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For such systems we are often as interested in the population level
behaviour as we are in the behaviour of the individual entities.
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Introduction Collective Dynamics

Collective Behaviour

This is also true in the man-made and engineered world:

8eno HMRC: Login a
EE] [+ [ nttps:/oniine.nmre.gov.uk/10gin?GAREASONCODE=-18GARESOURC - & | (Q~ Inland Revenue Tax Returns )
m Apple Yahoo! Google Maps YouTube Wikipedia News (1075)v Popular+

YouTube — The Secret Life of Cha... Midweek Rugby George Heriot's S... HMRC: Login

@ HM Revenue Online Services
&Customs HMRC home | Contactus | Help

Welcome to Online Services

Existing users ™\ New user
Please enter your User 1D and password, then click the To register for online services please click the 'Register’
‘Login' button below button below
Please note: Fields are not case sensitive. (Register)
User 1D: @ » Digital Certificate user
password: || » Frequently Asked Questions (FAQs}

» Computer requirements
» View a demo of HMRC's services
(Login) } Registration and Enrolment process

¥ Digital Certificate user

¥ Lost User ID?
¥ Lost password?
¥ Lost or expired Activation PIN?

» If you have lost both your User ID and password
please contact the HM Revenue & Customs (HMRC)
Online Services Helpdesk.

Self assessment tax returns 31st January each year
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Process Algebra and Collective Dynamics

Process algebra are well-suited to modelling such systems
m Developed to represent concurrent behaviour compositionally;
m Capture the interactions between individuals explicitly;

m Incorporate formal apparatus for reasoning about the
behaviour of systems;

m Stochastic extensions, such as PEPA, enable quantified
behaviour of the dynamics of systems.

In the CODA project we are developing stochastic process algebras
and associated theory, tailored to the construction and evaluation
of the collective dynamics of large systems of interacting entities.
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Performance as an emergent behaviour

A shift in perspective allows us to model the interactions between
individual components but then only the consider the system as a
whole as an interaction of populations.

This allows us to model much larger systems than previously
possible but in making the shift we are no longer able to collect
any information about individuals in the system.
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Performance as an emergent behaviour

We must instead think about the performance of the collective
point of view. Service providers often want to do this in any case.
For example making contracts in terms of service level agreements.

Example Service Level Agreement

90% of requests receive a response within 3 seconds.

Qualitative Service Level Agreement

Less than 1% of the responses received within 3 seconds will read
“System is overloaded, try again later”.
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for dynamic evaluation represents a paradigm shift in how
such systems are studied.

m The prospect of formally-based quantified evaluation of
dynamic behaviour could have significant impact in
application domains such as:

Large scale software systems

Issues of scalability are important for user satisfaction and
resource efficiency but such issues are difficult to investigate using
discrete state models.
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The novelty of the CODA project has been twofold:

m Linking process algebra and continuous mathematical models
for dynamic evaluation represents a paradigm shift in how
such systems are studied.

m The prospect of formally-based quantified evaluation of
dynamic behaviour could have significant impact in
application domains such as:

Biochemical signalling pathways
Understanding these pathways has the potential to improve the
quality of life through enhanced drug treatment and better drug

design.
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Novelty

The novelty of the CODA project has been twofold:

m Linking process algebra and continuous mathematical models
for dynamic evaluation represents a paradigm shift in how
such systems are studied.

m The prospect of formally-based quantified evaluation of

dynamic behaviour could have significant impact in
application domains such as:

Epidemiological systems

Improved modelling of these systems could lead to improved
disease prevention and treatment in nature and better security in
computer systems.
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Solving discrete state models

Under the SOS semantics a PEPA model is mapped to a
Continuous Time Markov Chain (CTMC) with global states
determined by the local states of all the participating components.

When the size of the state space is not too large they are
amenable to numerical solution (linear algebra) to determine a
steady state or transient probability distribution.

Alternatively they may be studied using stochastic simulation.
Each run generates a single trajectory through the state space.
Many runs are needed in order to obtain average behaviours.

As the size of the state space becomes large it becomes infeasible
to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.
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The major limitation of the CTMC approach is the state space
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as the scale and complexity of modern systems increase.
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The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Use continuous state variables to approximate the discrete state
space.
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Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Use continuous state variables to approximate the discrete state
space.

Use ordinary differential equations to represent the evolution of
those variables over time.
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Scaling Conditions

Scaling assumptions

m We have a sequence X(V) of population CTMC, for increasing
total population N.

m We normalize such models, dividing variables by N: X") = X

m for each 7 € T(M), the normalized update is ¥ = v/N and the

rate function is FT(X(N)) = NfT(i(N)) (density dependence).

