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1 Introduction

This chapter considers a different and novel application for quantitative for-
mal methods, biochemical signalling pathways. The methods we use were de-
veloped for modelling engineered systems such as computer networks and
communications protocols, but we have found them highly suitable for mod-
elling and reasoning about evolved networks such as biochemical signalling
pathways.

Biochemical signalling pathways are a ubquitous mechanism for intracel-
lular communication. They allow cells to “sense” a stimulus and communicate
an appropriate signal to the nucleus, which then makes a suitable response.
They are complicated communication mechanisms, with feedback, embedded
in larger networks. Signalling pathways are involved in biological processes
such as proliferation, cell growth, movement, and apoptosis (cell death). Un-
derstanding how pathways function is crucial, since malfunction results in a
large number of diseases such as cancer, diabetes, and cardiovascular disease.
Furthermore, good predictive models can guide experimentation and drug de-
velopment.

Historically, pathway models either encode static aspects, such as which
proteins have the potential to interact, or provide simulations of system dy-
namics using either ordinary differential equations (ODEs) [dJ02, Voi00] or
stochastic simulations of individuals using Gillespie’s algorithm [Gil77]. Here,
we introduce a novel approach to analytic pathway modelling. The key idea is
that pathways have stochastic, computational content. We consider pathways
as distributed systems, viewing the component proteins species as processes
which can interact with each other, via biochemical reactions. The reactions
have duration, defined by (performance) rates ; therefore we model using high
level formal languages whose underlying semantics is continuous time Markov
chains (CTMCs).
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Biological modelling is complex and error-prone. We believe that high-
level stochastic modelling languages can complement the efficient numerical
methods currently in widespread use by computational biologists. Process al-
gebras have a comprehensive theory for reasoning and verification. They are
also supported by state-of-the-art tools which realise the theory mechanically
and support ambitious modelling studies which include the essential represen-
tational detail demanded for physically accurate work.

We have developed models using two different high level formal languages:
PEPA [Hil96] and PRISM [KNP02]. These languages allow us to concentrate
on modelling behaviour at a high level of abstraction, focussing on compo-
sitionality, communication and interaction, rather than working at the low
level detail of a CTMC or system of ODEs. Both languages have extensive
toolsets and both are suited to modelling and analysis of biochemical path-
ways, but in different ways. The former is a process algebra, and so the models
are easily and clearly expressed, using the built-in operators. Markovian anal-
ysis is supported by the toolset. The PRISM language represents systems
using an imperative language of reactive modules. It has the capability to ex-
press a wide range of stochastic process models including both discrete- and
continuous-time Markov chains and Markov decision processes. A key feature
of both languages is multiway synchronisation, essential for our approach.

In the next section, we give a brief overview of background material, pre-
senting only the essential details of stochastic process theory needed to ap-
preciate what follows. In Section 3 we give an introduction to our modelling
approach. In Section 4 we present the syntax and semantics of the stochastic
process algebra which we use, PEPA, and discuss how individual reactions and
reaction pathways are modelled. In Section 5 we present an example, the ERK
signalling pathway. Biochemical pathways are commonly modelled using ODE
models; we compare with these in Section 6. We relate the above to a method
based on model checking properties in temporal logic in Section 7. Section 8
contains a discussion. Further and related work is presented in Section 9 and
we conclude in Section 10.

Parts of the present work were previously presented in the papers [CGH05,
CGH06, CVOG06].

2 Preliminaries

2.1 Continuous time Markov chains

Continuous time Markov chains (CTMCs) are finite-state stochastic processes
which associate an exponentially distributed random variable with each tran-
sition from state to state. The random variable expresses quantitative infor-
mation about the rate at which the transition can be performed. Formally, a
random variable is said to have an exponential distribution with parameter λ
(where λ > 0) if it has the probability distribution function



Formal Methods for Biochemical Signalling Pathways 3

F (x) =
{

1 − e−λx for x > 0
0 for x ≤ 0

The mean, or expected value, of this exponential distribution is 1/λ. The time
interval between successive events is e−λt.

The memoryless property of the exponential distribution is so called be-
cause the time to the next event is independent of when the last event oc-
curred. It is simple to derive this fact. The probability that the next event
will be after t + s, given that time t has elapsed since the last event, is given
by:

Pr(T > t + s | T > t) =
Pr(T > t + s and T > t)

Pr(T > t)

=
e−λ(t+s)

e−λt

= e−λs

This value is independent of t (and so the time already spent has not been
remembered). The exponential distribution is the only distribution function
which has this property.

A Markov process with discrete state space (xi) and discrete index set
is called a Markov chain. The future behaviour of a Markov chain depends
only on its current state, and not on how that state was reached. This is the
Markov, or memoryless, property.

Pr(X(tn+1) = xn+1 | X(tn) = xn, . . . , X(t0) = x0)
= Pr(X(tn+1) = xn+1 | X(tn) = xn)

Every finite-state Markov process can be described by its infinitesimal gener-
ator matrix, Q. Qij is the total transition rate from state i to state j.

A stationary or equilibrium probability distribution, π(·), exists for every
time-homogeneous irreducible Markov process whose states are all positive-
recurrent (that is, every state can be visited infinitely often). At equilibrium
the probability flow into every state is exactly balanced by the probability
flow out so the equilibrium probability distribution can be found by solving
the global balance equation

πQ = 0

subject to the normalisation condition
∑

i

π(xi) = 1.

From this probability distribution can be calculated performance measures of
the system such as throughput and utilisation.

An alternative is to find the transient state probability row vector π(t) =
[π0(t), . . . , πn−1(t)] where πi(t) denotes the probability that the CTMC is in
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state i at time t. Transient and passage-time analysis of CTMCs proceeds
by uniformisation [Gra77, GM84]. The generator matrix, Q, is “uniformized”
with:

P = Q/q + I

where q > maxi |Qii|. This process transforms a CTMC into one in which all
states have the same mean holding time 1/q.

2.2 Continuous stochastic logic

CSL [BaHK00, ASSB00] is a continuous time logic that allows one to express
a probability measure that a temporal property is satisfied, in either transient
behaviours or in steady state behaviours. We assume a basic familiarity with
the logic, which is based upon the computational tree logic CTL [CE81].
The operators include the usual propositional connectives, plus the binary
temporal operator until operator U . The until operator may be time bounded
or unbounded. Probabilities may also be bounded. �p specifies a bound, for
example P�p[φ] is true in a state s if the probability that φ is satisfied by
the paths from state s meets the bound �p. Examples of bounds are > 0.99
and < 0.01. A special case of �p is no bound, in which case we calculate a
probability.

