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Abstract. In this chapter we introduce process algebras, a class of formal mod-
elling techniques developed in theoretical computer science, and discuss their use
within systems biology. These formalisms have a number of attractive features
which make them ideal candidates to be intermediate, formal, compositional rep-
resentations of biological systems. As we will show, when modelling is carried
out at a suitable level of abstraction, the constructed model can be amenable to
analysis using a variety of different approaches, encompassing both individuals-
based stochastic simulation and population-based ordinary differential equations.
We focus particularly on Bio-PEPA, a recently defined extension of the PEPA
stochastic process algebra, which has features to capture both stoichiometry and
general kinetic laws. We present the definition of the language, some equivalence
relations and the mappings to underlying mathematical models for analysis. We
demonstrate the use of Bio-PEPA on two biological examples.

1 Introduction

In recent years there has been increasing interest in the application of process algebras
in the modelling and analysis of biological systems [60, 26, 28, 58, 19, 49, 14]. Process
algebras have some interesting properties that make them particularly useful in describ-
ing biological systems. First of all, they offer compositionality, i.e. the possibility of
defining the whole system starting from the definition of its subcomponents. Secondly,
process algebras give a formal representation of the system avoiding ambiguity. Thirdly,
biological systems can be abstracted by concurrent systems described by process alge-
bras: species may be seen as processes that can interact with each other and reactions
may be modelled using actions. Finally, different kinds of analysis can be performed on
a process algebra model. These analyses provide conceptual tools which are comple-
mentary to established techniques: it is possible to detect and correct potential inaccu-
racies, to validate the model and to predict its possible behaviours.

The original work on process algebra modelling of biochemical pathways by Regev
et al. was based on the abstraction “processes as molecules” [60]. This abstraction has
proven to be fruitful and highly influential with most of the subsequent work based on
the same abstraction. However, it is not without its drawbacks. It takes an inherently
individual-based view of the system (i.e. views the system at the level of individual
molecules) which has the consequence that the state space, under all but the smallest
examples, will be prohibitively large and amenable only to analysis via simulation.

In recent years Calder et al. [14, 15] have been experimenting with alternative ab-
stractions using the stochastic process algebra, PEPA, which was originally defined for



performance analysis of computer systems [42]. Two different approaches have been
proposed: one based on reagents (the so-called reagent-centric view) and another based
on pathways (pathway-centric view). In both cases the species concentrations are dis-
cretized into levels, each level abstracting an interval of concentration values. In the
reagent-centric view the PEPA sequential components represent the different concen-
tration levels of the species. In this approach the abstraction is “processes as species”
and not “processes as molecules”. In the pathway-centric approach adopts an alternative
abstract view: the processes represent sub-pathways. Here multiple copies of compo-
nents represent levels of concentration. The two views have been shown to be equivalent
[15].

Even though PEPA and other stochastic process algebras have proved useful in
studying signalling pathways, they do not readily allow us to represent all the features
of biological networks. The main difficulties are the definition of stoichiometric coef-
ficients (i.e. the coefficients used to show the quantitative relationships of the reactants
and products in a biochemical reaction) and the representation of kinetic laws. Con-
cerning stoichiometry, in the reagent-centric view of PEPA stoichiometry is not rep-
resented explicitly. Furthermore, in other process algebras it is not possible to render
interactions with more than two reactants as biochemical interactions are abstracted by
pairwise communications. This is justified by appeal to Gillespie’s stochastic simula-
tion algorithm which, in the original version, assumes elementary (i.e. monomolecular
and bimolecular) reactions. However, it is often convenient to model at a more abstract
level, where reactions involving more than two species are common (e.g. Michaelis-
Menten). In terms of kinetic laws, PEPA and other process algebras consider elemen-
tary reactions with constant rates (mass-action kinetic laws). The problem of extending
to the domain of kinetic laws beyond basic mass-action (hereafter called general kinetic
laws) is particularly relevant, as these kinds of reactions are frequently found in the lit-
erature as abstractions of complex situations whose details are unknown. Reducing all
reactions to the elementary steps is complex and often impractical. In the case of pro-
cess algebras such as π-calculus the assumption of elementary reactions is motivated
by the fact that they rely on Gillespie’s stochastic simulation for analysis. Some recent
works have extended the approach of Gillespie to deal with complex reactions [1, 17]
but these extensions are yet to be reflected in the work using process algebras. Previous
work concerning the use of general kinetic laws in process algebras and formal methods
was presented in [9, 20]. These are discussed in Section 2.3.

In this chapter we give a tutorial introduction to Bio-PEPA, a new language for the
modelling and analysis of biochemical networks. A preliminary version of the language
was proposed in [22], with full details presented in [23]. Here, in addition to defining
the language we illustrate its use with a number of examples.

Bio-PEPA is based on the reagent-centric view in PEPA, modified in order to repre-
sent explicitly some features of biochemical models, such as stoichiometry and the role
of the different species in a given reaction. A major feature of Bio-PEPA is the intro-
duction of functional rates to express general kinetic laws. Each action type represents
a reaction in the model and is associated with a functional rate.

The idea underlying our work is represented schematically in the diagram in Fig. 1.
The context of application is biochemical networks. Broadly speaking, biochemical net-
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Fig. 1. Schema of the Bio-PEPA framework

works consist of some chemical species, which interact with each other through chem-
ical reactions. The dynamics of reaction are described in terms of some kinetic laws.
The biochemical networks can be obtained from databases such as KEGG [46, 45] and
BioModels Database [8, 56]1. From the biological model, we develop the Bio-PEPA
specification of the system. This is an intermediate, formal, compositional represen-
tation of the biological model. At this point we can apply different kinds of analysis,
including stochastic simulation [36], analysis based on ordinary differential equations,
numerical solution of continuous time Markov chains (CTMC) and stochastic model
checking using PRISM [61, 40]. It is worth noting that each of these analyses can help
in understanding the system. The choice of one or more methods depends on the context
of application [68]. There exist some relations between the different kinds of analysis.
It is well-known that the results of stochastic simulations tend to the ODEs solution
when the number of elements is relatively high. Similarly, it is shown in [35] that the
numerical solution of the CTMC with levels (derived from the PEPA pathway-centric
view) tends to the solution of the ODEs when the number of levels increases.

The rest of the chapter is organised as follows. In the next section we outline our
modelling domain, biochemical networks, and discuss the development of process al-
gebras and their use to model biological systems. The recent development of Bio-PEPA
has been informed by earlier work using the PEPA process algebra so this work is
also briefly presented. In Section 3 we give a detailed account of Bio-PEPA; its syn-
tax, semantics, equivalence relations and analysis techniques. The use of the language
is illustrated in Section 4, in which the translation of two biological models into Bio-
PEPA and their subsequent analysis is described. Finally, in Section 5 we present some
conclusions and future perspectives.

2 Background

In this section we outline the application domain of this tutorial before giving an intro-
duction to process algebras. Subsequent sections will focus on one particular process

1 The BioModels Database is a collection of SBML models. SBML is a widely used XML-based
format for representing models of biochemical reaction networks.



algebra, Bio-PEPA, but here we aim to give a broad overview of the class of formalisms
known as process algebras.

2.1 Application domain: biochemical networks

The application domain of this tutorial concerns biochemical networks, such as those
collected in the Biomodels Database [56] and KEGG [46].

A biochemical systemM is composed of:

1. a set of compartments C. These represent the locations of the various species;
2. a set of chemical species S. These species may be genes, proteins, etc.;
3. a set of reactions R. We consider irreversible reactions. Reversible reactions are

decomposed as a pair of forward and inverse reactions.
The general form of an irreversible reaction j is given by:

κ1 jA1 + κ2 jA2 + .... + κn j jAn j

E1,E2,...I1,I2,...; f j
−−−−−−−−−−−−→ κ′1 jB1 + κ

′
2 jB2 + .... + κ

′
m j jBm j (1)

where Ah, h = 1, ..., n j, are the reactants, Bl, l = 1, ...,m j, are the products, Ev

are the enzymes and Iu, the inhibitors. Enzymes and inhibitors are represented dif-
ferently from the reactants and products. Their role is to enhance or inhibit the
reaction, respectively. We call species such as these, that are involved in a reaction
without changing their concentration, modifiers. The parameters κh j and κ′l j are the
stoichiometric coefficients. These express the degree to which species participate
in a reaction. The dynamics associated with the reaction is described by a kinetic
law f j, depending on some parameters and on the concentrations of some species.

The best known kinetic law is mass-action: the rate of the reaction is proportional
to the product of the reactants’ concentrations. In published models it is common to
find general kinetic laws, which describe approximations of sequences of reactions.
They are useful when it is difficult to derive certain information from the experiments,
e.g. the reaction rates of elementary steps, or when there are different time-scales for
the reactions. Generally these laws are valid under some conditions, such as the quasi-
steady-state assumption (QSSA). This describes the situation where one or more reac-
tion steps may be considered faster than the others and so the intermediate elements can
be considered to be constant. There is a long list of kinetic laws; for details see [65].

2.2 Overview of process algebras

Process algebras are calculi that were originally motivated by problems associated with
concurrent computer systems [51, 43]. The objective was to specify and formally reason
about such systems. In subsequent years process algebras have been used extensively to
describe complex systems characterized by concurrency, communication, synchroniza-
tion and nondeterminism. Process algebras offer several attractive features. The most
important of these are compositionality, the ability to model a system as the interac-
tion of its subsystems, formality, the ability to give a precise meaning to all terms in



the language, and abstraction, the ability to build up complex models from detailed
components but disregarding internal behaviour when it is appropriate to do so.

The most widely known process algebras are Milner’s Calculus of Communicat-
ing Systems (CCS) [51] and Hoare’s Communicating Sequential Processes (CSP) [43].
Process algebras are typically defined by a simple syntax and semantics. The semantics
may be given by axioms or inference rules expressed in an operational way [57]. A sys-
tem is defined as a collection of agents which execute atomic actions. Some operators
are introduced for combining the primitives. For instance in CCS the main operators
are:

prefix a.P, after action a the agent becomes a P
parallel composition P | Q, agents P and Q proceed in parallel
choice P + Q, the agent behaves as P or Q
restriction P\M, the set of actions M may not occur
relabelling P[a1/a0, ..], in this agent label a1 is renamed a0
the null agent 0, this agent cannot act (deadlock)
One of the main features of process algebras is the possibility to express commu-

nication between two processes. In some cases, such as CCS [51] and the π-calculus
[52], a communication between two parallel processes is enabled when one process
can perform an action a (receive) and the other process can perform the complemen-
tary action ā (send). So the actions must be complementary (input-output) and share
the same name (a in the case considered). The resulting communication has the distin-
guished label τ, which indicates an internal (invisible) action. A distinguishing feature
of π-calculus with respect to CCS is the possibility to represent name-passing: com-
municating processes can exchange names over channels and consequently they may
change their interaction topology.

The communication mechanism in CSP is different from the one described above
as there is no notion of complementary actions. In CSP, two agents communicate by
simultaneously executing actions with the same label. Since during the communication
the joint action remains visible to the environment, it can be reused by other concur-
rent processes so that more than two processes can be involved in the communication
(multiway synchronisation).

The analysis of the behaviours of the model, represented in a formal language, is
generally produced through a Labelled Transition System (LTS) derived from the opera-
tional semantics. This may be regarded as a derivative tree or graph in which language
terms form the nodes and transitions are the arcs. This structure is a useful tool for
reasoning about agents and the systems they represent: two agents are considered to
be equivalent if they are observed to perform exactly the same actions and the resulting
agents are also equivalent. Strong and weak forms of equivalence are defined depending
on whether the internal actions of an agent are deemed to be observable.

In CCS and CSP, since the objective is qualitative analysis rather than quantitative,
time and uncertainty are abstracted away. In the last two decades, various suggestions
for incorporating time and probability into these formalisms have been investigated
(see [54] for an overview of process algebras with time). For example, Temporal CCS
(TCCS) [53] extends CCS with fixed delays and wait-for synchronisation (asynchronous
waiting). Note that most of the timed extensions, including TCCS, retain the assump-
tion that actions are instantaneous and regard time progression as orthogonal to the



activity of the system. Probabilistic extensions of process algebras, such as PCCS [44],
allow uncertainty to be quantified using a probabilistic choice combinator. In this case
a probability is associated with each possible outcome of a choice.