Fluid ODE

The fluid ODE is x = F(x), where
FX) =D vrfr(x)

TET
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Fluid approximation theorem

Hypothesis

| X(N)(t): a sequence of normalized population CTMC, residing
in ECR"

m Ixo € S such that X' (0) — xg in probability (initial
conditions)

m x(t): solution of & = F(x), x(0) = xo, residing in E.

For any finite time horizon T < oo, it holds that:

P( sup [[X™M () = x(t)[| > £) — 0.
0<t<T

\

T.G.Kurtz. Solutions of ordinary differential equations as limits of pure jump Markov processes.
Journal of Applied Probability, 1970.
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New mathematical structures: differential equations

m Use a more abstract state representation rather than the
CTMC complete state space.

m Assume that these state variables are subject to continuous
rather than discrete change.

m No longer aim to calculate the probability distribution over
the entire state space of the model.

Appropriate for models in which there are large numbers of
components of the same type, i.e. models of populations and
situations of collective dynamics.
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Simple example revisited

Proco = (taskl,ri).Procy

Resy = (taskl,r).Res;

(

Proc; = (task2,r).Procg
(
(reset, ry).Reso

Resq

PFOCO[NP] by RESO[/VR]

{task1}
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Simple example revisited

CTMC interpretation

Processors (Np) Resources (Ng) States (2VPTNR)
4

8

16

32

64

128
256
512
1024
2048
4096
8192
16384
32768
65536
131072
262144
524288
1048576

Proco = (taskl,ri).Procy

Resy = (taskl,r).Res;

(

Proc; & (task2, rp).Procg
(
(reset, ry).Reso

def
Res; =

PFOCO[NP] by RESO[/VR]

{task1}

HHEHOQO®OONNOOTUAEDRWWNNH
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Continuous Approximation

Simple example revisited

Proco = (taskl,ri).Procy

Proc; = (task2,r).Procg
(taskl, r).Resy
(reset, ry).Reso

Resg =
f
Res; =

PFOCO[NP] by RESO[/VR]

{task1}

ODE interpretation

—r; min(x1, x3) + r2 x1
x1 = no. of Proc;

r min(xl,X3) — X1
Xo = no. of Proc

—r; min(x1, x3) + ra xa
x3 = no. of Resy

ri min(xg,x3) — ra xq
X4 = no. of Res;
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100 processors and 80 resources (simulation run A)
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100 processors and 80 resources (simulation run B)
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100 processors and 80 resources (simulation run C)
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100 processors and 80 resources (simulation run D)

B Ve

60 | R
Y o e i
3 5" R

£ % 5 5
w P SR
D e
25 g
20 geﬁé

15 o

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
time

M Proc_0 M Proc_l Res_0 Res_L




Continuous Approximation

100 processors and 80 resources (average of 10 runs)
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100 Processors and 80 resources (average of 100 runs)
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100 processors and 80 resources (average of 1000 runs)
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100 processors and 80 resources (average of 10000 runs)
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Continuous Approximation

100 processors and 80 resources (ODE solution)
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The aim is to represent the CTMC implicitly (avoiding state space
explosion), and to generate the set of ODEs which are the fluid
limit of that CTMC.

The exisiting (CTMC) SOS semantics is not suitable for this
purpose because it constructs the state space of the CTMC
explicitly.

We define a structured operational semantics which defines the pos-
sible transitions of an arbitrary abstract state and from this derive
the ODEs.



Fluid-Flow Semantics

Deriving a Fluid Approximation of a PEPA model

The aim is to represent the CTMC implicitly (avoiding state space
explosion), and to generate the set of ODEs which are the fluid
limit of that CTMC.

The exisiting (CTMC) SOS semantics is not suitable for this
purpose because it constructs the state space of the CTMC
explicitly.

We define a structured operational semantics which defines the pos-
sible transitions of an arbitrary abstract state and from this derive
the ODEs.

SYMBOLIC ABSTRACT
spA  SOS rules LABELLED generator CTMC Q
MODEL TRANSITION functions or
SYSTEM ODEs F(x)
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Fluid Structured Operational Semantics

In order to get to the implicit representation of the CTMC we need
to:

Remove excess components (Context Reduction)
Collect the transitions of the reduced context (Jump Multiset)

Calculate the rate of the transitions in terms of an arbitrary
state of the CTMC.

Once this is done we can extract the vector field F(x) from the
jump multiset.