Properties are transient, that is, they depend on time; or they are steady
state, that is, they hold in the long run. Note that in this context, steady state
solutions are not (generally) single states, but rather a network of states (with
cycles) which define the probability distributions in the long run.

We use the PRISM model checker to check the validity of CSL properties.
In PRISM, we write P=?[φ], to return the probability of the transient prop-
erty φ, and S=?[φ], to return the probability of the steady state property φ.
The default is checking from the initial state, but we can apply a filter thus:
P=?[ψ{φ}], which returns the probability, from the (first) state satisfying φ,
of satisfying ψ.

2.3 Numerical methods

Stochastic models admit many different types of analysis. Some have lower
evaluation cost, but are less informative, such as steady-state analysis. Oth-
ers have higher evaluation cost, but are more informative, such as transient
analysis.

Performance information is encoded into the CSL formulae via the time-
bounded until operator (UI) and the steady-state operator, S. The evalua-
tion of time-bounded until formulae against a CTMC in a CSL-based model
checker such as PRISM or MRMC [KKZ05] proceeds by transient analysis
using uniformisation and a numerical procedure such as the Fox-Glynn algo-
rithm [FG88].
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Operator CSL Syntax

True true

False false

Conjunction φ ∧ φ

Disjunction φ ∨ φ

Negation ¬φ

Implication φ ⇒ φ

Next P�p[Xφ]

Unbounded Until P�p[φUφ]

Bounded Until P�p[φU≤tφ]

Bounded Until P�p[φU≥tφ]

Bounded Until P�p[φU[t1,t2]φ]

Steady-State S�p[φ]

Table 1. Continuous Stochastic Logic operators

3 Modelling biochemical pathways

The “signal” in our biochemical pathways is represented by phosphorylation,
thus the key activities are the biochemical reactions which bind proteins to
each other and produce phosphorylated (or un-phosphorylated) forms. In each
reaction, proteins play the role of producer(s), or consumer(s).

In our approach we view a pathway as a distributed system; we associate
a concurrent, computational process with each of the proteins in the pathway.
In other words, in our approach proteins are processes and in the underlying
CTMC, reactions are transitions. Processes (i.e. proteins) interact, or com-
municate with each other synchronously, by participating in reactions which
build up and break down proteins. A producer can participate in a reaction
when there is enough species for a reaction, a consumer can participate when
it is ready to be replenished. A reaction occurs only when all the producers
and consumers are ready to participate.

It is important to note that we view the protein species as a process,
rather than each molecule as a process. This corresponds to a population
type model (rather than an individuals type model). In traditional population
models, species are represented as molar concentrations. In our approach,
concentrations can vary in granularity; the coarsest possible discretisation
being two values (representing, for example, enough and not enough, or high
and low). Time is the only continuous variable, all others are discrete.

4 Modelling pathways in PEPA

We assume some familiarity with process algebra; a brief overview of the
stochastic process algebra PEPA is below, see [Hil96] for further details.
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4.1 Syntax of the language

The basic mechanism for describing the behaviour of a system is to give a com-
ponent a designated first action using the prefix combinator, denoted by a full
stop. All activities in PEPA are timed. Specifically, their durations are quan-
tified using exponentially distributed random variables. For example, (α, r).S
carries out activity (α, r), which has action type α and an exponentially dis-
tributed duration with parameter r, and it subsequently behaves as S. The
component P +Q represents a system which may behave either as P or as Q.
The activities of both P and Q are enabled. The first activity to complete
distinguishes one of them: the other is discarded. The system will behave as
the derivative resulting from the evolution of the chosen component. It is con-
venient to be able to assign names to patterns of behaviour associated with
components. Constants are components whose meaning is given by a defining
equation. The notation for this is X

def= E. The name X is in scope in the
expression on the right hand side meaning that, for example, X

def= (α, r).X
performs α at rate r forever. PEPA supports multi-way cooperations between
components: the result of synchronising on an activity α is thus another α,
available for further synchronisation. We write P ��

L
Q to denote cooperation

between P and Q over L. The set which is used as the subscript to the cooper-
ation symbol, the cooperation set L, determines those activities on which the
cooperands are forced to synchronise. For action types not in L, the compo-
nents proceed independently and concurrently with their enabled activities.
We write P ‖ Q as an abbreviation for P ��

L
Q when L is empty. In PEPA

the rate for the synchronised activities is the minimum of the rates of the
synchronising activities For example, if process A performs α with rate λ1,
and process B performs α with rate λ2, then the rate of the shared activity
when A cooperates with B on α is min(λ1, λ2).

4.2 Semantics of the language

Via the structured operational semantics of the language, PEPA models give
rise to CTMCs. The relationship between the process algebra model and the
CTMC representation is the following. The process terms (Pi) reachable from
the initial state of the PEPA model by applying the operational semantics
of the language form the states of the CTMC (Xi). For every set of labelled
transitions between states Pi and Pj of the model {(α1, r1), . . . , (αn, rn)} add
a transition with rate r between Xi and Xj where r is the sum of r1, . . . , rn.
The activity labels (αi) are necessary at the process algebra in order to enforce
synchronisation points, but are no longer needed at the Markov chain level.

Algebraic properties of the underlying stochastic process become algebraic
laws of the process algebra. We obtain an analogue of the expansion law of
untimed process algebra:
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(α, r).Stop ‖ (β, s).Stop =
(α, r).(β, s).(Stop ‖ Stop) + (β, s).(α, r).(Stop ‖ Stop)

only if the exponential distribution is used. Due to memorylessness we do not
need to adjust the rate s to take account of the time which elapsed during
this occurrence of α (and analogously for r and β).

The strong equivalence relation over PEPA models is a congruence relation
as is usual in process algebras and is a bisimulation in the style of Larsen and
Skou. It coincides with the Markov process notion of lumpability (a lumpable
partition is the only partition of a Markov process which preserves the Markov
property). This correspondence makes a strong and unbreakable bond between
the concise and elegant world of process algebras and the rich and beautiful
theory of stochastic processes.

The fact that the strong equivalence relation is a semantics-preserving con-
gruence has practical applications also. The relation can be used to aggregate
the state space of a PEPA model, accelerating the production of numerical
results and allowing larger modelling studies to be undertaken [GHR01].

