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a b s t r a c t

PEPA and its semantics have recently been extended to model biological systems. In order
to cope with massive quantities of processes (as is usually the case when considering
biological reactions) the model is interpreted in terms of a small set of coupled ordinary
differential equations (ODEs) instead of a large state space continuous time Markov chain
(CTMC). So far the relationship between these two semantics of PEPA had not been
established. This is the goal of the present paper. After introducing a new extension of
PEPA, denoted PEPA+Π , that allowsmodels to capture bothmass action law and bounded
capacity law cooperations, the relationship between these two semantics is demonstrated.
The result relies on Kurtz’s Theorem that expresses that a set of ODEs can be, in some sense,
considered as the limit of pure jump Markov processes.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we consider the problem of reconciling the discrete state space continuous time Markov chain (CTMC)
representation of a biochemical signalling pathway which is generated by a process algebra model such as PEPA, and the
continuous state space ordinary differential equation (ODE) representation which is more usually chosen by biochemists.
This resolution is important because using the CTMC model we are able to conduct a variety of analysis which are not
accessible from the ODE representation. For example, we can verify properties of the system via model checking, using the
stochastic temporal logic CSL. However the validity of the model checking relies on agreement between the discrete and
continuous models.

The stochastic process algebra PEPA has previously been shown to be useful for modelling biochemical signalling
pathways [3,5,2]. In this work a more abstract mapping between biochemical elements and processes is made than the
earlier work using the stochastic π-calculus [21]. In that work a correspondence is drawn betweenmolecules and processes.
The local states of the processes capture the transformations which the molecule may be subject to during the course of a
pathway, e.g. phosphorylation, compound formation, ubiquitination. Since realistic pathways are comprised of thousands
of molecules the CTMCs which are generated by models are amenable only to solution via stochastic simulation using
Gillespie’s algorithm [10]. In contrast, in the PEPA approach a correspondence is drawn between species and processes.
Now, the local states of the processes capture levels of concentration of the species, and distinct biochemical elements, such
as compounds, are represented in distinct process algebra components.

In such models the continuous variable, concentration, associated with each species in the ODEs, is discretised into a
number of levels. Thus each component representing a species has a distinct local state for each level of concentration. The
more levels that are incorporated into the model, i.e. the finer the granularity of the discretisation, the closer we would
expect the results of the CTMC to be to the ODEmodel. However, this relationship has not previously been established: that
is the major contribution of this paper. In earlier work we have shown how an ODE model can be derived from the PEPA
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description of a system [16]. Now we are able to show that this set of ODEs captures the limiting behaviour of the CTMCs
representing the discretised system. This is based on an earlier result by Kurtz [17] in which the author shows that when
certain conditions are satisfied a sequence of CTMCs converge to a set of ODEs. Our contribution is to show that the class
of PEPA models used to describe biochemical signalling pathways in the pathway-centric style [3] give rise to CTMCs which
satisfy these conditions and that the set of ODEs automatically extracted from the PEPA description (following [16]) are the
limit of this sequence.

The version of PEPA which we use in this paper is a slight extension based on our experience modelling biochemical
pathways. We introduce a new form of the cooperation combinator which represents shared actions with distinct forms of
kinetics. The first, based on the notion of bounded capacity, is the usual PEPA cooperation at the rate of the slowest participant
[14]. The second, based on the notion of mass action familiar to biochemists, takes into account the multiple possibilities
which may arise and the consequences of this for the observed rate. We demonstrate that this new combinator suits the
development of models of biochemical signalling pathways in the pathway-centric style. This is a subsidiary contribution of
the paper althoughwe do not show properties of the combinator here due to space limitations. A discussion of its semantics
can be found in [9].

The remainder of this paper is structured as follows. Section 2 recalls and extends PEPA with the mass action kinetics.
Sections 3 and 4 consider the issue of representing and generating the sets of ODEs of biochemical signalling pathways from
PEPA models. In Section 5 we show how to use Kurtz’s Theorem to establish the relationship between the two semantics
of PEPA considered in this paper, in terms of CTMCs and in terms of sets of coupled ODEs. Then, in Section 6, this result is
illustrated by a small example of a biochemical signalling pathway. Finally, Section 7 concludes.

2. PEPA + Π

The PEPAmodelling languagewas introduced in [15] andhas beenused extensively to represent awide range of computer
and communication systems. In its original form, a rate is associatedwith each activity,which is assumed to be the parameter
of an exponential distribution characterising the delay associatedwith the activity. Under this interpretation, the structured
operational semantics of the language gives rise to a labelled multi-transition system which can be regarded as the state
transition diagram of an underlying continuous time Markov chain (CTMC). (The interested reader is referred to [15] for
more detail.)

A multi-transition system is used because the multiplicity of actions has an impact on the dynamic behaviour. The
state transition diagram of the CTMC is characterised by an infinitesimal generator matrix Q in which the entry qij records
the transition rate from state i to state j. From the infinitesimal generator matrix various metrics related to the dynamic
behaviour of the CTMC can be derived using linear algebra (the so-called numerical solution). These include transient
measures, for example giving the probability of an event after a given time, or steady state measures relating to when the
process has reached a limiting or equilibrium behaviour, if this is possible (i.e. if the CTMC is ergodic).

The PEPA language has a small number of combinators which we outline informally below; the operational semantics
can be found in [15]. As a necessary condition to generate ergodic CTMCs, PEPA models are typically constructed according
to the following grammar:

S := (α, r).S | S + S | C

P := P BC
L

P | P/L | S

where S denotes a sequential component, P amodel component and C is a constant defined by a declaration such as

C
def
= S.