M. Tribastone, S.Gilmore and J.Hillston. Scalable Differential Analysis of Process Algebra Models. IEEE TSE 2012.
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Procy = (taskl,rj).Proc;
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Fluid-Flow Semantics

Context Reduction

Procy = (taskl,rj).Proc;
Proc; & (task2,r2).Procg
Resp < (taskl,rs3).Res;
Res; £ (reset,rs).Resp

System = Procy[Np] {tzﬂ}ReSO[NR]
4

R(System) = {Procp, Proc;} P {Resp, Res;}

{task1}

Population Vector

£ =(£1,8,83,64)
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System £ Procy[N] 23, Reso[Ns] || Proco[N¢

task1}

4
{Procg, Proc;} B {Resp, Res;} || {Proco, Proc;}

{task1}



Fluid-Flow Semantics

Location Dependency

System £ Procy[Ny] DX Resy[Ns] || Proco[NZ

{task1}

4
{Procg, Proc;} B {Resp, Res;} || {Proco, Proc;}

{task1}

Population Vector

£ =(&1,42,83,64,85,86)
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Fluid Structured Operational Semantics by Example

Procy = (taskl,r;).Proc;
Proc; ¥ (task2, r2).Procg
Res, & (taskl1,rs).Res;
Res; & (reset, rq).Resp

System = Procy[Np] B>J Resp[Ng]

{task1}

§=(£1,6,8.8)
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Fluid Structured Operational Semantics by Example

Procy = (taskl,r;).Proc;
Proc; &t (task2, r2).Procg

Resg = (taskl1,rs).Res;

Res; & (reset, rq).Resp

def
System = Procy[Np] {Esﬂ} Resp[NRg]
5 = (€17 525 533 54)
Procg m Proc;

taskl,r.
Procy —15—%* Proc;
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Fluid Structured Operational Semantics by Example

Procy = (taskl,r;).Proc;
Proc; ¥ (task2, r2).Procg
Res, & (taskl1,rs).Res;
Res; & (reset, rq).Resp
d
System = Procy[Np] {Esﬂ} Resp[NRg]
5 = (€17 525 533 54)
Procg 4>t35k1’r1 Proc; Resg taskl,rs Res;

task1,r1&;

taskl,r:
Procy ——">%,_ Procy Resy _taskl,rsés

+ Resy
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Fluid Structured Operational Semantics by Example

Procy &f (taskl,r1).Procy
Proc; ¥ (task2, r2).Procg
(taskl1,rs).Res;
Res; & (reset, rq).Resp

System = Procy[Np] B>J Resp[Ng]

{task1}

§=(£1,6,8.8)

Resp =

taskl,r task1,r
Procy —="%3 Proc; Resg %5 Res;
taskl,r. taskl,r:
Procy taskl,nby Proc; Resy taskl,rsés Res;

task1,r(&
Procg {Pﬂ} Resg —()>* Proc; {Pﬂ} Res;



Fluid-Flow Semantics

Apparent Rate Calculation

task1,r; taskl,r3

Procg ——— Proc; Resg Res;
taskl1,r task1,r:
Procy ekl proc; Resp ekl Res,

task1,r(&)
—_—

x >
Procg = Resp « Proc; = Res;



Fluid-Flow Semantics

Apparent Rate Calculation

taskl1,r taskl,r
Procy ——"13 Proc; Resy °5 Res;
taskl1,r task1,r:
Procy 25118, proc, Resy 55, Res;

taskl,r
Procg {Pﬂ} Resp —(§)>* Proc; {Pfll} Res;

rié rséa .
r(¢) = min (riq; (Proco, &), i (Reso,
(5) r:;s[d (Pl’OCo,f) r:;Skl (RESO7§) ( taskl ( 0 5) taskl ( 0 5))
~ rié1 r3é3

_”1751 ?53 min (f1§1> r3§3)

=min (r1&1, rs&s)
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f(&, 1, a) as the Generator Matrix of the Lumped CTMC

(P11l Po) B Ri |l Ro |l Ro)
(P1 [ Po)
v
r (Pl Po) B (Ro |l Ro |l Ri1)

{task1}

B4 (Ro || R1 || Ro)

{task1}

(Po |l Po) B (Ro || Ro || Ro)

{task1} r

“(Po |l P1)

.
(Po || P1) I

P (Re | Ro Il Ro)

(Ro [l R1 || Ro)

{task1}

(Po |l P1) B (Ro |l Ro |l R1)
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f(&, 1, a) as the Generator Matrix of the Lumped CTMC

(P11l Po) P Rl Ro |l Ro)