4.3 Reactions

As an example of how reactions are modelled, consider a simple single, re-
versible reaction, as illustrated in Fig. 1. This describes a reversible reaction
between three proteins: Prot1, Prot2 and Prot3, with forward rate k1, and
reverse rate k2.

Fig. 1. Simple biochemical reaction

In the forward reaction (from top to bottom), Prot1, and Prot2 are the
producers, Prot3 is the consumer; in the backward reaction, the converse is
true. Using this example, we illustrate how proteins and reactions are repre-
sented in PEPA.
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Consider the coarsest discretisation. We refer to the two values as high
and low and subscript protein processes by H and L respectively. Thus when
there are n proteins there are 2n equations. Assuming the forward reaction
is called r1, and the reverse reaction r2, the equations are given in Fig. 2. �
denotes the passive rate, i.e. for all rates k, min(k,�) = k.

Prot1H
def
= (r1, k1).P rot1L Prot1L

def
= (r2,�).P rot1H

Prot2H
def
= (r1, k1).P rot2L Prot2L

def
= (r2,�).P rot2H

Prot3H
def
= (r2, k2).P rot3L Prot3L

def
= (r1,�).P rot3H

Fig. 2. Simple biochemical reaction in PEPA: model equations

The model configuration, given in Figure 3, defines the (multi-way) syn-
chronisation of the three processes. Note that initially, the producers are high
and the consumer is low.

Prot1H ��
{r1,r2} Prot2H ��

{r1,r2} Prot3L

Fig. 3. Simple biochemical reaction in PEPA: model configuration

The model configuration defines a CTMC. Fig. 4 gives a graphical repre-
sentation of the underlying CTMC, with the labels of the states indicating
protein values.

Fig. 4. CTMC for PEPA model of a simple biochemical reaction

4.4 Pathways and discretisation

A pathway involves many reactions, relating to each other in (typically) non-
linear ways. In PEPA, pathways are expressed by defining alternate choices
for protein behaviours using the + operator. Consider extending the simple
example. Currently, Prot3 is a consumer in r1. If it was also the consumer in
another reaction, say r3, then this would be expressed by the equation:

Prot3L
def= (r1,�).P rot3H + (r3,�).P rot3H
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It is possible to model with finer grained discretisations of species, for
example processes can be indexed by any countable set thus:

Prot1N
def= (r1, N ∗ k1).P rot1N−1

Prot1N−1
def= (r1, (N − 1) ∗ k1).P rot1N−2 + (r2,�).P rot1N

. . .

P rot11
def= (r1, k1).P rot10 + (r2,�).P rot12

Prot10
def= (r2,�).P rot11

Note that the rates are adjusted to reflect the relative concentrations in differ-
ent states/levels of the discretisation. N need not be fixed across the model,
but can vary across proteins, depending on experimental evidence and mea-
surement techniques.

In a model with two levels of discretisation we specify non-passive rates
(the known rate constant) for each occurrence of a reaction event in a producer
process; since PEPA defines the rate of a synchronisation to be the rate of the
slowest synchronising component, the rate for a given reaction will be exactly
that rate constant. For example, in the simple example, initially, the three
occurrences of r1 will synchronise, with rate k1 = min(k1, k1,�).

Finally, we note that for any pathway, in the model configuration, the syn-
chronisation sets must include the pairwise shared activities of all processes.
In the example configuration shown in Fig. 3, the two synchronisation sets are
identical. This is rarely the case in a pathway, where each protein is typically
involved in a different set of reactions.

5 An example: ERK signalling pathway

The ERK pathway (also called Ras/Raf, or Raf-1/MEK/ERK pathway) is a
ubiquitous pathway that conveys mitogenic and differentiation signals from
the cell membrane to the nucleus. The overall behaviour is that signals are
conveyed through a “cascade” of proteins, from Raf to MEK and then on to
ERK. Here, we consider a portion of pathway behaviour, focussing on how
the kinase inhibitor protein RKIP inhibits activation of Raf-1 and the effect
of this on the ERK pathway.

A graphical representation (taken from [CSK+03], with a small modifica-
tion, see next section) of the pathway is given in Fig. 5. Each node is labelled
by a protein species. For example, Raf-1*, RKIP and Raf-1*/RKIP are pro-
teins, the last being a complex built up from the first two. (Note: Names in
biology can be confusing. Raf-1* is an activated form of Raf-1, we refer to it
here to be consistent with [CSK+03]). A suffix -P or -PP denotes a (single
or double, resp.) phosphorylated protein, for example MEK-PP and ERK-
PP. Phosyphorylation is from ATP (adenosine triphosphate) which is in such
abundance that it is not represented explicitly. In Fig. 5 species concentrations
for Raf-1* etc. are given by the variables m1 etc. Initially, all concentrations
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m12

m 3

m 8

m 6

m 11

m 4

m13

k15

k14

m 5m 7

m 9

m 1 m 2

m 10

RKIP−P RP

RKIP−P/RP

Raf−1*/RKIP

Raf−1*−RKIP/ERK−PP

RKIPRaf−1*

ERK−PP

MEK

MEK−PP/ERK−P

MEK/Raf−1*

ERK−PMEK−PP

k12/k13

k8

k6/k7

k3/k4

k1/k2

k11

k9/k10

k5

Fig. 5. RKIP inhibited ERK pathway

are unobservable, except for m1, m2, m7, m9, and m10 [CSK+03]. Note that
in this pathway, not all reactions are reversible, as indicated by uni-directional
arrows.

5.1 PEPA model

Fig. 6 gives the PEPA equations for the pathway, with the model configuration
in Fig. 7.

5.2 Analysis

There are two principal reasons to apply formal languages to describe systems
and processes. The first is the avoidance of ambiguity in the description of
the problem under study. The second, but not less important, is that formal
languages are amenable to automated processing by software tools. We used
the PEPA Workbench [GH94] to analyse the model.

