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Systems Biology

Biological advances mean that much more is now known
about the components of cells and the interactions between
them.

Systems biology aims to develop a better understanding of the
processes involved.

Formalisms from theoretical computer science have found a
new role in developing models for systems biology, allowing
biologists to test hypotheses and prioritise experiments.
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Networks in cells

We can distinguish three distinct types of links or networks in cells

Gene networks: Genes control the production of proteins but are
themselves regulated by the same or different
proteins.

Signal transduction networks: External stimuli initiate messages
that are carried through a cell via a cascade of
biochemical reactions.

Metabolic pathways: The survival of the cell depends on its ability
to transform nutrients into energy.
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Extracellular signalling

Extracellular signalling — communication between cells.

Signalling molecules released by one cell migrate to another;

These molecules enter the cell and instigate a pathway, or
series of reactions, which carries the information from the
membrane to the nucleus;

For example, the Ras/Raf-1/MEK/ERK pathway conveys
differentiation signals to the nucleus of a cell.

Specific gene
activation

cellular response
to signalSignal

MEKRaf ERK enters nucleus
Activated ERK
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Cell signalling

All signalling is biochemical:

Increasing protein concentration broadcasts the information
about an event; for example, that a gene promoter is “on”.

The message is “received” by a concentration dependent
response at the protein signal’s site of action.

This stimulates a response at the signalling protein’s site of
action.

Signals propagate through a series of protein accumulations.
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Signal transduction pathways

A series of biochemical reactions serve to pass a message from the
cell membrane to the nucleus.
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Gene expression pathways

Genetic activity is controlled by molecular signals that
determine when and how often a given gene is transcribed.

The product encoded by one gene often regulates the
expression of other genes.

For appropriate combinations of input signals transcription is
initiated and protein product accumulates when production
exceeds degradation.

Links are established between genes when the product of one
regulates the expression of another.

Thus networks of interaction can be deduced and these may
be quite complex.
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Dynamic issues

In biochemical regulatory networks, the delay between events
are determined by the delay while signal molecule
concentrations accumulate or decline sufficiently.

All reactions rely on the random process of molecules colliding
with the cell.

Thus the accumulation of protein is a stochastic process
affected by several factors in the cell (temperature, pH, etc.).

Thus the “reaction time” is a distribution rather than a
deterministic time, and this can be shown to be an
exponential distribution for basis molecular reactions.
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Stochastic behaviour

The stochastic reaction rate of a chemical reaction is a
function of only those molecular species involved as reactants
or catalysts, and a stochastic rate constant c .

The stochastic rate constant takes into account volume,
temperature, pH and other environmental factors.

The stoichiometry of the reaction — how many molecules of
each reactant species are required — also has an impact.

Commonly the law of mass action is used to determine the
effective rate of a reaction: this is the product of the
stochastic rate constant and the amount of each of the
reactants.
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Using Stochastic Process Algebras

Process algebras have several attractive features which can be
useful for modelling and understanding biological systems:

Process algebraic formulations are compositional and make
interactions/constraints explicit.

Structure can also be apparent.

Equivalence relations allow formal comparison of high-level
descriptions.

There are well-established techniques for reasoning about the
behaviours and properties of models, supported by software.
These include qualitative and quantitative analysis, and model
checking.
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Molecular processes as concurrent computations

A correspondence between cellular processes and process alebras was first
highlighted by Regev and her co-authors in the early 2000s.

Concurrency
Molecular
Biology

Metabolism Signal
Transduction

Concurrent
computational processes

Molecules Enzymes and
metabolites

Interacting
proteins

Synchronous communication Molecular
interaction

Binding and
catalysis

Binding and
catalysis

Transition or mobility
Biochemical
modification or
relocation

Metabolite
synthesis

Protein binding,
modification or
sequestration

[Regev et al 2000]
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Calculi for Systems Biology

Several different process caluli have been developed or adapted for
application in systems biology. Each of them has different
properties able to render different aspects of biological phenomena.
They may be divided into two main categories:

Calculi defined originally in computer science and then applied
in biology, such as the biochemical stochastic π-calculus,
SCCP, CCS-R and PEPA;

Calculi defined specifically by observing biological structures
and phenomena, such as BioAmbients, Brane Calculi,
Beta-binders, BlenX and Bio-PEPA.
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Stochastic π-calculus

The stochastic π-calculus has been used to model and analyse
a wide variety of biological systems.

Examples include metabolic pathways, gene transcription and
signal transduction.