{task1 }
(P11 Po) B (Ro | R1 |l Ro)
r
r (Pl Po) B (Ro |l Ro |l Ri)
(Po Il Po) 21 (Ro || Ro || Ro) ,
T(Poll P1) B (Ri [ Ro |l Ro)
~
(Po |l Pz) B (Ro | R1 || Ro)
r
r=gk4=min(2r,3r) = g min(2n,3r)  (Po | P1) B3 (Ro || Ro || Ry)
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f(&, 1, a) as the Generator Matrix of the Lumped CTMC

(Po || Po) P4

—nh 3
r = 2 313 min

{task1}

(2[’1, 3!’3) =

(Ro || Ro || Ro)

$min(2ry,3n3)

-

(P11l Po) P Rl Ro |l Ro)

{task1}
(P11 Po) B (Ro | R1 |l Ro)
el
| (P11 Po) B (Ro |l Ro || Ri)
(Po |l P1) B (Ri [ Ro |l Ro)
N
(Po |l Pz) B (Ro | R1 || Ro)

(Po |l P1) B (Ro |l Ro |l R1)
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f(&, 1, ) as the Generator Matrix of the Lumped CTMC

(P1 |l Po) (R1 |l Ro |l Ro)

/hsd‘

min(2r1, 3[‘3)

RN

(2,0,3,0) (1,1,2,1)

1 || Po) (Ro |l R1 |l Ro)

IH}

/(Pl I'Po) B (Ro || Ro Il Re)
(Po [l Po) P (Ro || Ro || Ro)

(Po || P1) B (Ry || Ro || Ro)

{task1}

Y/

(Po [l P1) B (Ro || R [l Ro)

{ task1}

r = z-3>min(2r,3r;) = £ min(2r1,3r3) (Po |l P1) 4%} (Ro |l Ro || R1)
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Jump Multiset

K1,
Proco Dﬁ Resy —2* ©) N Proc1 Dﬁ Res;

taskl} task1}

r(&) = min (r1&1, rs&3)

task2,2r2

Proc; Dﬂ} Resg ————="—, Procy Dﬂ} Resg
reset r.
Procg Dﬂ}Re 1 &,‘ Procy Dﬂ}R S0
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Equivalent Transitions

Some transitions may give the same information:

t?
Procy {Dﬂ} Res; —— bars « Procg {Dﬁl} Resg
t
Proc; Dﬂ} Res; M)* Proc; Dﬂ} Resp
i.e., Res; may perform an action independently from the rest of

the system.

This is captured by the procedure used for the construction of the
generator function (&, /, )
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Construction of (&, 1, )

reset,&ary

Procy ™1 Res; « Proco 1 Resy

{taskl} {task1}

m Take / =(0,0,0,0)
m Add —1 to all elements of / corresponding to the indices of
the components in the |hs of the transition

I =(-1,0,0,-1)

m Add +1 to all elements of / corresponding to the indices of
the components in the rhs of the transition

|=(~=1+1,0,41,—-1) = (0,0, +1,—1)

f(£7(070a+17_1)’reset) :§4r4 J
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Construction of (¢, /, a)

task1,r(&)

Procy B4 Resy, —— "3, Proc;

Res;
{task1}

B>
{task1}

f(&,(—1,+1,—1,+1), taskl) = r(&)
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taskl,r
Procy X1 Resy —(5)>* Proc; X1 Res;
{task1} {task1}
task2,&or)
Proc; B Resy ———25, Procy B Resy
{task1} {task1}

f(&,(—1,+1,—1,+1), taskl) = r(&)
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Construction of (¢, /, a)

taskl,r
Procy X1 Resy —(5)>* Proc; X1 Res;
{task1} {task1}
task2,&or)
Proc; B Resy ———25, Procy B Resy
{task1} {task1}
reset,&ar.
Procg B Res; ﬂn Procy 1 Resy
{task1} {task1}

f(&,(—1,+1,—1,+1), taskl) = r(&)

f(€7 (+17 _17 07 0)7 t35k2) = €2I’2

f(&,(0,0,41,—1), reset) = &ary
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Capturing behaviour in the Generator Function

Procy = (taskl,r;).Proc;
Proc; g (task2, r2).Procy
Resg & (taskl,r3).Res;
Res; o (reset, ry).Resp

System = Procy[Np] {Dﬂ Resg[Ng]

taskl }
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Procy = (taskl,r;).Proc;

(

Proc; &f (task2, r2).Procy
(
(

Resp = (taskl,rs).Res;
Res; o reset, ry).Resp
System £ Procy[Np] {Ef” Resg[Ng]