In the early 1990s several stochastic extensions of process algebra (stochastic pro-
cess algebras or SPAs), were introduced. The motivation for SPA was performance
modelling and quantification, in the form of random variables characterising the dura-
tion of actions, was added to models. In most cases, the random variables are assumed
to be exponentially distributed and a rate is added to each prefix to represent the pa-
rameter of the exponential distribution that describes the dynamic behaviour of the as-
sociated action. A race condition is then assumed to resolve conflicts: all the activities
that are enabled in a given state compete and the fastest one succeeds. The choice of
the exponential distribution means that each process algebra model is associated with
a continuous time Markov chain (CTMC) [42]. It is then possible to carry out perfor-
mance analysis based on this underlying mathematical model. Some examples of SPA
are TIPP [38], EMPA2 [4, 5], PEPA [42], SPADE3 [67] and Stochastic π-calculus [59].

2.3 Process algebras in systems biology

Recently, as a response to the need to model the dynamics of complex biological sys-
tems, there have been several applications of process calculi in systems biology [60,
62, 28, 58, 27, 18, 19, 14]. These techniques are appropriate for formally describing and
analysing a biological system as a whole and for reasoning about protein/gene interac-
tions. Indeed, there is a strong correspondence between concurrent systems described
by process algebras and biological ones: biological entities may be abstracted as pro-
cesses that can interact with each other and reactions may be modelled as actions.

Process calculi have several properties that make them useful for studying biological
systems:

– they allow the formal specification of the system;
– they offer different levels of abstraction for the same biological system;
– they can make interactions explicit, in particular biological elements may be seen

as entities that interact and evolve;
– they support modularity and compositionality;
– they provide well-established techniques for reasoning about possible behaviours.

They may be used not only for the simulation of the system, but also for the verifi-
cation of formal properties and for behavioural comparison through equivalences.

Several process calculi have been proposed in biology. Each of them has different prop-
erties able to render different aspects of biological phenomena. They may be divided
into two main categories:

– calculi defined originally in computer science and then applied in biology, such as
the biochemical stochastic π-calculus [60], CCS-R [28] and PEPA [42];

– calculi defined specifically by observing biological structures and phenomena, such
as BioAmbients [19], Brane Calculi [18], κ-calculus [27], and Beta-binders [58].

2 Originally called simply MPA.
3 Originally called CCS+.



One of the first process algebras used in systems biology is the biochemical π-
calculus [60], a variant of the π-calculus defined to model biological systems. The un-
derlying idea of application of the π-calculus to biology is the molecule-as-computation
abstraction [63, 60]: each biological entity and interaction is associated with an agent
specification in the calculus. Specifically, molecules are modelled as processes, interac-
tion capabilities as channels, interactions as communications between processes, mod-
ifications as state and channel changes and, finally, compartments and membranes as
restrictions. Two stochastic simulation tools based on Gillespie [36] have been defined
(BIOSPI [6] and SPIM [66]), various applications have been shown [50, 26, 49, 21] and
some modified versions have been proposed (e.g. SPICO[48] and Sp@ [69]).

CCS-R [28] is a variant of CCS with new elements which allow the capture of
reversibility. The interactions are described in terms of binary synchronised commu-
nications, similarly to π-calculus. It was motivated by modelling reversible reactions
in biochemistry. The successor of CSS-R is the Reversible CCS (RCCS) [31]. This
calculus allows processes to backtrack if this is in agreement with a notion of casual
equivalence defined in the paper.

Beta-binders [58, 64] are an extension of the π-calculus inspired by biological phe-
nomena. This calculus is based on the concept of bio-process, a box with some sites
(beta-binders) to express the interaction capabilities of the element, in which π-calculus-
like processes (pi-processes) are encapsulated. Beta-binders enrich the π-calculus with
some constructs that allow us to represent biological features, such as the join between
two bio-processes, the split of one bio-process into two, the change of the bio-process
interface by hiding, unhiding and exposing a site. The Beta Workbench [64] is a col-
lection of tools for the modelling, simulation and analysis of Beta-binders system. The
BetaWB simulator is based on a variant of Gillespie’s algorithm.

In most of the calculi considered it is not possible to represent all the features
of biochemical networks. Generally the kinetic laws are assumed to be mass-action
and reactions can have at most two reactants. Indeed these calculi refer to the stan-
dard Gillespie’s algorithm for the analysis and this assumes elementary reactions (i.e.
monomolecular or bimolecular) with constant rates. Furthermore, biological reactions
are abstracted as communications/interactions between agents and in some process al-
gebras such as π-calculus, CCS and Beta-binders, these actions are pairwise. There-
fore multiple-reactant multiple-product reactions cannot be modelled in these calculi.
In order to represent multiple-reactant multiple-product reactions, π-calculus and Beta-
binders have been enriched with transactions [24, 25].

A first proposal to deal with general kinetic laws has been shown in [9]. The authors
present a stochastic extension of Concurrent Constraint Programming (CCP) and show
how to apply it to biological systems. Here each species is represented by a variable and
the reactions are expressed by constraints on these variables. The domain of application
is extended to any kind of reactions and the rate can be expressed by a generic function.

The possibility of representing general kinetic laws is also offered by BIOCHAM [20],
a programming environment for modelling biochemical systems, which supports mak-
ing simulations and querying the model in temporal logic. This language is not a process
algebra, but it is based on a rule-based language for modelling biochemical systems, in
which species are expressed by objects and reactions by reaction rules.



A similar approach is taken in the κ-calculus [27], based on the description of pro-
tein interactions. Processes describe proteins and their compounds. A set of processes
model solutions and protein behaviour is given by a set of rewriting rules, driven by
suitable side-conditions. The two main rules concern activation and complexation. A
stochastic simulator for κ-calculus is described in [30]. A few applications are reported,
as in [29].

Finally, some calculi have been defined to model compartments and membranes.
Here we briefly describe Bio-ambients [19] and Brane calculi [18]. Bio-ambients are
centered on ambients, bounded places where processes are contained and where com-
munication may happen. Ambients can be nested and organised in a hierarchy. This
hierarchy may be modified by suitable operations that have a biological interpretation.
It is possible to have enter and exit primitives to move an ambient into or out of another
ambient or a merge for merging two ambients together. Ambients contain compounds
that interact via communication. Bio-ambients have been used to model compartments
in BIOSPI [6]. A stochastic semantics for Bio-ambients has been formalized in [10].
There have been some applications, for instance [3].

In Brane calculi [18] a system consists of nested membranes, which are collections
of actions. Membranes may shift, merge, break apart and may be replenished, leading
to very expressive models, in which actions occur on membranes. Membranes may be
seen as oriented objects that must obey some restrictions on orientation. In particular
they must preserve bitonality, which requires nested membranes to have opposite ori-
entations.

2.4 PEPA and biological systems

Performance Evaluation Process Algebra (PEPA) is a SPA originally defined for the
performance modelling of systems with concurrent behaviour [42]. In PEPA each ac-
tion is assumed to have a duration, represented by a random variable with a negative
exponential distribution. We informally introduce the syntax of the language below. For
more details see [42].

Prefix The basic term is the prefix combinator (α, r).S . It denotes a component which
has action of type α and an exponentially distributed duration with parameter r
(mean duration 1/r), and it subsequently behaves as S .

Choice The component S + R represents a system which may behave either as S or
as R. The activities of both S and R are enabled. The first activity to complete
distinguishes one of them and the other is discarded.

Constant Constants are components whose meaning is given by a defining equation
C

def
= S . They allow us to assign names to patterns of behaviour associated with

components.
Hiding In S/H the set H identifies those activities which can be considered internal

or private to the component S .
Cooperation The term P BC

L
Q denotes cooperation between P and Q over the coop-

eration set L, that determines those activities on which the cooperands are forced
to synchronise. PEPA supports multiway synchronisation between components: the
result of synchronising on an activity α is thus another α, available for further syn-
chronisation. For action types not in L, the components proceed independently and



concurrently with their enabled activities. In the context of performance evaluation
the rate for the synchronised activities is the minimum of the rates of the synchro-
nising activities.

Recently, PEPA has been applied to the modelling and analysis of signalling path-
ways. An initial study concerned the influence of the Raf Kinase Inhibitor Protein
(RKIP) on the Extracellular signal Regulated Kinase (ERK) [14]. In [15] the PEPA
representation of Schoeberl’s model [32] involving the MAP kinase and EFG receptors
is reported. The biological modelling in PEPA was motivated by a desire to experiment
with more abstract modelling than that afforded by the processes as molecules mapping
generally used in process algebra models. Indeed a processes as species mapping is
applied instead. In [14] two different modelling styles were proposed, one based on the
reagent-centric view and the other on the pathway-centric view. The former focuses on
the variation in the concentrations of the reagents: the concentrations are discretized in
levels, each level representing an interval of concentration values. The level l can as-
sume values between 0 and Nmax (maximum level). The pathway-centric style provides
a different abstract view of the system and focuses on the subpathways. The two repre-
sentations were shown to be equivalent [14]. In addition to the standard analysis offered
by process algebras, in [13] a mapping from reagent-centric PEPA models to a system
of ordinary differential equations (ODEs), has been proposed.

From the applications discussed above PEPA has been shown to be appropriate for
the modelling of biological systems: it offers a high level of abstraction for the model
and focuses on compositionality and on the interactions. Furthermore, by using PEPA
as a modelling language it is possible to apply different kinds of analysis, not only
stochastic simulation, but also differential equations and model checking.

However, not all the features of biochemical networks can be expressed using the
present version of PEPA: general kinetic laws are not considered and stoichiometry is
added by hand in the conversion of PEPA into ODEs. As observed above, with a few
exceptions (e.g. [9]) and a few cases (dimerization), these features cannot be represented
in other process algebras either. These and other problems motivated us to develop a
new process algebra, Bio-PEPA, which is closely related to PEPA but better adapted to
biological modelling.

3 Bio-PEPA: definition of the language

Our earlier experience using PEPA, and other stochastic process algebras, to model
biochemical networks, developed insights which we then used in the definition of Bio-
PEPA. We felt it was important to have a language which can represent all reactions
in a straightforward way as well as handle stoichiometry and general kinetic laws. We
retained the reagent-centric view previously used in PEPA models of biochemical path-
ways as this had been demonstrated to provide a flexible approach to modelling. For
example, it is straightforward to capture reactions with any number of participants,
something that is not readily captured in other process algebras such as the π-calculus.
Moreover, once the model is constructed it is amenable to a variety of different analysis
techniques.



We adopt a high level of abstraction similar to the one proposed in formalisms such
as SBML [7], which have been widely adopted by biologists. Furthermore we make the
following assumptions:

1. Compartments are static, i.e. compartments are not actively involved in the reac-
tions — they are simply containers. The transport of a species from one compart-
ment to another is modelled by introducing two distinct components for represent-
ing the species. The translocation is abstracted by a transformation of one species
into another. Compartments are included in the definition of a Bio-PEPA system
because the volume of the containing compartment can impact on reactions of a
species.

2. Reactions are irreversible reactions. A reversible reaction is represented as a pair
of irreversible reactions.

3.1 Discrete concentrations and granularity

Following the reagent-centric view, models are based not on individual molecules,
but on discrete levels of concentration within a species: each component represents
a species and it is parametric in terms of concentration level. Some advantages of this
view are:

– It allows us to deal with uncertainty/incomplete information in the exact number of
elements (semi-quantitative data);

– In a discrete state space representation the focus is on the concentration levels rather
than the number of elements. This means that the state space is reduced as there are
less states for each component.

– The population level view, in terms of continuously changing concentrations, and
the individual level view, counting molecules, are both easily recovered from this
abstract view.

This view was presented in [16]. The authors focused on the case of reactions with
mass-action kinetics and stoichiometry equal to one for all the reactants and products.
The granularity of the system has been expressed in terms of the number of levels,
representing concentration intervals. Furthermore they considered the same step size h
and the same maximum level N for all the species.

