
1/ 192

SPA for quantitative analysis:
Lecture 5 — Collective Dynamics

Jane Hillston

LFCS, School of Informatics
The University of Edinburgh

Scotland

7th March 2013

2/ 192

Outline

1 Introduction
Collective Dynamics

2 Continuous Approximation

3 Fluid-Flow Semantics
Convergence results

4 Case study
Scalable Web Services

5 Hybrid approximation

Introduction 3/ 192

Outline

1 Introduction
Collective Dynamics

2 Continuous Approximation

3 Fluid-Flow Semantics
Convergence results

4 Case study
Scalable Web Services

5 Hybrid approximation

Introduction Collective Dynamics 4/ 192

Collective Dynamics

The behaviour of many systems can be interpreted as the result of
the collective behaviour of a large number of interacting entities.

For such systems we are often as interested in the population level
behaviour as we are in the behaviour of the individual entities.

Introduction Collective Dynamics 5/ 192

Collective Dynamics

The behaviour of many systems can be interpreted as the result of
the collective behaviour of a large number of interacting entities.

For such systems we are often as interested in the population level
behaviour as we are in the behaviour of the individual entities.

Introduction Collective Dynamics 6/ 192

Collective Behaviour

In the natural world there are many instances of collective
behaviour and its consequences:

Introduction Collective Dynamics 7/ 192

Collective Behaviour

In the natural world there are many instances of collective
behaviour and its consequences:

Introduction Collective Dynamics 8/ 192

Collective Behaviour

This is also true in the man-made and engineered world:

Spread of H1N1 virus in 2009

Introduction Collective Dynamics 9/ 192

Collective Behaviour

This is also true in the man-made and engineered world:

Love Parade, Germany 2006

Introduction Collective Dynamics 10/ 192

Collective Behaviour

This is also true in the man-made and engineered world:

Map of the Internet 2009

Introduction Collective Dynamics 11/ 192

Collective Behaviour

This is also true in the man-made and engineered world:

Self assessment tax returns 31st January each year

Introduction Collective Dynamics 12/ 192

Process Algebra and Collective Dynamics

Process algebra are well-suited to modelling such systems

Developed to represent concurrent behaviour compositionally;

Capture the interactions between individuals explicitly;

Incorporate formal apparatus for reasoning about the
behaviour of systems;

Stochastic extensions, such as PEPA, enable quantified
behaviour of the dynamics of systems.

In the CODA project we are developing stochastic process algebras
and associated theory, tailored to the construction and evaluation
of the collective dynamics of large systems of interacting entities.

Introduction Collective Dynamics 13/ 192

Process Algebra and Collective Dynamics

Process algebra are well-suited to modelling such systems

Developed to represent concurrent behaviour compositionally;

Capture the interactions between individuals explicitly;

Incorporate formal apparatus for reasoning about the
behaviour of systems;

Stochastic extensions, such as PEPA, enable quantified
behaviour of the dynamics of systems.

In the CODA project we are developing stochastic process algebras
and associated theory, tailored to the construction and evaluation
of the collective dynamics of large systems of interacting entities.

Introduction Collective Dynamics 14/ 192

Process Algebra and Collective Dynamics

Process algebra are well-suited to modelling such systems

Developed to represent concurrent behaviour compositionally;

Capture the interactions between individuals explicitly;

Incorporate formal apparatus for reasoning about the
behaviour of systems;

Stochastic extensions, such as PEPA, enable quantified
behaviour of the dynamics of systems.

In the CODA project we are developing stochastic process algebras
and associated theory, tailored to the construction and evaluation
of the collective dynamics of large systems of interacting entities.

Introduction Collective Dynamics 15/ 192

Process Algebra and Collective Dynamics

Process algebra are well-suited to modelling such systems

Developed to represent concurrent behaviour compositionally;

Capture the interactions between individuals explicitly;

Incorporate formal apparatus for reasoning about the
behaviour of systems;

Stochastic extensions, such as PEPA, enable quantified
behaviour of the dynamics of systems.

In the CODA project we are developing stochastic process algebras
and associated theory, tailored to the construction and evaluation
of the collective dynamics of large systems of interacting entities.

Introduction Collective Dynamics 16/ 192

Process Algebra and Collective Dynamics

Process algebra are well-suited to modelling such systems

Developed to represent concurrent behaviour compositionally;

Capture the interactions between individuals explicitly;

Incorporate formal apparatus for reasoning about the
behaviour of systems;

Stochastic extensions, such as PEPA, enable quantified
behaviour of the dynamics of systems.

In the CODA project we are developing stochastic process algebras
and associated theory, tailored to the construction and evaluation
of the collective dynamics of large systems of interacting entities.

Introduction Collective Dynamics 17/ 192

Process Algebra and Collective Dynamics

Process algebra are well-suited to modelling such systems

Developed to represent concurrent behaviour compositionally;

Capture the interactions between individuals explicitly;

Incorporate formal apparatus for reasoning about the
behaviour of systems;

Stochastic extensions, such as PEPA, enable quantified
behaviour of the dynamics of systems.

In the CODA project we are developing stochastic process algebras
and associated theory, tailored to the construction and evaluation
of the collective dynamics of large systems of interacting entities.

Introduction Collective Dynamics 18/ 192

Performance as an emergent behaviour

A shift in perspective allows us to model the interactions between
individual components but then only the consider the system as a
whole as an interaction of populations.

This allows us to model much larger systems than previously
possible but in making the shift we are no longer able to collect
any information about individuals in the system.

Introduction Collective Dynamics 19/ 192

Performance as an emergent behaviour

A shift in perspective allows us to model the interactions between
individual components but then only the consider the system as a
whole as an interaction of populations.

This allows us to model much larger systems than previously
possible but in making the shift we are no longer able to collect
any information about individuals in the system.

Introduction Collective Dynamics 20/ 192

Performance as an emergent behaviour

We must instead think about the performance of the collective
point of view. Service providers often want to do this in any case.
For example making contracts in terms of service level agreements.

Example Service Level Agreement

90% of requests receive a response within 3 seconds.

Qualitative Service Level Agreement

Less than 1% of the responses received within 3 seconds will read
“System is overloaded, try again later”.

Introduction Collective Dynamics 21/ 192

Performance as an emergent behaviour

We must instead think about the performance of the collective
point of view. Service providers often want to do this in any case.
For example making contracts in terms of service level agreements.

Example Service Level Agreement

90% of requests receive a response within 3 seconds.

Qualitative Service Level Agreement

Less than 1% of the responses received within 3 seconds will read
“System is overloaded, try again later”.

Introduction Collective Dynamics 22/ 192

Novelty

The novelty of the CODA project has been twofold:

Linking process algebra and continuous mathematical models
for dynamic evaluation represents a paradigm shift in how
such systems are studied.

The prospect of formally-based quantified evaluation of
dynamic behaviour could have significant impact in
application domains such as:

Introduction Collective Dynamics 23/ 192

Novelty

The novelty of the CODA project has been twofold:

Linking process algebra and continuous mathematical models
for dynamic evaluation represents a paradigm shift in how
such systems are studied.

The prospect of formally-based quantified evaluation of
dynamic behaviour could have significant impact in
application domains such as:

Introduction Collective Dynamics 24/ 192

Novelty

The novelty of the CODA project has been twofold:

Linking process algebra and continuous mathematical models
for dynamic evaluation represents a paradigm shift in how
such systems are studied.

The prospect of formally-based quantified evaluation of
dynamic behaviour could have significant impact in
application domains such as:

Introduction Collective Dynamics 25/ 192

Novelty

The novelty of the CODA project has been twofold:

Linking process algebra and continuous mathematical models
for dynamic evaluation represents a paradigm shift in how
such systems are studied.

The prospect of formally-based quantified evaluation of
dynamic behaviour could have significant impact in
application domains such as:

Large scale software systems
Issues of scalability are important for user satisfaction and
resource efficiency but such issues are difficult to investigate using
discrete state models.

Introduction Collective Dynamics 26/ 192

Novelty

The novelty of the CODA project has been twofold:

Linking process algebra and continuous mathematical models
for dynamic evaluation represents a paradigm shift in how
such systems are studied.

The prospect of formally-based quantified evaluation of
dynamic behaviour could have significant impact in
application domains such as:

Biochemical signalling pathways
Understanding these pathways has the potential to improve the
quality of life through enhanced drug treatment and better drug
design.

Introduction Collective Dynamics 27/ 192

Novelty

The novelty of the CODA project has been twofold:

Linking process algebra and continuous mathematical models
for dynamic evaluation represents a paradigm shift in how
such systems are studied.

The prospect of formally-based quantified evaluation of
dynamic behaviour could have significant impact in
application domains such as:

Epidemiological systems
Improved modelling of these systems could lead to improved
disease prevention and treatment in nature and better security in
computer systems.

Continuous Approximation 28/ 192

Outline

1 Introduction
Collective Dynamics

2 Continuous Approximation

3 Fluid-Flow Semantics
Convergence results

4 Case study
Scalable Web Services

5 Hybrid approximation

Continuous Approximation 29/ 192

Solving discrete state models

Under the SOS semantics a PEPA model is mapped to a
Continuous Time Markov Chain (CTMC) with global states
determined by the local states of all the participating components.

When the size of the state space is not too large they are
amenable to numerical solution (linear algebra) to determine a
steady state or transient probability distribution.

Alternatively they may be studied using stochastic simulation.
Each run generates a single trajectory through the state space.
Many runs are needed in order to obtain average behaviours.

As the size of the state space becomes large it becomes infeasible
to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.

Continuous Approximation 30/ 192

Solving discrete state models

Under the SOS semantics a PEPA model is mapped to a
Continuous Time Markov Chain (CTMC) with global states
determined by the local states of all the participating components.

When the size of the state space is not too large they are
amenable to numerical solution (linear algebra) to determine a
steady state or transient probability distribution.

Alternatively they may be studied using stochastic simulation.
Each run generates a single trajectory through the state space.
Many runs are needed in order to obtain average behaviours.

As the size of the state space becomes large it becomes infeasible
to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.

Continuous Approximation 31/ 192

Solving discrete state models

Under the SOS semantics a PEPA model is mapped to a
Continuous Time Markov Chain (CTMC) with global states
determined by the local states of all the participating components.

When the size of the state space is not too large they are
amenable to numerical solution (linear algebra) to determine a
steady state or transient probability distribution.

Alternatively they may be studied using stochastic simulation.
Each run generates a single trajectory through the state space.
Many runs are needed in order to obtain average behaviours.