Numerical Vector Form

g = (51,52753754) € N4» gl +£2 = NP and 53 +£4 = NR
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Capturing behaviour in the Generator Function

Procy = (taskl,r;).Proc;
Proc; g (task2, r2).Procy
Resg & (taskl,r3).Res;
Res; o (reset, ry).Resp

System £ Procy[Np] {Dﬂ Resg[Ng]

taskl }

Numerical Vector Form

g = (61,62753754) € N4’ gl +£2 = NP and 53 +£4 = NR

Generator Function

(& (-1,1,-1,1),taskl) = min(ré&, n&s)
f(€7 /,Oé) : f(fa(17_1a0a0)7t35k2) - r2§2
f(£,(0,0,1,—1), reset) = rés
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Extraction of the ODE from f

Generator Function
(& (—1,1,—-1,1), taskl) = min(ré&,rss)
f(§ ( —-1,0 O), task2) = né
(&, (0,0 1,—1),reset) = néa

Differential Equations
d_ g )=> 1> flx 1 a)
dt - M - AR

lezd acA
= (71, 15 *17 1) min (rlxla I’3X3) + (17 71, 05 O)I’2X2
= (0, 0, 1, —1)r4X4
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Extraction of the ODE from f

Generator Function

f(&,(—1,1,-1,1),taskl) = min(né1,rsé3)
f(§ ( 1 0 O), task2) = rgfz
f

(ga (070717 ) reset) = r4£4

Differential Equations

da
dt
dxo ;
—= =min(rxi, Bx3) — r2x
dt
b
dt
C|X4

dt

= —min (rxy, 3x3) + r2xs

= —min (nxy, nx3) + raxs

= min (rixy, r3x3) — raxa
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Density Dependence

Density dependence of parametric apparent rates

Let rX (P, &) be the parametric apparent rate of action type « in
process P. For any n € N and a € A,

ro(P,§) =n-r5(P,&/n)

Density dependence of parametric transition rates

If P M* Q then, for any n €N, r(§) =n-r(&/n)

Generating functions give rise to density dependent rates

Let M be a PEPA model with generating functions (&, /, )
derived as demonstrated. Then the corresponding sequence of
CTMCs will be density dependent.
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that any parametric rate generated by the semantics is Lipschitz.

Lipschitz continuity of parametric apparent rates

Let r* (P, &) be the parametric apparent rate of action type « in
process P. There exists a constant L € R such that for all
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[r& (P, x) — 5 (P, y)

<1
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Fluid-Flow Semantics Convergence results

Lipschitz continuity

Since Lipschitz continuity is preserved by summation, in order to
verify that the vector field Fo((x) is Lipschitz it suffices to prove
that any parametric rate generated by the semantics is Lipschitz.

Lipschitz continuity of parametric apparent rates

Let r* (P, &) be the parametric apparent rate of action type « in
process P. There exists a constant L € R such that for all

x,y €ERY x#y,
lrs (P, x) —r5 (P,y)ll
Ix =yl

<L

| ‘\

Lipschitz continuity of rate functions

if P L2 B then r(x) < r* (P, x) and thus it follows that
r(x) is Lipschitz continuous.
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Kurtz's Theorem

Kurtz's Theorem for PEPA

Let x(t),0 < t < T satisfy the initial value problem

9 = F(x(t)), x(0) = 6, specified from a PEPA model.

Let {X,(t)} be a family of CTMCs with parameter n € N
generated as explained and let X,(0) = n-J. Then,

Ve >0 lim P <sup||X,,(t)/n —x(t)|| > 5) =0.
n—o0 tST
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Kurtz's Theorem

Kurtz's Theorem for PEPA
Let x(t),0 < t < T satisfy the initial value problem
9 = F(x(t)), x(0) = 6, specified from a PEPA model.

Let {X,h(t)} be a family of CTMCs with parameter n € N
generated as explained and let X,(0) = n-J. Then,

Ve >0 lim P <sup||X,,(t)/n —x(t)|| > 5) = 0.
n—o0 tST

Moreover Lipschitz continuity of the vector field guarantees
existence and uniqueness of the solution to the initial value
problem.

