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Abstract. Emergent phenomena occur due to the pattern of non-linear
and distributed local interactions between the elements of a system over
time. Surprisingly, agent based crowd models, in which the movement
of each individual follows a limited set of simple rules, often re-produce
quite closely the emergent behaviour of crowds that can be observed in re-
ality. An example of such phenomena is the spontaneous self-organisation
of drinking parties in the squares of cities in Spain, also known as “El
Botellón” [20]. We revisit this case study providing an elegant stochas-
tic process algebraic model in Bio-PEPA amenable to several forms of
analyses, among which simulation and fluid flow analysis. We show that
a fluid flow approximation, i.e. a deterministic reading of the average
behaviour of the system, can provide an alternative and efficient way
to study the same emergent behaviour as that explored in [20] where
simulation was used instead. Besides empirical evidence, also an analyt-
ical justification is provided for the good correspondence found between
simulation results and the fluid flow approximation.
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1 Introduction

In modern society the formation of crowds, intended as large concentrations of
people, is a phenomenon that occurs frequently. Well known examples are crowds
at large entertainment events in cities or other open-air facilities such as sport
stadiums, but also crowds at large airports and train stations. Fortunately, such
crowds usually occur and dissolve without serious problems. However, in some
cases accidents happen with possibly major consequences such as loss of lives
and a large number of injuries [22]. The recent drama at the open-air festival in
Germany is sadly adding to the list of such events [16].

There is an ever stronger interest in being able to prevent such disasters
and there exists an extensive literature on numerous approaches to the study
of crowd formation, crowd management and emergency egress [21]. Simulation
models play an important role in these approaches. In particular, agent based
modelling has become popular in recent years because it may provide valuable
information about the dynamics of systems that contain non-linear elements,
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chaos and random cause and effect. Several works in this area, e.g. work by
Still [22], show that a crowd of people in which each individual follows a limited
number of simple rules produces quite closely the emergent behaviour that can
be observed in real human crowds. Emergent phenomena are known to occur due
to the pattern of non-linear and distributed local interactions between the large
number of elements of a system over time. His work and that of others have led
to the development of several professional tools, based on agent simulation, for
the realistic analysis and prediction of crowd behaviour in emergency situations.
Such analyses may help to detect architectural or organisational problems that
may potentially cause loss of lives in the event of emergency situations.

However, for very large crowds, analysis via detailed simulation may become
costly and time-consuming since each execution of the model produces only a
single trajectory through the state space whereas many executions are needed
to reach statistically relevant conclusions. Such high costs may be justified when
a final verification of a system is required, but often become prohibitive in sit-
uations in which a quick analysis is required to compare the consequences of
different design options or when a large number of slightly different scenarios
need to be analysed, i.e. when one may be interested in approximated, but effi-
cient, analyses.

In a completely different field of research, namely that of the analysis of bio-
chemical reactions, it has been shown that under certain conditions, such as the
presence of a sufficiently large population, a deterministic continuous interpreta-
tion of models composed of many similar small independent components provide
a good approximation of the average transient behaviour of the overall model.
In the context of stochastic process algebras this insight has led to the develop-
ment of an alternative formal fluid flow semantics for PEPA first and later for
Bio-PEPA, a variant of PEPA originally devised for modelling biochemical pro-
cesses. Such semantics are based on the generation of sets of ordinary differential
equations (ODE) [12, 4, 7]. An application of PEPA with this alternative seman-
tics in the context of emergency egress has been presented in [17, 3]; it has been
shown that the approach is an efficient and scalable alternative to simulation
when average behaviour is of interest. It is not suitable to analyse, for example,
exceptional or oscillatory behaviour. Good correspondence with results from the
literature on evacuation times and node profiles—the average number of people
present in a particular part of the building over time during egress—has been
achieved. In that work only linear differential equations have been considered.