As the size of the state space becomes large it becomes infeasible
to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.

Continuous Approximation 32/ 192

Solving discrete state models

Under the SOS semantics a PEPA model is mapped to a
Continuous Time Markov Chain (CTMC) with global states
determined by the local states of all the participating components.

When the size of the state space is not too large they are
amenable to numerical solution (linear algebra) to determine a
steady state or transient probability distribution.

Alternatively they may be studied using stochastic simulation.
Each run generates a single trajectory through the state space.
Many runs are needed in order to obtain average behaviours.

As the size of the state space becomes large it becomes infeasible
to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.

Continuous Approximation 33/ 192

Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Use continuous state variables to approximate the discrete state
space.

d ddd dd-� � -d dd d-� -� -� -�d d d dd d d d-� -� -� -� -� -� -� -�d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.

Continuous Approximation 34/ 192

Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Use continuous state variables to approximate the discrete state
space.

d ddd dd-� � -d dd d-� -� -� -�d d d dd d d d-� -� -� -� -� -� -� -�d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.

Continuous Approximation 35/ 192

Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Use continuous state variables to approximate the discrete state
space.

d ddd dd-� � -d dd d-� -� -� -�d d d dd d d d-� -� -� -� -� -� -� -�d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.

Continuous Approximation 36/ 192

Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Use continuous state variables to approximate the discrete state
space.

d dd

d dd-� � -d dd d-� -� -� -�d d d dd d d d-� -� -� -� -� -� -� -�d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.

Continuous Approximation 37/ 192

Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Use continuous state variables to approximate the discrete state
space.

d dd

d dd

-� � -

d dd d-� -� -� -�d d d dd d d d-� -� -� -� -� -� -� -�d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.

Continuous Approximation 38/ 192

Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Use continuous state variables to approximate the discrete state
space.

d dd

d dd-� � -

d d

d d-� -� -� -�d d d dd d d d-� -� -� -� -� -� -� -�d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.

Continuous Approximation 39/ 192

Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Use continuous state variables to approximate the discrete state
space.

d dd

d dd-� � -

d d

d d

-� -� -� -�

d d d dd d d d-� -� -� -� -� -� -� -�d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.

Continuous Approximation 40/ 192

Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Use continuous state variables to approximate the discrete state
space.

d dd

d dd-� � -

d d

d d-� -� -� -�

d d d d

d d d d-� -� -� -� -� -� -� -�d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.

Continuous Approximation 41/ 192

Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Use continuous state variables to approximate the discrete state
space.

d dd

d dd-� � -

d d

d d-� -� -� -�

d d d d

d d d d

-� -� -� -� -� -� -� -�

d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.

Continuous Approximation 42/ 192

Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Use continuous state variables to approximate the discrete state
space.

d dd

d dd-� � -

d d

d d-� -� -� -�

d d d d

d d d d-� -� -� -� -� -� -� -�

d d d d d d d d

d d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.

Continuous Approximation 43/ 192

Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Use continuous state variables to approximate the discrete state
space.

d dd

d dd-� � -

d d

d d-� -� -� -�

d d d d

d d d d-� -� -� -� -� -� -� -�

d d d d d d d d

d d d d d d d d

-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�

d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.

Continuous Approximation 44/ 192

Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Use continuous state variables to approximate the discrete state
space.

d dd

d dd-� � -

d d

d d-� -� -� -�

d d d d

d d d d-� -� -� -� -� -� -� -�

d d d d d d d d

d d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�

d d d d d d d d d d d d d d d d

d d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.

Continuous Approximation 45/ 192

Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Use continuous state variables to approximate the discrete state
space.

d dd

d dd

-� � -d d

d d

-� -� -� -�d d d d

d d d d

-� -� -� -� -� -� -� -�d d d d d d d d

d d d d d d d d

-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d d

d d d d d d d d d d d d d d d d

Use ordinary differential equations to represent the evolution of
those variables over time.

Continuous Approximation 46/ 192

Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

State space explosion becomes an ever more challenging problem
as the scale and complexity of modern systems increase.

Use continuous state variables to approximate the discrete state
space.

d dd

d dd

-� � -d d

d d

-� -� -� -�d d d d

d d d d

-� -� -� -� -� -� -� -�d d d d d d d d

d d d d d d d d

-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d d

d d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.

Continuous Approximation 47/ 192

Scaling Conditions

Scaling assumptions

We have a sequence X(N) of population CTMC, for increasing
total population N.

We normalize such models, dividing variables by N: X
(N)

= X
N

for each τ ∈ T (N), the normalized update is v̄ = v/N and the

rate function is r̄τ (X
(N)

) = Nfτ (X
(N)

) (density dependence).

Fluid ODE

The fluid ODE is ẋ = F (x), where

F (x) =
∑
τ∈T

vτ fτ (x)

Continuous Approximation 48/ 192

Fluid approximation theorem

Hypothesis

X
(N)

(t): a sequence of normalized population CTMC, residing
in E ⊂ Rn

∃x0 ∈ S such that X
(N)

(0)→ x0 in probability (initial
conditions)

x(t): solution of dx
dt = F (x), x(0) = x0, residing in E .

Theorem

For any finite time horizon T <∞, it holds that:

P(sup
0≤t≤T

||X(N)
(t)− x(t)|| > ε)→ 0.

T.G.Kurtz. Solutions of ordinary differential equations as limits of pure jump Markov processes.

Journal of Applied Probability, 1970.

Continuous Approximation 49/ 192

New mathematical structures: differential equations

Use a more abstract state representation rather than the
CTMC complete state space.

Assume that these state variables are subject to continuous
rather than discrete change.

No longer aim to calculate the probability distribution over
the entire state space of the model.

Appropriate for models in which there are large numbers of
components of the same type, i.e. models of populations and
situations of collective dynamics

.

Continuous Approximation 50/ 192

New mathematical structures: differential equations

Use a more abstract state representation rather than the
CTMC complete state space.

Assume that these state variables are subject to continuous
rather than discrete change.

No longer aim to calculate the probability distribution over
the entire state space of the model.

Appropriate for models in which there are large numbers of
components of the same type, i.e. models of populations and
situations of collective dynamics

.

Continuous Approximation 51/ 192

New mathematical structures: differential equations

Use a more abstract state representation rather than the
CTMC complete state space.

Assume that these state variables are subject to continuous
rather than discrete change.

No longer aim to calculate the probability distribution over
the entire state space of the model.

Appropriate for models in which there are large numbers of
components of the same type, i.e. models of populations and
situations of collective dynamics

.

Continuous Approximation 52/ 192

New mathematical structures: differential equations

Use a more abstract state representation rather than the
CTMC complete state space.

Assume that these state variables are subject to continuous
rather than discrete change.

No longer aim to calculate the probability distribution over
the entire state space of the model.

Appropriate for models in which there are large numbers of
components of the same type, i.e. models of populations and
situations of collective dynamics.

Continuous Approximation 53/ 192

Simple example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r1).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP] ��
{task1}

Res0[NR]

Continuous Approximation 54/ 192

Simple example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r1).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP] ��
{task1}

Res0[NR]

CTMC interpretation
Processors (NP) Resources (NR) States (2NP +NR)
1 1 4
2 1 8
2 2 16
3 2 32
3 3 64
4 3 128
4 4 256
5 4 512
5 5 1024
6 5 2048
6 6 4096
7 6 8192
7 7 16384
8 7 32768
8 8 65536
9 8 131072
9 9 262144
10 9 524288
10 10 1048576

Continuous Approximation 55/ 192

Simple example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r1).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP] ��
{task1}

Res0[NR]

ODE interpretation
dx1
dt = −r1 min(x1, x3) + r2 x1

x1 = no. of Proc1
dx2
dt = r1 min(x1, x3)− r2 x1

x2 = no. of Proc2
dx3
dt = −r1 min(x1, x3) + r4 x4

x3 = no. of Res0
dx4
dt = r1 min(x1, x3)− r4 x4

x4 = no. of Res1

Continuous Approximation 56/ 192

100 processors and 80 resources (simulation run A)

Continuous Approximation 57/ 192

100 processors and 80 resources (simulation run B)

Continuous Approximation 58/ 192

100 processors and 80 resources (simulation run C)

Continuous Approximation 59/ 192

100 processors and 80 resources (simulation run D)

Continuous Approximation 60/ 192

100 processors and 80 resources (average of 10 runs)

Continuous Approximation 61/ 192

100 Processors and 80 resources (average of 100 runs)

Continuous Approximation 62/ 192

100 processors and 80 resources (average of 1000 runs)

Continuous Approximation 63/ 192

100 processors and 80 resources (average of 10000 runs)

Continuous Approximation 64/ 192

100 processors and 80 resources (ODE solution)

Fluid-Flow Semantics 65/ 192

Outline

1 Introduction
Collective Dynamics

2 Continuous Approximation

3 Fluid-Flow Semantics
Convergence results

4 Case study
Scalable Web Services

5 Hybrid approximation

Fluid-Flow Semantics 66/ 192

Deriving a Fluid Approximation of a PEPA model

The aim is to represent the CTMC implicitly (avoiding state space
explosion), and to generate the set of ODEs which are the fluid
limit of that CTMC.

The exisiting (CTMC) SOS semantics is not suitable for this
purpose because it constructs the state space of the CTMC
explicitly.

SPA
MODEL

SYMBOLIC
LABELLED

TRANSITION
SYSTEM

ABSTRACT
CTMC Q

or
ODEs FM(x)

- -
SOS rules generator

functions

Fluid-Flow Semantics 67/ 192

Deriving a Fluid Approximation of a PEPA model

The aim is to represent the CTMC implicitly (avoiding state space
explosion), and to generate the set of ODEs which are the fluid
limit of that CTMC.

The exisiting (CTMC) SOS semantics is not suitable for this
purpose because it constructs the state space of the CTMC
explicitly.

SPA
MODEL

SYMBOLIC
LABELLED

TRANSITION
SYSTEM

ABSTRACT
CTMC Q

or
ODEs FM(x)

- -
SOS rules generator

functions

Fluid-Flow Semantics 68/ 192

Deriving a Fluid Approximation of a PEPA model

The aim is to represent the CTMC implicitly (avoiding state space
explosion), and to generate the set of ODEs which are the fluid
limit of that CTMC.

The exisiting (CTMC) SOS semantics is not suitable for this
purpose because it constructs the state space of the CTMC
explicitly.