(α, r).S carries out activity (α, r), which has action typeα and an exponentially distributed durationwith parameter r, and
it subsequently behaves as S. The component P + Q represents a systemwhich may behave either as P or as Q . The activities
of both P and Q are enabled. The first activity to complete distinguishes one of them: the other is discarded. The system
will behave as the derivative resulting from the evolution of the chosen component. PEPA supports multi-way cooperations
between components: the result of synchronising on an activity α is thus another α, available for further synchronisation.
We write P BC

L
Q to denote cooperation between P and Q over L. The set which is used as the subscript to the cooperation

symbol, the cooperation set L, determines those activities on which the cooperands are forced to synchronise. For action
types not in L, the components proceed independently and concurrently with their enabled activities. We write P ‖ Q as
an abbreviation for P BC

L
Q when L is empty. The rate of the shared activity which results from cooperation is determined

according to the notion of bounded capacity [14]. This states that a component cannot be made to go faster than its own
capacity by carrying out an action in cooperation. The capacity of a component P to carry out an action of type α is termed
the apparent rate of α in P and is denoted rα(P). It is the sum of all the rates of all the α activities enabled in P. It follows that
the apparent rate of a shared activity is the minimum of the apparent rates of activities of that type in the synchronising
components [15]. For example, consider communication through a channel. The rate at which the channel transmits data,
the rate at which the sender puts data onto the channel and the rate at which the receiver extracts data from the channel
may all differ. But the actual rate of communication will be limited by the slowest one. P/L denotes the component P in
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which all actions with types in L are hiddenmeaning that their type is no longer visible but is replaced by the distinguished
type τ. We do not consider hiding in the remainder of this paper.

2.1. PEPA with mass action cooperation

In more recent work PEPA has been used to model biochemical signalling pathways. In this context we have found that
the bounded capacity kinetics outlined above is not always the most appropriate way to determine the rate of a shared
action, although in some cases it is. Thus we have introduced an alternative form of cooperation in PEPA which is designed
to allow some cooperations to bemade according tomass action kinetics, rather than the bounded capacity kinetics explained
above [9].

The law of mass action, used by biochemists, states that for a reaction in a homogeneous, free medium, the reaction rate
will be proportional to the concentrations of the individual reactants involved. Here we define an extension of PEPA that
can capture mass action kinetics, i.e. in which the rate of the shared activity ismultiplied by the capacity of each component
to participate.

The new combinator, which replaces BC
L
, and encompasses both forms of kinetics, is represented as follows:

P
J

BC
L

Q.

The cooperation operator uses two sets of actions, J and L.

• L contains the cooperating action types that follow the standard semantics of PEPA, that is, which respect the definition
of the bounded capacity kinetics:

– when two components P and Q cooperate on an action α, synchronising P
(α,r1)
−→ and Q

(α,r2)
−→ respectively, then the

resulting activity P
J

BC
L

Q
(α,R)
−→ (α ∈ L) has rate R defined by:

R =
r1

rα(P)
×

r2
rα(Q)

× min(rα(P), rα(Q)).

– passive actions have rate > (“top”) and have no influence on the rate of the shared activity.
• J contains the cooperation actions that follow the mass action kinetics:

– when two components P and Q cooperate on an action α, synchronising P
(α,r1)
−→ and Q

(α,r2)
−→ respectively, then the

resulting activity P
J

BC
L

Q
(α,R)
−→ (α ∈ J) has rate R defined by:

R = r1 × r2.
– furthermore, the apparent rate is defined as:

rα(P
J

BC
L

Q) = rα(P) × rα(Q) for α ∈ J

– passive actions have rate 1 or more generally a constant used as scaling factor (see Section 5.2 for more explanations).

We also introduce some additional notation for the case when there is a large number of repeated components. This
notation is a shorthand for a description for a number of identical, independent processes in parallel (i.e. without any
cooperation between them):

P[n] = P ‖ . . . ‖ P︸ ︷︷ ︸
n

.

In this case it is assumed that the apparent rate of an activity is derived as in the standard PEPA semantics, i.e. rα(P[n]) =

n × rα(P), since ‖ is shorthand for BC
∅
.

We also extend the previous algorithm for constructing a set of coupled ODEs from the PEPA model, capturing the
evolution of the number of components in each of the different component states with respect to time. This is presented in
detail in Section 4. In conjunction with this we slightly modify the grammar of the model components as follows:

P := P
J

BC
L

P | (S1[n1] ‖ . . . ‖ Sk[nk])

where S1, . . . , Sk define all local derivatives of the sequential process S.

3. Modelling biochemical signalling pathways

Work on applying formal system description techniques from computer science to biochemical signalling pathways was
initially stimulated by Goss and Peccoud [12], Regev [22] and Priami et al. [21]. Subsequently there has been much work
in which the stochastic π-calculus is used to model biological systems, for example [8,19,20]. This work is based on a
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Fig. 1. Small synthetic example pathway.

correspondence between molecules and processes. Eachmolecule in a signalling pathway is represented by a component in
the process algebra representation. The local states of the component correspond to the physical changes which a molecule
will undergo in the course of biochemical reactions. Thus, if a complex C is formed from molecules A and B, two process
algebra components A and Bwill interact (“communicate”) and one will evolve into a C, the other becoming null. In order to
represent a system with populations of molecules, many copies of the process algebra components are needed. This leads
to underlying CTMC models with enormous state spaces — the only possible solution technique is simulation based on
Gillespie’s algorithm, as presented in [10].

In contrast,many systems biologymodels are developed as sets of nonlinear ordinary differential equations. The variables
of the equations are concentrations of the involved species and there is one equation for each species in the pathway,
recording the impact of each reaction on the species. Nonlinear terms arise from interactions between species.

Recent work on PEPA has investigated a more abstract way of mapping biochemical signalling pathways into a process
algebra ([3]). Rather than a correspondence between molecules and components, we have proposed a correspondence
between species or subpathways and components (c.f.modelling classes rather than individual objects). Now the components
in the process algebra model capture a pattern of behaviour of a whole set of molecules, rather than the identical behaviour
of thousands of molecules having to be represented individually. The local states of the components now correspond
to the concentrations of species represented in the ODEs but discretised into a number of “levels”. Assuming a fixed
maximum concentration level for each species, we refer to the distance (in concentration) between two successive levels of
concentration distinguished in a model, as the granularity of the model.