First, we used the Workbench to test for deadlocks in the model. A dead-
locked system is one which cannot perform any activities (in many process
algebras this is denoted by a constant such as exit or stop). In our con-
text, signalling pathways should not be able to deadlock, this would indicate
a malfunction. Initially, there were several deadlocks in our PEPA model:
this is how we discovered an incompleteness in the published description of
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Raf-1∗
H

def
= (k1react , k1).Raf-1∗

L + (k12react , k12).Raf-1∗
L

Raf-1∗
L

def
= (k5product , k5).Raf-1∗

H + (k2react , k2).Raf-1∗
H

+ (k13react , k13).Raf-1∗
H + (k14product , k14).Raf-1∗

H

RKIPH
def
= (k1react , k1).RKIPL

RKIPL
def
= (k11product , k11).RKIPH + (k2react , k2).RKIPH

MEKH
def
= (k12react , k12).MEKL

MEKL
def
= (k13react , k13).MEKH + (k15product , k15).MEKH

MEK/Raf-1∗
H

def
= (k14product , k14).MEK/Raf-1∗

L + (k13react , k13).MEK/Raf-1∗
L

MEK/Raf-1∗
L

def
= (k12react , k12).MEK/Raf-1∗

H

MEK-PPH
def
= (k6react , k6).MEK-PPL + (k15product , k15).MEK-PPL

MEK-PPL
def
= (k8product , k8).MEK-PPH + (k7react , k7).MEK-PPH

+ (k14product , k14).MEK-PPH

ERK-PPH
def
= (k3react , k3).ERK-PPL

ERK-PPL
def
= (k8product , k8).ERK-PPH + (k4react , k4).ERK-PPH

ERK-PH
def
= (k6react , k6).ERK-PL

ERK-PL
def
= (k5product , k5).ERK-PH + (k7react , k7).ERK-PH

MEK-PP/ERKH
def
= (k8product , k8).MEK-PP/ERKL + (k7react , k7).MEK-PP/ERKL

MEK-PP/ERKL
def
= (k6react , k6).MEK-PP/ERKH

Raf-1∗/RKIPH
def
= (k3react , k3).Raf-1∗/RKIPL + (k2react , k2).Raf-1∗/RKIPL

Raf-1∗/RKIPL
def
= (k1react , k1).Raf-1∗/RKIPH + (k4react , k4).Raf-1∗/RKIPH

Raf-1∗/RKIP/ERK-PPH
def
= (k5product , k5).Raf-1∗/RKIP/ERK-PPL

+ (k4react , k4).Raf-1∗/RKIP/ERK-PPL

Raf-1∗/RKIP/ERK-PPL
def
= (k3react , k3).Raf-1∗/RKIP/ERK-PPH

RKIP-PH
def
= (k9react , k9).RKIP-PL

RKIP-PL
def
= (k5product , k5).RKIP-PH + (k10react , k10).RKIP-PH

RPH
def
= (k9react , k9).RPL

RPL
def
= (k11product , k11).RPH + (k10react , k10).RPH

RKIP-P/RPH
def
= (k11product , k11).RKIP-P/RPL + (k10react , k10).RKIP-P/RPL

RKIP-P/RPL
def
= (k9react , k9).RKIP-P/RPH

Fig. 6. PEPA model definitions for the reagent-centric model
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(Raf-1∗
H

��
{k1react,k2react,k12react,k13react,k5product,k14product}

(RKIPH ��
{k1react,k2react,k11product}

(Raf-1∗/RKIPL ��
{k3react,k4react}

(Raf-1∗/RKIP/ERK-PPL) ��
{k3react,k4react,k5product}

(ERK-PL ��
{k5product,k6react,k7react}

(RKIP-PL ��
{k9react,k10react}

(RKIP-P/RPL ��
{k9react,k10react,k11product}

(RPH ‖
(MEKL ��

{k12react,k13react,k15product}
(MEK/Raf-1∗

L
��

{k14product}
(MEK-PPH ��

{k8product,k6react,k7react}
(MEK-PP/ERKL ��

{k8product}
(ERK-PPH))))))))))))

Fig. 7. PEPA model configuration for the reagent-centric model

[CSK+03], with respect to the treatment of MEK. After correspondence with
the authors, we were able to correct the omission and develop a more complete,
and deadlock free model.

Second, when we had a deadlock-free model, we used the Workbench to
generate the CTMC (28 states) and its long-run probability distribution. The
steady-state probability distribution is obtained using a number of routines
from numerical linear algebra. The distribution varies as the rates associated
with the activities of the PEPA model are varied, so the solution of the model
is relative to a particular assignment of the rates. Initially, we set all rates to
unity (1.0). Our main aim was to investigate how RKIP affects the production
of ERK and MEK, i.e. if it reduces the probability of having a high level of
ERK or MEK.

We used the PEPA state-finder to aggregate the probabilities of all states
when ERK-PP is high, or low, for a given set of rates. That is, it aggre-
gated the probabilities of states whose (symbolic) description has the form
∗�� ERK-PPH where ∗ is a wildcard standing for any expression. We then
repeated this with a different set of rates and compared results. We observed
that the probability of being in a state with ERK-PPH decreases as the rate
k1 is increased, and the converse for ERK-PPL increases. For example, with
k1 = 1 and k1 = 100, the probability of ERK-PPH drops from .257 to .005.
We can also plot throughput (rate × probability) against rate. Figures 8
and 9 shows two sub-plots which detail the effect of increasing the rate k1 on
the k14product and k8product reactions – the production of (doubly) phos-
phorylated MEK and (doubly) phosphorylated ERK, respectively. These are
obtained by solving the pathway model, taking each of the product and re-
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0.08
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0.12

0.14

0.16

0.18

Throughput of k14product

2 4 6 8 10
k1

Fig. 8. Plotting the effect of k1 on k14product

0.02

0.025

0.03

0.035

0.04

Throughput of k8product

2 4 6 8 10
k1

Fig. 9. Plotting the effect of k1 on k8product

action rates to be unity and scaling k1 (keeping all other rates to be unity).
The graphs show that increasing the rate of the binding of RKIP to Raf-1*
dampens down the k14product and k8product reactions, and they quantify
this information. The efficiency of the reduction is greater in the former case:
the graph falls away more steeply. In the latter case the reduction is more
gradual and the throughput of k8product peaks at k1 = 1. Note that since
k5product is on the same pathway as k8product, both ERK-PP and ERK-P
are similarly affected. Thus we conclude that the rate at which RKIP binds to
Raf-1* (thus suppressing phosphorylation of MEK) affects the ERK pathway,
as predicted (and observed); RKIP does indeed regulate the ERK pathway.