SPA
MODEL

LABELLED
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition

diagram

SPA
MODEL

SYMBOLIC
LABELLED

TRANSITION
SYSTEM

ABSTRACT
CTMC Q

or
ODEs FM(x)

- -
SOS rules generator

functions

Fluid-Flow Semantics 69/ 192

Deriving a Fluid Approximation of a PEPA model

The aim is to represent the CTMC implicitly (avoiding state space
explosion), and to generate the set of ODEs which are the fluid
limit of that CTMC.

The exisiting (CTMC) SOS semantics is not suitable for this
purpose because it constructs the state space of the CTMC
explicitly.

We define a structured operational semantics which defines the pos-
sible transitions of an arbitrary abstract state and from this derive
the ODEs.

SPA
MODEL

SYMBOLIC
LABELLED

TRANSITION
SYSTEM

ABSTRACT
CTMC Q

or
ODEs FM(x)

- -
SOS rules generator

functions

Fluid-Flow Semantics 70/ 192

Deriving a Fluid Approximation of a PEPA model

The aim is to represent the CTMC implicitly (avoiding state space
explosion), and to generate the set of ODEs which are the fluid
limit of that CTMC.

The exisiting (CTMC) SOS semantics is not suitable for this
purpose because it constructs the state space of the CTMC
explicitly.

We define a structured operational semantics which defines the pos-
sible transitions of an arbitrary abstract state and from this derive
the ODEs.

SPA
MODEL

SYMBOLIC
LABELLED

TRANSITION
SYSTEM

ABSTRACT
CTMC Q

or
ODEs FM(x)

- -
SOS rules generator

functions

Fluid-Flow Semantics 71/ 192

Fluid Structured Operational Semantics

In order to get to the implicit representation of the CTMC we need
to:

1 Remove excess components (Context Reduction)

2 Collect the transitions of the reduced context (Jump Multiset)

3 Calculate the rate of the transitions in terms of an arbitrary
state of the CTMC.

Once this is done we can extract the vector field FM(x) from the
jump multiset.

M.Tribastone, S.Gilmore and J.Hillston. Scalable Differential Analysis of Process Algebra Models. IEEE TSE 2012.

Fluid-Flow Semantics 72/ 192

Fluid Structured Operational Semantics

In order to get to the implicit representation of the CTMC we need
to:

1 Remove excess components (Context Reduction)

2 Collect the transitions of the reduced context (Jump Multiset)

3 Calculate the rate of the transitions in terms of an arbitrary
state of the CTMC.

Once this is done we can extract the vector field FM(x) from the
jump multiset.

M.Tribastone, S.Gilmore and J.Hillston. Scalable Differential Analysis of Process Algebra Models. IEEE TSE 2012.

Fluid-Flow Semantics 73/ 192

Fluid Structured Operational Semantics

In order to get to the implicit representation of the CTMC we need
to:

1 Remove excess components (Context Reduction)

2 Collect the transitions of the reduced context (Jump Multiset)

3 Calculate the rate of the transitions in terms of an arbitrary
state of the CTMC.

Once this is done we can extract the vector field FM(x) from the
jump multiset.

M.Tribastone, S.Gilmore and J.Hillston. Scalable Differential Analysis of Process Algebra Models. IEEE TSE 2012.

Fluid-Flow Semantics 74/ 192

Fluid Structured Operational Semantics

In order to get to the implicit representation of the CTMC we need
to:

1 Remove excess components (Context Reduction)

2 Collect the transitions of the reduced context (Jump Multiset)

3 Calculate the rate of the transitions in terms of an arbitrary
state of the CTMC.

Once this is done we can extract the vector field FM(x) from the
jump multiset.

M.Tribastone, S.Gilmore and J.Hillston. Scalable Differential Analysis of Process Algebra Models. IEEE TSE 2012.

Fluid-Flow Semantics 75/ 192

Fluid Structured Operational Semantics

In order to get to the implicit representation of the CTMC we need
to:

1 Remove excess components (Context Reduction)

2 Collect the transitions of the reduced context (Jump Multiset)

3 Calculate the rate of the transitions in terms of an arbitrary
state of the CTMC.

Once this is done we can extract the vector field FM(x) from the
jump multiset.

M.Tribastone, S.Gilmore and J.Hillston. Scalable Differential Analysis of Process Algebra Models. IEEE TSE 2012.

Fluid-Flow Semantics 76/ 192

Context Reduction

Proc0
def
= (task1 , r1).Proc1

Proc1
def
= (task2 , r2).Proc0

Res0
def
= (task1 , r3).Res1

Res1
def
= (reset, r4).Res0

System
def
= Proc0 [NP] ��

{task1}
Res0 [NR]

⇓

R(System) = {Proc0 ,Proc1} ��
{task1}

{Res0 ,Res1}

Population Vector

ξ = (ξ1, ξ2, ξ3, ξ4)

Fluid-Flow Semantics 77/ 192

Context Reduction

Proc0
def
= (task1 , r1).Proc1

Proc1
def
= (task2 , r2).Proc0

Res0
def
= (task1 , r3).Res1

Res1
def
= (reset, r4).Res0

System
def
= Proc0 [NP] ��

{task1}
Res0 [NR]

⇓

R(System) = {Proc0 ,Proc1} ��
{task1}

{Res0 ,Res1}

Population Vector

ξ = (ξ1, ξ2, ξ3, ξ4)

Fluid-Flow Semantics 78/ 192

Location Dependency

System
def
= Proc0 [N ′C] ��

{task1}
Res0 [NS] ‖ Proc0 [N ′′C]

⇓

{Proc0 ,Proc1} ��
{task1}

{Res0 ,Res1} ‖ {Proc0 ,Proc1}

Population Vector

ξ = (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6)

Fluid-Flow Semantics 79/ 192

Location Dependency

System
def
= Proc0 [N ′C] ��

{task1}
Res0 [NS] ‖ Proc0 [N ′′C]

⇓

{Proc0 ,Proc1} ��
{task1}

{Res0 ,Res1} ‖ {Proc0 ,Proc1}

Population Vector

ξ = (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6)

Fluid-Flow Semantics 80/ 192

Location Dependency

System
def
= Proc0 [N ′C] ��

{task1}
Res0 [NS] ‖ Proc0 [N ′′C]

⇓

{Proc0 ,Proc1} ��
{task1}

{Res0 ,Res1} ‖ {Proc0 ,Proc1}

Population Vector

ξ = (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6)

Fluid-Flow Semantics 81/ 192

Fluid Structured Operational Semantics by Example

Proc0
def
= (task1 , r1).Proc1

Proc1
def
= (task2 , r2).Proc0

Res0
def
= (task1 , r3).Res1

Res1
def
= (reset, r4).Res0

System
def
= Proc0 [NP] ��

{task1}
Res0 [NR]

ξ = (ξ1, ξ2, ξ3, ξ4)

Proc0
task1 ,r1−−−−−−→ Proc1

Proc0
task1 ,r1 ξ1−−−−−−−→∗ Proc1

Res0
task1 ,r3−−−−−−→ Res1

Res0
task1 ,r3 ξ3−−−−−−−→∗ Res1

Proc0 ��
{task1}

Res0
task1 ,r(ξ)
−−−−−−−→∗ Proc1 ��

{task1}
Res1

Fluid-Flow Semantics 82/ 192

Fluid Structured Operational Semantics by Example

Proc0
def
= (task1 , r1).Proc1

Proc1
def
= (task2 , r2).Proc0

Res0
def
= (task1 , r3).Res1

Res1
def
= (reset, r4).Res0

System
def
= Proc0 [NP] ��

{task1}
Res0 [NR]

ξ = (ξ1, ξ2, ξ3, ξ4)

Proc0
task1 ,r1−−−−−−→ Proc1

Proc0
task1 ,r1 ξ1−−−−−−−→∗ Proc1

Res0
task1 ,r3−−−−−−→ Res1

Res0
task1 ,r3 ξ3−−−−−−−→∗ Res1

Proc0 ��
{task1}

Res0
task1 ,r(ξ)
−−−−−−−→∗ Proc1 ��

{task1}
Res1

Fluid-Flow Semantics 83/ 192

Fluid Structured Operational Semantics by Example

Proc0
def
= (task1 , r1).Proc1

Proc1
def
= (task2 , r2).Proc0

Res0
def
= (task1 , r3).Res1

Res1
def
= (reset, r4).Res0

System
def
= Proc0 [NP] ��

{task1}
Res0 [NR]

ξ = (ξ1, ξ2, ξ3, ξ4)

Proc0
task1 ,r1−−−−−−→ Proc1

Proc0
task1 ,r1 ξ1−−−−−−−→∗ Proc1

Res0
task1 ,r3−−−−−−→ Res1

Res0
task1 ,r3 ξ3−−−−−−−→∗ Res1

Proc0 ��
{task1}

Res0
task1 ,r(ξ)
−−−−−−−→∗ Proc1 ��

{task1}
Res1

Fluid-Flow Semantics 84/ 192

Fluid Structured Operational Semantics by Example

Proc0
def
= (task1 , r1).Proc1

Proc1
def
= (task2 , r2).Proc0

Res0
def
= (task1 , r3).Res1

Res1
def
= (reset, r4).Res0

System
def
= Proc0 [NP] ��

{task1}
Res0 [NR]

ξ = (ξ1, ξ2, ξ3, ξ4)

Proc0
task1 ,r1−−−−−−→ Proc1

Proc0
task1 ,r1 ξ1−−−−−−−→∗ Proc1

Res0
task1 ,r3−−−−−−→ Res1

Res0
task1 ,r3 ξ3−−−−−−−→∗ Res1

Proc0 ��
{task1}

Res0
task1 ,r(ξ)
−−−−−−−→∗ Proc1 ��

{task1}
Res1

Fluid-Flow Semantics 85/ 192

Apparent Rate Calculation

Proc0
task1 ,r1−−−−−−→ Proc1

Proc0
task1 ,r1 ξ1−−−−−−−→∗ Proc1

Res0
task1 ,r3−−−−−−→ Res1

Res0
task1 ,r3 ξ3−−−−−−−→∗ Res1

Proc0 ��
{task1}

Res0
task1 ,r(ξ)
−−−−−−−→∗ Proc1 ��

{task1}
Res1

r(ξ) =
r1ξ1

r∗task1 (Proc0 , ξ)

r3ξ4

r∗task1 (Res0 , ξ)
min

(
r∗task1 (Proc0 , ξ) , r∗task1 (Res0 , ξ)

)
=

r1ξ1

r1ξ1

r3ξ3

r3ξ3
min

(
r1ξ1, r3ξ3

)
=min

(
r1ξ1, r3ξ3

)