In this paper we revisit the case of self-organisation of crowds in a city as
described by Rowe and Gomez in [20]. The work was inspired by a typical social
phenomenon observed in Spanish cities, on summer nights, called “El Botellón”,
when crowds of youngsters wander between city squares in search of a party. Such
self-organising parties sometimes lead to heavy drinking and noisy behaviour
until late at night. It turned out to be hard to predict when and where a large
party would take place. The aim of the work by Rowe and Gomez was to gain
insight into the general principles due to which parties self-organise, abstracting
from specific details of individual cases. We show that with Bio-PEPA a fluid
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flow approximation can provide an alternative way to study the same emergent
behaviour as that explored in [20] where simulation was used instead. This case
differs from that of emergency egress mentioned before because of the presence of
non-linear aspects where the behaviour of the individual agents depends directly
on other, similar agents present in the same environment. In [20] the movement of
a crowd in a city is studied under various assumptions about the likelihood that
people remain in a square. Agents follow two basic rules. The first rule defines
when agents remain in a square, which depends on the “chat-probability”, i.e.
the likelihood to meet someone in the square to chat with. The second rule
defines how agents move between squares.

Rowe and Gomez, by developing an analytical model, determined a threshold
of the chat-probability below which people are freely moving through the city
and above which large crowds start to form. They validated their theory by the
simulation of a multi-agent model for a ring topology of 4 squares and up to
80 agents. Both the theory and the simulation results show that for a value of
the chat probability c = n/N , where n is the number of squares and N the
number of agents, a clear phase-transition can be observed between a steady-
state situation in which agents are evenly distributed over the squares (when c
is below the threshold) and a situation in which agents spontaneously gather in
one or a few squares (when c is a above the threshold).

In this paper, we approach the modelling of crowds by adopting the Bio-
PEPA stochastic process algebra [8]. Bio-PEPA embeds a notion of spatial loca-
tion, intended to model compartments, suitable to describe the city topology and
locate agents within it. Moreover, some aspects of the agent behaviour can be
expressed as a function of the current state of the system, such as the number of
people present in a square, an abstraction of the act of sensing the environment,
common to standard agent models. Such a function may contain non-linear el-
ements, which makes Bio-PEPA also particularly interesting for the analysis of
some forms of emergent behaviour, as we will see in later sections. The fluid flow
results obtained with the Bio-PEPA model correspond surprisingly well to the
simulation results obtained with the the same model and to those published by
Rowe and Gomez [20]. Informally speaking, for models where the rates can be
expressed as functions of the average density of the population, under certain
conditions, this phenomenon is well known (assuming that the populations are
sufficiently large), see e.g. Kurtz [14] and in the context of mean field analysis
Le Boudec et al. [2]. However, the rate functions in the crowds model addressed
in this paper cannot be expressed this way. We provide an alternative analytical
explanation for the observed correspondence which is partially based on recent
work by Hayden and Bradley [11] on PEPA.

The outline of the paper is as follows. Section 2 recalls the crowd model used
in the case study by Rowe and Gomez [20]. Section 3 briefly presents Bio-PEPA
and its analysis environment. Section 4 describes the Bio-PEPA model of the
collective behaviour of crowds in a city followed by a selection of the analyses
results in Section 5. Section 6 provides insight in the close correspondence be-
tween the simulation results and fluid flow approximation for this case. Finally,
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in Section 7 conclusions are presented and future research is outlined. A prelimi-
nary version of our results has been discussed at the PASTA 2010 workshop [19],
whereas further results and details can be found in [18].

2 Rowe and Gomez Model of Crowd Dynamics

In this section we briefly recall the model of movement of crowds between
squares in a city as presented by Rowe and Gomez in [20]. Assume a city
with n squares represented as a graph with vertices {1, 2, . . . , n}. People are
simulated by “agents” that are following a simple set of rules. The number
of agents in square i, with i ∈ {0, 1, . . . , n}, at time t, with t representing
discrete time steps, is represented by pi(t). The state of the system at t is
given by the number of agents present in each square modelled by the vec-
tor p(t) = (p1(t), p2(t), . . . , pn(t)). The total number of agents N at any time t
is constant: N =

∑n
i=1 pi(t).

