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Abstract

In this work we present Bio-PEPA, a process algebra for the modelling and the analysis of
biochemical networks. It is a modification of PEPA, originally defined for the performance
analysis of computer systems, in order to handle some features of biological models, such
as stoichiometry and the use of general kinetic laws. The domain of application is the one
of biochemical networks. Bio-PEPA may be seen as an intermediate, formal, compositional
representation of biological systems, on which different kinds of analysis can be carried out.
Bio-PEPA is enriched with some notions of equivalence. Specifically, the isomorphism and
strong bisimulation for PEPA have been considered and extended to our language. Finally,
we show the translation of a biological model into the new language and we report some
analysis results.
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1 Introduction

In recent years there has been increasing interest in the application of process al-
gebras in the modelling and analysis of biological systems [44,22,26,43,13,40,8].
Process algebras have some interesting properties that make them particularly use-
ful in this context. First of all, biological systems can be abstracted by concurrent
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systems in a straightforward way: species may be seen as processes that can inter-
act with each other and reactions may be modelled using actions. Secondly, process
algebras give a formal representation of the system avoiding ambiguity. Thirdly,
they offer compositionality, i.e. the possibility of defining the whole system start-
ing from the definition of its subcomponents. Finally, different kinds of analysis
can be performed on a process algebra model. These analyses provide conceptual
tools which are complementary to established techniques: it is possible to detect
and correct potential inaccuracies, to validate the model and to predict its possible
behaviours.

The process algebra PEPA, originally defined for the performance analysis of com-
puter systems, has been recently applied in the context of signalling pathways [8,9].
Two approaches have been proposed: one based on reagents (the so-called reagent-
centric view) and another based on pathways (pathway-centric view). In both cases
the species concentrations are discretised into levels, each level abstracting an inter-
val of concentration values. In the reagent-centric view the PEPA sequential com-
ponents represent various concentration levels of the species. The abstraction is
“processes as species”. This is different from the abstractions generally adopted in
the application of other process algebras in systems biology, such as “processes as
molecules” or “processes as interactions”. The former is the most widely-used ab-
straction in this context and it has been chosen in a lot of case studies involving the
π-calculus and Beta-binders [44,43,21,22]. The latter has been proposed in [5] for
the modelling of biological systems by means of the stochastic Concurrent Con-
straint Programming (sCCP). In the pathway-centric approach of PEPA we have a
more abstract view: the processes represent sub-pathways. Here multiple copies of
components represent levels of concentration. The two views of PEPA have been
shown to be equivalent [8].

Even though PEPA has proved useful in studying signalling pathways, it does not
allow us to represent all the features of biological networks. The main difficul-
ties are the definition of stoichiometric coefficients (i.e. the coefficients used to
show the quantitative relationships of the reactants and products in a biochemical
reaction) and the representation of kinetic laws. Indeed, stoichiometry is not rep-
resented explicitly and the reactions are assumed to be elementary. The problem
of extending to the domain of kinetic laws beyond basic mass-action (hereafter
called general kinetic laws) is particularly relevant, as these kinds of reactions are
frequently found in the literature as abstractions of complex situations whose de-
tails are unknown. Reducing all reactions to the elementary steps is complex and
often impractical. This problem impacts also on other process algebras. Generally
they rely on Gillespie’s stochastic simulation which considers only elementary re-
actions. Some recent works have extended the approach of Gillespie to deal with
complex reactions [1,11] but these extensions are yet to be reflected in the work
using process algebras. Previous work concerning the use of general kinetic laws in
process algebras and formal methods was presented in [5,14]. These are discussed
in Section 3.1.
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Fig. 1. Schema of the Bio-PEPA framework

In this paper we present Bio-PEPA, a language for the modelling and the analysis
of biochemical networks. A preliminary version of the language has been proposed
in [16]. Here we describe the final version of the language, we introduce new defi-
nitions and more details about our approach.

A major feature of Bio-PEPA is the possibility to represent explicitly some fea-
tures of biochemical models, such as stoichiometry and the role of the species in a
given reaction. Furthermore functional rates are introduced to express general ki-
netic laws. Each action type represents a reaction and is associated with a functional
rate. Bio-PEPA is equipped with an operational semantics and a stochastic labelled
system based on discrete levels of concentration. In this respect our language fol-
lows a similar approach to the reagent-centric view of PEPA. The representation
in terms of discrete levels of concentration is also reflected in the definition of the
continuous time Markov chains (CTMC) derived from the system. Hereafter we
call this Markov chain CTMC with levels. We enrich Bio-PEPA with some notions
of equivalence. We extend the definition of isomorphism and strong bisimulation
proposed for PEPA in [36] to Bio-PEPA.

The idea underlying our work is represented schematically in the diagram in Fig. 1.
The context of application is biochemical networks. Broadly speaking, biochemi-
cal networks consist of some biochemical species, which interact with each other
through reactions. The reaction dynamics are described in terms of kinetic laws.
The biochemical networks can be obtained from databases such as KEGG [38,37]
and BioModels Database [42]. From the biological model, we develop the Bio-
PEPA specification of the system. This is an intermediate, formal, compositional
representation of the biological model. At this point we can apply different kinds of
analysis, including stochastic simulation [32], analysis based on ordinary differen-
tial equations (ODEs), numerical solution of CTMC and stochastic model checking
using PRISM [45,35]. The choice of one or more methods depends on the context
of application [47].

It is worth noting that the use of various kinds of analysis can help in understand-
ing the system. We can use two or more analyses to investigate different but re-
lated aspects of the model. Furthermore, when they overlap, the results obtained
can provide a further confirmation of the behaviour of the system. These aspects
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were considered in [9,17]. The work in [9] concerns the comparison of the results
obtained using implicit numerical differentiation formulae to those obtained using
approximate stochastic simulation in the case of a signalling pathway. This reveals
the flaw in the use of the differentiation procedure producing misleading results. In
[17] we presented an approach that uses stochastic simulation and the PRISM prob-
abilistic model checker in tandem in order to investigate the properties of biological
systems.

There exist some relations between the different kinds of analysis. It is well-known
that the ODEs solution tends to the results of stochastic simulations when the num-
ber of elements is relatively high. Similarly, it is shown in [31] that the numerical
solution of the CTMC with levels (derived from the PEPA pathway-centric view)
tends to the solution of the ODEs when the number of levels increases. An anal-
ogous result has been recently proved for Bio-PEPA [18]. We showed that the set
of ODEs derived from Bio-PEPA is able to capture the limiting behaviour of the
CTMC with levels obtained from the same system. Furthermore we proposed an
empirical methodology to find the granularity of the Bio-PEPA system for which
the ODE model and the CTMC with levels are in a good agreement. The proposed
definition is based on a notion of distance between the two models: the granular-
ity of the system, expressed in terms of the step size of the concentration levels,
is chosen in order to minimise this distance. In this way we are able to define an
ODE model and a CTMC model that represent the same biological system and we
use different analysis techniques from the two representations to investigate various
properties of it.