Fluid-Flow Semantics 86/ 192

Apparent Rate Calculation

Proc0
task1 ,r1−−−−−−→ Proc1

Proc0
task1 ,r1 ξ1−−−−−−−→∗ Proc1

Res0
task1 ,r3−−−−−−→ Res1

Res0
task1 ,r3 ξ3−−−−−−−→∗ Res1

Proc0 ��
{task1}

Res0
task1 ,r(ξ)
−−−−−−−→∗ Proc1 ��

{task1}
Res1

r(ξ) =
r1ξ1

r∗task1 (Proc0 , ξ)

r3ξ4

r∗task1 (Res0 , ξ)
min

(
r∗task1 (Proc0 , ξ) , r∗task1 (Res0 , ξ)

)
=

r1ξ1

r1ξ1

r3ξ3

r3ξ3
min

(
r1ξ1, r3ξ3

)
=min

(
r1ξ1, r3ξ3

)

Fluid-Flow Semantics 87/ 192

f (ξ, l , α) as the Generator Matrix of the Lumped CTMC

(P0 ‖ P0) ��
{task1}

(R0 ‖ R0 ‖ R0)

(P1 ‖ P0) ��
{task1}

R1 ‖ R0 ‖ R0)

(P1 ‖ P0) ��
{task1}

(R0 ‖ R1 ‖ R0)

(P1 ‖ P0) ��
{task1}

(R0 ‖ R0 ‖ R1)

(P0 ‖ P1) ��
{task1}

(R1 ‖ R0 ‖ R0)

(P0 ‖ P1) ��
{task1}

(R0 ‖ R1 ‖ R0)

(P0 ‖ P1) ��
{task1}

(R0 ‖ R0 ‖ R1)

�
�
�
�
�
�
�
��7r

�
�
�
�
��>

r

��
���

�:r

XXXXXXz
rZ

Z
Z
Z
ZZ~

r

S
S
S
S
S
S
S
Sw

r

r = r1

2r1

r3

3r3
min(2r1, 3r3) = 1

6 min(2r1, 3r3)

Fluid-Flow Semantics 88/ 192

f (ξ, l , α) as the Generator Matrix of the Lumped CTMC

(P0 ‖ P0) ��
{task1}

(R0 ‖ R0 ‖ R0)

(P1 ‖ P0) ��
{task1}

R1 ‖ R0 ‖ R0)

(P1 ‖ P0) ��
{task1}

(R0 ‖ R1 ‖ R0)

(P1 ‖ P0) ��
{task1}

(R0 ‖ R0 ‖ R1)

(P0 ‖ P1) ��
{task1}

(R1 ‖ R0 ‖ R0)

(P0 ‖ P1) ��
{task1}

(R0 ‖ R1 ‖ R0)

(P0 ‖ P1) ��
{task1}

(R0 ‖ R0 ‖ R1)

�
�
�
�
�
�
�
��7r

�
�
�
�
��>

r

��
���

�:r

XXXXXXz
rZ

Z
Z
Z
ZZ~

r

S
S
S
S
S
S
S
Sw

r

r = r1

2r1

r3

3r3
min(2r1, 3r3) = 1

6 min(2r1, 3r3)

Fluid-Flow Semantics 89/ 192

f (ξ, l , α) as the Generator Matrix of the Lumped CTMC

(P0 ‖ P0) ��
{task1}

(R0 ‖ R0 ‖ R0)

(P1 ‖ P0) ��
{task1}

R1 ‖ R0 ‖ R0)

(P1 ‖ P0) ��
{task1}

(R0 ‖ R1 ‖ R0)

(P1 ‖ P0) ��
{task1}

(R0 ‖ R0 ‖ R1)

(P0 ‖ P1) ��
{task1}

(R1 ‖ R0 ‖ R0)

(P0 ‖ P1) ��
{task1}

(R0 ‖ R1 ‖ R0)

(P0 ‖ P1) ��
{task1}

(R0 ‖ R0 ‖ R1)

�
�
�
�
�
�
�
��7r

�
�
�
�
��>

r

��
���

�:r

XXXXXXz
rZ

Z
Z
Z
ZZ~

r

S
S
S
S
S
S
S
Sw

r

r = r1

2r1

r3

3r3
min(2r1, 3r3) = 1

6 min(2r1, 3r3)

Fluid-Flow Semantics 90/ 192

f (ξ, l , α) as the Generator Matrix of the Lumped CTMC

(P0 ‖ P0) ��
{task1}

(R0 ‖ R0 ‖ R0)

(P1 ‖ P0) ��
{task1}

(R1 ‖ R0 ‖ R0)

(P1 ‖ P0) ��
{task1}

(R0 ‖ R1 ‖ R0)

(P1 ‖ P0) ��
{task1}

(R0 ‖ R0 ‖ R1)

(P0 ‖ P1) ��
{task1}

(R1 ‖ R0 ‖ R0)

(P0 ‖ P1) ��
{task1}

(R0 ‖ R1 ‖ R0)

(P0 ‖ P1) ��
{task1}

(R0 ‖ R0 ‖ R1)

�
�
�
�
�
�
�
��7

�
�
�
�
��>

��
���

�:

XXXXXXz
Z
Z
Z
Z
ZZ~

S
S
S
S
S
S
S
Sw

r = r1

2r1

r3

3r3
min(2r1, 3r3) = 1

6 min(2r1, 3r3)

(2, 0, 3, 0) -min(2r1, 3r3)
(1, 1, 2, 1)(2, 0, 3, 0) -min(2r1, 3r3)
(1, 1, 2, 1)

Fluid-Flow Semantics 91/ 192

Jump Multiset

Proc0 ��
{task1}

Res0
task1 ,r(ξ)−−−−−−−→∗ Proc1 ��

{task1}
Res1

r(ξ) = min
(
r1ξ1, r3ξ3

)

Proc1 ��
{task1}

Res0
task2 ,ξ2r2−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

Fluid-Flow Semantics 92/ 192

Jump Multiset

Proc0 ��
{task1}

Res0
task1 ,r(ξ)−−−−−−−→∗ Proc1 ��

{task1}
Res1

r(ξ) = min
(
r1ξ1, r3ξ3

)

Proc1 ��
{task1}

Res0
task2 ,ξ2r2−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

Fluid-Flow Semantics 93/ 192

Jump Multiset

Proc0 ��
{task1}

Res0
task1 ,r(ξ)−−−−−−−→∗ Proc1 ��

{task1}
Res1

r(ξ) = min
(
r1ξ1, r3ξ3

)

Proc1 ��
{task1}

Res0
task2 ,ξ2r2−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

Fluid-Flow Semantics 94/ 192

Equivalent Transitions

Some transitions may give the same information:

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc1 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc1 ��

{task1}
Res0

i.e., Res1 may perform an action independently from the rest of
the system.

This is captured by the procedure used for the construction of the
generator function f (ξ, l , α)

Fluid-Flow Semantics 95/ 192

Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

Take l = (0, 0, 0, 0)

Add −1 to all elements of l corresponding to the indices of
the components in the lhs of the transition

l = (−1, 0, 0,−1)

Add +1 to all elements of l corresponding to the indices of
the components in the rhs of the transition

l = (−1 + 1, 0,+1,−1) = (0, 0,+1,−1)

f
(
ξ, (0, 0,+1,−1), reset

)
= ξ4r4

Fluid-Flow Semantics 96/ 192

Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

Take l = (0, 0, 0, 0)

Add −1 to all elements of l corresponding to the indices of
the components in the lhs of the transition

l = (−1, 0, 0,−1)

Add +1 to all elements of l corresponding to the indices of
the components in the rhs of the transition

l = (−1 + 1, 0,+1,−1) = (0, 0,+1,−1)

f
(
ξ, (0, 0,+1,−1), reset

)
= ξ4r4

Fluid-Flow Semantics 97/ 192

Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

Take l = (0, 0, 0, 0)

Add −1 to all elements of l corresponding to the indices of
the components in the lhs of the transition

l = (−1, 0, 0,−1)

Add +1 to all elements of l corresponding to the indices of
the components in the rhs of the transition

l = (−1 + 1, 0,+1,−1) = (0, 0,+1,−1)

f
(
ξ, (0, 0,+1,−1), reset

)
= ξ4r4

Fluid-Flow Semantics 98/ 192

Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

Take l = (0, 0, 0, 0)

Add −1 to all elements of l corresponding to the indices of
the components in the lhs of the transition

l = (−1, 0, 0,−1)

Add +1 to all elements of l corresponding to the indices of
the components in the rhs of the transition

l = (−1 + 1, 0,+1,−1) = (0, 0,+1,−1)

f
(
ξ, (0, 0,+1,−1), reset

)
= ξ4r4

Fluid-Flow Semantics 99/ 192

Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res0
task1 ,r(ξ)−−−−−−−→∗ Proc1 ��

{task1}
Res1

Proc1 ��
{task1}

Res0
task2 ,ξ2r ′2−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

f (ξ, (−1,+1,−1,+1), task1) = r(ξ)

f (ξ, (+1,−1, 0, 0), task2) = ξ2r2

f (ξ, (0, 0,+1,−1), reset) = ξ4r4

Fluid-Flow Semantics 100/ 192

Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res0
task1 ,r(ξ)−−−−−−−→∗ Proc1 ��

{task1}
Res1

Proc1 ��
{task1}

Res0
task2 ,ξ2r ′2−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

f (ξ, (−1,+1,−1,+1), task1) = r(ξ)

f (ξ, (+1,−1, 0, 0), task2) = ξ2r2

f (ξ, (0, 0,+1,−1), reset) = ξ4r4

Fluid-Flow Semantics 101/ 192

Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res0
task1 ,r(ξ)−−−−−−−→∗ Proc1 ��

{task1}
Res1

Proc1 ��
{task1}

Res0
task2 ,ξ2r ′2−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

f (ξ, (−1,+1,−1,+1), task1) = r(ξ)

f (ξ, (+1,−1, 0, 0), task2) = ξ2r2

f (ξ, (0, 0,+1,−1), reset) = ξ4r4

Fluid-Flow Semantics 102/ 192

Capturing behaviour in the Generator Function

Proc0
def
= (task1 , r1).Proc1

Proc1
def
= (task2 , r2).Proc0

Res0
def
= (task1 , r3).Res1

Res1
def
= (reset, r4).Res0

System
def
= Proc0 [NP] ��

{task1}
Res0 [NR]