In Bio-PEPA we adapt this approach to general kinetic laws, stoichiometry greater
than one and different numbers of levels for the species. The granularity of the system
is defined in terms of the step size h of the concentration intervals instead of the number
of levels. We define the same step size h for all the species4. This is motivated by
the fact that, following the law of conservation of mass, there must be a “balance”
between the concentrations consumed (reactants) and the ones created (products). In the
case the stoichiometry is greater than one we need to consider concentration quantities
proportional to stoichiometric coefficients. Given a species i, we can assume that it has

4 There can be some exceptions to this assumption: 1) since modifiers remain constant during
reaction, we may define a different step size for each species which is only a modifier; 2) any
species which is involved on in creation/degradation reactions may have a different step size.



a maximum finite concentration Mi. The number of levels for the species i is given by
Ni + 1 where Ni = d

Mi
h e (the integer value greater than or equal to Mi

h ). Each species can
assume the discrete concentration levels from 0 (concentration null) to Ni (maximum
concentration).

If li is the concentration level for the species i, the concentration is taken to be
xi = li × h.

When a finite state space CTMC is to be generated, for numerical analysis or
stochastic model checking, we must assume that there is a maximum concentration
for each species. However, we can have a species without a limiting value: we use a
maximum level to capture all values greater than a given (high) value.

3.2 The syntax

The syntax of Bio-PEPA is similar to that of PEPA but with some important differences.
As in PEPA a model is made up of a number of sequential components; here there is
one sequential component for each species. As we will see, the syntax of Bio-PEPA
is designed in order to collect the biological information that we need. For example,
instead of a single prefix combinator there are a number of different operators which
capture the role that the species plays with respect to this reaction.

S ::= (α, κ) op S | S + S | C P ::= P BC
L

P | S (l)

where op = ↓ | ↑ | ⊕ | 	 | �.
The component S is called sequential component (or species component) and rep-

resents the species. The component P, called a model component, describes the system
and the interactions among components. We suppose a countable set of sequential com-
ponents C and a countable set of action types A. The parameter l ∈ N represents the
discrete level of concentration. The prefix term, (α, κ) op S , contains information about
the role of the species in the reaction associated with the action type α:

– (α, κ) is the activity or reaction, where α ∈ A is the action type and κ is the stoi-
chiometric coefficient of the species in that reaction; information about the rate of
the reaction is defined elsewhere (in contrast to PEPA);

– the prefix combinator “op” represents the role of the element in the reaction. Specif-
ically, ↓ indicates a reactant, ↑ a product, ⊕ an activator, 	 an inhibitor and � a
generic modifier.

The choice operator, cooperation and definition of constant are unchanged. In con-
trast to PEPA the hiding operator is omitted.

In order to fully describe a biochemical network in Bio-PEPA we need to define
structures that collect information about the compartments, the maximum concentra-
tions, number of levels for all the species, the constant parameters and the functional
rates which specify the rates of reactions. In the following the function name returns
the names of the elements of a given Bio-PEPA component.

First of all we define the set of compartments.



Definition 1. Each compartment is described by “V: v unit”, where V is the compart-
ment name, “v” is a positive real number expressing the compartment size and the
(optional) “unit” denotes the unit associated with the compartment size. The set of
compartments is denotedV.

In Bio-PEPA compartments are static and they cannot change their structure/size.
The set of compartments must contain at least one element. When we have no informa-
tion about compartments we add a default compartment whose size is 1 and whose unit
depends on the model.

Definition 2. For each species we define the element C : H,N,M0,M,V, where:

– C is the species component name,
– H ∈ N is the step size,
– N ∈ N is the maximum level,
– M0 ∈ R

+ ∪ { } is the initial concentration,
– M ∈ R+ ∪ { } is the maximum concentration,
– V ∈ name(V) ∪ { } is the name of the enclosing compartment.

The set of all the elements C : H,N,M0,M,V is denoted N .

In the definition the symbol “ ” denotes the empty string, indicating that the last three
components are optional. The initial concentration may added when we want to com-
pare our model results with the results in the literature. The maximum concentration is
used in the definition of the number of levels, but generally it can be derived from the
step size and the maximum number of levels. Finally, if there is only one compartment
for all the species in the model we can omit it in the definition of N .

In order to specify the dynamics of the system we associate a functional rate fα j

with each action α j. This function represents the kinetic law of the associated reaction.
For the definition of functional rates we consider mathematical expressions with simple
operations and operators involving constant parameters and components. All the kinetic
laws proposed in the book by Segel [65] can be defined in this way. In addition, for
convenience, we include some predefined functions to express the most commonly used
kinetic laws.

The predefined kinetic laws considered are mass-action ( f MA), Michaelis-Menten
( f MM) and Hill kinetics ( f H). They depend only on some parameters; the compo-
nents/species are derived from the context5. The functional rates are defined externally
to the components and are evaluated when the system is derived. They are used to de-
rive the transition rates of the system. In the functional rates some parameter constants
can be used. These must be defined in the model by means of the set of parameter
definitions K .

5 In the case of mass-action, the function f MA(r) is r ×
∏n j

i=1(Ci)κi , where Ci i = 1, ..., n j are the
n j distinct reactants involved in the reaction and κi is the associated stoichiometric coefficients.
The information about the reactants are derived from the Bio-PEPA specifications of the sys-
tem. In the case of Michaelis-Menten, the function f MM(vM ,KM) is vM × E × S/(KM + S ),
where E is the concentration of the enzyme and S the concentration of the substrate. Also in
this case E and S are derived from the Bio-PEPA specifications. In the case of Hill kinetics, the
function f H(v,K, n) is v ×Cn/(K +Cn), where C is the concentration of the element involved
in the reaction.



Definition 3. Each parameter is defined by “kname = value unit”, where “kname”< C is
the parameter name, “value” denotes a positive real number and the (optional) “unit”
denotes the unit associated with the parameter. The set of the parameters is denotedK .

Finally, we have the following definition for the set of sequential components:

Definition 4. The set Comp of sequential components is defined as

Comp ::= {C def
= S , where S is a sequential component }

We can define a Bio-PEPA system in the following way:

Definition 5. A Bio-PEPA system P is a 6-uple 〈V,N ,K ,FR,Comp, P〉, where:

– V is the set of compartments;
– N is the set of quantities describing each species;
– K is the set of parameter definitions;
– FR is the set of functional rate definitions;
– Comp is the set of definitions of sequential components;
– P is the model component describing the system.

In a well-defined Bio-PEPA system each element has to satisfy some (reasonable)
conditions. Details can be found in [23]. In the remainder of the chapter we consider
only well-defined Bio-PEPA systems. The set of such systems is denoted P̃.

3.3 The semantics

The semantics of Bio-PEPA is defined in terms of an operational semantics. We define
two relations over the processes. The former, called the capability relation, supports
the derivation of quantitative information and it is auxiliary to the latter which is called
the stochastic relation. The stochastic relation gives us the rates associated with each
action. The rates are obtained by evaluating the functional rate corresponding to the
action, divided by the step size of the species involved, using quantitative information
derived from the capability relation.

The capability relation is −→c ⊆ C × Θ × C, where the label θ ∈ Θ contains the
quantitative information needed to evaluate the functional rate. We define the labels θ
as:

θ := (α,w)

where w is defined as w ::= [S : op(l, κ)] | w :: w, with S ∈ C, l the level and κ the
stoichiometric coefficient of the components. The order of the components is not impor-
tant. The rules governing the behaviour of components are presented in the structured
operational style [57] in Table 1. The rules should be read as follows: if the transition
above the line can be inferred then the transition below the line can be deduced. The
relation −→c is defined as the minimum relation satisfying the rules reported in Table 1.

The first three axioms describe the behaviour of the three different prefix terms. In
the case of a reactant, the level decreases; in the case of a product, the level increases;
whereas in the case of modifiers, the level remains the same. For reactants and products,



prefixReac ((α, κ)↓S )(l)
(α,[S :↓(l,κ)])
−−−−−−−−−→c S (l − κ) κ ≤ l ≤ N

prefixProd ((α, κ)↑S )(l)
(α,[S :↑(l,κ)])
−−−−−−−−−→c S (l + κ) 0 ≤ l ≤ (N − κ)

prefixMod ((α, κ) op S )(l)
(α,[S :op(l,κ)])
−−−−−−−−−→c S (l) with op = �,⊕,	 and 0 ≤ l ≤ N

choice1
S 1(l)

(α,w)
−−−→c S ′1(l′)

(S 1 + S 2)(l)
(α,w)
−−−→c S ′1(l′)

choice2
S 2(l)

(α,w)
−−−→c S ′2(l′)

(S 1 + S 2)(l)
(α,w)
−−−→c S ′2(l′)

constant
S (l)

(α,S ′:[op(l,κ)])
−−−−−−−−−−→c S ′(l′)

C(l)
(α,C:[op(l,κ)])
−−−−−−−−−→c S ′(l′)

with C
de f
= S

coop1
P1

(α,w)
−−−→c P′1

P1 BC
L

P2
(α,w)
−−−→c P′1 BCL P2

with α < L

coop2
P2

(α,w)
−−−→c P′2

P1 BC
L

P2
(α,w)
−−−→c P1 BC

L
P′2

with α < L

coop3
P1

(α,w1)
−−−−→c P′1 P2

(α,w2)
−−−−→c P′2

P1 BC
L

P2
(α,w1@w2)
−−−−−−−→c P′1 BCL P′2

with α ∈ L

Table 1. Axioms and rules for Bio-PEPA.

the number of levels increment or decrement depends on the stoichiometric coefficient
κ. This expresses the degree to which a species (reactant or product) participates in
a reaction. Therefore some side conditions concerning the present concentration level
must be added to the rules. Specifically, for the reactants the level has to be greater
than or equal to κ, whereas for the products the level has to be less than or equal to
(N − κ), where N is the maximum level. The modifiers can have any possible value
between 0 and N. In all three cases the label θ records the level and the stoichiometry
of the associated component. The rules choice1 and choice2 have the usual meaning,
but note that choices only occur within a species component so both alternatives are
associated with the same level. The rule constant is used to define the behaviour of
the constant term, defined by one or more prefix terms in summation. The label contains
the information about the level and the stoichiometric coefficient related to the action α.
The last three rules report the case of cooperation. The rules coop1 and coop2 concern
the case when the action enabled does not belong to the cooperation set. In this case the
label in the conclusion contains only the information about the component that fires the



action. The rule coop3 describes the case in which the two components synchronize and
the label reports the information from both the components. The concatenation operator
of lists @ is used for this purpose.

In order to associate the rates with the transitions we introduce the stochastic rela-
tion −→s ⊆ P̃ × Γ × P̃, where the label γ ∈ Γ is defined as γ := (α, rα), with rα ∈ R+.
In this definition rα represents the parameter of a negative exponential distribution. The
dynamic behaviour of processes is determined by a race condition: all activities enabled
attempt to proceed but only the fastest succeeds.

The relation −→s is defined as the minimal relation satisfying the rule

Final
P

(α j,w)
−−−−→cP′

〈V,N ,K ,F ,Comp, P〉
(α j,rα[w,N ,K])
−−−−−−−−−−−→s〈V,N ,K ,F ,Comp, P′〉

The second component in the label of the conclusion represents the rate associated with
the transition. The rate is calculated from the functional rate fα in the following way:

rα[w,N ,K] =
fα[w,N ,K]

h

where h is the step size and fα[w,N ,K] denotes the function fα is evaluated over w,
N and K . Specifically, for each component Ci we derive the concentration as li × h.
Then we replace each free occurrence of Ci by (li × h)κi j , where κi j is the stoichiometric
coefficient of the species i with respect to the reaction R j. The derivation of rates is
discussed in some more detail later.

A Stochastic Labelled Transition System can be defined for a Bio-PEPA system.

Definition 6. The Stochastic Labelled Transition System (SLTS) for a Bio-PEPA sys-
tem is (P̃, Γ,−→s), where −→s is the minimal relation satisfying the rule Final.

The states of SLTS are defined in terms of the concentration levels of the species
components and the transitions from one state to another represent reactions that cause
changes in the concentration levels of some components.

Note that using the relation −→c it is possible to define another labelled transition
system (LTS) as (C, Θ,−→c) which differs only in the transition labels.