Analysis is mainly based on stochastic simulation (Gillespie’s
algorithm).

Two tools: BioSPI and SPIM which implement slightly
different versions of the language.

There has also been some work on a graphical notation
associated with the SPIM tool.
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Stochastic π-calculus

Stochastic π-calculus [Priami, 1995 ] extends the π-calculus with
exponentially-distributed rates.

0 Nil
(π, r).P Prefix
(νn)P New
[x = y ]P Matching
P1 | P2 Parallel
P1 + P2 Choice
!P Replication

where π is either x(y) (input), xy (output ) or τ (silent).
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Example: The VICE project

The aim was to construct a minimal cell in silico in order to
track the dynamics of a complete metabolome.

Thus a VIrtual CEll was defined as a stochastic π-calculus
model, which seems to behave as a simplified prokaryote.

Started from a published minimal gene set which eliminated
duplicated genes and other redundancies from the smallest
known bacterial genomes. This was further reduced to 180
different genes.

Experimental results were in accordance with those available
from in vivo experiments.

Some extensions to the stochastic π-calculus were needed.
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Experimental results were in accordance with those available
from in vivo experiments.

Some extensions to the stochastic π-calculus were needed.
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Process Algebras for Systems Biology

The process algebra of choice for Regev and her co-workers was
the stochastic π-calculus.

This work was hugely influential and many people followed their
lead in applying the stochastic π-calculus to model intracellular
processes.

However the style of modelling in the π-calculus is not always ideal
for representing biochemical processes.

Nevertheless a certain “flavour” of the π-calculus still
predominately influences many of the process algebras for systems
biology.
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Issues with the π-calculus

The restriction to always consider actions as occurring in
conjugate pairs does not always match well with biochemical
reactions where you might want more than two molecules to
be involved.

The molecule-as-processes abstraction can lead to problems
pragmatically. By focussing on the individual molecules the
calculus forces the modeller into an individuals-based
interpretation of the model. This means that simulation is
often the only feasible interpretation.
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Bio-PEPA: motivations

With Bio-PEPA we have been experimented with the more
abstract mapping between elements of signalling pathways and
process algebra constructs: species as processes.

We also wanted to be able to capture more of the biological
features expressed in the models such as those found in the
BioModels database.



Process Calculi for Systems Biology 77/ 223

Bio-PEPA: motivations

With Bio-PEPA we have been experimented with the more
abstract mapping between elements of signalling pathways and
process algebra constructs: species as processes.

We also wanted to be able to capture more of the biological
features expressed in the models such as those found in the
BioModels database.



Process Calculi for Systems Biology 78/ 223

Motivations for Abstraction

Our motivations for seeking more abstraction:

Process algebra-based analyses such as comparing models
(e.g. for equivalence or simulation) and model checking are
only possible if the state space is not prohibitively large.

The data that we have available to parameterise models is
sometimes speculative rather than precise.

This suggests that it can be useful to use semi-quantitative
models rather than quantitative ones.



Process Calculi for Systems Biology 79/ 223

Motivations for Abstraction

Our motivations for seeking more abstraction:

Process algebra-based analyses such as comparing models
(e.g. for equivalence or simulation) and model checking are
only possible if the state space is not prohibitively large.

The data that we have available to parameterise models is
sometimes speculative rather than precise.

This suggests that it can be useful to use semi-quantitative
models rather than quantitative ones.



Process Calculi for Systems Biology 80/ 223

Motivations for Abstraction

Our motivations for seeking more abstraction:

Process algebra-based analyses such as comparing models
(e.g. for equivalence or simulation) and model checking are
only possible if the state space is not prohibitively large.

The data that we have available to parameterise models is
sometimes speculative rather than precise.

This suggests that it can be useful to use semi-quantitative
models rather than quantitative ones.



Process Calculi for Systems Biology 81/ 223

Motivations for Abstraction

Our motivations for seeking more abstraction:

Process algebra-based analyses such as comparing models
(e.g. for equivalence or simulation) and model checking are
only possible if the state space is not prohibitively large.

The data that we have available to parameterise models is
sometimes speculative rather than precise.

This suggests that it can be useful to use semi-quantitative
models rather than quantitative ones.



Process Calculi for Systems Biology 82/ 223

Alternative Representations

ODEs
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Discretising the population view

We can discretise the continuous range of possible concentration
values into a number of distinct states. These form the possible
states of the component representing the reagent.
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Alternative models

The ODE model can be regarded as an approximation of a
CTMC in which the number of molecules is large enough that
the randomness averages out and the system is essentially
deterministic.