Agents are located in squares. The rules guiding agents’ behaviour are the
following. The probability that an agent decides to remain in a square depends on
how many other agents are present in the same square. If square i contains pi > 0
agents, the probability that an agent leaves the square is given by (1 − c)pi−1.
The parameter c (representing the chat probability, 0 ≤ c ≤ 1) is the probability
that an agent finds another one to talk to and thus remains in the square.
Note that when there is only one agent in the square, it decides to leave with
probability 1, since there is nobody else to talk to. If an agent decides to move, it
moves with equal probability to any neighbouring square reachable by a street.
Considering an analytical model of the above discrete behaviour the expected
number of agents that will leave square i at a given time step t is given by the
function:

fi(t) = pi(t)(1− c)pi(t)−1

This models the part of the population in square i that does not find anyone to
talk to in that square 1. The probability that an agent, which decided to leave
square j, moves to the adjacent square i is given by the matrix Aij :

Aij = conij/dj

where dj is the degree of vertex j, i.e. the number of streets departing from
square j, and conij denotes that square i is connected to square j:

conij =

{
1 if i is connected to j
0 otherwise

Clearly, conij = conji and we assume that adjacent squares are connected by at
most one street. The expected distribution of agents over squares at time t+ 1
can now be defined as:

p(t+ 1) = p(t)− f(t) +Af(t)

1 Note that in this analytical model the number of agents pi(t) in square i is now
approximated by a real number: the expected number of agents in square i at time t.
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Clearly, from this formula it follows that a steady-state behaviour is reached
when f(t) = Af(t). In other words, when the number of people entering a square
is equal to the number leaving the square. Rowe and Gomez show that there
are two possibilities for such a stable state. In one case the agents freely move
between squares and their distribution is proportional to the number of streets
connected to each square. In the second case agents gather in large groups in a
small number of squares corresponding to emergent self-organisation of parties.
Which of the two situations will occur depends critically on the value of the
chat probability c. When all squares have the same number of neighbouring
squares a phase shift occurs at about c = n/N where n is the number of squares
and N the number of agents. For c < n/N people freely move between squares
whereas for c > n/N agents self-organise into large groups. Simulation of the
model confirms in an empirical way that this estimate for c is quite accurate
when the population is large enough where large means about 60 agents or more
in a 4-square topology.

For topologies where each square has the same number of streets the critical
value of c can be estimated in an analytical way. For less regular topologies and
when different squares have different chat probabilities and not all directions
leaving from a square are equally likely to be taken by people it is very difficult
to identify such critical values in an analytical way. Usually, in such cases sim-
ulation is used to analyse the models. However, when a large number of agents
is involved, simulation may be extremely time consuming.

3 Bio-PEPA and Fluid Flow Analysis

In this section we briefly describe Bio-PEPA [7, 8, 6], a language that has recently
been developed for the modelling and analysis of biochemical systems. The main
components of a Bio-PEPA system are the “species” components, describing
the behaviour of individual entities, and the model component, describing the
interactions between the various species. The initial amounts of each type of
entity or species are given in the model component.

The syntax of the Bio-PEPA components is defined as:

S ::= (α, κ) op S | S+S | C with op = ↓ | ↑ | ⊕ | 	 | � P ::= P ��
L
P | S(x)

where S is a species component and P is a model component. In the prefix
term (α, κ) op S, κ is the stoichiometry coefficient of species S in action α.
This arises from the original formulation of the process algebra for modelling
biochemical reactions, where the stoichiometric coefficient captures how many
molecules of a species are required for a reaction. However it may be interpreted
more generally as the multiples of an entity involved in an occurring action.
The default value of κ is 1 in which case we simply write α instead of (α, κ).
The prefix combinator “op” represents the role of S in the action, or conversely
the impact that the action has on the species. Specifically, ↓ indicates a reactant
which will be consumed in the action, ↑ a product which is produced as a result of
the action, ⊕ an activator, 	 an inhibitor and � a generic modifier, all of which
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play a role in an action without being produced or consumed and have a defined
meaning in the biochemical context. The operator “+” expresses the choice
between possible actions, and the constant C is defined by an equation C=S.
The process P ��

L
Q denotes synchronisation between components P and Q, the

set L determines those actions on which the components P and Q are forced
to synchronise, with ��

∗
denoting a synchronisation on all common actions. In

S(x), the parameter x ∈ IR represents the initial amount of the species.
A Bio-PEPA system with locations consists of a set of species components,

also called sequential processes, a model component, and a context (locations,
functional/kinetics rates, parameters, etc.). The prefix term (α, κ) op S@l is
used to specify that the action is performed by S in location l. The notation
α[I → J ]�S is a shorthand for the pair of reactions (α, 1)↓S@I and (α, 1)↑S@J
that synchronise on action α 2. This shorthand is very convenient when modelling
agents migrating from one location to another as we will see in the next section.
Bio-PEPA is given an operational semantics [8] which is based on Continuous
Time Markov Chains (CTMCs).