Derivation of rates In the SLTS the states represent levels of concentration and the
transitions cause a change in these levels for one or more species. As we have seen the
number of levels depends on the stoichiometric coefficients of the species involved.

Consider a reaction j described by a kinetic law f j and with all stoichiometric coeffi-
cients equal to one. Following [16], we can define the transition rate as (∆t)−1, where ∆t
is the time to have a variation in the concentration of one step for both the reactants and
the products of the reaction. Let y be a variable describing one product of the reaction.
We can consider the rate equation for that species with respect to the given reaction.
This is dy/dt = f j(x̄(t)), where x̄ is the set (or a subset) of the reactants/modifiers of the
reaction. We can apply the Taylor expansion up to the second term and we obtain

yn+1 ≈ yn + f (x̄n) × (tn+1 − tn)



Now we can fix yn+1 − yn = h and then derive the time interval (tn+1 − tn) = ∆t as
∆t ≈ h/ f (x̄n). From this we obtain the transition rate as f (x̄n)/h.

When the reaction has stoichiometric coefficients different from one, we can con-
sider an approach similar to the one above. However, in this case, we assume mass
action kinetics as this is generally the case for stoichiometric coefficient greater than
one. Let y be a product of the reaction. The approximation gives:

yn+1 ≈ yn + r × κ ×
nr∏

i=1

xκii,n × (tn+1 − tn)

where r is the reaction constant rate, κ is stoichiometric coefficient of the product y, xi

i = 1, ..., nr are the reactants of the reaction, κi i = 1, ..., nr are the associated stoichio-
metric coefficients, nr is the number of distinct reactants.

Now we can fix yn+1 − yn = κ × h and then derive the respective (tn+1 − tn) = ∆t as
∆t ≈ h/(r ×

∏nr
i=1 xκii,n). From this expression we can derive the rate as usual.

Note that this approach is based on an approximation, the accuracy of which will
depend on the time/concentration steps used.

From biochemical networks to Bio-PEPA We define a translation, tr BM BP, from
a biochemical networkM to a Bio-PEPA system P = 〈V,N ,K ,FR,Comp, P〉, based
on the following abstraction:

1. Each compartment is defined in the set V in terms of a name and an associated
volume. Recall that currently in Bio-PEPA, compartments are not involved actively
in the reactions and therefore are not represented by processes.

2. Each species i in the network is described by a constant component Ci ∈ Comp.
The constant component Ci is defined by the “sum” of elementary components de-
scribing the interaction capabilities of the species. We suppose that there is at most
one term in each species component with an action of type α. A single definition
can express the behaviour of the species at any level.

3. Each reaction j is associated with an action type α j and its dynamics is described
by a specific function fα j ∈ FR. The constant parameters used in the function can
be defined in K .

4. The model P is defined as the cooperation of the different components Ci.

3.4 Some examples

Now we present some simple examples in order to show how Bio-PEPA can be used to
capture some biological situations.

Example 1: Mass-action kinetics Consider the reaction 2X + Y
; fM
−−−→3Z, described by

the mass-action kinetic law fM = r × X2 × Y . The three species can be specified by the
syntax:

X
def
= (α, 2)↓X Y

def
= (α, 1)↓Y Z

def
= (α, 3)↑Z



The system is described by (X(lX0) BC
{α}

Y(lY0)) BC
{α}

Z(lZ0), where lX0, lY0 and lZ0 denote the
initial concentration level of the three components. The functional rate is fα = f MA(r).
The rate associated with a transition is given by:

rα =
r × (lX × h)2 × (lY × h)

h

where lX , lY are the concentration levels for the species X and Y in a given state and h is
the step size of all the species. The reaction can happen only if we have at least 3 levels
(0, 1, 2) for X, 2 levels for Y (0, 1) and 4 levels (0, 1, 2, 3) for Z.

Example 2: Michaelis-Menten kinetics One of the most commonly used kinetic laws
is Michaelis-Menten. It describes a basic enzymatic reaction from the substrate S to the

product P and is written as S
E; fE
−−−→P, where E is the enzyme involved in the reaction.

This reaction is an approximation of a sequence of two reactions, under the quasi-steady
state assumption (QSSA). The whole sequence of reactions is described by the kinetic
law fE =

vM×E×S
(KM+S ) . For more details about the derivation of this kinetic law and the

meaning of parameters see [65].
The three species can be specified in Bio-PEPA by the following components:

S
def
= (α, 1)↓S P

def
= (α, 1)↑P E

def
= (α, 1) ⊕ E

The system is described by (S (lS 0) BC
{α}

E(lE0)) BC
{α}

P(lP0) and the functional rate is
fα = f MM(vM ,KM).

The transition rate is given by:

rα =
vM × (lS × h) × (lE × h)

(KM + lS × h)
×

1
h

where lS , lE are the concentration levels for the species S and E in a given state and h is
the step size of all the species. The reaction can happen only if we have at least 2 levels
(0, 1) for all the species involved.

Example 3: competitive inhibition Competitive inhibition is a form of enzyme inhibi-
tion where binding of the inhibitor to the enzyme prevents binding of the substrate and
vice versa. In classical competitive inhibition, the inhibitor binds to the same active site
as the normal enzyme substrate, without undergoing a reaction. The substrate molecule
cannot enter the active site while the inhibitor is there, and the inhibitor cannot enter
the site when the substrate is there. This reaction is described as:

S + E ←→ S E

S E −→ P + E

E + I ←→ EI



where S is the substrate, E the enzyme, I the inhibitor and P the product. Under QSSA
the intermediate species SE and EI are constant and we can approximate the reactions

above by a unique reaction S
E,I: fI
−−−−→P, with rate fI =

vc × S × E
S + KM(1 + I

KI
)
, where vc is the

the turnover number (catalytic constant), KM is the Michaelis-constant and KI is the
inhibition constant.

The specification in Bio-PEPA is:

S
def
= (α, 1)↓S P

def
= (α, 1)↑P E

def
= (α, 1) ⊕ E I

def
= (α, 1) 	 I

The system is described by ((S (lS 0) BC
{α}

E(lE0)) BC
{α}

I(lI0)) BC
{α}

P(lP0) with functional rate

fα = fCI((vc,KM ,KI), S , E, I) =
vc × S × E

S + KM(1 + I
KI

)
.

The transition rate is given by:

rα =
vc × (lS × h) × (lE × h)

(lS × h + KM(1 + lI×h
KI

))
×

1
h

where lS , lE , lI are the concentration levels for the species S , E, I in a given state and
h is the step size of all the species. The reaction can happen only if we have at least 2
levels (0, 1) for all the species involved.

Example 4: degradation and synthesis of a species Two particular reactions are those
which describe the degradation and the creation of a species. In order to model these
reactions we need to add two auxiliary species components to represent respectively the
residue (Res) of the reaction and the creation factor (CF), i.e. genes or DNA.

Let us consider the degradation reaction A−→∅. We describe this reaction in Bio-
PEPA by introducing the component Res as the residue/product of the reaction. The
two species A and Res are defined as:

A
def
= (α, 1)↓A Res

def
= (α, 1) � Res

The component Res is described by one or more sub-terms each of which describes a
different degradation reaction.

In contrast the synthesis of a species ∅−→A is described by a new component CF.
The two species A and CF are described by:

A
def
= (α, 1)↑A CF

def
= (α, 1) � CF

In the definitions of the components Res and CF we use the symbol � to indicate
that they do not change with the reaction.



3.5 Equivalences

It is sometimes useful to consider equivalences between models in order to determine
whether the systems represented are in some sense the “same”. In this section we dis-
cuss some notions of equivalence for Bio-PEPA. We consider two styles of equiva-
lence which are commonly considered for process algebras: isomorphism, a structural
equivalence, and bisimulation, a behavioural equivalence. Some characteristics of the
language impact on the definitions of equivalence and we start by highlighting those.
Firstly, there is no hiding operator or τ actions. Therefore, in Bio-PEPA we do not have
weaker forms of equivalence based on abstracting τ actions. Secondly, in well-defined
systems we have at most one action of a given type in each sequential term and each
component describes the behaviour of a single species. So we cannot have processes of
the form “S + S ” and terms such as “A = a.C” (where A and C differ). Thirdly, if we
have two transitions between the processes P and P′, they involve different action types
and they represent similar reactions that differ only in the kind/number of modifiers. Fi-
nally, we have defined two relations within the semantics. In one case the labels contain
the information about the action type and about the elements involved. This is used as
an auxiliary relation for the derivation of the second one, in which the labels contain
the information about the action type and the rate (similarly to PEPA activity). Thus we
have a choice of which relation on which to base each notion of equivalence.

Recall that in Bio-PEPA we make a distinction between systems and model compo-
nents. However note that the only element that is modified by the transitions of a Bio-
PEPA system is the model component. All the other components remain unchanged.
Thus we define equivalences for the Bio-PEPA systems in terms of equivalences for
the model components. Specifically, we say that two Bio-PEPA systems P1 and P2 are
equivalent if their respective model components are equivalent.

Auxiliary definitions Before we proceed it will be useful to make some auxiliary
definitions. Firstly we consider the derivative of a component, the derivative set and
the derivative graph. We refer to the relation −→s, the case of −→c is analogous, the only
differences are in the label and in the fact that the former relation refers to Bio-PEPA
systems and the latter refers to model components.

Definition 7. If P
(α,r)
−−−→sP

′ then P′ is a one-step −→s system derivative of P.

If P
(α1,r1)
−−−−→sP1

(α2,r2)
−−−−→s....

(αn,rn)
−−−−→sP

′ then P′ is a system derivative of P.
We can indicate the sequence

γ1
−→s

γ2
−→s....

γn
−→s with

µ
−→s, where µ denotes the sequence

γ1γ2, ...γn (possibly empty).

Definition 8. A system α-derivative of P is a system P′ such that P
(α,r)
−−−→sP

′. For each
α ∈ A we have at most one system α-derivative of a system P.

Definition 9. The system derivative set ds(P) is the smallest set such that:

– P ∈ ds(P);
– if P′ ∈ ds(P) and there exists α ∈ A(P′) such that P′

(α,r)
−−−→sP

′′

then P
′′

∈ ds(P),
where A(P′) is the set of action types currently enabled in the system derivative
P′.



Definition 10. The system derivative graph D(P) is the labelled directed multi-graph
whose set of nodes is ds(P) and whose multi-set of arcs are elements in ds(P)×ds(P)×Γ.

Note that in well-defined Bio-PEPA components the multiplicity of 〈Pi,P j, γ〉 is always
one.

The definitions above refer to Bio-PEPA systems. The only components of the sys-
tem P = 〈V,N ,K ,F ,Comp, P〉 that evolves is the model component P. The other
components collect information about the compartments, the species, the rates and re-
port the definition of the species components. They remain unchanged in the evolution
of the system. In some cases it can be useful (and simpler) to focus on the model com-
ponent instead of considering the whole system and use the other components for the
derivation of the rates. We define a function πP(P) = P, that, given a Bio-PEPA system
returns the model component. Then we define a (component) derivative of P by con-
sidering the model component P′ of the system derivative of P. Similarly, we define a
(component) α-derivative of P, (component) derivative set ds(P) and the (component)
derivative graphD(P) starting from the definitions for the associated system P.

In the derivation of the CTMC (see Section 3.6) we need to identify the actions
describing the interactions from one state to another.

Definition 11. Let P be a Bio-PEPA system and let P = πP(P). Let Pu, Pv be two
derivatives of a model component P with Pv a one-step derivative of Pu. The set of
action types associated with the transitions from the process Pu to the process Pv is
denotedA(Pu|Pv).

The next definition concerns the complete action type set of a system P and a com-
ponent P.

Definition 12. The complete action type set of a system P is defined as:

Ā = ∪Pi∈ds(P)A(Pi)

The complete action type set of a component P is defined similarly.

Other useful definitions are the ones concerning the exit rate and transition rates. In
the following we report the definition for the model components, but a similar definition
can be used for Bio-PEPA systems.