From such PEPA models we are able to generate underlying mathematical models, suitable for analysis, in a number of
different ways. The usual semantics of PEPA gives rise to a CTMC which can be solved numerically (if state space size does
not prohibit it) as in [15]. Here each state of the CTMC corresponds to a discrete level of concentration for each chemical
species in the pathway. For PEPAmodels based onmodelling species and their concentrations [4] showed how amodel with
two levels of concentration could be used to generate a set of nonlinear ODEs. Moreover, such models can also be used to
derive CTMCs in which molecules are represented individually, suitable for Gillespie simulation. In [16], Hillston showed
how a set of nonlinear ODEs can be derived frommore general PEPAmodels (see Section 4 formore detail). These underlying
mathematical models have different strengths offering different forms of analysis. The relationship between Gillespie-style
molecular simulations and ODEs has been established in the thermodynamic limit [18] but the relationship between the
CTMCs with levels of concentrations, such as arise from PEPA models, and ODEs has not previously been established. It is
this problem which we address in this paper.

Even within our abstract approach to modelling there are alternative ways of expressing the model [3]. We distinguish
these as reagent-centric and pathway-centric. In a reagent-centric model we treat each distinct reagent or species in the
pathway as a distinct component type as described above. The component definition then captures the possible reactions
that the reagent may be involved in. The local states of the components correspond to differing levels of concentration and
the process definition records the impact of each reaction type on the concentration of the reagent—itwill either increase the
concentration, moving it up a level, decrease it, moving the state down a level, or leave it unchanged. In a pathway-centric
model we focus instead on the transformations which a reagent or species with non-zero initial concentrationmay undergo
through the course of a pathway (phosphorylation, complex formation etc.). Each such subpathway is then represented as
a distinct component in the model. Local states now correspond to the states which the physical entity may find itself in
through the subpathway. Differing levels of concentration are represented in the global state by having differing multiples
of components of a particular pathway type.

As a small example we consider the pathway shown in Fig. 1.
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This is comprised of the following kinetic reactions:

A + X
k1


k2
A/X k3

→ B + Y

B k4
→ A

Y k5
→ X.

We assume an initial positive concentration of reagents A and X, all other reagents initially being absent.
Reagent-centric model. Modelled in the reagent-centric style with the coarsest possible granularity, i.e. just two levels, the
pathway in Fig. 1 is represented by the following declarations:

AH
def
= (k1react, k1).AL

AL
def
= (k2react, k2).AH + (k4react, k4).AH

XH
def
= (k1react, k1).XL

XL
def
= (k2react, k2).XH + (k5react, k5).XH

A/XH
def
= (k2react, k2).A/XL + (k3react, k3).A/XL

A/XL
def
= (k1react, k1).A/XH

BH
def
= (k4react, k4).BL

BL
def
= (k3react, k3).BH

YH
def
= (k5react, k5).YL

YL
def
= (k3react, k3).YH.

The complete model is the interaction of these components constrained by cooperation to share the appropriate actions:

(((AH BC
{k1react,k2react}

XH) BC
{k1react,k2react}

A/XL) BC
{k3react,k4react}

BL) BC
{k3react,k5react}

YL.

More details of this style of representation can be found in [3].
Pathway-centric model. Modelled in the pathway-centric style the pathway in Fig. 1 is represented by the following
declarations:

A = (k1react, k1).A/X
A/X = (k2react, k2).A + (k3react, k3).B
B = (k4react, k4).A
X = (k1react,H).X/A

X/A = (k2react, k2).X + (k3react, k3).Y
Y = (k5react, k5).X

wherewehave twodistinct subpathways, corresponding toA andX respectively.Wealso need the following systemequation
to complete the model:

(
A[n11 ] ‖ A/X[n12 ] ‖ B[n13 ]

) {k1react}

BC
{k2react,k3react}

(
X[n21 ] ‖ X/A[n22 ] ‖ Y[n23 ]

)
.

The rate H of the passive transition of X, (k1react,H).X/A corresponds to the granularity of the discretisation which is
determined by the maximal concentration that any reagent can reach during the lifetime of the system divided by the
number of levels of concentration (the reason for putting H as rate of the passive transitions is explained in detail in
Section 5.2).

In this paper we focus on models presented in the pathway-centric style.
Note that we only model reactions in which the stoichiometric coefficient of all participants in the reaction is one. This

restriction is placed by the current syntax of PEPA which cannot express higher order reaction.1

3.1. Related work

Whilst a significant body of work is developing on modelling biochemical systems with stochastic process algebras
and related formalisms (e.g. [12,22,21,8,19,20]) in most cases the modelling is carried out at a more detailed and less

1 The current syntax of PEPA + Π does not allow reactions such as 3A + 2B → 4C to be expressed.



Author's personal copy

102 N. Geisweiller et al. / Theoretical Computer Science 404 (2008) 97–111

abstract level. Consequently, most analysis of such systems is carried out using Gillespie’s stochastic simulation and similar
approaches [11,20]. To the best of our knowledge no other authors have considered the relationship betweenODE and CTMC
models in the context of stochastic process algebras. The original relationship between the two was established by Kurtz in
1970 [17], and considered in the context of chemical reactions in 1972 [18]. The mapping from process algebra models to
ODEs has recently been considered by Cardelli [7] and Bortolussi and Policriti [1], but not the relationship with a CTMC.

4. Deriving ODEs from PEPA models

In [16] Hillston presented a compact state representation for PEPA models: the numerical vector form. The objective
of introducing this new form was to facilitate a fluid approximation of the CTMC underlying a PEPA model when each
component type in the model is replicated a large number of times. In this paper we seek to establish the validity of this
approximation. As a preliminary we give an overview of how the approximation is formed.