In the next section we give an overview of traditional pathway models,
and how they relate to our approach.
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6 Modelling pathways with differential equations

The algebraic formulation of the PEPA model makes clear the interactions
between the pathway components. There is a direct correspondence between
topology and the model, models are easy to derive and to alter. This is not
apparent in the traditional pathway models given by sets of ODEs. In these
models, equations define how the concentration of each species varies over
time, according to mass action kinetics. There is one equation for each pro-
tein species. The overall rate of a reaction depends on both a rate (constant)
and the concentration masses. Both time and concentration variables are con-
tinuous. ODEs do not give an indication of the structure, or topology of the
pathway, and consequently the process to define them is often error prone.
Set against this, efficient numerical methods are available for the numerical
integration of ODEs even in the difficult quantitative setting of chemically
reacting systems which are almost always stiff due to the presence of widely
differing timescales in the reaction rates.

Fortunately, the ODEs can be derived from PEPA models — in fact, from
models which distinguish only the coarsest discretisation of concentration.
The high/low discretisation is sufficient because we need to know only when
a reaction increases or decreases the concentration of a species. Moreover the
PEPA expressions reveal which species are required in order to complete an
activity.

An example illustrates the relationship between ODEs and the PEPA
model. In the PEPA equations for the ERK pathway, we can easily observe
that Raf-1* increases (low to high, second equation) with rates k5, k2, k13 and
k14; it decreases (high to low, first equation) with rates k1 and k12. The other
reagents which are also decreased by the reaction are those whose concentra-
tion will affect its rate under mass action kinetics. The equation for Raf-1*,
given in terms of the (continuous) concentration variables m1 etc. is

dm1

dt
= (k5 ·m4)+(k2·m3)+(k13·m13)+(k14 ·m13)−(k1·m1·m2)−(k12·m1·m12)

(1)
This equation defines the change in Raf-1* by how it is increased, i.e. the

positive terms, and how it is decreased, i.e. the negative terms. These differ-
ential equations can be derived directly and automatically from the PEPA
model. Algorithms to do so are given in [CGH05].

We now turn our attention to PRISM modelling, which is a different style
of modelling from the stochastic process algebra approach embodied by PEPA.

7 Modelling pathways in PRISM

In PRISM, activities are called transitions. (Note, the PRISM name denotes
both a modelling language and the model checker, the intended meaning
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should be clear from the context.) These correspond directly to CTMC transi-
tions and they are labelled with performance rates and (optional) names. For
each transition, like PEPA, the rate is defined as the parameter of an expo-
nential distribution of the transition duration. PRISM is state-based; modules
play the role of PEPA processes and define how state variables are changed
by transitions. Like PEPA, a key feature is synchronisation: transitions with
common names are synchronised (i.e. the transitions occur simultaneously).
Transitions with distinct names are not synchronised.

7.1 Reactions

Similar to our PEPA models, proteins are represented by PRISM modules
and reactions are represented by transitions. Below, we give a brief overview
of the language, illustrating each concept with reference to the simple reaction
example from Fig. 1; the reader is directed to [KNP02] for further details of
PRISM.

The PRISM model for the simple example is given in Fig. 10. The first
thing to remark is that in the PRISM model, the discretisation of concentra-
tion is an explicit parameter, denoted by N . In this example, we set it to 3.
K is simply a convenient abbreviation for N−1.

Second, consider the first three modules which represent the proteins
Prot1, Prot2 and Prot3. Each module has the form: a state variable which
denotes the protein concentration (we use the same name for process and vari-
able, the type can be deduced from context) followed by a nondeterministic
choice of transitions named r1 and r2. A transition has the form precondition
→ rate: assignment, meaning when the precondition is true, then perform
the assignment at the given rate. The assignment defines the value of a state
variable after the transition. The new value of state variable follows the usual
convention – the variable decorated with a single quote. The transition rates
have been chosen carefully, to correspond to mass action kinetics. Namely,
when the transition denotes consumer behaviour (decrease protein by 1) the
protein is multiplied by K, when the transition denotes producer behaviour
(increase protein by 1), the rate is simply 1. These rates correspond to the fact
that in mass action kinetics, the overall rate of the reaction depends on a rate
constant and the concentrations of the reactants consumed in the reaction.
(We will discuss this further in section 7.2.) Note that unlike PEPA where
the processes are recursive, here PRISM modules describe the circumstances
under which transitions can occur.

The fourth module, Constants, simply defines the constants for reaction
kinetics. In this case the module contains a “dummy” state variable called x,
and (always) enabled transitions which define the rates.

The four modules run concurrently, as given by the system description in
Fig. 11. In PRISM, the rate for the synchronised transition is the product of
the rates of the synchronising transitions. For example, if process A performs
α with rate λ1, and process B performs α with rate λ2, then the rate of α when
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A is synchronised with B is λ1 ·λ2. To illustrate how this determines the rates
in the underlying CTMC, consider the first reaction from the initial state, i.e.
reaction r1. Four transitions have the same name, they will all synchronise,
and when they do, the resulting transition has rate N ·K·N ·K·ki

K = 3k1 (Note:
Prot1 and Prot2 are initialised to N , Prot is initialised to 0, N = 3).

const int N = 3;

const double K = 1/N;

module Prot1

Prot1: [0..N] init N;

[r1] (Prot1>0) -> Prot1*K: (Prot1’ = Prot1 - 1);

[r2] (Prot1<N) -> 1: (Prot1’ = Prot1 + 1);

endmodule

module Prot2

Prot2: [0..N] init N;

[r1] (Prot2>0) -> Prot2*K: (Prot2’ = Prot2 - 1);

[r2] (Prot2<N) -> 1: (Prot2’ = Prot2 + 1);

endmodule

module Prot3

Prot3: [0..N] init 0;

[r1] (Prot3 < N) -> 1: (Prot3’ = Prot3 + 1);

[r2] (Prot3>0) -> Prot2*K: (Prot3’ = Prot3 - 1);

endmodule

module Constants

x: bool init true;

[r1] (x=true) -> k1*N: (x’=true);

[r2] (x=true) -> k2*N: (x’=true);

endmodule

Fig. 10. Simple biochemical reaction in PRISM: modules

system

Prot1 || Prot2 || Prot3 || Constants

endsystem

Fig. 11. Simple biochemical reaction in PRISM: system
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The reaction r1 can occur N times, until all the Prot1 and Prot2 has
been consumed. Fig. 12 gives a graphical representation of the underlying
CTMC when N = 3. Again, the state labels indicate protein values, i.e. x1x2x3

denotes the state where Prot1 = x1, Prot2 = x2, etc. Note that the transition
rates decrease as the amount of producer decreases.