Definition 13. Let us consider a Bio-PEPA system P = 〈V,N ,K ,F ,Comp, P〉 and let
P1, P2 ∈ ds(P). The exit rate of a process P1 is defined as:

rate(P1) =
∑

{α|∃P2.P1

(α,rα[w,N ,K])
−−−−−−−−−−→sP2, P1=πP(P1)}

rα[w,N ,K]

Similarly, the transition rate is defined as:

rate(P1 | P2) =
∑

{α|P1

(α,rα[w,N ,K])
−−−−−−−−−−→sP2, P1=πP(P1), P2=πP(P2)}

rα[w,N ,K]



For the label γ in the stochastic relation, the function action(γ) = α extracts the first
component of the pair (i.e. the action type) and the function rate(γ) = r ∈ R returns the
second component (i.e. the rate).

In the following we use the same symbol to denote equivalences for both the system
and the corresponding model component. In this section we present definitions of iso-
morphism and strong bisimulation which are similar to the relations defined for PEPA
in [42]. Furthermore we show some relationships between the defined equivalences.

Isomorphism Isomorphism is a strong notion of equivalence based on the derivation
graph of the components (systems). Broadly speaking, two components (systems) are
isomorphic if they generate derivation graphs with the same structure and capable of
carrying out exactly the same activities.

We have the following definition of isomorphism based on the capability relation:

Definition 14. Let P1, P2 be two Bio-PEPA systems whose model components are
P and Q, respectively. A function F : ds(P) → ds(Q) is a component isomorphism
between P and Q, with respect to −→c, ifF is an injective function and for any component
P′ ∈ ds(P), A(P′) = A(F (P′)), with rα[w,N ,K] = r′α[F (w),N ′,K ′] for each α ∈
A(P), where F (w) is defined component-wise over the list w, and for all α ∈ A the set
of α-derivatives of F (P′) is the same as the set of F−images of the α-derivatives of P′,
with respect to −→c.

This is a very strong relation because the labels associated with the capability rela-
tion contain a lot of information, all of which must be matched. Formally, we can define
isomorphic components in the following way:

Definition 15. Let P1, P2 be two Bio-PEPA systems whose model components are P
and Q. P and Q are isomorphic with respect to −→c (denoted P =c Q), if there exists a
component isomorphismF between them such thatD(F (P)) = D(Q), whereD denotes
the derivative graph.

We can now define when two Bio-PEPA systems are isomorphic.

Definition 16. Let P1, P2 be two Bio-PEPA systems whose model components are P
and Q. P1 and P2 are isomorphic with respect to −→c (denoted P1 =c P2), if P =c Q.

A similar structural relation based on the stochastic relation can also be defined
and used to characterise another form of isomorphism between systems (components)
=s (see [23] for details). Both isomorphisms, =c and =s are equivalence relations, and
congruences with respect to the combinators of Bio-PEPA. In both cases they retain
enough information about the structure and behaviour of the isomorphic components
to ensure that they give rise to identical underlying Markov processes. However, =c is
more strict than =s, i.e. there will be pairs of systems (components) which satisfy =s

but do not satisfy =c.



Equational laws Once an equivalence relation has been defined it can be used to estab-
lish equational laws which may be used to manipulate models and recognise equivalent
terms. In the following the symbol “=” denotes either =c or =s. The proof of the laws
follow from the definition of isomorphism and the semantic rules.

Choice

1. (P + Q) BC
L

S = (Q + P) BC
L

S

2. (P + (Q + R)) BC
L

S = ((P + Q) + R) BC
L

S

Cooperation

1. P BC
L

Q = Q BC
L

P

2. P BC
L

(Q BC
L

R) = (P BC
L

Q) BC
L

R

3. P BC
K

Q = P BC
L

Q if K ∩ (Ā(P) ∪ Ā(Q)) = L

4. (P BC
L

Q) BC
K

R =
{

P BC
L

(Q BC
K

R) if Ā(R) ∩ (L\K) = ∅ ∧ Ā(P) ∩ (K\L) = ∅
Q BC

L
(P BC

K
R) if Ā(R) ∩ (L\K) = ∅ ∧ Ā(Q) ∩ (K\L) = ∅

Constant If A
def
= P then A = P

Bio-PEPA systems
Let P1 and P2 be two Bio-PEPA systems, with P = πP(P1) and Q = πP(P2).
If P = Q then P1 = P2.

Strong bisimulation The definition of bisimulation is based on the labelled transi-
tion system. Strong bisimulation captures the idea that bisimilar components (systems)
are able to perform the same actions with same rates resulting in derivatives that are
themselves bisimilar. This makes the components (systems) indistinguishable to an ex-
ternal observer. As with isomorphism we can develop two definitions based on the two
semantic relations. This time for illustration we present the definitions based on the
stochastic relation. The strong capability bisimulation, ∼c, is defined similarly (see [23]
for details).

Definition 17. A binary relation R ⊆ P̃ × P̃ is a strong stochastic bisimulation, if
(P1,P2) ∈ R implies for all α ∈ A:

– if P1
γ
−→sP

′
1 then there exists P′2 such that P2

γ
−→sP

′
2 with (P′1,P′2) ∈ R.

– if P2
γ
−→sP

′
2 then there exists P′1 such that P1

γ
−→sP

′
1 with (P′1,P′2) ∈ R.

Definition 18. Let P1, P2 be two Bio-PEPA systems whose model components are
P and Q, respectively. P and Q are strong stochastic bisimilar, written P ∼s Q, if
(P1,P2) ∈ R for some strong stochastic bisimulation R.



Definition 19. Let P1, P2 be two Bio-PEPA systems whose model components are P
and Q, respectively.P1, P2 are strong stochastic bisimilar, writtenP1 ∼s P2, if P ∼s Q.

Both ∼c and ∼s are equivalence relations and congruences with respect to the com-
binators of Bio-PEPA. Moreover it is straightforward to see that isomorphism implies
strong bisimulation in both cases.

Example Consider the following systems representing two biological systems. The
former system P1 represents a system described by an enzymatic reaction with kinetic

law
v1 × E × S

K1 + S
, where S is the substrate and E the enzyme. We have that the set N is

defined as {S : h,NS ; P : h,NP; E : 1, 1} for some step size h and maximum levels NS

and NP. The component and the model components are defined as:

S
def
= (α, 1)↓S E

def
= (α, 1) ⊕ E P

def
= (α, 1)↑P

The model component P1 is (S (lS 0) BC
{α}

E(1)) BC
{α}

P(lP0). The functional rate is fα =
f MM(v1,K1).

The second system P2 describes an enzymatic reaction where the enzyme is left

implicit (it is constant). The rate is given by
v1 × S ′

K1 + S ′
, where S ′ is the substrate.

We have that the set N is defined as {S ′ : h,NS ′ ; P′ : h,NP′ }.
The components are defined as S′

def
= (α, 1)↓S ′ and P′

def
= (α, 1)↑P′ and the model

component P2 is S ′(lS 0) BC
{α}

P′(lP0). In this case fα = f MM′((v1,K1), S ′) =
v1 × S ′

K1 + S ′
and

the component S ′ and P′ have the same number of levels/maximum concentration of S
and P.

We have that P1 ∼s P2, but P1 /c P2, because the number of enzymes is differ-
ent. The same relations are valid if the systems rather than the model components are
considered.

3.6 Analysis

A Bio-PEPA system is an intermediate, formal, compositional representation of the bi-
ological model. Based on this representation we can perform different kinds of analysis.
In this section we discuss briefly how to use a Bio-PEPA system to derive a CTMC with
levels, a set of Ordinary Differential Equations (ODEs), a Gillespie simulation and a
PRISM model.

From Bio-PEPA to a CTMC As for the reagent-centric view of PEPA, the CTMC
associated with the system refers to the concentration levels of the species components.
Specifically, the states of the CTMC are defined in terms of concentration levels and the
transitions from one state to the other capture some variations in these levels. Hereafter
we call the CTMC derived from a Bio-PEPA system (or from a PEPA reagent-centric
view system) CTMC with levels.



Theorem 1. For any finite Bio-PEPA system P = 〈V,N ,K ,FR,Comp, P〉, if we define
the stochastic process X(t) such that X(t) = Pi indicates that the system behaves as the
component Pi at time t, then X(t) is a Markov Process.

The proof is not reproduced here but it is analogous the one presented for PEPA [42].
Instead of the PEPA activity we consider the label γ and the rate is obtained by evaluat-
ing the functional rate in the system. We consider finite models to ensure that a solution
for the CTMC is at least theoretically feasible (in practice the size of the state space
may make the model intractable). The finiteness assumption is equivalent to supposing
that each species in the model has a maximum level of concentration.

Theorem 2. Given (P̃, Γ,−→s), let P be a Bio-PEPA system, with model component P.
Let nc = |ds(P)|, where ds(P) is the derivative set of P. Then the infinitesimal generator
matrix of the CTMC for P is a square matrix Q (nc×nc) whose elements qu,v are defined
as

qu,v =
∑

α j∈A(Pu |Pv)

rα j if u , v qu,u = −
∑
u,v

qu,v otherwise.

where Pu, Pv are two derivatives of P.

It is worth noting that the states of the CTMC are defined in terms of the deriva-
tives of the model component. These derivatives are uniquely identified by the levels of
species components in the system, so we can give the following definition of the CTMC
states:

Definition 20. The CTMC states derived from a Bio-PEPA system can be defined as
vectors of levels σ = (l1, l2, ..., ln), where li , for i = 1, 2, ..., n is the level of the species i
and n is the total number of species.

Note that we can avoid consideration of the two levels for Res and CF as they are
always constant.

From this we can deduce that if two transitions are possible between a pair of states,
the actions involved are different and they represent reactions that differ only in the
modifiers and/or the number of enzymes used. The former point follows from the def-
inition of well-defined Bio-PEPA system. The second point follows because the only
possibility of having two transitions between two given states is that the associated re-
actions have the same reactants and products. We can see this by observing that the
states depend on the levels and the reactions cause some changes in these levels. The
only elements that do not change during a reaction are the modifiers.

The objective in forming the CTMC with levels is to generate a discrete state space
model for which the state space is not prohibitively large. Such a model can then be
subjected to numerical analysis, deriving the transient or steady state probability distri-
bution over the states of the model. This form of analysis simultaneously considers all
possible behaviours of the model. This is quite distinct from stochastic simulation, also
based on a CTMC, which only considers a single trajectory over the state space of the
model in each run, i.e. each run captures only one possible behaviour of the model.



From Bio-PEPA to ODEs The translation into ODEs is similar to the method proposed
for PEPA (reagent-centric view) [13]. It is based on the syntactic presentation of the
model and on the derivation of the stoichiometry matrix D = {di j} from the definition
of the components. The entries of the matrix are the stoichiometric coefficients of the
reactions and are obtained in the following way: for each component Ci consider the
prefix subterms Ci j representing the contribution of the species i to the reaction j. If the
term represents a reactant we write the corresponding stoichiometry κi j as −κi j in the
entry di j. For a product we write +κi j in the entry di j. All other cases are null.

Let tODE denote the mapping of a Bio-PEPA system P into a set of ODEs. This
mapping is based on the following steps:

1. Definition of the stoichiometry (n ×m) matrix D, where n is the number of species
and m is the number of molecules;

2. Definition of the kinetic law vector (m × 1) vKL containing the kinetic laws of each
reaction;

3. Association of the variable xi with each component Ci and definition of the vector
(n × 1) x̄.

The ODE system is then obtained as:

dx̄
dt
= D × vKL

with initial concentrations xi0 = li0 × h, for i = 1, ..., n.
The following property holds:

Property 1. For a biochemical networkM and a Bio-PEPA system P= tr BM BP(M),
we have that tODE(P) = tBODE(M), where tODE and tBODE are the translation functions
from Bio-PEPA and the biological system into ODEs, respectively.

The ODE system derived from a Bio-PEPA system P is “equal” to the one obtained
directly from the biological network itself. This means that in the translation into Bio-
PEPA no information for the derivation of ODEs is lost. This result is unsurprising since
in both cases the construction of the ODEs is based on stoichiometric matrix. However
the Bio-PEPA model can generally collect more information than the respective ODEs.
This can been seen by considering examples which give rise to the same set of ODEs
but which differ in their Bio-PEPA representation. For example consider the Bio-PEPA
models corresponding to the following sets of reactions:

{A
r
−→B +C; A

r
−→B; A

r
−→C + D}

and

{A
2r
−→B +C; A

r
−→D}.