In process algebra models the usual state representation is in terms of the syntactic forms of the model expression. The
structured operational semantics define how a model may evolve and these may be applied exhaustively to form a labelled
transition system (usually termed the derivation graph in PEPA) representing the state space of the model. This is a graph
in which each node is a distinct syntactic form or derivative (or equivalence class of syntactic expressions up to strong
equivalence) and each arc represents a possible activity causing the state change.

Rather than the complete syntactic form, since the static cooperation combinators remain unchanged in all states, it is
often convenient to represent the states of the model in vector form. The state vector records one entry for each sequential
component of the PEPAmodel. These components will be present in each derivative of themodel, although theywill change
their local state or derivative. Thus the global state can be represented as a vector or sequence of local derivatives. For the
remainder of this paper we use the term local derivative to refer to the local state of a single sequential component, whereas
derivativewill be used to refer to a global state represented in its syntactic form.

In [16] Hillston proposed an alternative vector form for capturing the state information of models with repeated
components. In the state vector form there is one entry in the vector for each sequential component in themodel. When the
number of repeated components becomes large this can be prohibitively expensive in terms of storage. In the alternative
vector form there is one entry for each local derivative of each type of component in the model. Two components have the
same type if their derivation graphs are isomorphic. The entries in the vector are no longer syntactic terms representing the
local derivative of the sequential component, but the number of components currently exhibiting this local derivative.

The numerical vector form for an arbitrary PEPA model is defined as follows.

Definition 4.1 (Numerical Vector Form). For an arbitrary PEPAmodel M with n component types Ci, i = 1, . . . , n, each with
Ni distinct derivatives, the numerical vector form of M, V(M), is a vector with N =

∑n
i=1 Ni entries. The entry vij records how

many instances of the jth local derivative of component type Ci are exhibited in the current state.

Since we assume that each component type in the model is replicated a number of times (reflecting the granularity of
the discretisation), the domain of values of each entry in V(M) can be large. If Ki is the number of components of type Ci in
the initial configuration of the model (i.e. the range of concentrations for Ci is discretised into Ki + 1 levels) then each entry
in the ith subvector will have domain 0, . . . , Ki.

Consider an arbitrary state M′ of the model M which has the particular numerical vector representation V(M′). When a
state change occurs it can happen in two distinct ways:

• A single sequential component, an instance of component type Ci may engage in an individual action. In this case the
impact on V(M′) is that within the ith subvector one entry is incremented by one while another is decremented by one,
reflecting the evolution of this single component from one local derivative to another.

• Alternatively a shared action may be performed resulting in the simultaneous evolution of two or more sequential
components of distinct types (since we assume that replicated components are independent of each other). Thus a
number of distinct subvectors may need to be updated within V(M′). However in each case one entry is incremented by
one and one entry is decremented by one.

The system is inherently discrete with the entries within the numerical vector form always being non-negative integers
and always being incremented or decremented in steps of one. When the numbers of components are large (i.e. the
granularity of discretisation is fine) these steps are relatively small and we can approximate the behaviour by considering
themovement between states to be continuous, rather than occurring in discontinuous jumps. Thus we replace the discrete
event system represented by the derivation graph of a PEPA process by a continuous model, represented by a set of coupled
ordinary differential equations. The numerical vector form of state representation is an intermediate step towards this
objective.

4.1. Assumptions and definitions regarding the PEPA models considered

PEPA allows the same activity to have different rates in different components that share the activity. However, in the
context of biological kinetic reactions, the rate characterising a reaction between two species is given a priori (obtained by
measurements or expertise) but not as the result of the product (or the minimum) of some cooperating rates.
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Based on this and the conditions imposed in [16] we make the following set of assumptions for the remainder of the
paper. These assumptions simplify the form of the given results without reducing the expressiveness or usability of PEPA in
the context of biological pathway modelling. The considered assumptions are listed below:

(1) Any action α used for cooperation is involved only once in a component (i.e. α appears in only one local derivative) and
all components containing the action α are synchronised, according either to the bounded capacity kinetics or to the
mass action kinetics.

(2) Each component type is declared only once in the system equation, where the declaration of a component Ci with Ni

local derivatives, denoted Ci1 , . . . ,CiNi
, initialised with ni1 , . . . , niNi

copies respectively, is denoted:

Ci1 [ni1 ] ‖ . . . ‖ CiNi
[niNi

].

Intuitively this assumption can be interpreted as all copies of each component type are in the same compartment and
(as a consequence of the previous assumption) that all copies of all component types are in the same compartment.
Moreover, cooperation within groups of components of the same type is not allowed.

(3) Any activity is defined by a single rate. Consequently, when the reaction is the result of the cooperation of several
components, either all rates in all transitions are equal (in the case of bounded capacity kinetics), or only one transition
defines the rate and the others have rate H, the scaling factor (in the case of mass action kinetics).

(4) All reactions are associated with a visible action, and action hiding is not considered.

These assumptions set, we define the following functions and notation:

(1) Let coop be a function that records, for each action type, the form of its cooperation kinetics.

coop : Act 7→ {ε,Π ,min}

where coop(α) = ε means that the action α is not involved in any cooperation; coop(α) = Π means that cooperation
on α follows mass action kinetics; and coop(α) = min means that cooperation on α follows bounded capacity kinetics.
Note that coop is unambiguously defined by the system equation according to the position of action type α with respect
to the cooperation operation, i.e. according to whether it is in the upper or lower cooperation sets, or neither.

(2) Each action type α is associated with a unique activity rate, denoted rate(α).
(3) Consider a local derivative D of a sequential component. An action type α is an exit activity of D if D enables α, i.e. there

is a transition D
(α,rα)
−→ in the labelled transition system of D. We denote the set of exit activities of D by Ex(D). Conversely,

we denote the set of local derivatives for which α is an exit activity by pre(α).
(4) Similarly, an action type β is an entry activity of D if there is a derivative D′ which enables β and D is the one-step β-

derivative of D′, i.e. D′
(β,rβ)
−→ D is in the labelled transition system of D′. We use En(D) to denote the set of entry activities

of D.