The paper is structured as follows. In the next section a description of biochemi-
cal networks is reported. Section 3 describes PEPA and reports the application of
PEPA to the modelling of some signalling pathways. Furthermore, some related
works concerning the application of process algebras in systems biology are dis-
cussed. After that, in Section 4, we define Bio-PEPA. The semantics of Bio-PEPA
in terms of a labelled stochastic transition system is presented in Section 5. Section
6 reports some auxiliary definitions, used in the following Section 7, where some
equivalences for Bio-PEPA are presented. In Section 8 we discuss the main kinds
of analysis that can be used from a Bio-PEPA model. The translation of a biological
model into Bio-PEPA and its subsequent analysis is described in Section 9. Finally,
Section 10 reports some final observations and future investigations.

2 Biochemical networks

We focus on biochemical networks, such as those collected in the Biomodels Database
[42] and KEGG [38]. A biochemical systemM is composed of:

(1) a set of compartments C. These represent the locations of the various species;
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(2) a set of chemical species S. These species may be genes, proteins, etc. For
each species an initial concentration is given;

(3) a set of (irreversible) reactions R. The general form of an irreversible reaction
j is given by:

κ1 jA1 j + κ2 jA2 j + .... + κn j jAn j j
E1 j,E2 j,...I1 j,I2 j,...; f j
−−−−−−−−−−−−−−→ κ′1 jB1 j + κ

′
2 jB2 j + .... + κ

′
m j jBm j j

where Ah j, h = 1, ..., n j, are the reactants, Bl j, l = 1, ...,m j, are the products,
Ev j are the enzymes and Iu j, the inhibitors. All these species belong to the set
S. Enzymes and inhibitors are represented differently from the reactants and
products. Their role is to enhance or inhibit the reaction, respectively. We call
species that are involved in a reaction without changing their concentration
(i.e. enzymes/activators and inhibitors) modifiers. The parameters κh j and κ′l j
are the stoichiometry coefficients. These express the degree to which species
participate in a reaction. The dynamics is described by a kinetic law f j. Re-
versible reactions can be regarded as a pair of forward and inverse reactions.

The best known kinetic law is mass-action: the rate of the reaction is proportional
to the product of the reactants’ concentrations. In published models it is common
to find general kinetic laws, which describe approximations of sequences of reac-
tions [46]. They are useful when it is difficult to derive certain information from the
experiments, e.g. the reaction rates of elementary steps, or when there are differ-
ent time-scales for the reactions. General kinetic laws are valid under some condi-
tions, such as the quasi-steady-state assumption (QSSA). This describes the situa-
tion where one or more reaction steps may be considered faster than the others and
so the quantity of intermediate elements can be considered to be constant.

3 PEPA and biological systems

PEPA was originally defined for the performance modelling of systems with con-
current behaviour [36]. Systems are represented as the composition of components
which undertake actions. In PEPA each action is assumed to have a duration, which
is represented by a random variable with a negative exponential distribution. PEPA
has a set of combinators that allows the system description to be built up as the
concurrent interaction of simple sequential components.

We informally introduce the syntax of the language below. For more details see [36].

Prefix The basic term is the prefix combinator (α, r).P. It denotes a component
which has action of type α and an exponentially distributed duration with pa-
rameter r (mean duration 1/r), and it subsequently behaves as P.

Choice The component P + Q represents a system which may behave either as P
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or as Q. The activities of both P and Q are enabled. The first activity to complete
distinguishes one of them and the other is discarded.

Constant Constants are components whose meaning is given by a defining equa-

tion C
de f
= P. They allow us to assign names to patterns of behaviour associated

with components.
Hiding In P/H the setH identifies those activities which can be considered inter-

nal or private to the component P.
Cooperation The term P BC

L
Q denotes cooperation between P and Q over the co-

operation set L, that determines those activities on which the cooperands are
forced to synchronise. PEPA supports multiway synchronisation between com-
ponents: the result of synchronising on an activity α is thus another α, available
for further synchronisation. For action types not in L, the components proceed
independently and concurrently with their enabled activities. In the context of
performance evaluation the rate for the synchronised activities is the minimum
of the rates of the synchronising activities.

PEPA has a structured operational semantics which generates a labelled transition
system and from this a continuous time Markov chain (CTMC) is derived.

Recently, PEPA has been applied to the modelling and analysis of signalling path-
ways. A first study concerns the influence of the Raf Kinase Inhibitor Protein
(RKIP) on the Extracellular signal Regulated Kinase (ERK) [8], whereas in [9]
the PEPA system for Schoeberl’s model [29] involving the MAP kinase and EFG
receptors is reported. In [8] two modelling styles have been proposed, one based
on the reagent-centric view and the other on the pathway-centric view. The for-
mer focuses on the variation in the reagent concentrations: the concentrations are
discretised in levels, each level representing an interval of concentration values.
The level l can assume values between 0 and Nmax (maximum level). The pathway-
centric style provides a more abstract view and focuses on the subpathways. The
two representations were shown to be equivalent [8]. In addition to the standard
analysis offered by process algebras, in [7] a mapping from reagent-centric PEPA
models to a system of ordinary differential equations (ODEs), has been proposed.

From these works PEPA has been shown to be appropriate for the modelling of bio-
logical systems: it offers a high level of abstraction and focuses on compositionality
and on the interactions. By using PEPA as a modelling language it is possible to
apply different kinds of analysis, not only stochastic simulation, but also differen-
tial equations and study by means of model checking. However, not all the features
of biochemical networks can be expressed using the present version of PEPA: the
various kinetic laws are not considered and stoichiometry is added by hand in the
conversion of PEPA into ODEs. With a few exceptions (e.g. [5]) and a few cases,
these features cannot be represented in other process algebras either.
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3.1 Related work

Other process algebras have been considered in the context of biological systems.
Initial work focused upon the π-calculus and its biochemical stochastic extension
[44]. Several case studies have been considered, e.g. [22,40]. The translation of bio-
chemical models into this language is based on the abstraction “processes as single
molecules”: molecules are represented by processes and the biological interactions
are abstracted by communications between processes.

Beta-binders [43] is an extension of the π-calculus inspired by biological phenom-
ena. This calculus is based on the concept of bio-process, a box with some sites
(beta-binders) to express the interaction capabilities, in which π-like processes (pi-
processes) are encapsulated. Beta-binders enrich the standard π-calculus with some
constructs that allow the modeller to represent biological features, such as the join
between two bio-processes, the split of one bio-process into two, the change of
the bio-process interface. In both π-calculus and Beta-binders it is not possible to
represent all the features that are present in the biochemical networks proposed in
this paper. The kinetic law is assumed to be mass-action and reactions can have at
most two reactants. In order to represent multiple-reactant multiple-product reac-
tions transactions are considered [19,20]. Finally, in both cases the analysis of the
model is based on stochastic simulation using Gillespie’s algorithm [32].

Another language for the modelling of biological systems is the κ-calculus [23,24],
based on the description of protein interactions. Processes describe proteins and
their compounds, a set of processes model solutions and protein behaviour is given
by a set of rewriting rules, driven by suitable side-conditions. The two main rules
concern activation and complexation. The calculus is supported by a graphical no-
tation in terms of boxes. A stochastic simulator for κ-calculus is described in [25].
A few applications are reported, as in [24].