The two Bio-PEPA models are different, but the ODE systems that we derive from them
coincide.



From Bio-PEPA to stochastic simulation Gillespie’s stochastic simulation algorithm
[36] is a widely-used method for the simulation of biochemical reactions. It applies to
homogeneous, well-stirred systems in thermal equilibrium and constant volume, com-
posed of n different species that interact through m reactions. Broadly speaking, the
goal is to describe the evolution of the system X(t), described in terms of the number of
elements of each species, starting from an initial state. Every reaction is characterised
by a stochastic rate constant c j, termed the basal rate (derived from the constant rate
r by means of some simple relations proposed in [36, 68]). Using this it is possible to
calculate the actual rate a j(X(t)) of the reaction, that is the probability of the reaction
R j occurring in time (t, t + ∆t) given that the system is in a specific state.

The algorithm is based on the following two steps:

– Calculation of the next reaction to occur in the system;
– Calculation of the time at which that reaction occurs.

The calculations are based on two conditional density functions:

p( j | X(t)) = a j(X(t))/a0,

that is, the probability that the next reaction is R j and

p(τ | X(t)) = a0ea0X(t)τ,

the probability that the next reaction occurs in [t+τ, t+τ+dτ], where a0 =
m∑

v=1
av(X(t)).

The translation of a Bio-PEPA model to a simulation model amenable to Gille-
spie’s algorithm is similar to the approach proposed for ODEs. The main drawbacks
are the definition of the rates and the correctness of the approach in the case of general
kinetic laws. Indeed Gillespie’s stochastic simulation algorithm supposes elementary
reactions and constant rates (mass-action kinetics). If the model contains only this kind
of reactions the translation is straightforward. If there are non-elementary reactions and
general kinetic laws, a widely-used approach is to consider them translated directly
into a stochastic context. This is not always valid and some counterexamples have been
demonstrated [11]. The authors of [11] showed that when Gillespie’s algorithm is ap-
plied to Hill kinetics in the context of the transcription initiation of autoregulated genes,
the magnitude of fluctuations is overestimated. The application of Gillespie’s algorithm
in the case of general kinetics laws is discussed by several authors [1, 17]. Rao and
Arkin [1] show that this approach is valid in the case of some specific kinetic laws, such
as Michaelis-Menten and inhibition. However, it is important to remember that these
laws are approximations, based on some assumptions that specific conditions (such as
“S � E” in the case of Michaelis-Menten) hold. The approach we advocate is as in
[47]: we apply Gillespie’s algorithm, but particular attention must be paid to the inter-
pretation of the simulation results and to their validity.

The definition of a Gillespie model is based on:

– Definition of the state vector X̄. It is composed of n components Xi, representing
the number of elements for each species i.



– Definition of the initial condition X̄0. The values are given by:

Xi0 = li0 × h × NA × vi molecules

where NA is the Avogadro number, i.e. the number of molecules in a mole of a
substance, and vi is the volume of the containing compartment Vi.

– Definition of the actual rate for each reaction. We have two cases:
1. Reactions described by the mass-action law and with constant rate r j. The ac-

tual rate for the reaction is:

a j(X̄ j) = c j × fh(X̄ j)

where c j is the stochastic rate constant, fh is a function that gives the number
of distinct combinations of reactant molecules and X̄ j are the species involved
in the reaction j. The stochastic rate constant is defined in [68] as:

c j =
r j

(NA × v)ntot−1 ×

n j∏
u=1

κu j!

where n j is the number of distinct reactants in the reaction j, r j is the rate of

the reaction and ntot =

n j∑
u=1

κu j is the total number of reactants 6.

Finally, the number of possible combinations of reactants is defined as

fh((X̄ j) =
n j∏

u=1

(
Xp(u, j)

κu j

)
∼

n j∏
u=1

(Xp(u, j))κu j

n j∏
u=1

κu j!

2. Reactions with general kinetic laws fα j (k̄, C̄). The actual rate is:

a j(X̄ j) = fα j (k̄, X̄ j)

From Bio-PEPA to PRISM PRISM [61] is a probabilistic model checker, a tool for
the formal modelling and analysis of systems which exhibit random or probabilistic be-
haviour. PRISM has been used to analyse systems from a wide range of application do-
mains. Models are described using the PRISM language, a simple state-based language
and it is possible to specify quantitative properties of the system using a temporal logic,
called CSL [2] (Continuous Stochastic Logic). For our purposes the underlying mathe-
matical model of a PRISM model is a CTMC and the PRISM models we generate from
Bio-PEPA correspond to the CTMCs with levels. However we present the translation
separately as the models are specified in the PRISM language.

6 We assume that all the species that are involved in the reaction as reactants are inside the same
compartment with volume v.



The PRISM language is composed of modules and variables. A model is composed
of a number of modules which can interact with each other. A module contains a number
of local variables. The values of these variables at any given time constitute the state of
the module. The global state of the whole model is determined by the local state of all
modules. The behaviour of each module is described by a set of commands. Each update
describes a transition which the module can make if the guard is true. A transition is
specified by giving the new values of the variables in the module, possibly as a function
of other variables. Each update is also assigned a probability (or in some cases a rate)
which will be assigned to the corresponding transition. It is straightforward to translate
a Bio-PEPA system into a PRISM model. We have the following correspondences:

– The model is defined as stochastic (this term is used in PRISM for CTMC).
– Each element in the set of parameters K is defined as a global constant.
– The maximum levels, the concentration steps and the volume sizes are defined as

global constants.
– Each species component is represented by a PRISM module. The species compo-

nent concentration is represented by a local variable and it can (generally) assume
values between 0 and Ni. For each sub-term (i.e. reaction where the species is in-
volved) we have a definition of a command. The name of the command is related
to the action α (and then to the associated reaction). The guards and the change
in levels are defined according to whether the element is a reactant, a product or a
modifier of the reactions.

– The functional rates are defined inside an auxiliary module.
– In PRISM the rate associated with an action is the product of the rates of the com-

mands in the different modules that cooperate. For each reaction, we give the value
“1” to the rate of each command involved in the reaction, with the exception of the
command in the module containing the functional rates. In this case the rate is the
functional rate f , expressing the kinetic law. The rate associated with a reaction is
given by 1 × 1 × ... × f = f , as desired.

4 Examples

This section reports the translation of two biological models into Bio-PEPA and some
analysis results. The first example is taken from [37] and describes a minimal model for
the cascade of post-translational modifications that modulate the activity of cdc2 kinase
during the cell cycle. The second example is the repressilator [33], a synthetic genetic
network with an oscillating behaviour.

In the present work the stochastic and deterministic simulations are obtained ex-
porting the Bio-PEPA system by means of the derivations described in Section 3.6. An
automatic translation is under implementation.

4.1 The Goldbeter’s model

In the following we show the translation of the Goldbeter’s model presented in [37] into
Bio-PEPA and we discuss the kinds of analysis that are possible for it. Broadly speak-
ing, the model describes the activity of the protein cyclin in the cell cycle. The cyclin



promotes the activation of a cdk (cdc2) which in turn activates a cyclin protease. This
protease promotes cyclin degradation, and thus a negative feedback loop is obtained.

CYCLIN (C)

cdc2 inactive (M’)  

  Protease inactive (X’) Protease active (X)

R1

R3

R4

R7
cdc2 active (M)

R2

R6

R5

Fig. 2. Goldbeter’s model.

The biological model A schema of the model is shown in Fig. 2. There are three
distinct species involved:

– cyclin, the protein protagonist of the cycle, represented by variable C;
– cdc2 kinase, in both active (i.e. dephosphorylated) and inactive form (i.e. phospho-

rylated). The variables used to represent them are M and M′, respectively;
– cyclin protease, in both active (i.e. phosphorylated) and inactive form (i.e. dephos-

phorylated). The variables are X and X′.

A detailed list of reactions is reported in Table 2. The first two reactions are the
creation of cyclin and its degradation. The reactions R3-R6 are enzymatic reactions
describing the activation/deactivation of the biological species cdc2 and protease. These
reactions are activated through phosphorylation/dephosphorylation. The last reaction is
the degradation of the cyclin triggered by the protease.

Concerning the kinetic laws, the first two reactions have mass-action kinetics, whereas
the others all have Michaelis-Menten kinetics. We have some kinetic laws in which the
enzyme is explicit (reactions 3, 5), other ones in which it is implicit (reactions 4, 6) as
it is constant and abstracted within the Michaelis-Menten parameter Vi.

The Bio-PEPA system The translation of the Goldbeter’s model into Bio-PEPA is
achieved in the following steps.

– Definition of the list V. In the model compartments are not considered. Here we
add the default compartment:

cell : 1.0 × 10−14 litre



id name react. prod. mod. kinetic laws
R1 creation of cyclin - C - vi

R2 degradation of cyclin C - - kd ×C

R3 activation of cdc2 kinase M′ M C
C × V1

(Kc +C)
M′

(K1 + M′)

R4 deactivation of cdc2 kinase M M′ -
M × V2

(K2 + M)

R5 activation of cyclin protease X′ X M
X′ × M × V3

(K3 + X′)

R6 deactivation of cyclin protease X X′ -
X × V4

K4 + X

R7 degradation of cyclin C - X
C × Vd × X

C + Kd
triggered by protease

Table 2. Goldbeter model. The list of reactions.

– Definition of the set N . This is defined as:

C : h,NC , 0.01, 0.6, cell; M′ : h,NM′ , 0.99, 1, cell; M : h,NM , 0.01, 0.7, cell;
X′ : h,NX′ , 0.99, 1, cell; X : h,NX , 0.01, 0.65, cell;
Res : 1, 1, , , cell; CF : 1, 1, , , cell;

The components Res and CF are added to represent degradation reactions and the
synthesis of the cyclin, respectively. The information about the initial and the max-
imum concentrations are derived from Goldbeter’s paper. We can fix the step size
as 0.05. In this case the maximum levels are: NC = 12, NM = 14, NX = 13,
NM′ = NX′ = 20. If we wanted to consider the finer granularity h = 0.01 (cor-
responding to the initial concentration of some of the species) we would have
NC = 60, NM = 70, NX = 65, NM′ = NX′ = 100.

– Definition of functional rates (FR) and parameters (K). The functional rates are:

fα1 = f MA(vi); fα2 = f MA(kd); fα4 = f MM(V2,K2);
fα5 = f MM(V3,K3); fα6 = f MM(V4,K4); fα7 = f MM(Vd,Kd);

fα3 = f MM′((V1,Kc,K1),M′,C) =
V1 ×C
Kc +C

M′

K1 + M′
;

The parameters are those reported in the original paper and we have:

vi = 0.025 µM.min−1; kd = 0.01 min−1; V1 = 12 µM.min−1; K1 = 0.02 µM;
V2 = 1.5 µM.min−1; K2 = 0.02 µM; V3 = 12 min−1; K3 = 0.02 µM;
Vd = 0.0625 µM.min−1; V4 = 2 µM.min−1; K4 = 0.02 µM; Kd = 0.02 µM ;
Kc = 0.5 µM



– Definition of species components (Comp) and of the model component (P).

C
def
= (α1, 1)↑C + (α2, 1)↓C + (α7, 1)↓C + (α3, 1) ⊕C;

M′
def
= (α4, 1)↑M′ + (α3, 1)↓M′;

M
def
= (α3, 1)↑M + (α4, 1)↓M + (α5, 1) ⊕ M;

X′
def
= (α6, 1)↑X′ + (α5, 1)↓X′;

X
def
= (α5, 1)↑X + (α6, 1)↓X + (α7, 1) ⊕ X;

Res
def
= (α2, 1) � Res;

CF
def
= (α1, 1) � CF;

C(l0C) BC
{α3 }

M(l0M) BC
{α3 ,α4 }

M′(l0M′ ) BC
{α5 ,α7 }

X(l0X) BC
{α5 ,α6 }

X′(l0X′ ) BC
{α2 }

Res(0) BC
{α1 }

CF(1)

The levels are chosen to reflect the initial values of the species and are set to l0C =

l0M = l0X = 0 and l0M′ = l0X′ = 20.

Analysis In the following we report some observations about the analysis of the Bio-
PEPA system.