The full molecular view can be used for detailed study of the
stochastic behaviour, usually via stochastic simulation

In models with levels, each level of granularity gives rise to a
CTMC, and the behaviour of this sequence of Markov
processes converges to the behaviour of the system of ODEs.

Some analyses which can be carried out via numerical solution
of the CTMC are not readily available from ODEs or
stochastic simulation.
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Modelling biological features

There are some features of biochemical reaction systems which are
not readily captured by π-calculus-based stochastic process
algebras.

Particular problems are encountered with:

stoichiometry — the multiplicity in which an entity
participates in a reaction;

general kinetic laws — although mass action is widely used
other kinetics are also commonly employed.

multiway reactions — although thermodynamic arguments
can be made that there are never more than two reagents
involved in a reaction, in practice it is often useful to model at
a more abstract level.
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Illustration

Consider a conversion of a substrate S , with stoichiometry 2, to a
product P, under the influence of an enzyme E , i.e.

2× S
E−→ P

In the stochastic π-calculus (for example) this must modelled as a
sequence of unary and binary reactions:

S + S −→ 2S

2S + E −→ 2S :E

2S :E −→ P :E

P :E −→ P + E
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Illustration cont.

The problems with this are various:

Rates must be found for all the intermediate steps.

Alternate intermediate states are possible and it may not be
known which is the appropriate one.

The number of “states” of the system is significantly
increased which has implications for computational
efficiency/tractability.

The use of multiway synchronisation, and the reagent-centric style
of modelling, avoids these problems
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Illustration cont.

The reaction 2S
E−→ P represents the enzymatic reaction from the

substrate S , with stoichiometry 2, to the product P with enzyme
E .

In Bio-PEPA this is described as:

S
def
= (α, 2)↓S

E
def
= (α, 1)⊕ E

P
def
= (α, 1)↑P

(S(lS0) ��
{α}

E (lE0)) ��
{α}

P(lP0)

The dynamics is described by the law fα = v×E×S2

(K+S2)
.
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Bio-PEPA

In Bio-PEPA:

Unique rates are associated with each reaction (action) type,
separately from the specification of the logical behaviour.
These rates may be specified by functions.

The representation of an action within a component (species)
records the stoichiometry of that entity with respect to that
reaction. The role of the entity is also distinguished.

The local states of components are quantitative rather than
functional, i.e. distinct states of the species are represented as
distinct components, not derivatives of a single component.
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Bio-PEPA reagent-centric example

BA

C

b_a

c_b

ab_c

c_a

A
def
= (ab c , 1)↓A + (b a, 1)↑A

+ (c a, 1)↑A
B

def
= (ab c , 1)↓B + (b a, 1)↓B

+ (c b, 1)↑B
C

def
= (c a, 1)↓C + (c b, 1)↓C

+ (ab c , 1)↑C(
A(lA0) ��

{ab c,b a}
B(lB0)

)
��

{ab c,c a,c b}
C (lC0)
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Reagent-centric view

Role Impact on reaction rate Impact on reagent

Reactant positive impact,
e.g. proportional to current
concentration

decreases level

Product no impact,
except at saturation

increases level

Enzyme positive impact,
e.g. proportional to current
concentration

level unchanged

Inhibitor negative impact,
e.g. inversely proportional to
current concentration

level unchanged
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The syntax

Sequential component (species component)

S ::= (α, κ) op S | S + S | C where op = ↓ | ↑ | ⊕ | 	 | �

Model component
P ::= P ��

L
P | S(l)

The parameter l is abstract, recording quantitative information
about the species.

Depending on the interpretation, this quantity may be:

number of molecules (SSA),

concentration (ODE) or

a level within a semi-quantitative model (CTMC).
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The Bio-PEPA system

A Bio-PEPA system P is a 6-tuple 〈V,N ,K,FR ,Comp,P〉, where:

V is the set of compartments;

N is the set of quantities describing each species (step size,
number of levels, location, ...);

K is the set of parameter definitions;

FR is the set of functional rate definitions;

Comp is the set of definitions of sequential components;

P is the model component describing the system.
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Semantics

The semantics of Bio-PEPA is given as a small-step operational
semantics, intended for deriving the CTMC with levels.