This classification of activities helps us to record the impact of each activity on each local derivative, Cij , in the model. Recall
that in the vector form the numbers of these derivatives, N(Cij), have become our state variables.

Let us consider the evolution of the numerical state vector. Let vij(t) = N(Cij , t) denote the jth entry of the ith subvector
at time t, i.e. the number of instances of the jth local derivative of sequential component Ci. In a short time δt the change to
this arbitrary vector entry will be:

N(Cij , t + δt) − N(Cij , t) = −
∑

α∈Ex(Cij )

rate(α) × coop(α)
Ckl

∈pre(α)

(N(Ckl , t))

︸ ︷︷ ︸
exit activities

δt +
∑

α∈En(Cij )

rate(α) × coop(α)
Ckl

∈pre(α)

(N(Ckl , t))

︸ ︷︷ ︸
entry activities

δt (1)

where coop(α)
Ckl

∈pre(α)

(
N(Ckl , t)

)
is defined as follows:

coop(α)
Ckl

∈pre(α)

(
N(Ckl , t)

)
=


ΠCkl

∈pre(α)N(Ckl , t) if coop(α) = Π

minCkl
∈pre(α) N(Ckl , t) if coop(α) = min

N(Ckl , t) if coop(α) = ε.

In Eq. (1) the first term records the impact of exit activities. If the exit activity is an individual activity of this component
coop(α) = ε and pre(α) = {Cij }, i.e. therewill be N(Cij , t) instances of the local derivative each proceedingwith the individual
activity concurrently. When pre(α) 6= {Cij } the activity is a shared activity involving local derivatives from two or more
component types in a multi-way synchronisation. By the definition of apparent rate in PEPA + Π , if there are N replicated
instances of a component enabling a transition (α, r), the apparent rate of the activity will be N × r. By the semantics, the
apparent rate of a synchronised activity is either the minimum of the apparent rates of the cooperating components or their
product. The second term is explained similarly, noting that the rate of an entry activity will be determined by the number
of components for which this is an exit activity, in accordance with the semantics of the language.
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Fig. 2. Pseudo-code for generating the set of ODEs.

Dividing by δt and taking the limit, δt −→ 0, we obtain:

dN(Cij , t)

dt
= −

∑
α∈Ex(Cij )

rate(α) × coop(α)
Ckl

∈pre(α)

(N(Ckl , t)) +
∑

α∈En(Cij )

rate(α) × coop(α)
Ckl

∈pre(α)

(N(Ckl , t)).

In the following subsection we show how these equations may be derived automatically from the model definition in a
straightforward way. To fully specify the system of ODEs it only remains to set the initial values of the state variables, i.e.
N(Cij , 0) for ij = 1, . . . ,N. These are easily recorded from the initial model configuration.

4.2. Automatically deriving ODEs

The impact of activities on derivatives can be recorded in either a graph or amatrix form, easily derived from the syntactic
presentation of the model, as defined below.

Definition 4.2 (Activity Graph). An activity graph is a bipartite graph (N ,A). The nodes N are partitioned into NA, the
activities, and ND, the derivatives. A ⊂ (NA × ND) ∪ (ND × NA), where a = (nA, nD) ∈ A if nA is an exit activity of derivative
nd, and a = (nD, nA) ∈ A if nA is an entry activity of derivative nD.

The same information can be represented in a matrix, termed the activity matrix.

Definition 4.3 (Activity Matrix). For a model with NA activities and ND distinct local derivatives, the activity matrix Ma is an
ND × NA matrix, and the entries are defined as follows.

(di, aj) =


+1 if aj is an entry activity of di

−1 if aj is an exit activity of di

0 otherwise.

In the activity matrix each row corresponds to a single local derivative. In the representation of the model as a system of
ODEs there is one equation for each state variable, i.e. for the current number of each local derivative exhibited. This equation
details the impact of the rest of the system on the value of that state variable. This can be derived automatically from the
activity matrix when we associate a state variable ni with each row of the matrix and the rate constant rate(aj) with the
column of the matrix corresponding to aj. The number of terms in the ODE will be equal to the number of non-zero entries
in the corresponding row, each term being based on the rate of the activity associatedwith that column. As explained above,
by the semantics of PEPA, the actual rate of change caused by each activity will be the rate multiplied by the minimum or
the product of the current number of local derivatives enabling that activity in parallel, for each cooperating component
type. The identity of these derivatives can be found in the column corresponding to the activity, a negative entry indicating
that this derivative participates in that activity. There will be one ODE in the system for each row of the matrix. Fig. 2 shows
the algorithm for generating a set of ODEs with respect to a PEPA model presented in pseudo-formal language.
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4.3. Example

Let us now apply this algorithm to generate the set of ODEs of the example pathway given in Fig. 1. Firstly, the activity
matrix has to be generated according to Definition 4.3:

Ma k1react k2react k3react k4react k5react
A −1 1 0 1 0

A/X 1 −1 −1 0 0
B 0 0 1 −1 0
X −1 1 0 0 1

X/A 1 −1 −1 0 0
Y 0 0 1 0 −1

Then for any activity the set of its preceding local derivatives and the type of the cooperation are defined:

k1react k2react k3react k4react k5react
pre {A, X} {A/X, X/A} {A/X, X/A} {B} {Y}

coop Π min min ε ε

Finally, the algorithm is applied to generate the following set of ODEs. The level of concentration of the local derivative P at
time t is denoted P(t):

dA(t)
dt

= −l1 × A(t) × X(t) + l2 × min(A/X(t), X/A(t)) + l4 × B(t)

dA/X(t)

dt
= l1 × A(t) × B(t) − l2 × min(A/X(t), X/A(t)) − l3 × min(A/X(t), A/X(t))

dB(t)
dt

= l3 × min(A/X(t), X/A(t)) − l4 × B(t)

dX(t)

dt
= −l1 × A(t) × X(t) + l2 × min(A/X(t), X/A(t)) + l5 × Y(t)

dX/A(t)

dt
= l1 × A(t) × X(t) − l2 × min(A/X(t), X/A(t)) − l3 × min(A/X(t), X/A(t))

dY(t)
dt

= l3 × min(A/X(t), X/A(t)) − l5 × Y(t).