Previous works concerning the use of general kinetic laws and stoichiometry in
process algebras and formal methods have been proposed in [5,14]. The authors
of [5] present a stochastic extension of Concurrent Constraint Programming (CCP)
and show how to apply it in the case of biological systems. Here each species is
represented by a variable and the reactions are expressed by constraints on these
variables. The domain of application is extended to any kind of reactions and the
rate can be expressed by a generic function. BIOCHAM [14] is a programming en-
vironment for modelling biochemical systems, making simulations and querying
the model in temporal logic. In its current version BIOCHAM is based on a rule-
based language for modelling biochemical systems, in which species are expressed
by objects and reactions by reaction rules. The rates are expressed by using some
functions, whose definition is similar to the one proposed in our work. This lan-
guage permits the evaluation of temporal logic queries using the NuSMV model
checker [41]. Functional rates has been recently considered in Blenx [27,28], a lan-
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guage inspired by Beta-binders [43] for the modelling and analysis of biological
systems.

4 Bio-PEPA

The aim of this work is to define a new process algebra in order to model some of
the features of biochemical networks that are not possible to represent in PEPA. We
will show that the new language is able to represent all the reactions in a straight-
forward way and it deals with stoichiometry and general kinetic laws.

We adopt a high level of abstraction similar to the one proposed in formalisms such
as SBML [3]. Furthermore we have made the following assumptions:

(1) compartments are static, i.e. compartments are not actively involved in the
reactions —they are simply containers.

(2) Reactions are irreversible reactions.

The first assumption reflects the current information about locations that can be
found in the literature and in the databases of biochemical networks [42]. The cur-
rent information about compartments is poor and most models are based on some
limitations. The assumption of static compartments for Bio-PEPA allows us to keep
the language simple and at the same time to represent most of the features of the
biochemical networks. For instance, the transport of a species from one compart-
ment to another is modelled by introducing two distinct components representing
the species. The translocation is abstracted by a transformation of one species into
the other. Compartments must be considered in the definition of a Bio-PEPA sys-
tem because in the analysis it can be necessary to have the size of the compartments
(for instance for Gillespie’s algorithm [32]).

Note that the second assumption is not restrictive as a reversible reaction can be
split into two irreversible reactions, representing the forward and the inverse direc-
tion.

4.1 Discrete concentrations and granularity

The definition of the transition system for Bio-PEPA and the CTMC derived from
it is based on the abstraction of discrete levels of concentration within a species:
each component represents a species and it is parametric in terms of concentration
levels. Some advantages of this view are:

• it deals with incomplete information in the exact number of elements;
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• the focus is on the concentration levels not on the number of elements: this leads
to a reduction of the state space as there are less states for each component.

This view was originally defined in [8] for PEPA and then used in [10]. In both
the cases the authors focused on the case of reactions with mass-action kinetics and
stoichiometry equal to one for all the reactants and products. Furthermore they con-
sidered the same step size H and the same maximum level N for all the species. In
the following we adapt this approach to general kinetic laws, stoichiometry greater
than one and different numbers of levels for the species. The granularity is defined
in terms of the step size H of the concentration intervals. We define the same step
size H for all the species. This is motivated by the fact that, following the law of
conservation of mass, there must be a “balance” between the concentrations con-
sumed (reactants) and the ones created (products). There are few exceptions to this
case. For instance, when a species can be only a modifier in the model we can as-
signed to it a different step size, as its concentration does not vary. In the case the
stoichiometry is greater than one we need to consider concentration quantities pro-
portional to stoichiometric coefficients. Given a species i, we can assume that it has
a maximum finite concentration Mi. This is to ensure a finite state space and there-
fore to make analysis conducted by numerical solution feasible. Each species can
assume the discrete concentration levels from 0 (null concentration) to Ni (maxi-
mum concentration). We have the following relations:

• The number of levels for the species i is given by Ni + 1 where Ni = dMi/He (i.e.
the integer value greater than or equal to Mi/H).
• li = dxi/He, where li is the concentration level and xi is the concentration for the

species i. When initial values are considered we have li,0 = dxi,0/He.

4.2 The syntax

The syntax is designed in order to collect the biological information we need:

S ::= (α, κ) op S | S + S | C P ::= P BC
L

P | S (x)

where op = ↓ | ↑ | ⊕ | 	 | �.

The component S is called sequential component (or species component) and repre-
sents a species. The component P, called a model component, describes the system
and the interactions among components. The element C is the constant as in PEPA.
We assume a countable set of model components C and a countable set of action
types A. The element x is a positive real-valued parameter, usually interpreted as
a concentration. We consider concentrations in the specification of the system as
from them we can derive both the number of molecules and the number of levels
in a straightforward way. Furthermore this information is generally given in the
biochemical networks and from experiments.
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The prefix term in PEPA is replaced by a new one, (α, κ) op S , containing informa-
tion about the role of the species in the reaction associated with α:

• (α, κ) is the prefix, where α ∈ A is the action type and κ is the stoichiometry
coefficient of the species in that reaction;
• the prefix combinator “op” represents the role of the element in the reaction.

Specifically, ↓ indicates a reactant, ↑ a product, ⊕ an activator, 	 an inhibitor
and � a generic modifier.

The choice operator, cooperation and definition of constant are unchanged. As in
PEPA, we have L ⊆ A. In contrast to PEPA the hiding operator is omitted, as it is
not necessary for our purposes.

In order to fully describe a biochemical network in Bio-PEPA we need to define
structures that collect information about the compartments, the species, the constant
parameters and the functional rates. In the following the function name returns the
names of the elements of a given Bio-PEPA component.

Definition 1 Each compartment is described by “V: v unit”, where V is the com-
partment name, “v” is a positive real number expressing the compartment size and
the (optional) “unit” denotes the unit associated with the compartment size. The
set of compartments is denotedV.

The list of compartments is composed of at least one compartment. When no infor-
mation about compartments is available we add a default compartment whose size
is 1 and the unit of which depends on the model.

For each species represented in the system we can add some details that can then
be used for the analysis. In the definition below the symbol “ ” denotes the empty
string.

Definition 2 For each species we define the element “C : H = value H,N =
value N,M = value M,V = value V, unit = value u”, where:

• C is the species component name,
• H is the step size and value H ∈ R+,
• N is the maximum level and value N ∈ N,
• M is the maximum concentration and value M ∈ R+ ∪ { },
• V is the name of the enclosing compartment and value V ∈ name(V) ∪ { },
• value u represents the unit for concentration.

The set of all the elements described above is denoted N .

All the elements described above can be optional and their use depends on the kind
of analysis we aim to perform. If only the compartment name is given, we can use
the system for stochastic simulation and we can map it to ODEs, whereas if we are
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interested in the CTMC with levels or model checking with PRISM we also need
the values for H and N (or, equivalently, H and M).

In order to collect the information about the dynamics of the system, we asso-
ciate a functional rate fα j with each action α j. This function represents the kinetic
law of the associated reaction. For the definition of functional rates we consider
mathematical expressions with simple operations and operators involving constant
parameters and components. All the kinetic laws proposed in the book by Segel
[46] can be defined in this way. In addition, for convenience, we include some pre-
defined functions to express the most commonly used kinetic laws.

Definition 3 The functional rates are expressed by the following grammar:

f rate ::= fα(k̄, C̄) = sk | fα(k̄) = sk2

sk ::= int | float | name | sk + sk | sk × sk | sk/sk | sk − sk | sksk |

exp(x) | log(sk) | sin(sk) | cos(sk)

sk2 ::= fMA(sk) | fMM(sk, sk) | fH(sk, sk, int)

The set of functional rates is denoted FR.