M. Tribastone, S.Gilmore and J.Hillston. Scalable Differential Analysis of Process Algebra Models. IEEE=TSE 2012.
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Case study Scalable Web Services

Virtual University Scenario

m A Virtual University is a federation of real universities, each
contributing courses and degrees.

m Sharing of knowledge is promoted by providing students with
a wider selection of subjects.

m Services are replicated across the physical sites.

m By agreement in the university, students may connect to any
site to download content and use services, not just the one
which is geographically closest.
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Case Study: A Virtual University
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Replicating Web Services

Two viable approaches to cope with increasing user demand:

m use a service broker for routing

Service
Broker
;? uDDI,
WSDL WSDL,
SOAP ] P&’B
-
Service Service
Reguester Provider

m decentralised routing
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sublLoad_ /'//-];)\\\\ ’/_\\\
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—/f geﬁerverhk ff
i P :
\\.[/ C N —} Bo
start \\ 7/4’1.7 — /‘ !
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getObject .

A client contacts a university site to download content.
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Decentralised Routing

subLoadr‘/"//BO 7\\\ ’,"’/’/F\\\\““.\
\.... load J r /} ‘
r /.g\\ geﬂdWTﬁ addLoad | !
) Wi =~
> W
o getServer \w\ )‘J‘ | k H \
N P AN
S ¢ =—Fmo\ =
N A— /
start \TT —77'\ / gelload! ( m
i getObject = /
L LN
E— —A
getobiect 5 ( FD )/
N

A client contacts a university site to download content.
The site either serves the request or forwards it to another site.

The decision in made in accord with the local service policy.
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Model in PEPA

Client; % (connecty, ¢y j).(downloady, di ;).ldle;

+ (connecty, ¢ j).(download>, d- ;).Idle;
+ (connectp, ¢y i).(download p,, dp, ;). ldle;
+ (overload, T).Client;

def

Idle,-

(idle, rigie ;). Client;

(1<i<k)
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Content mirrors

Mirror &f (connectj, 6(5)) -MirrorUploading ;
MirrorUploading = (down/oad i T) -Mirror;
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Model in PEPA

Content mirrors

Mirror &f (connectj,rj-(s)).l\/lirrorUploadingj
MirrorUploading = (down/oad i T) -Mirror;

(1<j<m)
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Service policies as functional rates in PEPA

The Bologna policy

Serve all requests while load is less than 75%. If more, and the
loads at UNIFI, UPISA, LMU and UEDIN are at least 60%,
60%, 40% and 20% then serve the request if load is less than 95%.
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Service policies as functional rates in PEPA

The Bologna policy

Serve all requests while load is less than 75%. If more, and the
loads at UNIFI, UPISA, LMU and UEDIN are at least 60%,
60%, 40% and 20% then serve the request if load is less than 95%.

(T if MirrorUploadingynipo < 75
T if MirrorUploading ynigo < 95,
MirrorUploadingynrr = 60,
funiBo = MirrorUploadingpisa > 60,
MirrorUploadingy iy > 40,
MirrorUploading ygpin = 20
0 otherwise
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Model in PEPA

Dealing with overload

Overload < (overload, o(s)).Overload

os)= | T Fl)=0 1<i<m
~ ] 0 otherwise

The system as a whole with client and mirror site populations

(Clienty[p1] || Clienta[po] || - .. || Clientk[pk])
B> (Mirror1[qu] || Mirrora[qo] || - .. || Mirror m[qm])



Case study Scalable Web Services

Numerical Results

Fidle = 0.001
100,
80
3
g 60 —LMU
e —— UEDIN
= UNIBO
z UNIF]
3 40 —— UPISA
20
0 .
0 100 200 300 400

Time (s)



Case study Scalable Web Services

Numerical Results

Fidle = 0.01
100
80
3
2 60 — MU
g —— UEDIN
[ UNIBO
2 UNIFI
3 40 —— UPISA
20
0
0 100 200 300 400

Time (s)



Case study

Scalable Web Services

Numerical Results

Active Threads

100

80

60

40

20

Fidle =0.02

—LMU

= UEDIN
UNIBO
UNIFI

—— UPISA

0 100 200 300

Time (s)

400




Case study

Scalable Web Services

Numerical Results

Active Threads

100

80

60

40

20

Fidle = 0.03

q

—LMU

— UEDIN
UNIBO
UNIFI

—— UPISA

100

200
Time (s)

300

400




Case study

Scalable Web Services

Numerical Results

Active Threads

100

80

60

40

20

Fidle = 0.04

—LMU

— UEDIN
UNIBO
UNIFI

—— UPISA

0 100

200
Time (s)

300

400




Case study

Scalable Web Services

Numerical Results

Active Threads

100

80

60

40

20

Fidle =0.05

—LMU

= UEDIN
UNIBO
UNIFI

—— UPISA

0 100 200 300

Time (s)