One can notice that the expressions defining dA/X(t)
dt and dX/A(t)

dt are the same. Furthermore since A/X and X/A refer to the same
species their initial number of copies is equal as well. So A/X(t) = X/A(t) for all t andmin(A/X(t), X/A(t)) can be substituted
by A/X(t):

dA(t)
dt

= −l1 × A(t) × X(t) + l2 × A/X(t) + l4 × B(t)

dA/X(t)

dt
= l1 × A(t) × B(t) − l2 × A/X(t) − l3 × A/X(t)

dB(t)
dt

= l3 × A/X(t) − l4 × B(t)

dX(t)

dt
= −l1 × A(t) × X(t) + l2 × A/X(t) + l5 × Y(t)

dX/A(t)

dt
= l1 × A(t) × X(t) − l2 × A/X(t) − l3 × A/X(t)

dY(t)
dt

= l3 × A/X(t) − l5 × Y(t).

5. Applying Kurtz’s theorem

In this section we show how to apply Kurtz’s Theorem [17] in order to demonstrate the relationship between the
discretised CTMC representation of PEPA models and the ODE models which can be derived from the same system
description.

5.1. Kurtz’s theorem

Kurtz’s theorem states that, under certain assumptions, the solutions provided by a set of ODEs can be regarded as the
limit of a sequence of “pure jump” Markov processes. As a special case of this general result, Kurtz shows how to obtain the
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ODEs as the limit of a sequence of density dependent CTMCs, which model discrete numbers of elements in their different
states [17]. The density dependent condition means that the rates of the CTMCs may depend on a scaled representation
of states. For instance, when states represent number of individuals and are normalised with respect to volume or area,
then the rates depend on population densities. Instead in the case of the Markov chains derived from PEPA models we are
interested in studying their behaviourwhen the number of levels increases, or equivalently, when the granularity decreases.
Therefore the rates do not contain information on area or volume but on the granularity H, themaximum concentrationmet
by any reagent during the lifetime of the system divided by the number of levels of concentration N.
Definition 5.1 (Density Dependent Markov Chains). A family of CTMCs is called density dependent if and only if there exists
a continuous function f (x, l), x ∈ Rh, l ∈ Zh, such that the infinitesimal generators of XH are given by:

qk,k+l = H−1f (Hk, l) , l 6= 0
with qk,k+l denoting an entry of the infinitesimal generator of XH , k a numerical state vector and l a transition vector that
contains the modifications for each state of each species (i.e. the number of copies to add or subtract) when the transition
is taken.

In [17] Kurtz shows that the ODE system dX(t)
dt = F(X) defined by:

F(x) =
∑
l

lf (x, l)

is the solution of the limit of XH when H tends to 0, in the sense that:

lim
H→0

HXH(0) = X(0) =⇒ ∀δ > 0 lim
H→0
P

(
sup
s≤t

|HXH(s) − X(s)| > δ

)
= 0.

The limit expresses that the probability for XH to take a trajectory different from X tends to 0 when H tends to 0. The result
is based on the assumption that the following conditions are met:

There exists an open set E ⊂ Rh such that X(t) ∈ E and

∃M,∀x, y ∈ E |F(x) − F(y)| < M |x − y| (2)
sup
x∈E

∑
l

|l|f (x, l) < ∞ (3)

lim
d→∞

sup
x∈E

∑
|l|>d

|l|f (x, l) = 0. (4)

These conditions can be understood as follows:
(2) This says that the function F is Lipschitz continuous, imposing a certain degree of smoothness on the function;
(3) This imposes that for each transition the rate of change is bounded;
(4) This ensures that there is a bound for thewhole state spacewhichmeans that the impact of transitions remains bounded.

It is important to note that Kurtz’s result does not tell us about the relationship between the Markov chain with
granularity H and the system of ODEs. However, it does tell us that in the limit, as H tends to 0, the agreement between
the Markov chain and the system of ODEs is complete, in the sense that the behaviour of the two with respect to the state
variables will be identical. We can regard this as saying that for density dependent Markov chains the stochasticity is such
that when there are large numbers of entities the variability balances in such a way that the process tends to a deterministic
limit.

In the context of PEPA models of biochemical signalling pathways we wish to establish that Kurtz’s theorem holds.
Therefore we seek to prove that the CTMCs generated from PEPA models are density dependent. Furthermore, we have
to show how the deterministic distribution obtained in the limit is related to the solution of the system of ODEs derived
from the corresponding PEPA models.

5.2. Mass action kinetics and density dependency

In the original definition of PEPA the rates do not depend on some density. However in the context of biochemical
reactions they do. It is important to notice that the rate of a reaction does not depend on the actual number of copies (as
the apparent rate seems to model) but on their concentration. This is why the number of copies are said to model levels
of concentration rather than number of individuals. The idea underlying this demonstration is to study the limit of CTMCs
when the levels of concentration are finer but as this number grows the actual transition rate of the PEPA model has to be
rescaled appropriately.

Let W, N and H be, respectively, the concentration, the number of levels and the granularity for a system previously
defined. W corresponds to the smallest upper bound concentration that any reagent can reach during the lifetime of the
system. The relation among these measures is given by the following formula H =

W
N
.

N is an integer denoting the number of levels of concentration and does not have any physical dimension. Therefore H
is a concentration corresponding to the width (in absolute value) between the actual concentrations associated with two
consecutive levels.