Fig. 12. CTMC for PRISM model of simple biochemical reaction

7.2 Reaction kinetics

Consider the mass action kinetics for Prot3 in the simple example, given by
the ODE

dm3

dt
= (k1 · m1 · m2) − (k2 · m3) (2)

The variables m1 etc. are continuous, denoting concentrations of Prot1,
etc. Integrating equation 2 by the simplest method, Euler’s method, defines
a new value for m3 thus:

m′
3 = m3 + (k1 · m1 · m2 · Δt) − (k2 · m3 · Δt). (3)

In our discretisation, concentrations can only increase in units of 1, so

Δt =
1

N · (k1 · m1 · m2 − k2 · m3)
(4)

Recall that PRISM implements rates as the memoryless negative expo-
nential, that is for a given rate λ, P (t) = 1 − e−λt is the probability that the
action will be completed before time t. Taking λ as 1

Δt , in this example we
have

λ = (N · k1 · m1 · m2) − (N · k2 · m3). (5)

It remains to relate the continuous variables m1 etc. to the PRISM vari-
ables Prot1 etc., namely:

m1 = Prot1 · K (6)

etc.
So,
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λ = ((k1 · N) · (Prot1 · K) · (Prot2 · K)) − ((k2 · N) · (Prot3 · K)). (7)

This is exactly the rate defined by the PRISM model.
We can use the PRISM model for simulation using the concept of rewards

(see [KNP02]). The accuracy of course depends on the choice of value for N .
Inituitively, as N approaches infinity, the stochastic (CTMC) and determin-
istic (ODE) models will converge. For many pathways, including our example
pathway, N can be surprisingly small (e.g. 7 or 8), to yield good simulations.
More details about simulation results and comparison between the stochastic
and deterministic models are given in [CVOG06].

We note that PRISM models can be derived automatically from PEPA
models (using the PEPA workbench), though it is necessary to handcode
the rates (recall PEPA implements synchronisation by minimum, PRISM by
product). Here, we have handcrafted the entire PRISM model, to make the
concentration variable explicit.

The full PRISM model for the example pathway is given in the Appendix.
We now turn our attention to analysis of the example pathway using a tem-
poral logic.

7.3 Analysis of example pathway using the PRISM model checker

Temporal logics are powerful tools for expressing properties which may be
generic, such as state reachability, or application specific in which case they
represent application characteristics. Here, we concentrate on the latter,
specifically considering properties of biological significance.

The two properties we consider are: what is the probability that a protein
concentration reaches a certain level, and then remains at that level there-
after, and what is the probability that one protein “peaks” before another?
The former is referred to as stability (i.e. the protein is stable), the latter as
activation sequence.

Since we have a stochastic model, we employ the logic CSL (Continu-
ous Stochastic Logic) (see section 2.2) and the symbolic probabilistic model
checker PRISM [PNK04] to compute steady state solutions and check validity.
Using PRISM we can analyse open formulae, i.e. we can perform experiments
as we vary instances of variables in a formula expressing a property. Typically,
we will vary reaction rates or concentration levels. We consider two properties
below, the first is a steady state property and we vary a reaction rate, the
other is a transient property and we vary a concentration.

Protein stability

Stability properties are useful during model fitting, i.e. fitting the model to
experimental data. As an example, consider the stability of Raf-1* as the
reaction rate k1 (the rate of r1 which binds Raf-1* and RKIP) varies over the
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Fig. 13. Stability of Raf-1* at levels {2,3} and {0,1}

interval [0 . . . 1]. Let stability in this case be defined as concentration 2 or 3.
The stability property is expressed by:

S=?[(Raf-1∗ ≥ 2) ∧ (Raf-1∗ ≤ 3)] (8)

Now consider the probability that Raf-1∗ is stable at concentrations 0 and 1;
the formula for this is:

S=?[(Raf-1∗ ≥ 0) ∧ (Raf-1∗ ≤ 1)] (9)

Fig.13 gives results for both these properties, when N = 5. From the
graph, we can see that the likelihood of property (8) (solid line) is greatest
about k1 = 0.03 and then it decreases; the likelihood of property (9) (dashed
line) increases dramatically, becoming very likely when k1 > 0.4.

We note that the analysis presented in section 5.2 is for stability. For
example, assuming N = 1, the probability that ERK-PP is high would be
expressed in PRISM by S=?[ERK-PP ≥ 1)].

Activation sequence

As an example of activation sequence, consider the two proteins Raf-1∗/RKIP
and Raf-1∗/RKIP/ERK-PP, and their two peaks C and M , respectively. Is it
possible that the (concentration of the) former peaks before the latter? This
property is given by:

P=?[(Raf-1∗/RKIP/ERK-PP < M) U (Raf-1∗/RKIP = C)] (10)
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The results, for C ranging over 0, 1, 2 and M ranging over 1 . . . 5 are given
in Fig. 14: the line with steepest slope represents M = 1, the line which
is nearly horizontal is M = 5. For example, the probability Raf-1*/RKIP
reaches concentration level 2 before Raf-1*/RKIP/ERK-PP reaches concen-
tration level 5 is more than 99%, the probability Raf-1*/RKIP reaches con-
centration level 2 before RAF1/RKIP/ERK-PP reaches concentration level 2
is almost 96%.
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Fig. 14. Activation sequence

7.4 Further properties

Examples of further temporal properties concerning the accumulation of pro-
teins, illustrate the use of bounds. Full details can be found in [CVOG06].

The property

P≥1[(true) U ((Protein = C) ∧ (P≥0.95[X(Protein = C − 1)]))] (11)

expresses the high likelihood of accumulating Protein, i.e. the concentration
reaches C and after the next step it is very likely to be C − 1.

The property

P=?[(true) U≤120 (Protein > C){(Protein = C)}] (12)

expresses the possibility that Protein can reach a level higher than C, within
a time bound, once it has reached concentration C.
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8 Discussion

Modelling biochemical signalling pathways has previously been carried out
using sets of nonlinear ordinary differential equations (ODEs) or stochastic
simulation based on Gillespie’s algorithm. These can be seen as contrast-
ing approaches in several respects. The ODE models are deterministic and
present a population view of the system. This aims to charactise the average
behaviour of large numbers of individual molecules of each species interacting,
capturing only their concentration. Alternatively, in Gillespie’s approach each
molecule is modelled explicitly and stochastically, capturing the probabilities
with which reactions occur, based on the likelihood of molecules of appro-
priate species being in close proximity. This gives rise to a CTMC, but one
whose state space is much too large to be solved explicitly. Hence simulation
is the only option, each realisation of the simulation giving rise to one possible
behaviour of the system. Thus the results of many runs must be aggregated
in order to gain insight into the typical behaviour.