The mathematical expressions are defined by some mathematical operators (sk)
and the predefined functions (sk2). The general expression for the functional rate
contains the names of the parameters and the names of the species components
involved in the associated reaction. The predefined kinetic laws considered here are
mass-action (fMA), Michaelis-Menten (fMM) and Hill kinetics (fH). They depend
only on some parameters; the components/species are derived from the context. The
functional rates are defined externally to the components and are evaluated when
the system is derived. They are used to derive the transition rates of the system. In
the functional rates some parameter constants can be used. These must be defined
in the model by means of the set of parameter definitions K .

Definition 4 Each parameter is defined by “kname = value unit”, where “kname <
C” is the parameter name, “value” denotes a positive real number and the (op-
tional) “unit” denotes the unit associated with the parameter. The set of the pa-
rameters is denoted K .

Finally, we have the following definition for the set of sequential components:

Definition 5 The set Comp of sequential components is defined as

Comp ::= {C def
= S , where S is a sequential component }

We can define the Bio-PEPA system in the following way:
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Definition 6 A Bio-PEPA system P is a 6-tuple 〈V,N ,K ,FR,Comp, P〉, where:

• V is the set of compartments;
• N is the set of quantities describing each species;
• K is the set of parameter definitions;
• FR is the set of functional rate definitions;
• Comp is the set of definitions of sequential components;
• P is the model component describing the system.

In a well-defined Bio-PEPA system each element has to satisfy some conditions.
The list N has to contain all the species components and, for each of them, at least
its compartment must be defined. The optional elements of N must satisfy some
simple conditions, for instance value H > 0 and value H ∈ R+ and value N ∈ N
with value N ≥ 1. Concerning the functional rates, they are well-defined if each
variable in their definition refers to the name of a species component in the listN or
a constant parameter in the listK . For the definition of the species components, we
have that each component C ∈ Comp must have subterms of the form “(α, κ) op C”
and the action types in each single component must be all distinct. Finally, the
model component P must be defined in terms of the species components defined
in Comp and, for each cooperation set L j in P, L j ⊆ A(P). Moreover, the initial
value for each species must be a non-negative real number less than or equal to the
maximum value, when given. See [15] for further details.

In the following we consider only well-defined Bio-PEPA systems. We denote by
P̃ the set of well-defined Bio-PEPA systems.

A Bio-PEPA system, with species components parametrised by concentration, is
an implicitly continuous-state based representation. However an objective is to al-
low analysis of Bio-PEPA models by a variety of techniques, some of which are
based on discrete-state representation. In particular we derive the CTMC with lev-
els via a structured operational semantics and labelled transition system, after the
continuous concentration parameter has been discretised into levels. We define a
function levels over P̃, which, given a Bio-PEPA system P, derives the Bio-PEPA
system Pl, where the initial concentrations are replaced by the initial levels in the
model component. This is possible only if the set N contains the step size for all
the species. Pl is called a “Bio-PEPA system with levels”; it is well-defined if P
is well-defined and if the levels for each each species are less than or equal to the
maximum ones. In the following we omit the subscript “l” when it is clear from the
context.

4.3 From biochemical networks to Bio-PEPA

The translation tr BM BP of a biochemical network M into a Bio-PEPA system
P = 〈V,N ,K ,FR,Comp, P〉 is based on the following abstractions:
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(1) Each compartment is defined in the setV in terms of a name and an associated
volume. In this version of Bio-PEPA compartments are not involved actively
in the reactions and therefore are not represented by processes.

(2) Each species i in the network is described by a species component Ci ∈ Comp.
The constant component Ci is defined by the “sum” of elementary components
(i.e. prefixes term) describing the interaction capabilities of the species. We
suppose that there is at most one elementary component in each species com-
ponent with an action of type α. A single definition can express the behaviour
of the species at any level.

(3) Each reaction j is associated with an action type α j and its dynamics is de-
scribed by a specific function fα j ∈ FR. The constant parameters used in the
function can be defined in K .

(4) The model P is defined as the cooperation of the different components Ci.

4.4 Some examples

The following examples show how some biochemical situations can be specified in
Bio-PEPA.

4.4.1 Example 1: Mass-action kinetics

Consider the reaction 2X + Y
fM
−−→3Z, described by the mass-action kinetic law

fM = r × X2 × Y . The three species can be specified by the syntax:

X
def
= (α, 2)↓X Y

def
= (α, 1)↓Y Z

def
= (α, 3)↑Z

The system is described by (X(x0) BC
{α}

Y(y0)) BC
{α}

Z(zo), where x0, y0 and z0 denote the
initial concentrations of the three components. The functional rate is fα = f MA(r).

4.4.2 Example 2: Michaelis-Menten kinetics

One of the most commonly used kinetic laws is Michaelis-Menten. It describes a
basic enzymatic reaction from the substrate S to the product P and is written as

S
E; fE
−−−→P, where E is the enzyme involved in the reaction and fE =

vM×E×S
(KM+S ) . For more

details about this kinetic law see [46].

The three species can be specified in Bio-PEPA by the following components:

S
def
= (α, 1)↓S P

def
= (α, 1)↑P E

def
= (α, 1) ⊕ E

The system is described by (S (xS ,0) BC
{α}

E((xE,0)) BC
{α}

P(xP,0), where xS ,0, xE,0 and xP,0

are the initial concentration of the three species and the functional rate is fα =
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f MM(vM,KM).

5 Definition of the labelled transition system with levels for Bio-PEPA

Bio-PEPA is given an operational semantics, similar to the one for PEPA. In this
context we consider the abstraction for the species in terms of levels of concentra-
tion. Therefore, we have to consider the Bio-PEPA sytem with levels, as described
at the end of Section 4.2. For the rest of this section we consider Bio-PEPA systems
with levels, i.e the model component ha discrete parameters.

We define two relations over the processes. The former, called the capability re-
lation, supports the derivation of quantitative information and it is auxiliary to the
latter which is called the stochastic relation. The stochastic relation gives us the
rates associated with each action. The rates are obtained by evaluating the func-
tional rate associated with the action, divided by the step size, and by using the
quantitative information derived from the capability relation. The use of two rela-
tions makes the definition of the semantics rules straightforward. This allows us to
associate the rate with the last step of the derivation representing a given reaction.
If only one relation were considered it could be complicated to derive the rate in
the appropriate way, especially in the case of general kinetic laws different from
mass-action.

The capability relation is −→c ⊆ C × Θ × C, where the label θ ∈ Θ contains the
quantitative information needed for the evaluation of the functional rate. We define
the labels θ as θ := (α,w), where w is a list recording the species that participate
in the reaction and is defined as [S : op(l, κ)] | w :: w, with S ∈ C, l the level and
κ the stoichiometry coefficient. The order of the components is not important. The
relation −→c is the minimum relation satisfying the rules reported in Table 1.