We define two relations over the processes:

1 capability relation, that supports the derivation of quantitative
information;

2 stochastic relation, that gives the rates associated with each
action.
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Semantics: prefix rules

prefixReac ((α, κ)↓S)(l)
(α,[S:↓(l ,κ)])−−−−−−−−→cS(l − κ)

κ ≤ l ≤ N

prefixProd ((α, κ)↑S)(l)
(α,[S:↑(l ,κ)])−−−−−−−−→cS(l + κ)

0 ≤ l ≤ (N − κ)

prefixMod ((α, κ) op S)(l)
(α,[S:op(l ,κ)])−−−−−−−−→cS(l)

0 < l ≤ N

with op = �,⊕, or 	
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Semantics: constant and choice rules

Choice1
S1(l)

(α,v)−−−→cS
′
1(l ′)

(S1 + S2)(l)
(α,v)−−−→cS

′
1(l ′)

Choice2
S2(l)

(α,v)−−−→cS
′
2(l ′)

(S1 + S2)(l)
(α,v)−−−→cS

′
2(l ′)

Constant
S(l)

(α,S :[op(l ,κ))]−−−−−−−−→cS
′(l ′)

C (l)
(α,C :[op(l ,κ))]−−−−−−−−−→cS

′(l ′)

with C
def
= S
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Semantics: cooperation rules

coop1
P1

(α,v)−−−→cP
′
1

P1 ��L P2
(α,v)−−−→cP

′
1
��
L
P2

with α /∈ L

coop2
P2

(α,v)−−−→cP
′
2

P1 ��L P2
(α,v)−−−→cP1 ��L P ′2

with α /∈ L

coopFinal
P1

(α,v1)−−−→cP
′
1 P2

(α,v2)−−−→cP
′
2

P1 ��L P2
(α,v1::v2)−−−−−→cP

′
1
��
L
P ′2

with α ∈ L
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Semantics: rates and transition system

In order to derive the rates we consider the stochastic relation
−→s ⊆ P × Γ× P, with γ ∈ Γ := (α, r) and r ∈ R+.

The relation is defined in terms of the previous one:

P
(αj ,v)
−−−→cP

′

〈V,N ,K,FR ,Comp,P〉
(αj ,rαj )−−−−→s〈V,N ,K,FR ,Comp,P ′〉

rαj represents the parameter of an exponential distribution and the
dynamic behaviour is determined by a race condition.

The rate rαj is defined as fαj (V,N ,K)/h.
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Example: Michaelis-Menten

The reaction S
E−→P represents the enzymatic reaction from the

substrate S to the product P with enzyme E .

The dynamics is described by the law v×E×S
(K+S) .

S
def
= (α, 1)↓S

E
def
= (α, 1)⊕ E

P
def
= (α, 1)↑P

(S(lS0) ��
{α}

E (lE0)) ��
{α}

P(lP0)
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Analysis

A Bio-PEPA system is a formal, intermediate and compositional
representation of the system.

From it we can obtain

a CTMC (with levels)

a ODE system for simulation and other kinds of analysis

a Gillespie model for stochastic simulation

a PRISM model for model checking

Each of these kinds of analysis can be of help for studying different
aspects of the biological model. Moreover they can be used in
conjunction.
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The abstraction

When modelling in Bio-PEPA we use the following abstraction:

Each species i is described by a Bio-PEPA component Ci .

Each reaction j is associated with an action type αj and its
dynamics is described by a specific function fαj .

Given a reaction j , all the species/components cooperate on
the action type αj and consequently, reactants decrease their
levels, while products increase them.

The species components are then composed together to describe
the behaviour of the system.
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State representation

The state of the system at any time consists of the local
states of each of its sequential/species components.

The local states of components are quantitative rather than
functional, i.e. distinct states of the species are represented as
distinct components, not derivatives of a single component.

A component varying its state corresponds to it varying its
quantity or level.

This is captured by an integer parameter associated with the
species and the effect of a reaction is to vary that parameter
by a number of levels corresponding to the stoichiometry of
this species in the reaction as we saw in the formal semantics.
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Analysis with Bio-PEPA

Bio-PEPA

SSA CTMCs

PRISMStochKit Dizzy

ODEs

CVODES Matlab
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CTMC

Analysis of the Markov process can yield quite detailed
information about the dynamic behaviour of the model.

A steady state analysis provides statistics for average
behaviour over a long run of the system.

A transient analysis provides statistics relating to the
evolution of the model over a fixed period. This will be
dependent on the starting state.

In the biological context transient analysis is appropriate much
more frequently than steady state analysis.