Numerical Vector Form

ξ = (ξ1, ξ2, ξ3, ξ4) ∈ N4, ξ1 + ξ2 = NP and ξ3 + ξ4 = NR

Generator Function

f (ξ, l , α) :
f (ξ, (−1, 1,−1, 1), task1) = min (r1ξ1, r3ξ3)

f (ξ, (1,−1, 0, 0), task2) = r2ξ2

f (ξ, (0, 0, 1,−1), reset) = r4ξ4

Fluid-Flow Semantics 103/ 192

Capturing behaviour in the Generator Function

Proc0
def
= (task1 , r1).Proc1

Proc1
def
= (task2 , r2).Proc0

Res0
def
= (task1 , r3).Res1

Res1
def
= (reset, r4).Res0

System
def
= Proc0 [NP] ��

{task1}
Res0 [NR]

Numerical Vector Form

ξ = (ξ1, ξ2, ξ3, ξ4) ∈ N4, ξ1 + ξ2 = NP and ξ3 + ξ4 = NR

Generator Function

f (ξ, l , α) :
f (ξ, (−1, 1,−1, 1), task1) = min (r1ξ1, r3ξ3)

f (ξ, (1,−1, 0, 0), task2) = r2ξ2

f (ξ, (0, 0, 1,−1), reset) = r4ξ4

Fluid-Flow Semantics 104/ 192

Capturing behaviour in the Generator Function

Proc0
def
= (task1 , r1).Proc1

Proc1
def
= (task2 , r2).Proc0

Res0
def
= (task1 , r3).Res1

Res1
def
= (reset, r4).Res0

System
def
= Proc0 [NP] ��

{task1}
Res0 [NR]

Numerical Vector Form

ξ = (ξ1, ξ2, ξ3, ξ4) ∈ N4, ξ1 + ξ2 = NP and ξ3 + ξ4 = NR

Generator Function

f (ξ, l , α) :
f (ξ, (−1, 1,−1, 1), task1) = min (r1ξ1, r3ξ3)

f (ξ, (1,−1, 0, 0), task2) = r2ξ2

f (ξ, (0, 0, 1,−1), reset) = r4ξ4

Fluid-Flow Semantics 105/ 192

Extraction of the ODE from f

Generator Function

f (ξ, (−1, 1,−1, 1), task1) = min (r1ξ1, r3ξ3)
f (ξ, (1,−1, 0, 0), task2) = r2ξ2

f (ξ, (0, 0, 1,−1), reset) = r4ξ4

Differential Equations

dx

dt
= FM(x) =

∑
l∈Zd

l
∑
α∈A

f (x , l , α)

= (−1, 1,−1, 1) min (r1x1, r3x3) + (1,−1, 0, 0)r2x2

+ (0, 0, 1,−1)r4x4

Fluid-Flow Semantics 106/ 192

Extraction of the ODE from f

Generator Function

f (ξ, (−1, 1,−1, 1), task1) = min (r1ξ1, r3ξ3)
f (ξ, (1,−1, 0, 0), task2) = r2ξ2

f (ξ, (0, 0, 1,−1), reset) = r4ξ4

Differential Equations

dx1

dt
= −min (r1x1, r3x3) + r2 x2

dx2

dt
= min (r1x1, r3x3)− r2 x2

dx3

dt
= −min (r1x1, r3x3) + r4 x4

dx4

dt
= min (r1x1, r3x3)− r4 x4

Fluid-Flow Semantics Convergence results 107/ 192

Density Dependence

Density dependence of parametric apparent rates

Let r∗α (P, ξ) be the parametric apparent rate of action type α in
process P. For any n ∈ N and α ∈ A,

r∗α (P, ξ) = n · r?α (P, ξ/n)

Density dependence of parametric transition rates

If P
(α,r(ξ))−−−−−→∗ Q then, for any n ∈ N, r(ξ) = n · r(ξ/n)

Generating functions give rise to density dependent rates

Let M be a PEPA model with generating functions f (ξ, l , α)
derived as demonstrated. Then the corresponding sequence of
CTMCs will be density dependent.

Fluid-Flow Semantics Convergence results 108/ 192

Density Dependence

Density dependence of parametric apparent rates

Let r∗α (P, ξ) be the parametric apparent rate of action type α in
process P. For any n ∈ N and α ∈ A,

r∗α (P, ξ) = n · r?α (P, ξ/n)

Density dependence of parametric transition rates

If P
(α,r(ξ))−−−−−→∗ Q then, for any n ∈ N, r(ξ) = n · r(ξ/n)

Generating functions give rise to density dependent rates

Let M be a PEPA model with generating functions f (ξ, l , α)
derived as demonstrated. Then the corresponding sequence of
CTMCs will be density dependent.

Fluid-Flow Semantics Convergence results 109/ 192

Density Dependence

Density dependence of parametric apparent rates

Let r∗α (P, ξ) be the parametric apparent rate of action type α in
process P. For any n ∈ N and α ∈ A,

r∗α (P, ξ) = n · r?α (P, ξ/n)

Density dependence of parametric transition rates

If P
(α,r(ξ))−−−−−→∗ Q then, for any n ∈ N, r(ξ) = n · r(ξ/n)

Generating functions give rise to density dependent rates

Let M be a PEPA model with generating functions f (ξ, l , α)
derived as demonstrated. Then the corresponding sequence of
CTMCs will be density dependent.

Fluid-Flow Semantics Convergence results 110/ 192

Lipschitz continuity

Since Lipschitz continuity is preserved by summation, in order to
verify that the vector field FM(x) is Lipschitz it suffices to prove
that any parametric rate generated by the semantics is Lipschitz.

Lipschitz continuity of parametric apparent rates

Let r∗α (P, ξ) be the parametric apparent rate of action type α in
process P. There exists a constant L ∈ R such that for all
x , y ∈ Rd , x 6= y ,

‖r?α (P, x)− r?α (P, y)‖
‖x − y‖

≤ L

Lipschitz continuity of rate functions

If P
(α,r(x))−−−−−→∗ P ′ then r(x) ≤ r∗α (P, x) and thus it follows that

r(x) is Lipschitz continuous.

Fluid-Flow Semantics Convergence results 111/ 192

Lipschitz continuity

Since Lipschitz continuity is preserved by summation, in order to
verify that the vector field FM(x) is Lipschitz it suffices to prove
that any parametric rate generated by the semantics is Lipschitz.

Lipschitz continuity of parametric apparent rates

Let r∗α (P, ξ) be the parametric apparent rate of action type α in
process P. There exists a constant L ∈ R such that for all
x , y ∈ Rd , x 6= y ,

‖r?α (P, x)− r?α (P, y)‖
‖x − y‖

≤ L

Lipschitz continuity of rate functions

If P
(α,r(x))−−−−−→∗ P ′ then r(x) ≤ r∗α (P, x) and thus it follows that

r(x) is Lipschitz continuous.

Fluid-Flow Semantics Convergence results 112/ 192

Lipschitz continuity

Since Lipschitz continuity is preserved by summation, in order to
verify that the vector field FM(x) is Lipschitz it suffices to prove
that any parametric rate generated by the semantics is Lipschitz.

Lipschitz continuity of parametric apparent rates

Let r∗α (P, ξ) be the parametric apparent rate of action type α in
process P. There exists a constant L ∈ R such that for all
x , y ∈ Rd , x 6= y ,

‖r?α (P, x)− r?α (P, y)‖
‖x − y‖

≤ L

Lipschitz continuity of rate functions

If P
(α,r(x))−−−−−→∗ P ′ then r(x) ≤ r∗α (P, x) and thus it follows that

r(x) is Lipschitz continuous.

Fluid-Flow Semantics Convergence results 113/ 192

Kurtz’s Theorem

Kurtz’s Theorem for PEPA

Let x(t), 0 ≤ t ≤ T satisfy the initial value problem
dx
dt = F (x(t)), x(0) = δ, specified from a PEPA model.

Let {Xn(t)} be a family of CTMCs with parameter n ∈ N
generated as explained and let Xn(0) = n · δ. Then,

∀ε > 0 lim
n→∞

P

(
sup
t≤T
‖Xn(t)/n − x(t)‖ > ε

)
= 0.

Moreover Lipschitz continuity of the vector field guarantees
existence and uniqueness of the solution to the initial value
problem.

M.Tribastone, S.Gilmore and J.Hillston. Scalable Differential Analysis of Process Algebra Models. IEEE TSE 2012.

Fluid-Flow Semantics Convergence results 114/ 192

Kurtz’s Theorem

Kurtz’s Theorem for PEPA

Let x(t), 0 ≤ t ≤ T satisfy the initial value problem
dx
dt = F (x(t)), x(0) = δ, specified from a PEPA model.

Let {Xn(t)} be a family of CTMCs with parameter n ∈ N
generated as explained and let Xn(0) = n · δ. Then,

∀ε > 0 lim
n→∞

P

(
sup
t≤T
‖Xn(t)/n − x(t)‖ > ε

)
= 0.

Moreover Lipschitz continuity of the vector field guarantees
existence and uniqueness of the solution to the initial value
problem.

M.Tribastone, S.Gilmore and J.Hillston. Scalable Differential Analysis of Process Algebra Models. IEEE TSE 2012.

Fluid-Flow Semantics Convergence results 115/ 192

Eclipse Plug-in for PEPA

Case study 116/ 192

Outline

1 Introduction
Collective Dynamics

2 Continuous Approximation

3 Fluid-Flow Semantics
Convergence results

4 Case study
Scalable Web Services

5 Hybrid approximation

Case study Scalable Web Services 117/ 192

Virtual University Scenario

A Virtual University is a federation of real universities, each
contributing courses and degrees.

Sharing of knowledge is promoted by providing students with
a wider selection of subjects.

Services are replicated across the physical sites.

By agreement in the university, students may connect to any
site to download content and use services, not just the one
which is geographically closest.

Case study Scalable Web Services 118/ 192

Virtual University Scenario

A Virtual University is a federation of real universities, each
contributing courses and degrees.

Sharing of knowledge is promoted by providing students with
a wider selection of subjects.

Services are replicated across the physical sites.

By agreement in the university, students may connect to any
site to download content and use services, not just the one
which is geographically closest.

Case study Scalable Web Services 119/ 192

Virtual University Scenario

A Virtual University is a federation of real universities, each
contributing courses and degrees.

Sharing of knowledge is promoted by providing students with
a wider selection of subjects.

Services are replicated across the physical sites.

By agreement in the university, students may connect to any
site to download content and use services, not just the one
which is geographically closest.

Case study Scalable Web Services 120/ 192

Virtual University Scenario

A Virtual University is a federation of real universities, each
contributing courses and degrees.