The Bio-PEPA language is supported by a suite of software tools which auto-
matically process Bio-PEPA models and generate internal representations suit-
able for different types of analysis [8, 5]. These tools include mappings from Bio-
PEPA to differential equations (supporting a fluid flow approximation), stochas-
tic simulation models [10], CTMCs with levels [7] and PRISM models [15].

A Bio-PEPA model describes a number of sequential components each of
which represents a number of entities in a distinct state. The result of an action
is to increase the number of some entities and decrease the number of others.
Thus the total state of the system at any time can be represented as a vector
with entries capturing the counts of each species component (i.e. an aggregated
CTMC). This gives rise to a discrete state system which undergoes discrete
events. The idea of fluid flow analysis is to approximate these discrete jumps by
continuous flows between the states of the system.

4 Modelling Crowd Movement with Bio-PEPA

Let us consider the same small ring topology with 4 squares, A, B, C and D,
as in Rowe and Gomez, allowing bi-directional movement between squares. The
excerpt from the Bio-PEPA specification below defines this topology. The default
compartment top contains all other compartments. The next line defines square
A. Definitions for the other squares are similar and have been omitted. In this
context size is used to denote a capacity in terms of number of agents.

location top : size = 1000, type = compartment ;
location sqA in top : size = normal square, type = compartment ;

The size of the squares, defined by parameter normal square = 100, is defined
in such a way that all agents, 60 in this case, would fit in any single square and

2 The concrete syntax for writing this in the Bio-PEPA tool set differs somewhat.
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does not impose any further constraints. The Bio-PEPA specification, which
we will henceforth refer to as the ‘crowd model’, has two further parameters.
The parameter c defines the chat-probability and the parameter d the degree or
number of streets connected to a square. In the considered topology d = 2 for
each square. The actions modelling agents moving from square X to square Y will
be denoted by fXtY . The associated functional rate (indicated by the keyword
“kineticLawOf”) is defined in analogy to [20] (see Section 2). Since the only
information on the probability distribution available is the expected number of
agents leaving a square per time unit, this same information can also be modelled
as the rate parameter of an exponential distribution. If one also considers the
uniform distribution of people over the outgoing streets of the square then this
rate needs to be divided by its degree d when agents leaving through a particular
street are considered.

So the general rate with which agents leave square X via a particular street
is:

(P@sqX ∗ (1− c)(P@sqX−1))/d

This leads to the following functional rates for the crowd model, one for each
direction of movement. Only the one for fAtB is shown, the others being similar:

kineticLawOf fAtB : (P@sqA ∗ (1− c)(P@sqA−1))/d;

The sequential component P below specifies the possible movements of a
typical agent between squares. For example, fAtB[sqA→ sqB]�P means that
an agent present in square A moves to square B according to the functional rate
defined for the action fAtB.

P = fAtB [sqA→ sqB]� P + fBtA[sqB → sqA]� P+
fAtC [sqA→ sqC]� P + fCtA[sqC → sqA]� P+
fBtD [sqB → sqD]� P + fDtB [sqD → sqB]� P+
fCtD [sqC → sqD]� P + fDtC [sqD → sqC]� P ;

Finally, the model component defines the initial conditions of an experiment,
i.e. in which squares the agents are located initially, and the relative synchro-
nisation pattern. Initially, there are 60 agents in square A. This is expressed
by P@sqA[60] in the composition shown below. All other squares are initially
empty (i.e. P@sqX[0] for X ∈ {B,C,D}). The fact that moving agents need to
synchronise follows from the defintion of the shorthand operator →.