If molecule counts are kept in states then either analysis rapidly
becomes infeasible.

Bio-PEPA models can also be simulated using the Gillespie
Stochastic Simulation Algorithm for CTMCs that we considered for
PEPA.
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CTMC with levels

Models are based on discrete levels of concentration within a
species.

The granularity of the system is defined in terms of the step
size h of the concentration intervals.

We define the same step size h for all the species. This
follows from the law of conservation of mass.

If li is the concentration level for the species i , the
concentration is taken to be xi = li × h.
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CTMC with levels

The rate of a transition is set to be consistent with the
granularity.

The granularity must be specified by the modeller as the
expected range of concentration values and the number of
levels considered.

The structure of the CTMC derived from Bio-PEPA, which we
term the CTMC with levels, will depend on the granularity of
the model.

As the granularity tends to zero the behaviour of this CTMC
with levels tends to the behaviour of the ODEs [CDHC

FBTC08].
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ODE system

The derivation of the ODEs from the Bio-PEPA is straightforward,
based on the definitions of the species components.

1 definition of the (N ×M) stoichiometry matrix D, where N is
the number of species and M is the number of reactions;

2 definition of the kinetic law vector vKL containing the kinetic
law of each reaction;

3 association of the variable xi with each component Ci and
definition of the vector x .

The ODE system is then obtained as

dx

dt
= D × vKL
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ODE system

There are advantages to be gained by using a process algebra
model as an intermediary to the derivation of the ODEs.

The ODEs can be automatically generated from the
descriptive process algebra model, thus reducing human error.

The process algebra model allow us to derive properties of the
model, such as freedom from deadlock, before numerical
analysis is carried out.

The algebraic formulation of the model emphasises
interactions between the biochemical entities.
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PRISM model and model checking

Analysing models of biological processes via stochastic
model-checking has considerable appeal.

As with stochastic simulation the answers which are returned
from model-checking give a thorough stochastic treatment to
the small-scale phenomena.

However, in contrast to a simulation run which generates just
one trajectory, probabilistic model-checking gives a definitive
answer so it is not necessary to re-run the analysis repeatedly
and compute ensemble averages of the results.

Building a reward structure over the model it is possible to
express complex analysis questions.
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Building a reward structure over the model it is possible to
express complex analysis questions.
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PRISM model and model checking

Stochastic model checking in PRISM is based on a CTMC
and the logic CSL.

Formally the mapping from Bio-PEPA is based on the
structured operational semantics, generating the underlying
CTMC in the usual way.

In practice, it is more straightforward to directly map to the
input language of the tool, the language of interacting,
reactive modules.

From a Bio-PEPA description one module is generated for
each species component with an additional module to capture
the functional rate information.
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Goldbeter’s model [Goldbeter 91]

Goldbeter’s model describes the activity of the cyclin in the
cell cycle.

The cyclin promotes the activation of a cdk (cdc2) which in
turn activates a cyclin protease.

This protease promotes cyclin degradation.

This leads to a negative feedback loop.

In the model most of the kinetic laws are of kind
Michaelis-Menten and this can be reflected in the Bio-PEPA
model
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The biological model

CYCLIN (C)

cdc2 inactive (M’)  

  Protease inactive (X’) Protease active (X)

R1

R3

R4

R7
cdc2 active (M)

R2

R6

R5
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The biological model (2)

There are three different biological species involved:

cyclin, the protein protagonist of the cycle, represented as C ;

cdc2 kinase, in both active and inactive form. The variables
used to represent them are M and M ′, respectively;

cyclin protease, in both active and inactive form. The variable
are X and X ′.
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Reactions

id reaction react. prod. mod. kinetic laws
α1 creation of cyclin - C - vi
α2 degradation of cyclin C - - kd × C

α3 activation of
cdc2 kinase

M ′ M C C×VM1

(Kc+C)
M′

(K1+M′)

α4 deactivation of
cdc2 kinase

M M ′ - M×V2

(K2+M)

α5 activation of cyclin
protease

X ′ X M X ′×M×VM3

(K3+X ′)

α6 deactivation of cyclin
protease

X X ′ - X×V4

K4+X

α7 X triggered degradation
of cyclin

C - X C×vd×X
C+Kd

α1, α2 have mass-action kinetics; others are Michaelis-Menten.
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Translation into Bio-PEPA

Definition of the set N :

N = [C : hC ,Nc ; M : hM ,NM ; M ′ : hM′ ,NM′ ;