We will show that the rate of change of a given species, once rescaled so that levels of concentration are considered
instead concentrations, coincides with the apparent rate defined in Section 2.1.
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(1) Let us first consider the rate of change of a species that does not involve interactions with other species. Changing the
level of a molecule species Mi takes time 1t to increase or decrease the level of Mi concentration of H. Thus the rate of
change is 1

1t
. Consider the deterministic model where Mi(t) is the continuous concentration of molecule species M at

time t and α is the name of the reaction that changes the level of molecule species Mi.

dMi(t)

dt
= rate(α)Mi(t). (5)

For small 1t we have

Mi(t + 1t) = Mi(t) + rate(α)Mi(t)1t. (6)

Therefore, if Mi(t) and Mi(t + 1t) correspond to two adjacent actual discrete concentrations (i.e. their difference is H),
we have

1t =
H

rate(α)Mi(t)
. (7)

And the rate of change is given by

1
1t

=
rate(α)Mi(t)

H
. (8)

Moreover the actual concentrationMi(t) corresponds to the discrete concentrationHxi where xi is the level corresponding
to molecule Mi.

1
1t

= rate(α)xi(t). (9)

Thus in that case (species without interaction) the rate of change coincides with the definition of the apparent rate of
PEPA + Π .

(2) Let us now consider the rate of change of a species that does involve interactions with another species. We assume that
the molecule Mi is created as the result of the interaction of Mj and Mk, via the reaction α.

dMi(t)

dt
= rate(α)Mj(t)Mk(t). (10)

Reasoning as previously we can establish the rate of change of Mi.

1
1t

=
rate(α)Mj(t)Mk(t)

H
. (11)

Then we can substitute Mj and Mk by Hxj and Hxk respectively.

1
1t

= rate(α)xj(t)xk(t)H. (12)

Once again the rate of change coincides with the definition of the apparent rate of PEPA + Π .

The generalisation of the rate of change resulting from the cooperations of l kinds of species can easily be drawn in the
same manner leading to the following definition of the apparent rate.

rα(P1[x1]
α

BC . . .
α

BC Pl[xl]) = H−1
× rate(α) ×

l∏
i=1

xiH.

5.3. Definitions and application of Kurtz’s theorem

Let M be a PEPA model with n component types Ci, i = 1, . . . , n, each with hi distinct derivatives. Let V(M) be its
numerical vector form. The total size of V(M) is h =

∑h
i=1 hi. Let x ∈ Nh denote a numerical state vector of M, that is an

instance of V(M), and represent the number of levels. The entry xij records how many instances of the jth local derivative
of component type Ci are exhibited in the current state. Let l ∈ {−1, 0, 1}

h be a vector that represents for each derivative
that its number is decreased by 1, unchanged or increased by 1. l, called a transition vector, describes the transition between
some state x and x + l.

To use Kurtz’s theorem we need to choose the right rescaling factor such that the discrete Markov chain, once rescaled,
approximates the deterministic ODE system. In our situation that rescaling factor is H, that is, if XH(t) specifies the Markov
chain describing the evolution of the number of levels of concentration then HXH(t) specifies a Markov chain describing the
evolution of concentrations that approximates X(t), the deterministic ODE system.

Let Q be the infinitesimal generator of the parametrised Markov chain XH(t) derived from M using the numerical vector
form as state space. We are interested in entries in Q that can be denoted qx,x+l (entries that cannot be denoted in this way
are null).
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So x is denoted:

x = (x11 , . . . , x1j , . . . , xij , . . .)

with xij denoting the number of levels of the species i in the state j. To represent the actual concentration of the different
species in their states we introduce the following vector:

y = (y11 , . . . , y1j , . . . , yij , . . .) ∈ Rh
+

defined by:

y = Hx = (Hx11 , . . . ,Hx1j , . . . ,Hxij , . . .).

For any activity α there is exactly one transition vector, denoted lα. The entry of the ith component and the jth local
derivative of the transition vector lα is denoted lαij . We will now define both qx,x+lα and f (x, lα) for all activities (denoted by
the set Act) and for each case over coop(α), and show that XH is density dependent, that is qx,x+lα = H−1f (Hx, lα).

∀α ∈ Act,
(
∀i, j lαij = 1{

α∈En
(
Cij

)} − 1{
α∈Ex

(
Cij

)})
• coop(α) = ε then ∃i, j such that α ∈ Ex

(
Cij

)
and so qx,x+lα = rate(α) × xij .

Let

f (x, lα) = rate(α) × xij

then

qx,x+lα = rate(α) × xij = H−1rate(α) × Hxij = H−1
× f (Hxij , l

α)

• if coop(α) 6= ε then
– if coop(α) = min then qx,x+lα = rate(α) × minCij∈pre(α)

(
xij

)
.

Let
f (x, lα) = rate(α) × min

Cij∈pre(α)

(
xij

)
then

qx,x+lα =
H

H
× rate(α) × min

Cij∈pre(α)

(
xij

)
= H−1

× rate(α) × min
Cij∈pre(α)

(
Hxij

)
= H−1

× f (Hx, lα)

– if coop(α) = Π then qx,x+lα = H−1
× rate(α) ×

∏
Cij∈pre(α) Hxij .

Let
f (x, lα) = rate(α)

∏
Cij∈pre(α)

xij

then

qx,x+lα = H−1
× f (Hx, lα).

We have shown that for all activities and all types of cooperation the family of CTMCs are density dependent.
Let us assume that the initial concentrations are described by the vector c where

c =

(
c11 , . . . , c1j , . . . , cij , . . .

)
.

Thus the corresponding initial levels are given by the vector x0 =
⌊ c
H

⌋
.

limH→0 Hx0 = c, thus according to Kurtz’s theorem and assuming that the conditions of its applicability are met (see
below) X(t) is the solution of the following differential equations dX(t)

dt = F(X) defined by:

F(y) =
∑
l

lf (y, l)

subject to initial conditions X(0) = c.
Finally, the three conditions (2), (3) and (4) must be verified.
The trajectory of X(t) is closed, that is, included within a bounded set. Also E can be chosen to be bounded and the

inequalities (2) and (3) are trivially verified. The equality (4) is trivially verified because f (y, l) is non-null only when the
entries of l have the values −1, 1 or 0. Consequently f (y, l) = 0 for all |l| > C, where C is a constant which can be chosen as
C =

√
N according to the Euclidean metric, denoting the worst case when all entries of l are 1 or −1.