(P@sqA[60] ��
∗

P@sqB[0]) ��
∗

(P@sqC[0] ��
∗

P@sqD[0])

The total number of agents P@sqA+P@sqB +P@sqC +P@sqD is invariant and
amounts to 60 in this specific case.

5 Selected Results for a Model with Four Squares

This section presents a selection3 of the analysis results for the model with
four squares. The figures report both analysis via Gillespie stochastic simulation

3 Further results can be found in [18].
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(a) Simulation results for c=0.005.
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(b) Fluid flow results for c=0.005.

0 50 100 150 200
Time

0

10

20

30

40

50

60

Po
pu

la
tio

n 
in

 s
qu

ar
e

P@sqA
P@sqB
P@sqC
P@sqD

(c) Simulation results for c=0.10.
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(d) Fluid flow results for c=0.10.

Fig. 1. Results for four squares with 60 agents in A initially

(G) [10], averaged over 10 independent runs, and fluid flow analysis based on
the adaptive numeric solution of sets of ODEs based on the adaptive step-size
5th order Dormand-Prince ODE solver [9].4

Fig. 1(a) and Fig. 1(b) show stochastic simulation and fluid flow results for
a model with 60 agents initially in square A and for c = 0.005, which is below
the analytically estimated threshold of c = n/N = 4/60 = 0.06666. The results
show that a dynamic equilibrium is reached, i.e. all agents distribute evenly over
the four squares. This confirms the discrete event simulation results reported by
Rowe and Gomez. Fig. 1(c) shows the results of stochastic simulation for the
same model, but for c = 0.10, a value above the threshold. Corresponding fluid
flow results for the same value of c are shown in Fig. 1(d). The figures show that
the population settles rather quickly in a steady state in which almost all agents
remain in square A. This is the second type of steady state observed also by
Rowe and Gomez. Interestingly, the fluid flow analyses of the same model, for
both values of c (Fig. 1(b) and Fig. 1(d)) show very good correspondence to the
respective simulation results (Fig 1(a) and Fig. 1(c), resp.).

4 All analyses have been performed with the Bio-PEPA Eclipse Plug-in tool [5] on a
Macintosh PowerPC G5.
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(a) Fluid flow results about “Steady state”
population levels in each square.
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(b) Fluid flow results for square A (and
partially B) for varying chat probabilities.

Fig. 2. Results at t=200 for varying chat probabilities.

Since these results show that both types of steady state emerge in this
stochastic version of the crowd model and for both types of analysis, the ques-
tion naturally arises whether fluid flow could be used as an efficient technique to
investigate the behaviour of the model for various values of the chat-probability
c, in particular those close to the critical threshold. Fig. 2(a) shows the expected
number of agents in the squares at t = 200, starting with 60 agents in square
A initially, for different chat probabilities ranging from 0.01 to 0.2 with steps
of 0.01 (except between 0.05 and 0.065 where the steps are 0.001) in a fluid
flow analysis. The figure shows clearly that for a chat probability below 0.05 in
the steady state the population is evenly distributed over the four squares. For
c > 0.05 the situation changes sharply. For these higher values of c the agent
population tends to concentrate in square A, the square from which they all
started. All other squares remain essentially empty. The results in Fig. 2(a) il-
lustrate a clear case of spontaneous self-organisation or emergent behaviour. The
results in Fig. 2(a) closely correspond to those obtained by Rowe and Gomez [20]
by discrete event simulation. The ease and computational efficiency with which
these results can be produced by means of fluid flow analysis opens up a promis-
ing perspective on how process algebraic fluid flow analysis could be used as
an alternative, efficient, scalable and formal approach to investigate emergent
behaviour in the vicinity of critical parameter values for this class of models.

An impression of how the distribution of agents over the four squares evolves
for values of c that are close to the threshold of c = 0.05 is shown in Fig. 2(b). For
c = 0.05 and c = 0.051 the agents still distribute uniformly over the four squares,
though this takes a bit more time than for lower values of c. For c = 0.052 this
situation is changing, and for c = 0.053 and higher clearly a different steady
state is reached in which most agents group in the single square A. Note that
for c = 0.052 a stable state has not yet been reached at time t = 200. However,
this does not influence the overall picture. The theory on the stability of fixed-
points predicts that the steady state behaviour for values of c > n/N = 4/60 =
0.066666 is unstable (see [20]). Instability in this case means extreme sensitivity
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(a) Simulation results for c=0.1.
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(b) Simulation results for c=0.1.