The first three axioms describe the behaviour of the three different prefix terms.
In the case of a reactant, the level decreases, in the case of a product the level in-
creases whereas in the case of a modifier the level remains the same. Concerning
the reactants and the products, the number of levels that changes depends on the
stoichiometric coefficient κ. This expresses the degree to which a species (reactant
or product) participates in a reaction. Some side conditions concerning the present
concentration level must be added to the rules. Specifically, for the reactants the
level has to be greater than or equal to κ, whereas for the products the level has to
be less than or equal to (N − κ), where N is the maximum level. For the modifiers,
we have different side conditions according to the specific role of the species. When
enzymes are considered, the level has to be greater than zero and less than or equal
to the maximum level whereas, in the other cases, the level can be also equal to
zero. Indeed if the enzyme is null the rate of the enzymatic reaction with Michaelis-
Menten kinetics is zero and the reaction is not possible. This does not happen for
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prefixReac ((α, κ)↓S )(l)
(α,[S :↓(l,κ)])
−−−−−−−−−→c S (l − κ) κ ≤ l ≤ N

prefixProd ((α, κ)↑S )(l)
(α,[S :↑(l,κ)])
−−−−−−−−−→c S (l + κ) 0 ≤ l ≤ (N − κ)

prefixMod ((α, κ) op S )(l)
(α,[S :op(l,κ)])
−−−−−−−−−−→c S (l) with op = �,⊕,	 and

0 < l ≤ N if op = ⊕, 0 ≤ l ≤ N otherwise

choice1
S 1(l)

(α,w)
−−−−→c S ′1(l′)

(S 1 + S 2)(l)
(α,w)
−−−−→c S ′1(l′)

choice2
S 2(l)

(α,w)
−−−−→c S ′2(l′)

(S 1 + S 2)(l)
(α,w)
−−−−→c S ′2(l′)

constant
S (l)

(α,S :[op(l,κ)])
−−−−−−−−−−→c S ′(l′)

C(l)
(α,C:[op(l,κ)])
−−−−−−−−−−→c S ′(l′)

with C
de f
= S

coop1
P1

(α,w)
−−−−→c P′1

P1 BC
L

P2
(α,w)
−−−−→c P′1 BCL P2

with α < L

coop2
P2

(α,w)
−−−−→c P′2

P1 BC
L

P2
(α,w)
−−−−→c P1 BC

L
P′2

with α < L

coop3
P1

(α,w1)
−−−−−→c P′1 P2

(α,w2)
−−−−−→c P′2

P1 BC
L

P2
(α,w1::w2)
−−−−−−−→c P′1 BCL P′2

with α ∈ L

Table 1
Axioms and rules for Bio-PEPA.

reactions representing inhibition. The rules choice1 and choice2 have the usual
meaning. The rule constant is used to define the behaviour of the constant term,
defined by one or more prefix terms in summation. The label contains the informa-
tion about the level and the stoichiometric coefficient related to the action α. The
last three rules report the case of cooperation. The rules coop1 and coop2 concern
the case when the action enabled does not belong to the cooperation set. In this case
the label in the conclusion contains only the information about the component that
fires the action. The rule coop3 describes the case in which the two components
synchronise and the label reports the information from both the components.

In order to associate the rates with the transitions we introduce the stochastic rela-
tion −→s ⊆ P̃ × Γ × P̃, where the label γ ∈ Γ is defined as γ := (α, rα), with rα ∈ R+.
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In this definition rα represents the parameter of a negative exponential distribution.
The dynamic behaviour of processes is determined by a race condition: all activ-
ities enabled attempt to proceed but only the fastest succeeds. The relation −→s is
defined as the minimal relation satisfying the rule

Final
P

(α j,w)
−−−−→cP′

〈V,N ,K ,F ,Comp, P〉
(α j,rα[w,N ,K])
−−−−−−−−−−→s〈V,N ,K ,F ,Comp, P′〉

The second element in the label of the conclusion represents the transition. The rate
is calculated from the functional rate fα in the following way:

rα[w,N ,K] =
fα[w,N ,K]

H

where H is the step size for the species involved in the reaction and the notation
fα[w,N ,K] means that the function fα is evaluated over w,N and K . In detail, for
each component Ci we derive the concentration as li×H. Then we replace each free
occurrence of Ci with (li × H)κi j , where κi j is the stoichiometric coefficient of the
species i with respect to the reaction R j. Some observations about the derivation of
the rate are reported in Subsection 5.1.

A Stochastic Labelled Transition System can be defined for a Bio-PEPA system.

Definition 7 The Stochastic Labelled Transition System (SLTS) for a Bio-PEPA
system is (P̃,Γ,−→s), where −→s is the minimal relation satisfying the rule Final.

The states of the SLTS are defined in terms of the concentration levels of the system
components and the transitions from one state to another represent reactions that
cause changes in the concentration levels of some components.

Note that using the relation −→c it is possible to define another labelled transition
system (LTS) as (C,Θ,−→c).

5.1 Derivation of rates

In the SLTS the states represent levels of concentration and the transitions cause a
change in these levels for one or more species. The number of levels depends on
the stoichiometric coefficients of the species involved.

In [10] it was shown how to derive the transition rates in some specific cases. In the
following we extend this approach to Bio-PEPA. The derivation is valid even when
species have different numbers of levels and maximum concentrations.

Let us consider a reaction j described by a kinetic law f j and with all stoichiometric
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coefficients equal to one. Following [10], we can define the transition rate as (∆t)−1,
where ∆t is the time to have a variation in the concentration of one step for both the
reactants and the products of the reaction. Let y be a variable describing one product
of the reaction. We can consider the rate equation for that species with respect to
the given reaction. This is dy/dt = f j(x̄(t)), where x̄ is the set (or a subset) of the
reactants/modifiers of the reaction. We can apply the Taylor expansion up to the
second term and we obtain

yn+1 ≈ yn + f (x̄n) × (tn+1 − tn)

Now we can fix yn+1 − yn = H and then derived the time interval (tn+1 − tn) = ∆t as
∆t ≈ H/ f (x̄n). From this we obtain the transition rate as f (x̄n)/H.

When the reaction has stoichiometric coefficients different from one, we can con-
sider an approach similar to the one above. Let y be a product of the reaction. The
approximation gives:

yn+1 ≈ yn + r × κ ×
nr∏

i=1

xκii,n × (tn+1 − tn)

where r is the reaction constant rate, κ is stoichiometric coefficient of the product
y, xi i = 1, ..., nr are the reactants of the reaction, κi i = 1, ..., nr are the associated
stoichiometric coefficients, nr is the number of distinct reactants.

Now we can fix yn+1 − yn = κ × H and then derive the respective (tn+1 − tn) = ∆t as
∆t ≈ H/(r ×

∏nr
i=1 xκii,n). From this expression we can derive the rate as usual.

Some observations follow. First of all, this approach is based on an approximation;
it depends on the time/concentration steps. Secondly, we assume that the species
can vary by one step size H at a time interval. Reactants are assumed to decrease
until 0 and products increase until a given value. This implies that the kinetic law
has to be non-decreasing in terms of the reactant concentrations. Mass-action, Hill-
kinetics and Michaelis-Menten are all non-decreasing, as are many other kinetic
laws.

5.2 Some examples (continued)

In the following we show the transition rates for the examples in Section 4.4.
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5.2.1 Example 1: Mass-action kinetics

In the case of levels of concentration, the the model component is described by
(X(lX0) BC

{α}
Y(lY0)) BC

{α}
Z(lZ0), where lX0, lY0 and lZ0 denote the initial levels of the

three components and are derived from the initial concentrations.