Sharing of knowledge is promoted by providing students with
a wider selection of subjects.

Services are replicated across the physical sites.

By agreement in the university, students may connect to any
site to download content and use services, not just the one
which is geographically closest.

Case study Scalable Web Services 121/ 192

Case Study: A Virtual University

Case study Scalable Web Services 122/ 192

Location, Time, and Size

Case study Scalable Web Services 123/ 192

Replicating Web Services

Two viable approaches to cope with increasing user demand:

use a service broker for routing

decentralised routing

Case study Scalable Web Services 124/ 192

Replicating Web Services

Two viable approaches to cope with increasing user demand:

use a service broker for routing

decentralised routing

Case study Scalable Web Services 125/ 192

Replicating Web Services

Two viable approaches to cope with increasing user demand:

use a service broker for routing

decentralised routing

Case study Scalable Web Services 126/ 192

Replicating Web Services

Two viable approaches to cope with increasing user demand:

use a service broker for routing

decentralised routing

Case study Scalable Web Services 127/ 192

Decentralised Routing

Fig. 1. The configuration of servers and services at the five sites

is usually the bandwidth to the Internet Service Provider which is the limiting
factor on download rate in any case. The metric used by the dynamic discov-
ery service attempts to take location, bandwidth and load factors into account
in order to be able to make a good selection of content host for the content
requestor.

Below we describe in the SOCK calculus the policy which would be used at
the Bologna site to determine the selection of content server. Each of the content
servers provides a service getLoad which, when invoked returns the current load
on the server as a integer value in the range 0 (no load, available for use) to
100 (fully loaded, unavailable for use). Lower numbers are better. The policy at
the Bologna site (UNIBO) compares its own load with the load at Pisa (UPISA),
Florence (UNIFI), Munich (LMU) and Edinburgh (UEDIN) before returning the
name of the server to download from. The remote servers are checked in a priority
order, with geographically nearer servers being checked before those which are
further away. A graphical representation of the system is shown in Figure 1.

4.1 Model in SOCK

In this section we present the SOCK behaviour of the services involved in the
system, together with their deployment in terms of SOCK service engines concur-
rently composed within the process System. The names UNIBO, UPISA, UNIFI,
LMU and UEDIN abstractly represent the location of the services provided by
the universities of Bologna, Pisa, Firenze, Munich and Edinburgh, respectively.
In particular, three behaviours are described: the clientBehaviour, the UniBoBe-
haviour and the ObjServerBehaviour.

The clientBehaviour models the behaviour of a client which sends a request
to the service of the University of Bologna by exploiting the Solicit-Response
getServer@UNIBO and, as a reply, it receives the address of the service to in-
voke for retrieving the e-learning object it is looking for. If the response message
contains a valid address (here we model a fault reply message with the value -1),
the client downloads the e-learning object by invoking the getObject operation

1 A client contacts a university site to download content.

2 The site either serves the request or forwards it to another site.

3 The decision in made in accord with the local service policy.

Case study Scalable Web Services 128/ 192

Decentralised Routing

Fig. 1. The configuration of servers and services at the five sites

is usually the bandwidth to the Internet Service Provider which is the limiting
factor on download rate in any case. The metric used by the dynamic discov-
ery service attempts to take location, bandwidth and load factors into account
in order to be able to make a good selection of content host for the content
requestor.

Below we describe in the SOCK calculus the policy which would be used at
the Bologna site to determine the selection of content server. Each of the content
servers provides a service getLoad which, when invoked returns the current load
on the server as a integer value in the range 0 (no load, available for use) to
100 (fully loaded, unavailable for use). Lower numbers are better. The policy at
the Bologna site (UNIBO) compares its own load with the load at Pisa (UPISA),
Florence (UNIFI), Munich (LMU) and Edinburgh (UEDIN) before returning the
name of the server to download from. The remote servers are checked in a priority
order, with geographically nearer servers being checked before those which are
further away. A graphical representation of the system is shown in Figure 1.

4.1 Model in SOCK

In this section we present the SOCK behaviour of the services involved in the
system, together with their deployment in terms of SOCK service engines concur-
rently composed within the process System. The names UNIBO, UPISA, UNIFI,
LMU and UEDIN abstractly represent the location of the services provided by
the universities of Bologna, Pisa, Firenze, Munich and Edinburgh, respectively.
In particular, three behaviours are described: the clientBehaviour, the UniBoBe-
haviour and the ObjServerBehaviour.

The clientBehaviour models the behaviour of a client which sends a request
to the service of the University of Bologna by exploiting the Solicit-Response
getServer@UNIBO and, as a reply, it receives the address of the service to in-
voke for retrieving the e-learning object it is looking for. If the response message
contains a valid address (here we model a fault reply message with the value -1),
the client downloads the e-learning object by invoking the getObject operation

1 A client contacts a university site to download content.

2 The site either serves the request or forwards it to another site.

3 The decision in made in accord with the local service policy.

Case study Scalable Web Services 129/ 192

Decentralised Routing

Fig. 1. The configuration of servers and services at the five sites

is usually the bandwidth to the Internet Service Provider which is the limiting
factor on download rate in any case. The metric used by the dynamic discov-
ery service attempts to take location, bandwidth and load factors into account
in order to be able to make a good selection of content host for the content
requestor.

Below we describe in the SOCK calculus the policy which would be used at
the Bologna site to determine the selection of content server. Each of the content
servers provides a service getLoad which, when invoked returns the current load
on the server as a integer value in the range 0 (no load, available for use) to
100 (fully loaded, unavailable for use). Lower numbers are better. The policy at
the Bologna site (UNIBO) compares its own load with the load at Pisa (UPISA),
Florence (UNIFI), Munich (LMU) and Edinburgh (UEDIN) before returning the
name of the server to download from. The remote servers are checked in a priority
order, with geographically nearer servers being checked before those which are
further away. A graphical representation of the system is shown in Figure 1.

4.1 Model in SOCK

In this section we present the SOCK behaviour of the services involved in the
system, together with their deployment in terms of SOCK service engines concur-
rently composed within the process System. The names UNIBO, UPISA, UNIFI,
LMU and UEDIN abstractly represent the location of the services provided by
the universities of Bologna, Pisa, Firenze, Munich and Edinburgh, respectively.
In particular, three behaviours are described: the clientBehaviour, the UniBoBe-
haviour and the ObjServerBehaviour.

The clientBehaviour models the behaviour of a client which sends a request
to the service of the University of Bologna by exploiting the Solicit-Response
getServer@UNIBO and, as a reply, it receives the address of the service to in-
voke for retrieving the e-learning object it is looking for. If the response message
contains a valid address (here we model a fault reply message with the value -1),
the client downloads the e-learning object by invoking the getObject operation

1 A client contacts a university site to download content.

2 The site either serves the request or forwards it to another site.

3 The decision in made in accord with the local service policy.

Case study Scalable Web Services 130/ 192

Model in PEPA

Clients

Client i
def
= (connect1, c1,i).(download1, d1,i).Idle i

+ (connect2, c2,i).(download2, d2,i).Idle i

. . .
+ (connectm, cm,i).(downloadm, dm,i).Idle i

+ (overload ,>).Client i

Idle i
def
= (idle, ridle,i).Client i

(1 ≤ i ≤ k)

Case study Scalable Web Services 131/ 192

Model in PEPA

Clients

Client i
def
= (connect1, c1,i).(download1, d1,i).Idle i

+ (connect2, c2,i).(download2, d2,i).Idle i

. . .
+ (connectm, cm,i).(downloadm, dm,i).Idle i

+ (overload ,>).Client i

Idle i
def
= (idle, ridle,i).Client i

(1 ≤ i ≤ k)

Case study Scalable Web Services 132/ 192

Model in PEPA

Clients

Client i
def
= (connect1, c1,i).(download1, d1,i).Idle i

+ (connect2, c2,i).(download2, d2,i).Idle i

. . .
+ (connectm, cm,i).(downloadm, dm,i).Idle i

+ (overload ,>).Client i

Idle i
def
= (idle, ridle,i).Client i

(1 ≤ i ≤ k)

Case study Scalable Web Services 133/ 192

Model in PEPA

Content mirrors

Mirror j
def
=

(
connect j , fj (s)

)
.MirrorUploading j

MirrorUploading j
def
=

(
download j ,>

)
.Mirror j

(1 ≤ j ≤ m)

Case study Scalable Web Services 134/ 192

Model in PEPA

Content mirrors

Mirror j
def
=

(
connect j , fj (s)

)
.MirrorUploading j

MirrorUploading j
def
=

(
download j ,>

)
.Mirror j

(1 ≤ j ≤ m)

Case study Scalable Web Services 135/ 192

Service policies as functional rates in PEPA

The Bologna policy

Serve all requests while load is less than 75%. If more, and the
loads at UNIFI, UPISA, LMU and UEDIN are at least 60%,
60%, 40% and 20% then serve the request if load is less than 95%.

fUNIBO =



> if MirrorUploadingUNIBO < 75
> if MirrorUploadingUNIBO < 95,

MirrorUploadingUNIFI ≥ 60,
MirrorUploadingUPISA ≥ 60,

MirrorUploadingLMU ≥ 40,
MirrorUploadingUEDIN ≥ 20

0 otherwise

Case study Scalable Web Services 136/ 192

Service policies as functional rates in PEPA

The Bologna policy

Serve all requests while load is less than 75%. If more, and the
loads at UNIFI, UPISA, LMU and UEDIN are at least 60%,
60%, 40% and 20% then serve the request if load is less than 95%.

fUNIBO =



> if MirrorUploadingUNIBO < 75
> if MirrorUploadingUNIBO < 95,

MirrorUploadingUNIFI ≥ 60,
MirrorUploadingUPISA ≥ 60,

MirrorUploadingLMU ≥ 40,
MirrorUploadingUEDIN ≥ 20

0 otherwise

Case study Scalable Web Services 137/ 192

Model in PEPA

Dealing with overload

Overload
def
=

(
overload , o(s)

)
.Overload

o(s) =

{
> fi (s) = 0, 1 ≤ i ≤ m
0 otherwise

The system as a whole with client and mirror site populations

(
Client1[p1] ‖ Client2[p2] ‖ . . . ‖ Clientk [pk]

)
��

L

(
Mirror 1[q1] ‖ Mirror 2[q2] ‖ . . . ‖ Mirror m[qm]

)

Case study Scalable Web Services 138/ 192

Model in PEPA

Dealing with overload

Overload
def
=

(
overload , o(s)