Fig. 3. Two single simulation runs for the same model with initially 30 agents in each
square

to the initial values of the number of agents in each square. This phenomenon
is illustrated by the results in Fig. 3 where single simulation runs are shown for
the same model and the same initial conditions, i.e. 30 agents per square and
c = 0.1. In every run the agents may all gather in one of the squares without
leaving again. However, no prediction is possible on which square this will be
except that they are all equally likely in this particular topology. Scalability
of the fluid flow analysis is well illustrated by comparing the time of a single
simulation run for 600,000 agents over 500 time units in a 3 by 3 grid topology,
taking approx. 27 min., and a fluid flow analysis of that model taking 20 ms.5.

6 Analytical Assessment of the Fluid Flow Approximation

The results in the previous sections show a very good correspondence between
the results obtained via fluid flow approximation and those obtained, on the
one hand, with Gillespie’s stochastic simulation algorithm applied on exactly
the same Bio-PEPA specification and, on the other hand, with discrete event
simulation results found by Rowe and Gomez [20]. In this section we provide a
justification for this correspondence from an analytical perspective.

There exist several theories that address the relation between the interpre-
tation of the model as a large set of individual, independently behaving and
interacting agents, as is the case for simulation, and a continuous determinis-
tic interpretation of the same model as occurs with a fluid flow approximation.
Perhaps the most well-known is the theory by Kurtz [14]. Informally speaking,
Kurtz shows an exact relation (in the limit when the population goes to infinity)
between the two above mentioned interpretations when the rate-functions can
be expressed in terms of the average density of the population. A similar require-
ment needs to be satisfied in the context of the theory of mean field analysis,

5 These timing results have been obtained with the Bio-PEPA plugin tool for Eclipse
Helios on a MacPro4,1.
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for example in recent work by Le Boudec et al. [2]. Unfortunately, in the crowd
model the rate-functions cannot be expressed in terms of the density of the pop-
ulation because the exponent of the factor (1 − c)(pX−1) requires the absolute
number pX of agents present in square X.

A third approach, by Hayden and Bradley [11], has recently been applied
to assess the quality of the fluid approximation for (grouped) PEPA models. In
that approach the Chapman-Kolmogorov forward equations (C-K) are derived
from a typical central state of the aggregated CTMC6 associated with a PEPA
model. These equations are then used in the moment generating function from
which, by partial differentiation, ordinary differential equations are obtained
for the expected value over time of each sequential component in the PEPA
model. In this section we adapt the approach to the Bio-PEPA crowds model
which is characterised by non-linear rate functions. Let pA, pB , pC and pD

(pA, pB, pC , pD)

(pA + 1, pB − 1, pC , pD) (pA, pB, pC − 1, pD + 1)

(pA − 1, pB + 1, pC , pD) (pA, pB, pC + 1, pD − 1)

(pA + 1, pB, pC − 1, pD)

(pA − 1, pB, pC + 1, pD) (pA, pB + 1, pC , pD − 1)

(pA, pB − 1, pC , pD + 1)

fBtA fCtD
fAtB

fDtC

fBtD

fDtB

fCtA

fAtC

fBtA

fAtB
fDtC

fCtD

fBtD

fDtB

fAtC
fCtA

Fig. 4. A central state of the crowds model.

denote the number of agents in square A, B, C and D, respectively. A central
state of the aggregated CTMC of the crowds model is shown in Fig. 4. Let
prob(pA,pB ,pC ,pD)(t) denote the transient probability of being in the aggregated
CTMC state with pX agents in square X, for X in {A,B,C,D} at time t. From
the crowd model in Sect. 4 we obtain the following C-K, governing the evolution
of the state probabilities over time of the underlying aggregated CTMC:

d prob(pA,pB,pC,pD)(t)

dt
= ((pA + 1) · (1− c)pA)/2 · prob(pA+1,pB−1,pC ,pD)(t)