The rate associated with a transition is given by:

rα =
r × (lX × H)2 × (lY × H)

H

where lX, lY are the concentration levels for the species X and Y in a given state and
H is the step size of all the species.

5.2.2 Example 2: Michaelis-Menten kinetics

The model component with levels of concentration is described by (S (lS 0) BC
{α}

E(lE0)) BC
{α}

P(lP0).

The transition rate is given by:

rα =
vM × (lS × H) × (lE × h)

(KM + lS × H)
×

1
H

where lS , lE are the concentration levels for the species S and E in a given state and
H is the step size of all the species.

6 Auxiliary definitions

In this section we report some auxiliary definitions. First of all we define the set of
action types enabled in a species or model component.

Definition 8 The set of current action types enabled in the model component P,
denotedA(P), is defined as:

A((α, κ) op S ) = {α}

A(S 1 + S 2) = A(S 1) ∪A(S 2)

A(C) = A(S ) where C def
= S

A(S (l)) = A(S )

A(P1 BC
L

P2) = A(P1)\L ∪A(P2)\L ∪ (A(P1) ∩A(P2) ∩ L)

If P is a Bio-PEPA system with model component P, the set of current action types
enabled in P isA(P) = A(P).
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The following definitions concern the derivative of a component, the derivative set
and the derivative graph. We refer to the relation −→s. The case of −→c is analogous,
the only differences are in the label and in the fact that the stochastic relation refers
to Bio-PEPA systems and the capability relation refers to model components.

Definition 9 If P
(α,r)
−−−→sP

′ then P′ is a one-step −→s system derivative of P.

If P
(α1,r1)
−−−−→sP1

(α2,r2)
−−−−→s....

(αn,rn)
−−−−→sP

′ then P′ is a system derivative of P.

We can indicate the sequence
γ1
−→s

γ2
−→s....

γn
−→s with

µ
−→s, where µ denotes the sequence

γ1γ2, ...γn (possibly empty).

Definition 10 A system α-derivative of P is a system P′ such that P
(α,r)
−−−→sP

′. For
each α ∈ A we have at most one system α-derivative of a system P.

Definition 11 The system derivative set ds(P) is the smallest set such that:

• P ∈ ds(P);

• if P′ ∈ ds(P) and there exists α ∈ A(P′) such that P′
(α,r)
−−−→sP

′′

then P
′′

∈ ds(P).

Definition 12 The system derivative graph D(P) is the labelled directed multi-
graph whose set of nodes is ds(P) and whose multi-set of arcs are elements in
ds(P) × ds(P) × Γ.

It is worth noting that in the case of well-defined Bio-PEPA components the multi-
plicity of 〈Pi,P j, γ〉 is always one.

The definitions above refer to Bio-PEPA systems with levels. The only element of
the system P = 〈V,N ,K ,F ,Comp, P〉 that evolves is the model component P.
The other elements collect information about the compartments, the species, the
rates and report the definition of the species components. They remain unchanged
in the evolution of the system. In some cases it can be useful (and simpler) to
focus on the model component instead of considering the whole system and use the
other components for the derivation of the rates. We define a function πP(P) = P,
that, given a Bio-PEPA system returns the model component. Then we define a
(component) derivative of P by considering the model component P′ of the system
derivative of P. Similarly, we define a (component) α-derivative of P, (component)
derivative set ds(P) and the (component) derivative graph D(P) starting from the
definitions for the associated system P.

In the derivation of the CTMC (see Section 8.1) we need to identify the actions
describing the transitions from one state to another.

Definition 13 Let P be a Bio-PEPA system and let P = πP(P). Let Pu, Pv be two
derivatives of a model component P with Pv a one-step derivative of Pu. The set of
action types associated with the transitions from the process Pu to the process Pv is
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denotedA(Pu|Pv).

The next definition concerns the complete action type set of a system P and of a
component P.

Definition 14 The complete action type set of a system P is defined as:

Ā = ∪Pi∈ds(P)A(Pi)

The complete action type set of a component P is defined similarly.

Other useful definitions are the ones concerning the exit rate and transition rates.
In the following we report the definition for the model components, but a similar
definition can be used for Bio-PEPA systems.

Definition 15 Let us consider a Bio-PEPA system P = 〈V,N ,K ,F ,Comp, P〉
and let P1, P2 ∈ ds(P). The exit rate of a process P1 is defined as:

rate(P1) =
∑

{α|∃P2.P1

(α,rα[w,N ,K])
−−−−−−−−−→sP2, P1=πP(P1)}

rα[w,N ,K]

Similarly, the transition rate is defined as:

rate(P1 | P2) =
∑

{α|P1

(α,rα[w,N ,K])
−−−−−−−−−→sP2, P1=πP(P1), P2=πP(P2)}

rα[w,N ,K]

Given the transition labels it can be useful to define some functions to extract infor-
mation from them. For the label θ in the capability relation, the function action(θ) =
α extracts the former element of the pair (i.e. the action type) and list(θ) = w re-
turns the second element (i.e. the vector of quantitative information). Furthermore,
the functions reacts(θ), prods(θ) mods(θ), enzs(θ), inhibs(θ), totMods(θ) return
the sets of component names that are indicated as reactants, products, generic mod-
ifiers, enzymes, inhibitors and any of the last three possibilities from the vector w,
respectively. The functions #reacts, #prods,... return the number of elements in-
volved as reactants, products and so on. For the label γ in the stochastic relation,
the function action(γ) = α extracts the first element of the pair (i.e. the action type)
and the function rate(γ) = r ∈ R returns the second element (i.e. the rate).

7 Equivalences

It is sometimes useful to consider equivalences between models in order to de-
termine whether the systems represented are in some sense the “same”. In this
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section we present some notions of equivalence for Bio-PEPA with levels in the
model component. Some characteristics of the language impact on the definitions
of equivalence and we start by highlighting those. Firstly, there is no hiding operator
or τ actions. Therefore, in Bio-PEPA we do not have weaker forms of equivalence
based on abstracting τ actions. Secondly, in well-defined systems we have at most
one action of a given type in each sequential term and each component describes
the behaviour of a single species. So we cannot have processes of the form “S + S ”
or terms such as “A = a.C” (where A and C differ). Thirdly, if we have two transi-
tions between the processes P and P′, they involve different action types and they
represent similar reactions that differ only in the kind/number of modifiers. Finally,
we have defined two relations within the semantics. In one case the labels contain
the information about the action type and about the elements involved. This is used
as an auxiliary relation for the derivation of the second one, in which the labels
contain the information about the action type and the rate (similarly to PEPA ac-
tivity). Thus we have a choice of which relation on which to base each notion of
equivalence.

In the case of Bio-PEPA we need to define equivalences both for systems and model
components. It is worth noting that the only element that changes in the transitions
of a Bio-PEPA system is the model component. All the other elements remain un-
changed. We define equivalences for the Bio-PEPA systems in terms of equiva-
lences for the model components. Specifically, we say that two Bio-PEPA systems
P1 and P2 are equivalent if their respective model components are equivalent.