Our approach represents a new alternative which develops a representa-
tion of the behaviour of the system which is intermediate between the previous
technique. We retain the stochastic element of Gillespie’s approach but the
CTMC which we give rise to can be considerably smaller because we model
at the level of species rather than molecules. Keeping the state space man-
ageable means that we are able to solve the CTMC explicitly and avoid the
repeated runs necessitated by stochastic simulation. Moreover, in addition to
the quantitative analysis on the CTMC, as illustrated here with PEPA, we
are able to conduct model checking of stochastic properties of the model. This
provides more powerful reasoning mechanisms than stochastic simulation.

In our models the continuous variable, concentration, associated with each
species is discretised into a number of levels. Thus each component represent-
ing a species has a distinct local state for each level of concentration. The
more levels that are incorporated into the model, i.e. the finer the granular-
ity of the discretisation, the closer the results of the CTMC will be to the
ODE model. However, finer granularity also means that there will be more
states in the CTMC. Thus we are faced with a trade-off between accuracy and
tractability. Since not all species must have the same degree of discretisation
we may choose to represent some aspects of the pathway in finer detail than
others.

Whilst being of manageable size from a solution perspective, the CTMCs
which we are dealing with are too large to contemplate constructing manually.
The use of high level modelling lanugages such as PEPA and PRISM to gen-
erate the underlying CTMC allows us to separate system structure from per-
formance. Our style of modelling, focussed on species rather than molecules,
means that most reactions involve three or more components. Thus the multi-
way synchronisation of PEPA and PRISM is ideally suited to this domain.
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9 Related and Further Work

Work on applying formal system description techniques from computer sci-
ence to biochemical signalling pathways was initially stimulated by [GP98,
Reg02, RSS01, PRSS01]. Subsequently there has been much work in which
the stochastic π-calculus is used to model biological systems, for example
[CCDM04] and elsewhere. This work is based on a correspondence between
molecules and proceses. Each molecule in a signalling pathway is represented
by a component in the process algebra representation. Thus, in order to rep-
resent a system with populations of molecules, many copies of the process
algebra components are needed. This leads to underlying CTMC models with
enormous state spaces — the only possible solution technique is simulation
based on Gillespie’s algorithm.

In our approach we have proposed a more abstract correspondence, be-
tween species and processes (c.f. modelling classes rather than individual ob-
jects). Now the components in the process algebra model capture a pattern
of behaviour of a whole set of molecules, rather than the identical behaviour
of thousands of molecules having to be represented individually. From such
models we are able to generate underlying models, suitable for analysis, in a
number of different ways. When we consider populations of molecules, consid-
ering only two states for each species (high and low) we are able to generate
a set of ODEs from a PEPA model. With a moderate degree of granularity in
the discretisation of the concentration we are able to generate an underlying
CTMC explicitly. This can then be subjected to steady state or transient nu-
merical analysis, or model checking of temporal properties expressed in CSL,
as we have seen. Alternatively, interpreting the high/low model as establishing
a pattern of behaviour to be followed by each molecule, we are able to derive
a stochastic simulation based on Gillespie’s algorithm.

In the recent work by Heath et al. [HKN+06, KNP+06], the authors take a
similar approach to ours, using a more abstract mapping between species and
processes, to model the FGF signalling pathway. Their models are analysed
using PRISM, and stochastic simulation.

10 Conclusions

Mathematical biologists are familiar with applying methods based on reaction
rate equations and systems of coupled first-order differential equations. They
are familiar too with the stochastic simulation methods in the Gillespie fam-
ily which have their roots in physically rigorous modelling of the phenomena
studied in statistical thermodynamics. However, the practice in the field of
computational biology is often either to code a system of differential equa-
tions directly in a numerical computing platform such as Matlab, or to run a
stochastic simulation.
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It might be thought that differential equations represent a direct mathe-
matical formulation of a chemical reacting system and might be more straight-
forward to use than mathematical formulations derived from process algebras.
Set against this though is the absence of a ready apparatus for reasoning
about the correctness of an ODE model. No equivalence relations exist to
compare models and there is no facility to perform even simple checks such as
deadlock detection, let alone more complex static analysis such as liveness or
reachability analysis. The same criticisms unfortunately can also be levelled
at stochastic simulation.

We might like to believe that there was now sufficient accumulated exper-
tise in computational biological modelling with ordinary differential equations
that such mistakes would simply not occur, or we might think that they would
be so subtle that modelling in a process algebra such as PEPA or a state-based
modelling language such as PRISM could not uncover them. We can however
point to at least one counterexample to this. In a recent PEPA modelling
study we found an error in a published and widely cited ODE model. The
authors of [SEJGM02] develop a complex ODE model of epidermal growth
factor (EGF) receptor signal pathways in order to give insight into the activa-
tion of the MAP kinase cascade through the kinases Raf, MEK and ERK-1/2.
Our formalisation in [CDGH06] was able to uncover a previously unexpected
error in the model which led to the production of misleading results.

High-level modelling languages rooted in computer science theory add sig-
nificantly to the analysis methods which are presently available to practicing
computational biologists, increasing the potential for stronger and better mod-
elling practice leading to beneficial scientific discoveries by experimentalists
making a positive contribution to improving human and animal health and
quality of life. We believe that the insights obtained through the principled
application of strong theoretical work stand as a good advertisement for the
usefulness of high-level modelling languages for analysing complex biological
processes.