+((pB + 1) · (1− c)pB )/2 · prob(pA−1,pB+1,pC ,pD)(t)
+((pC + 1) · (1− c)pC )/2 · prob(pA,pB ,pC+1,pD−1)(t)
+((pD + 1) · (1− c)pD )/2 · prob(pA,pB ,pC−1,pD+1)(t)
+((pA + 1) · (1− c)pA)/2 · prob(pA+1,pB ,pC−1,pD)(t)
+((pC + 1) · (1− c)pC )/2 · prob(pA−1,pB ,pC+1,pD)(t)
+((pB + 1) · (1− c)pB )/2 · prob(pA,pB+1,pC ,pD−1)(t)
+((pD + 1) · (1− c)pD )/2 · prob(pA,pB−1,pC ,pD+1)(t)
−((pA) · (1− c)pA−1) · prob(pA,pB ,pC ,pD)(t)
−((pB) · (1− c)pB−1) · prob(pA,pB ,pC ,pD)(t)
−((pC) · (1− c)pC−1) · prob(pA,pB ,pC ,pD)(t)
−((pD) · (1− c)pD−1) · prob(pA,pB ,pC ,pD)(t)

6 For a formal definition see for example [11].
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Each of the eight first summands appears only when the state (pA, pB , pC , pD)
has the corresponding incoming transitions in the aggregated state space.

Let us now consider, following the approach outlined in [11], how an ODE
for the function PA(t) can be obtained. First note that the expected value of
PA(t) is given by:

E [PA(t)] =
∑

(pA,pB ,pC ,pD)

pA · prob(pA,pB ,pC ,pD)(t)

So this leads to the following derivation:

dE[PA(t)]
dt = {By def. of expected value}

d
∑

(pA,pB,pC,pD) pA·prob(pA,pB,pC,pD)(t)

dt = {By distribution of differentiation}∑
(pA,pB ,pC ,pD) pA ·

d prob(pA,pB,pC,pD)(t)

dt = {By definition of C-K equations}
∑

(pA,pB ,pC ,pD)[ ((pA − 1) · pA · (1− c)(pA−1))/2 · prob(pA,pB ,pC ,pD)(t)

+((pA + 1) · pB · (1− c)(pB))/2 · prob(pA,pB ,pC ,pD)(t)

+(pA · pC · (1− c)(pC−1))/2 · prob(pA,pB ,pC ,pD)(t)

+(pA · pD · (1− c)(pD−1))/2 · prob(pA,pB ,pC ,pD)(t)

+((pA − 1) · pA · (1− c)(pA−1))/2 · prob(pA,pB ,pC ,pD)(t)

+((pA + 1) · pC · (1− c)(pC−1))/2 · prob(pA,pB ,pC ,pD)(t)

+(pA · pB · (1− c)(pB−1))/2 · prob(pA,pB ,pC ,pD)(t)

+(pA · pD · (1− c)(pD−1))/2 · prob(pA,pB ,pC ,pD)(t)

−(pA · pA · (1− c)(pA−1)) · prob(pA,pB ,pC ,pD)(t)

−(pA · pB · (1− c)(pB−1)) · prob(pA,pB ,pC ,pD)(t)

−(pA · pC · (1− c)(pC−1)) · prob(pA,pB ,pC ,pD)(t)

−(pA · pD · (1− c)(pD−1)) · prob(pA,pB ,pC ,pD)(t)]

If (PA(t), PB(t), PC(t), PD(t)) is the state of the aggregated CTMC at time t,
then by cancelling terms in the above equation one obtains:∑

(pA,pB ,pC ,pD)[ −pA · (1− c)(pA−1) · prob(pA,pB ,pC ,pD)(t)

+(pB · (1− c)(pB−1) · prob(pA,pB ,pC ,pD)(t))/2
+(pC · (1− c)(pC−1) · prob(pA,pB ,pC ,pD)(t))/2

This yields in terms of expectations the following ODE for E[PA(t)]:

dE[PA(t)]
dt = −E[PA(t) · (1− c)(PA(t)−1)]