)
.Overload

o(s) =

{
> fi (s) = 0, 1 ≤ i ≤ m
0 otherwise

The system as a whole with client and mirror site populations

(
Client1[p1] ‖ Client2[p2] ‖ . . . ‖ Clientk [pk]

)
��

L

(
Mirror 1[q1] ‖ Mirror 2[q2] ‖ . . . ‖ Mirror m[qm]

)

Case study Scalable Web Services 139/ 192

Numerical Results

ridle = 0.001

Case study Scalable Web Services 140/ 192

Numerical Results

ridle = 0.01

Case study Scalable Web Services 141/ 192

Numerical Results

ridle = 0.02

Case study Scalable Web Services 142/ 192

Numerical Results

ridle = 0.03

Case study Scalable Web Services 143/ 192

Numerical Results

ridle = 0.04

Case study Scalable Web Services 144/ 192

Numerical Results

ridle = 0.05

Case study Scalable Web Services 145/ 192

Numerical Results

ridle = 0.06

Hybrid approximation 146/ 192

Outline

1 Introduction
Collective Dynamics

2 Continuous Approximation

3 Fluid-Flow Semantics
Convergence results

4 Case study
Scalable Web Services

5 Hybrid approximation

Hybrid approximation 147/ 192

Motivation: Alternative Representations

ODEs

population view

TDHSA hybrid view

Stochastic
Simulation

CTMC

individual view

Large
PEPA model

-

��
��

�
��

�
��

�
��

��*

HH
HHH

HHH
HHH

HHHHj

Hybrid approximation 148/ 192

Motivation: Alternative Representations

ODEs population view

TDHSA hybrid view

Stochastic
Simulation

CTMC

individual view

Large
PEPA model

-

��
��

�
��

�
��

�
��

��*

HH
HHH

HHH
HHH

HHHHj

Hybrid approximation 149/ 192

Motivation: Alternative Representations

ODEs

population view

TDHSA hybrid view

Stochastic
Simulation

CTMC

individual view

Large
PEPA model

-��
��

�
��

�
��

�
��

��*

HH
HHH

HHH
HHH

HHHHj

Hybrid approximation 150/ 192

Overview

PEPA has two-level syntax

sequential components: S ::= (a, r).S | S + S
parallel components: P ::= P ��

L
P | S

assume sequential components: S =
∑q

j=1(aj , rj).S
′

mapping

P def
=

T =

S1 S2 · · · Sn
��
L2

��
L3

��
Ln

T1 T2 · · · Tn⊕L2 ⊕L3 ⊕Ln

Hybrid approximation 151/ 192

Overview

PEPA has two-level syntax

sequential components: S ::= (a, r).S | S + S
parallel components: P ::= P ��

L
P | S

assume sequential components: S =
∑q

j=1(aj , rj).S
′

mapping

P def
=

T =

S1 S2 · · · Sn
��
L2

��
L3

��
Ln

T1 T2 · · · Tn⊕L2 ⊕L3 ⊕Ln

Hybrid approximation 152/ 192

Overview

PEPA has two-level syntax

sequential components: S ::= (a, r).S | S + S
parallel components: P ::= P ��

L
P | S

assume sequential components: S =
∑q

j=1(aj , rj).S
′

mapping

P def
=

T =

S1 S2 · · · Sn
��
L2

��
L3

��
Ln

T1 T2 · · · Tn⊕L2 ⊕L3 ⊕Ln

Hybrid approximation 153/ 192

Overview

PEPA has two-level syntax

sequential components: S ::= (a, r).S | S + S
parallel components: P ::= P ��

L
P | S

assume sequential components: S =
∑q

j=1(aj , rj).S
′

mapping

P def
=

T =

S1 S2 · · · Sn
��
L2

��
L3

��
Ln

T1 T2 · · · Tn⊕L2 ⊕L3 ⊕Ln

Hybrid approximation 154/ 192

Overview

PEPA has two-level syntax

sequential components: S ::= (a, r).S | S + S
parallel components: P ::= P ��

L
P | S

assume sequential components: S =
∑q

j=1(aj , rj).S
′

mapping

P def
=

T =

S1 S2 · · · Sn
��
L2

��
L3

��
Ln

T1 T2 · · · Tn⊕L2 ⊕L3 ⊕Ln

Hybrid approximation 155/ 192

Overview

PEPA has two-level syntax

sequential components: S ::= (a, r).S | S + S
parallel components: P ::= P ��

L
P | S

assume sequential components: S =
∑q

j=1(aj , rj).S
′

mapping

P def
=

T =

S1 S2 · · · Sn
��
L2

��
L3

��
Ln

T1 T2 · · · Tn⊕L2 ⊕L3 ⊕Ln

Hybrid approximation 156/ 192

Overview

PEPA has two-level syntax

sequential components: S ::= (a, r).S | S + S
parallel components: P ::= P ��

L
P | S

assume sequential components: S =
∑q

j=1(aj , rj).S
′

mapping

P def
=

T =

S1 S2 · · · Sn
��
L2

��
L3

��
Ln

T1 T2 · · · Tn⊕L2 ⊕L3 ⊕Ln

Hybrid approximation 157/ 192

Overview

PEPA has two-level syntax

sequential components: S ::= (a, r).S | S + S
parallel components: P ::= P ��

L
P | S

assume sequential components: S =
∑q

j=1(aj , rj).S
′

mapping

P def
=

T =

S1 S2 · · · Sn
��
L2

��
L3

��
Ln

T1 T2 · · · Tn⊕L2 ⊕L3 ⊕Ln

Hybrid approximation 158/ 192

Overview

PEPA has two-level syntax

sequential components: S ::= (a, r).S | S + S
parallel components: P ::= P ��

L
P | S

assume sequential components: S =
∑q

j=1(aj , rj).S
′

mapping

P def
=

T =

S1 S2 · · · Sn
��
L2

��
L3

��
Ln

T1 T2 · · · Tn⊕L2 ⊕L3 ⊕Ln

Hybrid approximation 159/ 192

Transition-driven stochastic hybrid automata (TDSHA)

subset of piecewise deterministic Markov processes (PDMPs)

set of (control) modes: Q = {q1, . . . , qm}

set of variables: X = {X1, . . . ,Xn}

set of events/actions: A = {a1, a2, . . .}

initial state: (q, (x1, . . . , xn))

multiset of continuous transitions:
(q, (z1, . . . , zn), f , a) where f : Rn → R

multiset of stochastic transitions
(qs , qt , true,

∧
(X ′k = ρk (X)), h, a) where h : Rn → R

Hybrid approximation 160/ 192

Transition-driven stochastic hybrid automata (TDSHA)

subset of piecewise deterministic Markov processes (PDMPs)

set of (control) modes: Q = {q1, . . . , qm}

set of variables: X = {X1, . . . ,Xn}

set of events/actions: A = {a1, a2, . . .}

initial state: (q, (x1, . . . , xn))

multiset of continuous transitions:
(q, (z1, . . . , zn), f , a) where f : Rn → R

multiset of stochastic transitions
(qs , qt , true,

∧
(X ′k = ρk (X)), h, a) where h : Rn → R

Hybrid approximation 161/ 192

Transition-driven stochastic hybrid automata (TDSHA)

subset of piecewise deterministic Markov processes (PDMPs)

set of (control) modes: Q = {q1, . . . , qm}

set of variables: X = {X1, . . . ,Xn}

set of events/actions: A = {a1, a2, . . .}

initial state: (q, (x1, . . . , xn))

multiset of continuous transitions:
(q, (z1, . . . , zn), f , a) where f : Rn → R

multiset of stochastic transitions
(qs , qt , true,

∧
(X ′k = ρk (X)), h, a) where h : Rn → R

Hybrid approximation 162/ 192

Transition-driven stochastic hybrid automata (TDSHA)

subset of piecewise deterministic Markov processes (PDMPs)

set of (control) modes: Q = {q1, . . . , qm}

set of variables: X = {X1, . . . ,Xn}

set of events/actions: A = {a1, a2, . . .}

initial state: (q, (x1, . . . , xn))

multiset of continuous transitions:
(q, (z1, . . . , zn), f , a) where f : Rn → R

multiset of stochastic transitions
(qs , qt , true,

∧
(X ′k = ρk (X)), h, a) where h : Rn → R

Hybrid approximation 163/ 192

Transition-driven stochastic hybrid automata (TDSHA)

subset of piecewise deterministic Markov processes (PDMPs)

set of (control) modes: Q = {q1, . . . , qm}

set of variables: X = {X1, . . . ,Xn}

set of events/actions: A = {a1, a2, . . .}

initial state: (q, (x1, . . . , xn))

multiset of continuous transitions:
(q, (z1, . . . , zn), f , a) where f : Rn → R

multiset of stochastic transitions
(qs , qt , true,

∧
(X ′k = ρk (X)), h, a) where h : Rn → R

Hybrid approximation 164/ 192

TDSHA behaviour

continuous trace with stochastic jumps

continuous behaviour in mode q described by ODEs

dX/dt =
∑
{(z1, . . . , zn)f (X) | (q, (z1, . . . , zn), f , a)}

stochastic transition from mode qs and qt with resets

(qs , qt , true,
∧

(X ′k = ρk (X)), g , a)

happens with rate

λ(q,X) =
∑
{h(X) | (qs , qt , true,R, h, a)}

and probability g(X)/λ(q,X)

Hybrid approximation 165/ 192

TDSHA behaviour

continuous trace with stochastic jumps

continuous behaviour in mode q described by ODEs

dX/dt =
∑
{(z1, . . . , zn)f (X) | (q, (z1, . . . , zn), f , a)}

stochastic transition from mode qs and qt with resets

(qs , qt , true,
∧

(X ′k = ρk (X)), g , a)

happens with rate

λ(q,X) =
∑
{h(X) | (qs , qt , true,R, h, a)}

and probability g(X)/λ(q,X)

Hybrid approximation 166/ 192

TDSHA behaviour

continuous trace with stochastic jumps

continuous behaviour in mode q described by ODEs

dX/dt =
∑
{(z1, . . . , zn)f (X) | (q, (z1, . . . , zn), f , a)}

stochastic transition from mode qs and qt with resets

(qs , qt , true,
∧

(X ′k = ρk (X)), g , a)

happens with rate

λ(q,X) =
∑
{h(X) | (qs , qt , true,R, h, a)}

and probability g(X)/λ(q,X)