SLTS and CTMC By considering the step size h = 0.05 and the number of levels given
in the Bio-PEPA system we obtain a CTMC with 52 states and 185 transitions. The
states are described by the vector:

(C(lC),M′(lM′ ),M(lM), X′(lX′ ), X(lX))

where the different components can assume different values according to the possible
number of levels for each species. This CTMC is not depicted.

Instead, for illustrative purposes, we present a simpler CTMC for our model, ob-
tained assuming h = 1 and considering only two levels for each species. The vector
N is modified accordingly. We show how to define the states and the transition rates
of this CTMC starting from the Bio-PEPA system and the associated transition sys-
tem. The initial situation is with C, M and X absent (0) and the other elements present
(1). The initial state is (C(0),M′(1),M(0), X′(1), X(0)). Figure 3 reports the stochastic
transition system in this simplified case.

The numbers indicate the different transitions. Each transition is characterized by a
label γi containing the information about the action type and the rate. We have:

γ1 = (α1, r1) γ2 = (α2, r2) γ3 = (α3, r3) γ4 = (α4, r4)
γ5 = (α5, r5) γ6 = (α6, r6) γ7 = (α4, r7) γ8 = (α3, r8)
γ9 = (α1, r9) γ10 = (α2, r10) γ11 = (α7, r11) γ12 = (α4, r12)
γ13 = (α3, r13) γ14 = (α5, r14) γ15 = (α6, r15) γ16 = (α4, r16)
γ17 = (α2, r17) γ18 = (α6, r18) γ19 = (α1, r19) γ20 = (α2, r20)
γ21 = (α7, r21) γ22 = (α1, r22) γ23 = (α6, r23)
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Fig. 3. The transition system for the Goldbeter’s model in the case of two levels.

where

r1 = r9 = r19 = r22 = vi = 0.025, r2 = r10 = r20 = r17 = kd ×C = 0.0001,

r3 = r13 =
V1 ∗C
Kc +C

M′

(K1 + M′)
= 0.23, r4 = r7 = r12 = r16 =

V2 × M
(K2 + M)

= 2.66,

r5 = r14 =
V3 × M × X′

(K3 + X′)
= 0.117, r6 = r15 = r23 = r18 =

V4 × X
(K4 + X)

= 2.66,

r11 = r21 =
Vd ×C × X

(Kd +C)
= 0.00086

The states and transitions of the CTMC correspond directly to those of the SLTS
with the exception of the case when there are multiple transitions between the same two
states. In this example we have only two transitions in the CTMC whose rate is the sum
of the rates of two single transitions in the SLTS. In the graph above these cases corre-
spond to the degradation of cyclin, that can happen both with and without the protease.
In the CTMC the rate associated with the transition between the states (1, 0, 1, 0, 1) and
(0, 0, 1, 0, 1) and between (1, 1, 0, 0, 1) and (0, 1, 0, 0, 1) is given by the sum of the rates

of the two degradation reactions kd ×MC +
Vd ×C × X

(Kd +C)
= 0.00096 µM.min−1. The rates

associated with the other transitions are the ones contained in the labels γi above.

ODEs The stoichiometry matrix D associated with the Bio-PEPA system above is



R1 R2 R3 R4 R5 R6 R7
C +1 -1 0 0 0 0 -1 xC

M′ 0 0 -1 +1 0 0 0 xM′

M 0 0 +1 -1 0 0 0 xM

X′ 0 0 0 0 -1 +1 0 xX′

X 0 0 0 0 +1 -1 0 xX

The vector that contains the kinetic laws is:

vT
KL =

(
vi × 1, kd × xC ,

V1 × xC

Kc + xC

xM′

(K1 + xM′ )
,

V2 × xM

(K2 + xM)
,

V3 × xM × xX′

(K3 + xX′ )
,

V4 × xX

(K4 + xX)
,

Vd × xC × xX

(Kd + xC)

)
where “T” indicates the transpose of the vector. The system of ODEs is obtained as
dx̄
dt = D × vKL, with x̄T := (xC , xM′ , xM , xX′ , xX), the vector of the species variables:

dxC

dt
= vi × 1 − kd × xC −

Vd × xC × xX

(Kd + xC)
;

dxM′

dt
= −

V1 × xC

Kc + xC
×

xM′

(K1 + xM′ )
+

V2 × xM

(K2 + xM)
;

dxM

dt
=

V1 × xC

Kc + xC
×

xM′

(K1 + xM′ )
−

V2 × xM

(K2 + xM)
;

dxX′

dt
= −

V3 × xM × xX′

(K3 + xX′ )
+

V4 × xX

(K4 + xX)
;

dxX

dt
=

V3 × xM × xX′

(K3 + xX′ )
−

V4 × xX

(K4 + xX)
;

The initial conditions are the ones reported in the set N . It is worth noting that the
system is equivalent, after some arithmetic manipulations, to the ODE model presented
in [37]. The analysis of the model using ODEs is reported in Figure 8. The graphs
coincide with results in the original paper.

PRISM The full translation of the model into PRISM is reported in the Appendix A. The
number of levels, the maximum concentrations and the parameters used in the kinetic
laws are expressed using global constants. For each species a module is constructed.
The module representing the cyclin is:

module cyclin
cyclin : [0..Nc] init 0;
[creationC] cyclin < Nc→ (cyclin′ = cyclin + 1);
[degradationC] cyclin > 0→ (cyclin′ = cyclin − 1);
[activationM] cyclin > 0→ (cyclin′ = cyclin);
[degradationCX] cyclin > 0→ (cyclin′ = cyclin − 1);
endmodule



Fig. 4. ODE simulation results for two different instantiations of the model. The two
instantiations differ only in the values of the Michaelis-Menten constants. For Ki

i = 1, 2, 3, 4 we have that Ki = 0.02 µM for the graph on the left and Ki = 40 µM
for the graph on the right. The initial concentrations are those reported in the Gold-
beter’s original paper: 0.01 µM for C, X and M. The simulation time is 100 minutes.
In first instantiation of the model, depicted in the figure on the left, we have sustained
oscillations whereas in the second, depicted in the figure on the right, we have no oscil-
lations.

The variable cyclin is local and represents the species “cyclin”. The possible values
are [0..Nc] (where Nc is the maximum level for cyclin) and the initial value is set to
0. Cyclin is involved in four different reactions represented by four commands. The
name in the square brackets denotes the reaction. The guards are defined according
to whether cyclin is a reactant, product or modifier of the reaction (this can be derived
from the Bio-PEPA specification of the model). The rate associated with each command
is “1” with the exception of the command in the module describing the functional rates.
The functional rates are defined in a specific module.

Extension of the model with a control mechanism based on inhibition The au-
thors of [34] proposed an extension of Goldbeter’s model in order to represent a control
mechanism for the cell division cycle (CDC). Their approach is based on the introduc-
tion of a protein that binds to and inhibits one of the proteins involved in the CDC. This
influences the initiation and the conclusion of cell division and modulates the frequency
of oscillations. Their approach is based on the basic biochemical network of the CDC
oscillations and not on the details of the model so that it may work for other models of
this kind. One possible extension for Goldbeter’s model is reported in Figure 5.

Generally speaking, given a general CDC model with l proteins U1, U2, ...,Ul, Gard-
ner et al. show that the ODE model is modified in the following way (see [34] for
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Fig. 5. Extension of the Goldbeter’s model. An inhibitor is added.

details):

dU1

dt
= f1(U1,U2, · · · ,Ul) − a1 × U1 × Y + (a2 + θ × d1);

dU2

dt
= f2(U1,U2, · · · ,Ul);

...
dUl

dt
= fl(U1,U2, · · · ,Ul);

dY
dt
= vs − d1 × Y − a1 × U1 × Y + (a2 + θ × kd) × Z;

dZ
dt
= a1 × U1 × Y − (a2 + θ × d1 + θ × kd) × Z;

where:

– fi(U1,U2, ...) with i = 1, 2, ..., l are the functions of the standard model;
– U1 is the concentration of the target protein of the inhibitor, Y is the inhibitor and

Z denotes the concentration of the inhibition-target complex. U2,...,Ul are the other
proteins involved in the cycle;

– a1 and a2 are the constant rates for the binding and for the release;
– vs and d1 are the rate for the inhibitor synthesis and degradation;



– θ < 1 is the fraction of the degradation rates for the complex Z.

In the following we show how to modify the Bio-PEPA system in order to capture
the new reactions and species. Bio-PEPA offers a compositional approach: it is possi-
ble to compose the whole system by defining the simple subcomponents that compose
it. As observed in Section 1, compositionality is one of the main properties of process
algebras, that makes them particularly useful for capturing of complex models. In our
example, the new reactions and species can indeed be added in a straightforward way,
with minor modifications of the system specification. Broadly speaking, we need to de-
fine components for the new species, some new terms to describe the new reactions and
new functional rates. Finally, the new components are added to the system component.

Here we consider l = 3, U1 = C, U2 = M and U3 = X. The inhibition-target
complex Z is thus IC in this case. This complex may dissociate in three distinct ways
(R9,R12 and R13 in Figure 5) since each of I and C may be degraded during the disso-
ciation. Note that we could obtain modulation of CDC frequency by using an inhibitor
of any of the proteins, so alternative models could be formed with U1 = M or U1 = X.

We need to extend the Bio-PEPA model in the following way:

C
def
= · · · + (α8, 1)↓C + (α9, 1)↑C + (α12, 1)↑C;
...
...

Res
def
= · · · + (α11, 1) � Res;

CF
def
= · · · + (α10, 1) � CF;

I
def
= (α8, 1)↓I + (α9, 1)↑I + (α10, 1)↑I + (α11, 1)↓I + (α13, 1)↑I;

IC
def
= (α8, 1)↑IC + (α9, 1)↓IC + (α12, 1)↓IC + (α13, 1)↓IC;

where I stands for the inhibitor and IC for the inhibitor-cyclin complex in Figure 5. The
new functional rates, all described by mass-action kinetics:

fα8 = vs; fα9 = f MA(d1); fα10 = f MA(a1);
fα11 = f MA(a2); fα12 = f MA(θ × d1); fα13 = f MA(θ × kd)

The list of parameters must also be extended to reflect the new elements.
Finally the Bio-PEPA model is:

C(l0C) BC
{α3 }

M(l0M) BC
{α3 ,α4 }

M
′

(l0M′ ) BC
{α5 ,α7 }

X(l0X) BC
{α5 ,α6 }

X
′

(l0X′ )

BC
{α2 }

Res(0) BC
{α1 }

CF(1) BC
{α8 ,α9 ,α10 ,α11 }

I(l0I) BC
{α8 ,α9 ,α12 ,α13 }

IC(l0IC)

The results of the ODE simulations corresponding to the new model are reported in
Fig. 6.



Fig. 6. ODE simulation results for the extended model. The parameters of Goldbeter’s
model are as before. For the new parameters, in all the graphs d1 = 0.05, θ = 0.1 and
Kdiss =

a1
a2
= 1. The top graph corresponds to a1 = a2 = 0.3 and vs = 0.6, the middle

graph to a1 = a2 = 0.7 and vs = 1.4 and the lower graph to a1 = a2 = 0.05 and vs = 0.1.
The initial values of C, X,M and I are 0.01µM. Simulation time is 100 minutes.



4.2 The repressilator

The repressilator is a synthetic genetic regulatory network with oscillating behaviour
reported in [33]. The repressilator consists of three genes connected in a feedback loop,
such that the transcription of a gene is inhibited by one of the other proteins. In the
following we present the translation of the original model into Bio-PEPA and we report
some analysis results.

The biological model A schema of network is reported in Figure 7.
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            G3  mRNA3 P3             G1  mRNA1  P1

trl2tr2 d2 d5

tr1 trl1
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Fig. 7. Repressilator model.

The species involved are:

– Three kinds of genes, hereafter denoted G1, G2, G3. These represent the genes lacl,
tetR and cI, respectively.

– The mRNAs transcribed from the three genes, hereafter denoted mRNA1, mRNA2,
mRNA3, respectively.

– The proteins corresponding to the three genes, denoted P1, P2, P3, respectively.
These represent the proteins associated with the previous genes i.e. Lacl, TetR, CI.