+(E[PB(t) · (1− c)(PB(t)−1)])/2
+(E[PC(t) · (1− c)(PC(t)−1)])/2

If at this point, as shown in [11], the functions (1 − c)(X−1) were just constant
rates, then expectation would just distribute over multiplication and one would
obtain an equation in terms of expectations of populations. However, in our
case the rate is a more complicated function and, in general, expectation does



Non-linear Crowd Dynamics 13

not distribute over an arbitrary function, i.e. E[φ(X)] 6= φ(E[X]). This means
that exact equality cannot be obtained this way. As an alternative we consider
whether E[PA(t)](1 − c)(E[PA(t)]−1) could be expected to approximate E[PA(t) ·
(1−c)(PA(t)−1)]. To address this question we recall Jensen’s work [13] from which
it is known that for strictly convex functions φ the following inequality holds:

E[φ(X)] ≥ φ(E[X])

with equality when φ is linear or when it is a constant. The reverse inequality
holds in case φ is strictly concave. So this requires a closer investigation of the
particular function at hand. In Fig. 5 graphs are shown of the function φ(x) =
x(1− c)x for values of x ∈ [0 . . . 60] and for various values of chat probability c.
It can be observed that for very small values of c the function is almost linear
for the number of agents considered. For larger values of c the function is mostly
concave and tends to an almost constant value. This implies that, informally
speaking, any hypothetical probability distribution of the values of x would be
mapped on an increasingly “shrinking” version of the distribution of φ(x). This
means that E[PA(t)](1 − c)(E[PA(t)]−1) approximates E[PA(t) · (1 − c)(PA(t)−1)]
indeed rather well.

Distributing expectation over the function the following ODE for the ex-
pected value of PA(t) is obtained:

dE[PA(t)]
dt ≈ −E[PA(t)](1− c)(E[PA(t)]−1)

+(E[PB(t)](1− c)(E[PB(t)]−1))/2
+(E[PC(t)](1− c)(E[PC(t)]−1))/2

This ODE is identical to the one generated by the Bio-PEPA toolset which
follows the approach described by Ciocchetta and Hillston in [7]. The derivation
is provided in [18]. In a similar way the ODEs for the other stochastic variables
can be obtained. This explains why the results obtained in this paper for fluid
flow and for stochastic simulation also in this non-linear setting correspond so
closely.

7 Conclusions and Further Work

The modelling and analysis of crowd dynamics appears to be an active and open
research topic. We have explored the application of the stochastic process algebra
Bio-PEPA to model a simple but interesting non-linear case study concerning
the emergent self-organisation of parties in the squares of a city. Bio-PEPA is
based on a modular, high-level language providing notions of locality and con-
text dependency. These features make Bio-PEPA also a promising candidate
for the modelling of a class of possibly non-linear systems that goes beyond
the bio-molecular applications it was originally designed for [3, 8, 1]. In this case
study fluid flow approximation provides a computationally efficient analysis of
the number of people, on average, that are present in the various squares when
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Fig. 5. Function x(1− c)x for up to 60 agents and different chat probabilities.

time evolves. The results are shown to correspond well to those found in the liter-
ature where they were obtained by means of more elaborate and time-consuming
discrete event simulation. Also, an analytical approach to explain this good cor-
respondence for a model the rates of which cannot be expressed as functions of
the average population density, has been provided. Although the simple topol-
ogy addressed in this paper, chosen for reasons of validation of the approach,
can be analysed analytically, more complex topologies and more realistic models,
addressing issues such as the influence of the presence of friends on people’s be-
haviour and the attractiveness of squares, may easily turn out to be too complex
to be studied analytically. Fluid flow approximation with Bio-PEPA has proved
to be a suitable choice in this case. Preliminary results about more complex
models can be found in [18].

Future work is developing along a few main directions. We are interested
in developing further linguistic abstractions to describe more precisely the dy-
namics of systems with a large number of mobile agents displaced in a, possibly
open, physical environment. We are furthermore interested in conducting more
fundamental research on the fluid flow approach and its relationship to emergent
non-linear behaviour, in particular its relation to mean field analysis [2].
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