X : hX ,NX , ; X ′ : hX ′ ,NX ′ ]

Definition of functional rates (F):

fα1 = fMA(vi ); fα2 = fMA(kd);
fα4 = fMM(V2,K2); fα5 = fMM(V3,K3);
fα6 = fMM(V4,K4); fα7 = fMM(Vd ,Kd);

fα3 =
v1 × C

Kc + C

M ′

K1 + M ′
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The Bio-PEPA model

Definition of species components (Comp):

C
def
= (α1, 1)↑C + (α2, 1)↓C + (α7, 1)↓C + (α3, 1)⊕ C

M ′
def
= (α4, 1)↑M ′ + (α3, 1)↓M ′

M
def
= (α3, 1)↑M + (α4, 1)↓M + (α5, 1)⊕M

X ′
def
= (α6, 1)↑X ′ + (α5, 1)↓X ′

X
def
= (α5, 1)↑X + (α6, 1)↓X + (α7, 1)⊕ X

Definition of the model component (P):

C (l0C ) ��
{α3}

M(l0M) ��
{α3,α4}

M ′(l0M′) ��
{α5,α7}

X (l0X ) ��
{α5,α6}

X ′(l0X ′)
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ODEs

The stoichiometry matrix D:

α1 α2 α3 α4 α5 α6 α7

C +1 0 0 0 0 0 −1 xC
M ′ 0 0 −1 +1 0 0 0 xM′

M 0 0 +1 −1 0 0 0 xM
X ′ 0 0 0 0 −1 +1 0 xX ′

X 0 0 0 0 +1 −1 0 xX

The vector that contains the kinetic laws is:

w =
(
vi × 1, kd × xC ,

VM1 × xC
Kc + xC

xM′

(K1 + xM′)
,
V2 × xM

(K2 + xM)
,

VM3 × xM × xX ′

(K3 + xX ′)
,
V4 × xX

(K4 + xX )
,
vd × xC × xX

(Kd + xC )

)
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ODEs (2)

The system of ODEs is obtained as dx̄
dt = D × w , where

x̄T =: (xC , xM′ , xM , xX ′ , xX ) is the vector of the species variables:

dxC
dt

= vi × 1− kd × xC −
vd × xC × xX

(Kd + xC )

dxM′

dt
= −VM1 × xC

Kc + xC

xM′

(K1 + xM′)
+

V2 × xM
(K2 + xM)

dxM
dt

= +
VM1 × xC
Kc + xC

xM′

(K1 + xM′)
− V2 × xM

(K2 + xM)

dxX ′

dt
= −VM3 × xM × xX ′

(K3 + xX ′)
+

V4 × xX
(K4 + xX )

dxX
dt

=
VM3 × xM × xX ′

(K3 + xX ′)
− V4 × xX

(K4 + xX )
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ODE results

K1 = K2 = K3 = K4 = 0.02µM
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ODE results

K1 = K2 = K3 = K4 = 40µM
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PRISM model

Each species is represented as a PRISM module.
For example, the cyclin is represented as:

module c
c : [0..Nc] init 0;
[a1]c < Nc → (c ′ = c + 1);
[a2]c > 0→ (c ′ = c − 1);
[a3]c > 0→ (c ′ = c);
[a7]c > 0→ (c ′ = c − 1);
endmodule

We assume that there are 12 levels of C and 20 levels of the other
species. This results in 5733 and 31744 transitions.
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PRISM model (2)

An additional (dummy) module is needed to capture the kinetic
rates.

module Functional rates
dummy: bool init true;
[a1]dummy = true → r1 : (dummy ′ = dummy);
[a2]dummy = true → r2 : (dummy ′ = dummy);
[a3]dummy = true → r3 : (dummy ′ = dummy);
[a4]dummy = true → r4 : (dummy ′ = dummy);
[a5]dummy = true → r5 : (dummy ′ = dummy);
[a6]dummy = true → r6 : (dummy ′ = dummy);
[a7]dummy = true → r7 : (dummy ′ = dummy);
endmodule
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PRISM analysis

Probability that cyclin is exhausted in the cell.

P =?[trueU[T ,T ]cyclin = 0]

Expected number of degradation reactions (both
standard and by means of X )

Rα2 =?[C <= T ] and Rα7 =?[C <= T ]

Probability that the level of active kinase (M) is greater
than the level of inactive kinase (M ′) at time T

P =?[trueU[T ,T ]M > M ′]
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PRISM results
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