400




Case study

Scalable Web Services

Numerical Results

Active Threads

100

80

60

40

20

Fidle = 0.06

—LMU

= UEDIN
UNIBO
UNIFI

—— UPISA

0 100 200 300

Time (s)

400




Hybrid approximation

Outline

Hybrid approximation



Hybrid approximation

Motivation: Alternative Representations

ODEs
Large
PEPA model
Stochastic
Simulation

CTMC



Hybrid approximation 148/ 192

Motivation: Alternative Representations

ODEs population view

Large
PEPA model

Stochastic

Simulation
CTMC

individual view



Hybrid approximation

Motivation: Alternative Representations

ODEs

Large
PEPA model

~ TDHSA hybrid view

Stochastic

Simulation
CTMC



Hybrid approximation

Overview

m PEPA has two-level syntax

m sequential components: S ::=
m parallel components: P::= P BIP | S



Hybrid approximation

Overview

m PEPA has two-level syntax

m sequential components: S ::=(a,r).S| S+ S
m parallel components: P ::= P qu P|S

: 6N (5. r)
m assume sequential components: 5 =37 ,(aj, r;).S



Hybrid approximation

Overview

m PEPA has two-level syntax
m sequential components: S ::=(a,r).S| S+ S

m parallel components: P ::= P qu P|S

: 6N (5. r)
m assume sequential components: 5 =37 ,(aj, r;).S

B mapping

P def S Y S5 < ... > Sh



Hybrid approximation

Overview

m PEPA has two-level syntax
m sequential components: S ::=(a,r).S| S+ S
m parallel components: P ::= P qu P|S
m assume sequential components: S = Zj’:l(aj, rj).S'

B mapping

51 52 . Sn



Hybrid approximation

Overview

m PEPA has two-level syntax
m sequential components: S ::=(a,r).S| S+ S
m parallel components: P P qu P|S
m assume sequential components: S = Zj’:l(aj, rj).S'

B mapping

51 52 . Sn



Hybrid approximation

Overview

m PEPA has two-level syntax
m sequential components: S ::=(a,r).S| S+ S
m parallel components: P ::= P qu P|S

: 6N (5. r)
m assume sequential components: 5 =37 ,(aj, r;).S

B mapping



Hybrid approximation

Overview

m PEPA has two-level syntax
m sequential components: S ::=(a,r).S| S+ S
m parallel components: P P qu P|S

: 6N (5. r)
m assume sequential components: 5 =37 ,(aj, r;).S

B mapping

T1 D, Tz Dz - DL, Tn



Hybrid approximation

Overview

m PEPA has two-level syntax
m sequential components: S ::=(a,r).S| S+ S
m parallel components: P P qu P|S

: 6N (5. r)
m assume sequential components: 5 =37 ,(aj, r;).S

B mapping

T = Ti D, To @ - DL, T



Hybrid approximation

Overview

m PEPA has two-level syntax
m sequential components: S ::=(a,r).S| S+ S
m parallel components: P P qu P|S

: 6N (5. r)
m assume sequential components: 5 =37 ,(aj, r;).S

B mapping

P def S Y S5 < ... > Sh

T = Ti D, To @ - DL, T
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Hybrid approximation

Transition-driven stochastic hybrid automata (TDSHA)

m subset of piecewise deterministic Markov processes (PDMPs)
m set of (control) modes: Q@ = {q1,...,qm}

m set of variables: X = {Xj,..., X,}

m set of events/actions: A = {a1,ay,...}

m initial state: (g, (x1,...,%n))

m multiset of continuous transitions:
(g,(z1,.-.,2n),f,a) where f : R" - R

m multiset of stochastic transitions
(gs, gz, true, A(X; = pk(X)), h, a) where h: R" — R
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m continuous behaviour in mode g described by ODEs
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TDSHA behaviour

m continuous trace with stochastic jumps

m continuous behaviour in mode g described by ODEs

dX/dt = {(z1,...,z2)f(X) | (q,(21,- .., 20), f, 2)}

m stochastic transition from mode g5 and g; with resets

(q57 qs, true, /\(Xli = pk(x))7g7 a)

happens with rate

A, X) =Y {h(X)| (s, g, true, R, h, a)}

and probability g(X)/A(g, X)
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m a €< L: (q1,q) has every transition from ¢; and g, with a and
new function is PEPA cooperation rate (i.e. bounded capacity)