In conclusionwe have proved that the scaledMarkov processHXH(t), that represents the vector of discrete concentrations
at time t, converges in probability to the differential equations derived from the same PEPA model.
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6. Example

In this section we consider again the example from Section 3 and show that the ODEs derived earlier are those which
satisfy Kurtz’s theorem. The kinetic reactions are recalled below:

A + X
k1


k2
A/X k3

→ B + Y

B k4
→ A

Y k5
→ X.

The five activities and their coop values are as follows:

k1react k2react k3react k4react k5react
coop Π min min ε ε

These give rise to five transition vectors, denoted lk1react , lk2react , lk3react , lk4react and lk5react respectively. Then f (x, l) is defined for
each transition vector as follows:

(1) for lk1react:

lk1react = (−1, 1, 0,−1, 1, 0)

f (x, lk1react) = (k1 × x11) × (1 × x21)

= k1 × x11 × x21

(2) for lk2react:

lk2react = (1,−1, 0, 1,−1, 0)

f (x, lk2react) = min(k2 × x12 , k2 × x22)

= k2 × min(x12 , x22)

(3) for lk3react:

lk3react = (0,−1, 1, 0,−1, 1)

f (x, lk3react) = min(k3 × x12 , k3 × x22)

= k3 × min(x12 , x22)

(4) for lk4react:

lk4react = (1, 0,−1, 0, 0, 0)

f (x, lk4react) = k4 × x13

(5) for lk5react:

lk5react = (0, 0, 0, 1, 0,−1)

f (x, lk5react) = k5 × x23 .

It is now possible to express F(x):

F(x) =
∑
l

f (x, l)

F(x) = k1 × x11 × x21 × (−1, 1, 0,−1, 1, 0)T + k2 × min(x12 , x22) × (1,−1, 0, 1,−1, 0)T

+ k3 × min(x12 , x22) × (0,−1, 1, 0,−1, 1)T + k4 × x13 × (1, 0,−1, 0, 0, 0)T + k5 × x23 × (0, 0, 0, 1, 0,−1)T .

After adding all terms we obtain:

F(x) =



−k1x11x21 + k2min(x12 , x22) + k4x13
k1x11x21 − k2min(x12 , x22) − k3min(x12 , x22)
k3min(x12 , x22) − k4x13
−k1x11x21 + k2min(x12 , x22) + k5x23
k1x11x21 − k2min(x12 , x22) − k3min(x12 , x22)
k3min(x12 , x22) − k5x23

 .
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Fig. 3. Convergence of the transient probabilities in the CTMCs with levels to the ODE solution for the concentration of X for the simple model presented
in this paper.

We note that the second and fifth rows (corresponding to the components C12 and C22 respectively) are exactly the same.
These correspond to the two descriptions of the same complex A/X. Thus we can assume that they will be initialised with
the same concentration and therefore it follows that min(x12 , x22) = x12 = x22 .

Therefore, after renaming appropriately x11 by A, x12 by A/X, x13 by B, x21 by X, x22 by X/A, x23 by Y, and eliminating the
min operators we obtain the following set of ODEs:

dA(t)
dt

= −k1 × A(t) × X(t) + k2 × A/X(t) + k4 × B(t)

dA/X(t)

dt
= k1 × A(t) × X(t) − k2 × A/X(t) − k3 × A/X(t)

dB(t)
dt

= k3 × A/X(t) − k4 × B(t)

dX(t)

dt
= −k1 × A(t) × X(t) + k2 × A/X(t) + k5 × Y(t)

dX/A(t)

dt
= k1 × A(t) × X(t) − k2 × A/X(t) − k3 × A/X(t)

dY(t)
dt

= k3 × A/X(t) − k5 × Y(t).

Note that this is identical to the set of ODEs generated by the algorithm given in Fig. 2 from the same example.
In Fig. 3 we show the transient trajectory of the first four CTMCs corresponding to the simple example, and the ODE

solution. The convergence of the sequence of CTMCs towards the deterministic model as the number of levels increases can
be plainly seen. Furthermore this simple model reaches the limit distribution very fast: the transient solutions of Markov
chains with more than four levels are indistinguishable from the solutions of ODEs.

7. Conclusions and future work

We have established the relationship between the discretised, CTMC representation of PEPA models of biochemical
signalling pathways, and the ODE models which can be derived from the same system description. A variety of analysis
techniques are available for the CTMC model which are not possible on the ODEs. For example, standard process algebra
analysis techniques can be used to establish that a model is deadlock free before expensive numerical experimentation is
started. Furthermoremore sophisticatedmodel checking techniques can be applied to prove properties about themodel. For
instance, in [13] the authors apply Computational Stochastic Logicmodel checking on a CTMCmodel to assess the probability
that one binding site is used before another.

It should be noted that our result establishes the relationship between the set of ODEs and the limit of the sequence of
CTMCs, without any indication of how many levels of granularity are necessary in order to get good agreement. Of course,
finer granularity means that there will be more states in the CTMC and the alternative analysis techniques may become
prohibitively expensive. Thus we are faced with a trade-off between accuracy and tractability. However, empirical evidence
is that, for many systems, a relatively low number of levels (steps along the sequence of CTMCs) is sufficient for the CTMC
and ODEs to exhibit the same behaviour. For example, in [6], the authors show that results become indistinguishable with
just seven levels.
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An important area for future work is to investigate the relationship between the level of granularity in the discretisation
and the accuracy achievedwith respect to theODEs. In particular, fromapractical point of view itwould be useful to establish
a characterisation of the accuracy of the analysis with a given level of granularity.

Currently, the syntax of PEPA does not allow higher order reactions and elements with stoichiometric coefficient greater
than one to be represented. As a result we are working on a new stochastic process algebra, more closely tailored to the
needs of modelling biochemical signalling pathways. This is an area of on-going work and it is hoped to extend the results
in this paper to this new formalism when it is established.
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