In the following we use the same symbol to denote equivalences for both the system
and the corresponding model component. In this section we present definitions of
isomorphism and strong bisimulation which are similar to the relations defined
for PEPA in [36]. Furthermore we show some relationships between the defined
equivalences.

7.1 Isomorphism

Isomorphism is a strong notion of equivalence based on the derivation graph of
the components (systems). Broadly speaking, two components (systems) are iso-
morphic if they generate derivation graphs with the same structure and capable of
carrying out exactly the same activities.

We have the following definition of isomorphism based on the capability relation:

Definition 16 Let P1, P2 be two Bio-PEPA systems whose model components are
P and Q, respectively. A function F : ds(P)→ ds(Q) is a component isomorphism
between P and Q, with respect to −→c, if F is an injective function and for any
component P′ ∈ ds(P), A(P′) = A(F (P′)), with rα[w,N ,K] = r′α[w

′,N ′,K ′] for
each α ∈ A(P), where w and w′ are the two second components of the relation
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label, associated with P′ and F (P′), and for all α ∈ A the set of α-derivatives of
F (P′) is the same as the set of F−images of the α-derivatives of P′, with respect to
−→c.

The definition of isomorphism based on the capability relation is very strong since
the labels in the derivative graph contain a lot of information. Formally, we can
define isomorphic components in the following way:

Definition 17 Let P1, P2 be two Bio-PEPA systems whose model components are
P and Q. P and Q are isomorphic with respect to −→c (denoted P =c Q), if there
exists a component isomorphism F between them such that D(F (P)) = D(Q),
whereD denotes the derivative graph.

We can now define when two Bio-PEPA systems are isomorphic.

Definition 18 Let P1, P2 be two Bio-PEPA systems whose model components are
P and Q. P1 and P2 are isomorphic with respect to −→c (denoted P1 =c P2), if
P =c Q.

For the stochastic relation we have the following three definitions.

Definition 19 A function F : ds(P1) → ds(P2) is a system isomorphism between
P1 and P2, with respect to −→s, if F is an injective function and for any system
P′1 ∈ ds(P1), A(P′1) = A(F (P′1)), and for all α ∈ A, the set of system α-
derivatives ofF (P′1) is the same as the set ofF−images of the system α-derivatives
of P′1, with respect to −→s.

Definition 20 Let P1, P2 be two Bio-PEPA systems whose model components are
P and Q. P and Q are isomorphic with respect to −→s (denoted P =s Q), if there
exists a system isomorphism F between P1 and P2 such thatD(F (P1)) = D(P1).

Definition 21 Let P1, P2 be two Bio-PEPA systems whose model components are
P and Q. P1 and P2 are isomorphic with respect to −→s (denoted P1 =s P2), if
P =s Q.

The next proposition reports some properties of the two notions of isomorphism.

Proposition 1 The following properties hold.

(1) Both =c and =s are equivalence relations.
(2) Both =c and =s are congruences.
(3) Isomorphic components (=c or =s) generate identical Markov processes.
(4) =c ⊂ =s.

The proof of the first three points is analogous to the case of isomorphism for PEPA
in [36]. The last point follows from the fact that in the former isomorphism we take
into account the information in the vector w on the label of the capability relation,
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in addition to the rate and the action type. Thus isomorphism =c is more strict.

7.1.1 Equational laws

In the following the symbol “=” denotes either =c or =s. The proof follows the
definition of isomorphism and the semantic rules.

Choice The laws for choice are:
1) P + Q = Q + P

2) P + (Q + R) = (P + Q) + R
Cooperation The laws for cooperation are:

(1) P BC
L

Q = Q BC
L

P

(2) P BC
L

(Q BC
L

R) = (P BC
L

Q) BC
L

R

(3) P BC
K

Q = P BC
L

Q if K ∩ (Ā(P) ∪ Ā(Q)) = L

(4) (P BC
L

Q) BC
K

R =

 P BC
L

(Q BC
K

R) if Ā(R) ∩ (L\K) = ∅ ∧ Ā(P) ∩ (K\L) = ∅

Q BC
L

(P BC
K

R) if Ā(R) ∩ (L\K) = ∅ ∧ Ā(Q) ∩ (K\L) = ∅

Constant The law for constant is: If A
def
= P then A = P

In the case of Bio-PEPA systems we have the following law, that follows directly
from the definition.

Bio-PEPA systems The law for Bio-PEPA systems is:

Let P1 and P2 be two Bio-PEPA systems, with P = πP(P1) and Q = πP(P2).

If P = Q then P1 = P2.

7.2 Strong bisimulation

The definition of bisimulation is based on the labelled transition system. Strong
bisimulation captures the idea that bisimilar components (systems) are able to per-
form the same actions with same rates resulting in derivatives that are themselves
bisimilar. This makes the components (systems) indistinguishable to an external
observer. We give two definitions according to the two relations.

In the case of the capability relation the label contains a lot of information. We can
define different relations according to the information we want to consider. In the
following we report two possible relations.
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Definition 22 A binary relation R ⊆ C × C is a strong capability bisimulation if
(P,Q) ∈ R implies for all α ∈ A:

• if P
θ1
−→cP′ then, for some Q′ and θ2, Q

θ2
−→cQ′ with (P′,Q′) ∈ R and

(1) action(θ1) = action(θ2) = α;
(2) #reacts(list(θ1)) = #reacts(list(θ2)), #prods(list(θ1)) = #prods(list(θ2)),

#enzs(list(θ1)) = #enzs(list(θ2)),#inhibs(list(θ1)) = #inhibs(list(θ2));
• the symmetric definition with Q replacing P.

Definition 23 Let P1, P2 be two Bio-PEPA systems whose model components
are P and Q, respectively. P and Q are strong capability bisimilar, written P ∼c

Q, if (P,Q) ∈ R for some strong capability bisimulation R and rα[w,N ,K] =
r′α[w

′,N ′,K ′] for all α ∈ A, where w and w′ are the two second components of the
relation label, associated with P′ and F (P′).

A condition concerning the transition rate is added. In the case of Bio-PEPA sys-
tems we have the following definition.

Definition 24 Let P1, P2 be two Bio-PEPA systems whose model components are
P and Q, respectively. P1, P2 are strong capability bisimilar, written P1 ∼c P2, if
P ∼c Q.

We can relax the second point in the Def. 22 omitting it entirely. In this way we
obtain a weaker form of strong capability bisimulation. We denote this P ∼2

c Q in
the case of model components and P1 ∼

2
c P2 in the case of systems.

The definition of strong stochastic bisimulation is reported below.

Definition 25 A binary relation R ⊆ P̃ × P̃ is a strong stochastic bisimulation, if
(P1,P2) ∈ R implies for all α ∈ A:

• if P1
γ1
−→sP

′
1 then, for some P′2 and γ2, P2

γ2
−→sP

′
2 with (P′1,P′2) ∈ R and

(1) action(γ1) = action(γ2) = α
(2) rate(γ1) = rate(γ2)
• the symmetric definition with P2 replacing P1.

Definition 26 Let P1, P2 be two Bio-PEPA systems whose model components are
P and Q, respectively. P and Q are strong stochastic bisimilar, written P ∼s Q, if
(P1,P2) ∈ R for some strong stochastic bisimulation R.