The reactions are:

– The transcription of the three mRNAs with inhibition by one of the proteins. These
reactions are indicated as tr1, tr2, tr3. The genes are constant and are kept implicit;

– The translation of mRNAs into the proteins, indicated as trl1, trl2, trl3;
– Degradation of both mRNAs and proteins, indicated as di with i = 1, ..., 6.

The transcription reactions are described by Hill kinetics, while the other reactions have
mass-action kinetic laws.



The Bio-PEPA system The definition of the Bio-PEPA corresponding to the repressi-
lator model is reported below. The parameters and the initial concentrations are one of
the possibilities defined in the paper [33].

– Definition of compartments. There are no compartments defined explicitly in the
model. We consider the default compartment:

vCell : 1;

– Definition of the set N It is defined as:

mRNA1 : 1, 1, 0, , vCell; mRNA2 : 1, 1, 0, , vCell; mRNA3 : 1, 1, 0, , vCell;
P1 : 1, 1, 5, , vCell; P2 : 1, 1, 0, , vCell; P3 : 1, 1, 15, , vCell;
Res : 1, 1, , , vCell; CF : 1, 1, , , vCell;

It is worth noting that in the original model the genes are not represented explicitly.
In Bio-PEPA we introduce CF to define the transcription. For all the species we
consider two levels (high and low) and step h = 1. The initial values (third elements)
are those reported in the paper.

– Definition of the set FR and of the set of parameters. The set of functional rates is:

ftr1 = f I((α, α0), P3, 2) =
α

1 + P32 + α0;

ftr2 = f I((α, α0), P1, 2) =
α

1 + P12 + α0;

ftr3 = f I((α, α0), P2, 2) =
α

1 + P22 + α0;

ftrl1 = f MA(β);
ftrl2 = f MA(β);
ftrl3 = f MA(β);
fdi = f MA(1) i = 1, 2, 3, 4, 5, 6;

All the three repressors have same behaviour except for their DNA-binding speci-
ficities. We assume that all the degradation reactions have rate 1. The other param-
eters are: α = 250; α0 = 0; β = 5.
These parameters have the following meaning:

• α0 is the number of protein copies per cell produced from a given promoter
type during growth in the presence of saturing amounts of the repressor. In the
case of the absence of the repressor this number is α0 + α;

• β is the ratio of the protein decay rate to the mRNA decay rate.

– Definition of the species components. The species components are:



Fig. 8. Analysis of the model: ODE solution is depicted on the left and stochastic simu-
lation results (averaged over 100 runs) are depicted on the right. The parameters are as
reported in the text.

mRNA1 def
= (d1, 1)↓mRNA1 + (tr1, 1)↑mRNA1 + (trl1, 1) ⊕ mRNA1;

mRNA2 def
= (d2, 1)↓mRNA2 + (tr2, 1)↑mRNA2 + (trl2, 1) ⊕ mRNA2;

mRNA3 def
= (d3, 1)↓mRNA3 + (tr3, 1)↑mRNA3 + (trl3, 1) ⊕ mRNA3;

P1 def
= (d4, 1)↓P1 + (trl1, 1)↑P1 + (tr3, 1) 	 P1;

P2 def
= (d5, 1)↓P2 + (trl2, 1)↑P2 + (tr1, 1) 	 P2;

P3 def
= (d6, 1)↓P3 + (trl3, 1)↑P3 + (tr2, 1) 	 P3;

CF
def
= (tr1, 1) � CF + (tr2, 1) � CF + (tr3, 1) � CF;

Res
def
= (d1, 1) � Res + (d2, 1) � Res + (d3, 1) � Res

+ (d4, 1) � Res + (d5, 1) � Res + (d6, 1) � Res;

– Definition of the model component. The model is defined as:

((
((((M1(lM10) <> M2(lM20)) BCM3(lM30)) BC

{trl1,tr3}
P1(lP10)) BC

{trl2,tr1}
P2(lP20)) BC

{trl3,tr2}

P3(lP30)
)
BC

{tr1,tr2,tr3}
CF(1)

)
BC

{d1,d2,d3,d4,d5,d6}
Res(0)

The initial levels are defined according to the initial values of the model.

Analysis We consider analysis based on both ODEs and stochastic simulation. The
analysis results are reported in Figures 8 and 9. In Figure 8 we have used the parameters



Fig. 9. Analysis of the model: as previously the ODE solution is depicted on the left
and the stochastic simulation results (averaged over 100 runs) are depicted on the right.
In this case the parameters differ from those reported in the text: α0 is 25 and the initial
values are P1 = 5, P2 = 10 and P3 = 15.

reported in the original paper. On the left, the ODE simulation results are reported. An
oscillating behaviour is shown by all three proteins. On the right the results of stochastic
simulation, averaged over 100 runs, are reported. In this case the average oscillating
behaviour becomes weaker after some time. This is probably due to the slight difference
in phase in the 100 runs so that the averaged behaviour no longer shows oscillatory
behaviour after some time. Note that varying the values of α and β for the different
elements we obtain different amplitudes for the oscillations. In the case of Figure 9, the
three proteins reach a steady state, with both ODE and stochastic simulation.

5 Conclusions and future perspectives

In this chapter we have introduced systems biology modelling based on process alge-
bra, particularly focussing on Bio-PEPA. This new formalism is a modification of the
process algebra PEPA and is designed specifically for the modelling and the analysis
of biochemical networks. Bio-PEPA allows explicit representation of some features of
biochemical networks, such as stoichiometry and general kinetic laws which are not
readily captured in other process algebra based formalisms. Thus not only elementary
reactions with constant rates, but also complex reactions described by general kinetic
laws can be considered. Each reaction in the model is associated with an action type
and a functional rate. The potential to consider various kinds of kinetic laws permits
us to model a vast number of biochemical networks. Indeed complex reactions are fre-
quently found in biologists’ models as abstractions of sequences of elementary steps
and reducing these to elementary reactions is often undesirable, or even impossible.

Some notions of equivalence have been developed for Bio-PEPA and we have shown
how these may be used to compare models. In particular we presented definitions of iso-
morphism and strong bisimulation which are similar to the relations defined for PEPA



in [42]. These equivalences are motivated by the semantics of the language, in that they
are standard notions of equivalence in process algebra, and turn out to be quite strict
with respect to the biological systems. In future work we intend to investigate alterna-
tive forms of equivalence, motivated more by the biological domain with the aim of
finding equivalences which may be used to manipulate and simplify models.

A principal feature of Bio-PEPA is the possibility of mapping the system to different
kinds of analysis. A single system description may be interpreted in a number of ways,
giving rise to ODEs for a population view of the system, a stochastic simulation for an
individuals-based view of the system, or a CTMC with levels for a more abstract view
of the system. Of course stochastic simulation is also a CTMC-based representation
of the system but the focus on individual molecules means that such a CTMC is only
amenable to analysis by simulation. The advantage of the CTMC with levels is that it
may have a state space small enough to be tackled by numerical analysis, meaning that a
different set of analysis techniques may be used. In particular the numerical solution of a
CTMC captures all possible behaviours of the model, whereas each run of a simulation
only captures one trajectory through the state space, i.e. one possible behaviour.

Currently, a tool for the analysis of biochemical networks using Bio-PEPA is under
implementation and a translation from SBML into Bio-PEPA is planned.

A Appendix A: PRISM specification of the Goldbeter’s model

//Kind of model

stochastic

//Volume

const double cell = 1;

// Levels

const int Nc = 1;

const int Nm = 1;

const int Nx = 1;

const int Nxi = 1;

const int Nmi = 1;

//Steps

const double Hc = 0.01;

const double Hm = 0.01;

const double Hx = 0.01;

const double Hxi = 0.01;

const double Hmi = 0.01;

//Parameters

const double vi = 0.05;

const double vd = 0.025;

const double kd = 0.01;

const double Kc = 0.5;

const double V1 = 3;



const double V3 = 1;

const double Kd = 0.2;

const double V2 = 1.5;

const double V4 = 0.5;

const double K1 = 0.005;

const double K2 = 0.005;

const double K3 = 0.005;

const double K4 = 0.005;

//Modules

//module Cyclin

module cyclin

cyclin : [0..Nc] init 0;

[creationC] cyclin<Nc --> 1: (cyclin’ = cyclin+1);

[degradationC] cyclin>0 --> 1: (cyclin’ = cyclin-1);

[activationM] cyclin>0 --> 1: (cyclin’ = cyclin);

[degradationCX] cyclin>0 --> 1: (cyclin’ = cyclin-1);

endmodule

//module kinase inactive

module kinasei

kinasei : [0..Nmi] init 1;

[activationM] kinasei>0 --> 1: (kinasei’ = kinasei-1);

[deactivationM] kinasei<Nmi --> 1: (kinasei’= kinasei+1);

endmodule

//module kinase active

module kinase

kinase : [0..Nm] init 0;

[activationM] kinase<Nm --> 1: (kinase’= kinase+1);

[deactivationM] kinase>0 --> 1: (kinase’ = kinase-1);

[activationX] kinase>0 --> 1: (kinase’ = kinase);

endmodule

//module protease inactive

module proteasei

proteasei : [0..Nxi] init 1;

[activationX] proteasei>0 --> 1: (proteasei’= proteasei-1);

[deactivationX] proteasei<Nxi --> 1: (proteasei’= proteasei+1);

endmodule

//module protease active

module protease

protease : [0..Nx] init 0;

[activationX] protease<Nx --> 1: (protease’ = protease+1);

[deactivationX] protease>0 --> 1: (protease’ = protease-1);

[degradationCX] protease>0 --> 1: (protease’ = protease);

endmodule

module Functional_rates



dummy: bool init true;

[creationC] cyclin<Nc --> vi/Hc: (dummy’=dummy);

[degradationC] cyclin<Nc --> (kd*cyclin*Hc)/Hc: (dummy’=dummy);

[activationM] cyclin>0 & kinasei>0 -->

((cyclin*Hc*V1 )/(Kc + cyclin*Hc))*((kinasei*Hmi)/(K1+kinasei*Hmi))

*(1/Hmi): (dummy’=dummy);

[activationX] kinase>0 & proteasei>0 -->

(kinase*Hm*proteasei*Hxi*V3/(K3+proteasei*Hxi))*(1/Hxi):

(dummy’=dummy);

[deactivationM] kinase>0 --> ((kinase*Hm*V2)/(K2 +kinase*Hm))*(1/Hm):

(dummy’=dummy);

[deactivationX] protease>0 --> (protease*Hx*V4/(K4 + protease*Hx))

*(1/Hx): (dummy’=dummy);

[degradationCX] cyclin>0 & protease>0 -->

((cyclin*Hc*vd *protease*Hx)/(cyclin*Hc + Kd))*(1/Hc): (dummy’=dummy);

endmodule
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56. N. Le Novére, B. Bornstein, A. Broicher, M. Courtot, M. Donizelli, H. Dharuri, L. Li, H.

Sauro, M. Schilstra, B. Shapiro, J.L. Snoep, and M. Hucka. BioModels Database: a Free,
Centralized Database of Curated, Published, Quantitative Kinetic Models of Biochemical
and Cellular Systems. Nucleic Acids Research, volume 34, pages D689–D691, 2006.

57. G.D. Plotkin. A Structural Approach to Operational Semantics. Technical report DAIMI
FM-19, Computer Science Department, Aarhus University, 1981.

58. C. Priami and P. Quaglia. Beta-binders for biological interactions. Proc. of CMSB’04, Vol-
ume 3082 of LNCS, pages 20–33, Springer, 2005.

59. C. Priami. Stochastic π-calculus. The Computer Journal, volume 38, number 6, pages 578–
589, 1995.

60. C. Priami, A. Regev, W. Silverman and E. Shapiro. Application of a stochastic name-
passing calculus to representation and simulation of molecular processes. Information Pro-
cessing Letters, volume 80, pages 25–31, 2001.

61. Prism web site. http://www.prismmodelchecker.org/
62. A. Regev. Representation and simulation of molecular pathways in the stochastic π-

calculus. Proc. of the 2nd workshop on Computation of Biochemical Pathways and Genetic
Networks, 2001.

63. A. Regev and E. Shapiro. Cells as computation. Nature, volume 419, page 343, 2002.
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