Appendix: PRISM model of example pathway

The system description is omitted - it simply runs all modules concurrently.
The rate constants are taken from [CSK+03].

const int N = 7;

const double M = 2.5/N;

module RAF1

RAF1: [0..N] init N;

[r1] (RAF1 > 0) -> RAF1*M: (RAF1’ = RAF1 - 1);

[r12] (RAF1 > 0) -> RAF1*M: (RAF1’ = RAF1 - 1);

[r2] (RAF1 < N) -> 1: (RAF1’ = RAF1 + 1);

[r5] (RAF1 < N) -> 1: (RAF1’ = RAF1 + 1);

[r13] (RAF1 < N) -> 1: (RAF1’ = RAF1 + 1);
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[r14] (RAF1 < N) -> 1: (RAF1’ = RAF1 + 1);

endmodule

module RKIP

RKIP: [0..N] init N;

[r1] (RKIP > 0) -> RKIP*M: (RKIP’ = RKIP - 1);

[r2] (RKIP < N) -> 1: (RKIP’ = RKIP + 1);

[r11] (RKIP < N) -> 1: (RKIP’ = RKIP + 1);

endmodule

module RAF1/RKIP

RAF1/RKIP: [0..N] init 0;

[r1] (RAF1/RKIP < N) -> 1: (RAF1/RKIP’ = RAF1/RKIP + 1);

[r2] (RAF1/RKIP > 0) -> RAF1/RKIP*M:

(RAF1/RKIP’ = RAF1/RKIP - 1);

[r3] (RAF1/RKIP > 0) -> RAF1/RKIP*M:

(RAF1/RKIP’ = RAF1/RKIP - 1);

[r4] (RAF1/RKIP < N) -> 1: (RAF1/RKIP’ = RAF1/RKIP + 1);

endmodule

module ERK-PP

ERK-PP: [0..N] init N;

[r3] (ERK-PP > 0) -> ERK-PP*M: (ERK-PP’ = ERK-PP - 1);

[r4] (ERK-PP < N) -> 1: (ERK-PP’ = ERK-PP + 1);

[r8] (ERK-PP < N) -> 1: (ERK-PP’ = ERK-PP + 1);

endmodule

module RAF1/RKIP/ERK-PP

RAF1/RKIP/ERK-PP: [0..N] init 0;

[r3] (RAF1/RKIP/ERK-PP < N) -> 1:

(RAF1/RKIP/ERK-PP’ = RAF1/RKIP/ERK-PP + 1);

[r4] (RAF1/RKIP/ERK-PP > 0) ->

RAF1/RKIP/ERK-PP*M:

(RAF1/RKIP/ERK-PP’ = RAF1/RKIP/ERK-PP - 1);

[r5] (RAF1/RKIP/ERK-PP > 0) ->

RAF1/RKIP/ERK-PP*M:

(RAF1/RKIP/ERK-PP’ = RAF1/RKIP/ERK-PP - 1);

endmodule

module ERK

ERK: [0..N] init 0;

[r5] (ERK < N) -> 1: (ERK’ = ERK + 1);

[r6] (ERK > 0) -> ERK*M: (ERK’ = ERK - 1);

[r7] (ERK < N) -> 1: (ERK’ = ERK + 1);

endmodule

module RKIP-P

RKIP-P: [0..N] init 0;

[r5] (RKIP-P < N) -> 1: (RKIP-P’ =RKIP-P + 1);
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[r9] (RKIP-P > 0) -> RKIP-P*M: (RKIP-P’ =RKIP-P - 1);

[r10] (RKIP-P < N) -> 1: (RKIP-P’ =RKIP-P + 1);

endmodule

module RP

RP: [0..N] init N;

[r9] (RP > 0) -> RP*M: (RP’ = RP - 1);

[r10] (RP < N) -> 1: (RP’ = RP + 1);

[r11] (RP < N) -> 1: (RP’ = RP + 1);

endmodule

module MEK

MEK: [0..N] init N;

[r12] (MEK > 0) -> MEK*M: (MEK’ = MEK - 1);

[r13] (MEK < N) -> 1: (MEK’ = MEK + 1);

[r15] (MEK < N) -> 1: (MEK’ = MEK + 1);

endmodule

module MEK/RAF1

MEK/RAF1: [0..N] init N;

[r14] (MEK/RAF1> 0) -> MEK/RAF1*M: (MEK/RAF1’ = MEK/RAF1 - 1);

[r15] (MEK/RAF1> 0) -> MEK/RAF1*M: (MEK/RAF1’ = MEK/RAF1 - 1);

[r12] (MEK/RAF1 < N) -> 1: (MEK/RAF1’ = MEK/RAF1 + 1);

endmodule

module MEK-PP

MEK-PP: [0..N] init N;

[r6] (MEK-PP > 0) -> MEK-PP*M: (MEK-PP’ = MEK-PP - 1);

[r15] (MEK-PP > 0) -> MEK-PP*M: (MEK-PP’ = MEK-PP - 1);

[r7] (MEK-PP < N) -> 1: (MEK-PP’ = MEK-PP + 1);

[r8] (MEK-PP < N) -> 1: (MEK-PP’ = MEK-PP + 1);

[r14] (MEK-PP < N) -> 1: (MEK-PP’ = MEK-PP + 1);

endmodule

module MEK-PP/ERK

MEK-PP/ERK: [0..N] init 0;

[r7] (MEK-PP/ERK > 0) -> MEK-PP/ERK*M:

(MEK-PP/ERK’ = MEK-PP/ERK - 1);

[r8] (MEK-PP/ERK > 0) -> MEK-PP/ERK*M:

(MEK-PP/ERK’ = MEK-PP/ERK - 1);

[r6] (MEK-PP/ERK < N) -> 1: (MEK-PP/ERK’ = MEK-PP/ERK + 1);

endmodule

module RKIP-P/RP

RKIP-P/RP: [0..N] init 0;

[r9] (RKIP-P/RP < N) -> 1: (RKIP-P/RP’ = RKIP-P/RP + 1);

[r10] (RKIP-P/RP > 0) -> RKIP-P/RP*M:

(RKIP-P/RP’ = RKIP-P/RP - 1);

[r11] (RKIP-P/RP > 0) -> RKIP-P/RP*M:
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(RKIP-P/RP’ = RKIP-P/RP - 1);

endmodule

module Constants

x: bool init true;

[r1] (x) -> 0.53/M: (x’ = true);

[r2] (x) -> 0.0072/M: (x’ = true);

[r3] (x) -> 0.625/M: (x’ = true);

[r4] (x) -> 0.00245/M: (x’ = true);

[r5] (x) -> 0.0315/M: (x’ = true);

[r6] (x) -> 0.8/M: (x’ = true);

[r7] (x) -> 0.0075/M: (x’ = true);

[r8] (x) -> 0.071/M: (x’ = true);

[r9] (x) -> 0.92/M: (x’ = true);

[r10] (x) -> 0.00122/M: (x’ = true);

[r11] (x) -> 0.87/M: (x’ = true);

[r12] (x) -> 0.05/M: (x’ = true);

[r13] (x) -> 0.03/M: (x’ = true);

[r14] (x) -> 0.06/M: (x’ = true);

[r15] (x) -> 0.02/M: (x’ = true);

endmodule
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