Hybrid approximation

TDSHA synchronised product

mT=T1® T has Q= Q1 Xx @ and X = X3 U X>

m continuous transitions: extend vector to cover X
m a¢ L (q1,q2) has every transition from g; and from g,
m a €< L: (q1,q) has every transition from ¢; and g, with a and
new function is PEPA cooperation rate (i.e. bounded capacity)

m stochastic transitions:

m a¢ L (g1, q2) has every transition from g; and from ¢

m a € L: (g1, g2) has every transition that both g; and g, have
with a, new rate is PEPA cooperation rate and conjunction of
resets is taken
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Cr = (request, r,q).Ct
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Ct & (think, r¢p).Cr
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Clients and servers example

m clients

Cr = (request, r,q).Ct
Ct < (think, ry).Cr

m servers
Sr ¥ (request, ryp).SI + (break, rpx).Sb
s £ (log, rig).Sr + (remove, rym).Sm
Sm ¥ (maint, rmp).Sr + (replace, rc).Sr
Sb ::e: (fix, re).St
= ts cm
St (test, res).St + (compl, rem).Sr
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Clients and servers example

m clients request

think

H servers

replace/ /maint remove
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Clients and servers example

m clients

Cr & (request, rrq).Ct
ct ¥ (think, re).Cr

m servers
St (request, r,).S1+ (break, rpy).Sh
SI = (log, rjg).Sr + (remove, ryy,).Sm
Sm = (maint, rmn).St + (replace, rc).Sr
Sb = (fix, re).St
St = (test, res).St 4 (compl, rem).St
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Mapping to TDSHA

m continuous sequential components: Cr, Ct, Sr, SI, Sm
m integral sequential components: Sb, 5t
m population vector: (#Cr, #Ct, #Sr, #S1, #Sm, #Sb, # St)

m PEPA is conservative: both N¢ = #Cr + #Ct and
Ns = #Sr + #S1 + #Sm + #Sb + #St are invariant

m TDSHA
m modes: (#5Sb, #5t) € {0,...,Ns} x {0,..., Ns}
m variables: (Xcy, Xct, Xsr, Xs1, Xsm)
m initial state: ((#Sb, #5t), (#Cr, #Ct, #Sr, #S1, #5t))
m continuous and stochastic transitions
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Continuous transitions between continuous components

(request, rrp-#5Sr)
_—

m Sr + Sl
m continuous transition: flow is determined by ODEs
# — -
4
3
2
1
0
b d3t St Sl Sm

m ((#Sb,#5t),(0,0,—1,1,0), ryp - #5r, request)
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Continuous transition at a discrete component

(test, res-#St)
_—

m St « St
m continuous transition: no flow because single component
# — -
4
3
2
1
0
% % Sr Sl Sm

m ((#Sb,#5t),(0,0,0,0,0), rts - #St, request)
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Discrete transitions between discrete components

s Sh (fix,rpc-#Sb) N St

m stochastic transition: unit quantity is shifted
# - -

L{ib % Sr S1 Sm

m ((#Sb, #5St), (#Sb — 1, #5t + 1), true, true, rs. - #5b, fix)
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Discrete transition from discrete to continuous component

(compl,rem-#St)
—

m St » or

m stochastic transition: unit quantity is shifted
4 - _
4 L |
3

detb dc% Sr Sl Sm

m ((#Sb, #St), (#Sb, #5t — 1), true, R, rem - #St, compl) with
R = (Xét - XSY + 1)
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Discrete transition from continuous to discrete component

(break,rp-#£Sr)
_—

m Sr « Sb
m stochastic transition: unit quantity is shifted proportionally
# - -
4 | ]
2
1

detb dett Sr S1 Sm

m ((#Sb, #5St), (#Sb + 1, #5t), true, R, rp - #Sr, break) with
R = (Xér = X — Zr) A\ (Xél = Xq — Z/) A (Xém = Xgm — Zm)
and z, + zj+z,, =1
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Discrete transition between continuous components

(maint,rmn-#Sm)
_—

m Sm « Sr
m stochastic transition: unit quantity is shifted proportionally
# - -
4
3
2
1
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Discrete transition between continuous components

m ((#Sb, #5St), (#Sb, #5St), true, R, rmp - #Sm, maint) where
R = (Xé1 = XSI-*Zr+1)/\(Xé] = XSI*ZI)/\(Xém = Xsmfzm)
and z, +z+zn =1

dsb dst )
& a St Sl
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Continuous determinstic simulation

30 T T T T

HST eeeeen
#S| ——
HOM <o
#Sh ——
L #St —mmim i
% #Ct
20 4
15 4
0F 4
5F |
0
0 10 20 30 40 50

Time
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Hybrid simulation

30

25 -

20 -
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