Hybrid approximation 167/ 192

TDSHA synchronised product

T = T1 ⊕L T2 has Q = Q1 × Q2 and X = X1 ∪ X2

continuous transitions: extend vector to cover X
a /∈ L: (q1, q2) has every transition from q1 and from q2

a ∈ L: (q1, q2) has every transition from q1 and q2 with a and
new function is PEPA cooperation rate (i.e. bounded capacity)

stochastic transitions:

a /∈ L: (q1, q2) has every transition from q1 and from q2

a ∈ L: (q1, q2) has every transition that both q1 and q2 have
with a, new rate is PEPA cooperation rate and conjunction of
resets is taken

Hybrid approximation 168/ 192

TDSHA synchronised product

T = T1 ⊕L T2 has Q = Q1 × Q2 and X = X1 ∪ X2

continuous transitions: extend vector to cover X
a /∈ L: (q1, q2) has every transition from q1 and from q2

a ∈ L: (q1, q2) has every transition from q1 and q2 with a and
new function is PEPA cooperation rate (i.e. bounded capacity)

stochastic transitions:

a /∈ L: (q1, q2) has every transition from q1 and from q2

a ∈ L: (q1, q2) has every transition that both q1 and q2 have
with a, new rate is PEPA cooperation rate and conjunction of
resets is taken

Hybrid approximation 169/ 192

TDSHA synchronised product

T = T1 ⊕L T2 has Q = Q1 × Q2 and X = X1 ∪ X2

continuous transitions: extend vector to cover X
a /∈ L: (q1, q2) has every transition from q1 and from q2

a ∈ L: (q1, q2) has every transition from q1 and q2 with a and
new function is PEPA cooperation rate (i.e. bounded capacity)

stochastic transitions:

a /∈ L: (q1, q2) has every transition from q1 and from q2

a ∈ L: (q1, q2) has every transition that both q1 and q2 have
with a, new rate is PEPA cooperation rate and conjunction of
resets is taken

Hybrid approximation 170/ 192

Clients and servers example

clients

Cr
def
= (request, rrq).Ct

Ct
def
= (think, rth).Cr

servers

Hybrid approximation 171/ 192

Clients and servers example

clients

Cr
def
= (request, rrq).Ct

Ct
def
= (think, rth).Cr

servers

Sr
def
= (request, rrp).Sl + (break, rbk).Sb

Sl
def
= (log, rlg).Sr + (remove, rrm).Sm

Sm
def
= (maint, rmn).Sr + (replace, rrc).Sr

Sb
def
= (fix, rfx).St

St
def
= (test, rts).St + (compl, rcm).Sr

Hybrid approximation 172/ 192

Clients and servers example

clients
Cr

request

think
Ct

servers

Sr
request

log

fix

break compl

test

maintreplace remove

Sl

Sm

Sb St

Hybrid approximation 173/ 192

Clients and servers example

clients
Cr

request

think
Ct

servers

Sr
request

log

fix

break compl

test

maintreplace remove

Sl

Sm

Sb St

Hybrid approximation 174/ 192

Clients and servers example

clients
Cr

request

think
Ct

servers

Sr
request

log

fix

break compl

test

maintreplace remove

Sl

Sm

Sb St

Hybrid approximation 175/ 192

Clients and servers example

clients
Cr

request

think
Ct

servers

Sr
request

log

fix

break compl

test

maintreplace remove

Sl

Sm

Sb St

Hybrid approximation 176/ 192

Clients and servers example

clients
Cr

request

think
Ct

servers

Sr
request

log

fix

break compl

test

maintreplace remove

Sl

Sm

Sb St

Hybrid approximation 177/ 192

Clients and servers example

clients
Cr

request

think
Ct

servers

Sr
request

log

fix

break compl

test

maintreplace remove

Sl

Sm

Sb St

Hybrid approximation 178/ 192

Clients and servers example

clients
Cr

request

think
Ct

servers

Sr
request

log

fix

break compl

test

maintreplace remove

Sl

Sm

Sb St

Hybrid approximation 179/ 192

Clients and servers example

clients

Cr
def
= (request, rrq).Ct

Ct
def
= (think, rth).Cr

servers

Sr
def
= (request, rrp).Sl + (break , rbk).Sb

Sl
def
= (log, rlg).Sr + (remove, rrm).Sm

Sm
def
= (maint, rmn).Sr + (replace, rrc).Sr

Sb
def
= (fix , rfx).St

St
def
= (test, rts).St + (compl , rcm).Sr

Hybrid approximation 180/ 192

Mapping to TDSHA

continuous sequential components: Cr,Ct,Sr,Sl,Sm

integral sequential components: Sb, St

population vector: (#Cr,#Ct,#Sr,#Sl,#Sm,#Sb,#St)

PEPA is conservative: both NC = #Cr + #Ct and
NS = #Sr + #Sl + #Sm + #Sb + #St are invariant

TDSHA

modes: (#Sb,#St) ∈ {0, . . . ,NS} × {0, . . . ,NS}
variables: (XCr,XCt,XSr,XSl,XSm)
initial state: ((#Sb,#St), (#Cr,#Ct,#Sr,#Sl,#St))
continuous and stochastic transitions

Hybrid approximation 181/ 192

Mapping to TDSHA

continuous sequential components: Cr,Ct,Sr,Sl,Sm

integral sequential components: Sb, St

population vector: (#Cr,#Ct,#Sr,#Sl,#Sm,#Sb,#St)

PEPA is conservative: both NC = #Cr + #Ct and
NS = #Sr + #Sl + #Sm + #Sb + #St are invariant

TDSHA

modes: (#Sb,#St) ∈ {0, . . . ,NS} × {0, . . . ,NS}
variables: (XCr,XCt,XSr,XSl,XSm)
initial state: ((#Sb,#St), (#Cr,#Ct,#Sr,#Sl,#St))
continuous and stochastic transitions

Hybrid approximation 182/ 192

Mapping to TDSHA

continuous sequential components: Cr,Ct,Sr,Sl,Sm

integral sequential components: Sb, St

population vector: (#Cr,#Ct,#Sr,#Sl,#Sm,#Sb,#St)

PEPA is conservative: both NC = #Cr + #Ct and
NS = #Sr + #Sl + #Sm + #Sb + #St are invariant

TDSHA

modes: (#Sb,#St) ∈ {0, . . . ,NS} × {0, . . . ,NS}
variables: (XCr,XCt,XSr,XSl,XSm)
initial state: ((#Sb,#St), (#Cr,#Ct,#Sr,#Sl,#St))
continuous and stochastic transitions

Hybrid approximation 183/ 192

Continuous transitions between continuous components

Sr
(request,rrp ·#Sr)−−−−−−−−−−→? Sl

continuous transition: flow is determined by ODEs

0

1

2

3

4

#

dSb
dt

dSt
dt Sr Sl Sm

((#Sb,#St), (0, 0,−1, 1, 0), rrp ·#Sr, request)

Hybrid approximation 184/ 192

Continuous transition at a discrete component

St
(test,rts ·#St)−−−−−−−−→? St

continuous transition: no flow because single component

0

1

2

3

4

#

dSb
dt

dSt
dt Sr Sl Sm

((#Sb,#St), (0, 0, 0, 0, 0), rts ·#St, request)

Hybrid approximation 185/ 192

Discrete transitions between discrete components

Sb
(fix ,rfx ·#Sb)−−−−−−−→? St

stochastic transition: unit quantity is shifted

0

1

2

3

4

#

dSb
dt

dSt
dt Sr Sl Sm

((#Sb,#St), (#Sb − 1,#St + 1), true, true, rfx ·#Sb, fix)

Hybrid approximation 186/ 192

Discrete transition from discrete to continuous component

St
(compl ,rcm·#St)−−−−−−−−−−→? Sr

stochastic transition: unit quantity is shifted

0

1

2

3

4

#

dSb
dt

dSt
dt Sr Sl Sm

((#Sb,#St), (#Sb,#St − 1), true,R, rcm ·#St, compl) with
R = (X ′Sr = XSr + 1)

Hybrid approximation 187/ 192

Discrete transition from continuous to discrete component

Sr
(break,rbk ·#Sr)−−−−−−−−−→? Sb

stochastic transition: unit quantity is shifted proportionally

0

1

2

3

4

#

dSb
dt

dSt
dt Sr Sl Sm

((#Sb,#St), (#Sb + 1,#St), true,R, rbk ·#Sr, break) with
R = (X ′Sr = XSr − zr) ∧ (X ′Sl = XSl − zl) ∧ (X ′Sm = XSm − zm)
and zr + zl + zm = 1

Hybrid approximation 188/ 192

Discrete transition between continuous components

Sm
(maint,rmn·#Sm)−−−−−−−−−−→? Sr

stochastic transition: unit quantity is shifted proportionally

0

1

2

3

4

#

dSb
dt

dSt
dt Sr Sl Sm

Hybrid approximation 189/ 192

Discrete transition between continuous components

((#Sb,#St), (#Sb,#St), true,R, rmn ·#Sm,maint) where
R = (X ′Sr = XSr−zr +1)∧(X ′Sl = XSl−zl)∧(X ′Sm = XSm−zm)
and zr + zl + zm = 1

0

1

2

3

4

#

dSb
dt

dSt
dt Sr Sl Sm

Hybrid approximation 190/ 192

Continuous determinstic simulation

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50

Time

#Sr
#Sl

#Sm
#Sb
#St
#Ct

Hybrid approximation 191/ 192

Hybrid simulation

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50

Time

#Sr
#Sl

#Sm
#Sb
#St
#Ct

Hybrid approximation 192/ 192

References

J. Hillston, Fluid Flow Approximations of PEPA Models, in
Proc. of Intl. Conference on Quantitative Evaluation of
Systems (QEST) 2005, Computer Society Press, pp. 33–42,
2005.

J.T. Bradley, S.T. Gilmore and J. Hillston, Analysing
distributed Internet worm attacks using continuous state-space
approximation of process algebra models, in Journal of
Computer and System Sciences, 74(6), pp. 1013–1032, 2008.

M. Tribastone, S. Gilmore and J. Hillston, Scalable Differential
Analysis of Process Algebra Models, in IEEE Transactions on
Software Engineering, 38(1), pp. 205–219, 2012.

L. Bortolussi, V. Galpin, J. Hillston and M. Tribastone, Hybrid
semantics for PEPA, in QEST 2010, Williamsburg, USA,
Computer Society Press, pp. 181–190, 2010.

	Introduction
	Collective Dynamics

	Continuous Approximation
	Fluid-Flow Semantics
	Convergence results

	Case study
	Scalable Web Services

	Hybrid approximation

