4 - _
4 L |
3

detb dc% Sr Sl Sm

m ((#Sb, #St), (#Sb, #5t — 1), true, R, rem - #St, compl) with
R = (Xét - XSY + 1)

Hybrid approximation

Discrete transition from continuous to discrete component

(break,rp-#£Sr)
_—

m Sr « Sb
m stochastic transition: unit quantity is shifted proportionally
- -
4 |]
2
1

detb dett Sr S1 Sm

m ((#Sb, #5St), (#Sb + 1, #5t), true, R, rp - #Sr, break) with
R = (Xér = X — Zr) A\ (Xél = Xq — Z/) A (Xém = Xgm — Zm)
and z, + zj+z,, =1

Hybrid approximation

Discrete transition between continuous components

(maint,rmn-#Sm)
_—

m Sm « Sr
m stochastic transition: unit quantity is shifted proportionally
- -
4
3
2
1

Hybrid approximation

Discrete transition between continuous components

m ((#Sb, #5St), (#Sb, #5St), true, R, rmp - #Sm, maint) where
R = (Xé1 = XSI-*Zr+1)/\(Xé] = XSI*ZI)/\(Xém = Xsmfzm)
and z, +z+zn =1

dsb dst)
& a St Sl

Hybrid approximation

Continuous determinstic simulation

30 T T T T

HST eeeeen
#S| ——
HOM <o
#Sh ——
L #St —mmim i
% #Ct
20 4
15 4
0F 4
5F |
0
0 10 20 30 40 50

Time

Hybrid approximation

Hybrid simulation

30

25 -

20 -

Hybrid approximation

References

m J. Hillston, Fluid Flow Approximations of PEPA Models, in
Proc. of Intl. Conference on Quantitative Evaluation of
Systems (QEST) 2005, Computer Society Press, pp. 33-42,
2005.

m J.T. Bradley, S.T. Gilmore and J. Hillston, Analysing
distributed Internet worm attacks using continuous state-space

approximation of process algebra models, in Journal of
Computer and System Sciences, 74(6), pp. 1013-1032, 2008.

m M. Tribastone, S. Gilmore and J. Hillston, Scalable Differential
Analysis of Process Algebra Models, in IEEE Transactions on
Software Engineering, 38(1), pp. 205-219, 2012.

m L. Bortolussi, V. Galpin, J. Hillston and M. Tribastone, Hybrid
semantics for PEPA, in QEST 2010, Williamsburg, USA,
Computer Society Press, pp. 181-190, 2010.

	Introduction
	Collective Dynamics

	Continuous Approximation
	Fluid-Flow Semantics
	Convergence results

	Case study
	Scalable Web Services

	Hybrid approximation