Definition 27 Let P1, P2 be two Bio-PEPA systems whose model components are
P and Q, respectively. P1, P2 are strong stochastic bisimilar, written P1 ∼s P2, if
P ∼s Q.

Some facts about the strong bisimulation relations are reported in the following
proposition.
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Proposition 2 The following facts hold:

(1) the bisimulations ∼c, ∼2
c and ∼s are all equivalences and congruences;

(2) ∼c ⊂ ∼
2
c;

(3) ∼s = ∼
2
c;

(4) =c ⊂ ∼c and =s ⊂ ∼s

The last point reports that two components that are isomorphic are also strong
bisimilar. The proof is identical to the case for PEPA. From this some equational
laws are defined for the bisimulation relation too.

7.2.1 Example

Consider the following systems representing two biological systems. The former
corresponds to the example with Michaelis-Menten presented in Section 4.4, the
other is a variant of it. The former system P1 represents a system described by an

enzymatic reaction with kinetic law
v1 × E × S

K1 + S
, where S is the substrate and E the

enzyme. We have that the setN1 is defined as “S : H = h,N = NS ; P : H = h,N =
NP; E : H = 1,N = 1; ” for some values of the step sizes and number of levels.
The component and the model components are defined as:

S
def
= (α, 1)↓S E

def
= (α, 1) ⊕ E P

def
= (α, 1)↑P

The model component P1 is (S (xS ,0) BC
{α}

E(xE,0)) BC
{α}

P(xP,0). The functional rate is
fα = f MM(v1,K1).

The second system P2 describes an enzymatic reaction where the enzyme is left

implicit (it is constant). The rate is given by
v1 × S ′

K1 + S ′
, where S ′ is the substrate.

We have that the setN2 is defined as “S ′ : H = h,N = NS ′; P′ : H = h,N = NP′; ”.

The components are defined as S′
def
= (α, 1)↓S ′ and P′

def
= (α, 1)↑P′ and the model

component P2 is S ′(xS 0) BC
{α}

P′(xP0). In this case fα =
v1 × S ′

K1 + S ′
and the component

S ′ and P′ have the same number of levels and the step size of S and P.

We have that P1 ∼s P2, but P1 /c P2, because the number of enzymes is different.
The same relations are valid if the systems rather than the model components are
considered.
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8 Analysis

A Bio-PEPA system is an intermediate, formal, compositional representation of the
biological model. Based on this representation we can perform different kinds of
analysis. In this section we discuss briefly how to use a Bio-PEPA system to derive
a CTMC with levels, a set of Ordinary Differential Equations (ODEs), a Gillespie
simulation and a PRISM model.

8.1 From Bio-PEPA to CTMC with levels

As for the reagent-centric view of PEPA, the CTMC associated with the system
refers to the concentration levels of the species components. Specifically, the states
of the CTMC are defined in terms of concentration levels and the transitions from
one state to the other describe some variations in these levels. In the following we
refer to Bio-PEPA systems with levels.

Theorem 1 For any finite Bio-PEPA system P = 〈V,N ,K ,FR,Comp, P〉, if we
define the stochastic process X(t) such that X(t) = Pi indicates that the system
behaves as the component Pi at time t, then X(t) is a Markov Process.

The proof is not reproduced here but it is analogous the one presented for PEPA
[36]. Instead of the PEPA activity we consider the label γ and the rate is obtained
by evaluating the functional rate in the system. We consider finite models to ensure
that a solution for the CTMC is feasible. This is equivalent to supposing that each
species in the model has a maximum level of concentration.

Theorem 2 Given (P̃,Γ,−→s), let P be a Bio-PEPA system, with model component
P. Let nc = |ds(P)|, where ds(P) is the derivative set of P. Then the infinitesimal
generator matrix of the CTMC for P is a square matrix Q (nc × nc) whose elements
qu,v are defined as

qu,v =
∑

α j∈A(Pu |Pv)

rα j[wu,N ,K] if u , v qu,u = −
∑
u,v

qu,v otherwise.

where Pu, Pv are two derivatives of P.

It is worth noting that the states of the CTMC are defined in terms of the derivatives
of the model component. These derivatives are uniquely identified by the levels of
species components in the system, so we can give the following definition of the
CTMC states:

Definition 28 The CTMC states derived from a Bio-PEPA system can be defined
as vectors of levels σ = (l1, l2, ..., ln), where li, for i = 1, 2, ..., n, is the level of the
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species i and n is the total number of species.

This leads to the following proposition.

Proposition 3 Let P be a Bio-PEPA system with model component P. Let Pu and
Pv be two derivatives of P such that the latter is one-step derivative of the former.
If there exist two action types α1 and α2 that belong toA(Pu|Pv) then:

(1) α1 , α2;
(2) the two action types refer to two transitions/biological reactions that differ

only in the modifiers.

If two transitions are possible between a pair of states, the actions involved are
different and they represent reactions that differ only in the modifiers and/or the
number of enzymes used. The former point follows from the definition of well-
defined Bio-PEPA system. The second point follows because the only possibility
to have two transitions between two given states is that the associated reactions
have the same reactants and products. We can see this by observing that the states
depend on the levels and the reactions cause some changes in these levels. The only
elements involved that do not change during a reaction are the modifiers.

As mentioned earlier the CTMC with levels is an approximation of the continuous
view of the system captured by ODEs. Its advantage is that the state space of the
CTMC with levels can be considerably smaller than that generated by the molec-
ular view of the system. This means that a variety of different analysis techniques
such as passage time analysis and probabilistic model-checking are accessible. The
CTMC with levels can also be regarded as an approximation of the CTMC underly-
ing the mapping to a stochastic simulation model based on molecules. In this case
the levels represent aggregations of molecules.

8.2 From Bio-PEPA to ODEs

The translation into ODEs is similar to the method proposed for PEPA (reagent-
centric view) [7]. It is based on the syntactic presentation of the model and on the
derivation of the stoichiometry matrix D = {di j} from the definition of the compo-
nents. The entries of the matrix are the stoichiometric coefficients and are obtained
in the following way: for each component Ci consider the prefix subterms Ci j rep-
resenting the contribution of the species i to the reaction j. If the term represents a
reactant we write the corresponding stoichiometry κi j as −κi j in the entry di j. For a
product we write +κi j in the entry di j. All other cases are null.

The derivation of ODEs from the Bio-PEPA system P, hereafter called tODE, is
based on the following steps:
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(1) definition of the stoichiometry (n × m) matrix D, where n is the number of
species and m is the number of reactions;

(2) definition of the kinetic law vector (m × 1) vKL containing the kinetic law of
each reaction;

(3) association of the variable xi with each component Ci and definition of the
vector (n × 1) x̄.

The ODE system is then obtained as:

dx̄
dt
= D × vKL

with initial concentrations xi0, for i = 1, ..., n.

8.3 From Bio-PEPA to stochastic simulation

Gillespie’s stochastic simulation algorithm [32] is a widely-used method for the
simulation of biochemical reactions. It deals with homogeneous, well-stirred sys-
tems in thermal equilibrium and constant volume, composed of n different species
that interact through m reactions. Broadly speaking, the goal is to describe the evo-
lution of the system X(t), in terms of the number of molecules of each species,
starting from an initial state. Every reaction is characterised by a stochastic rate
constant c j, termed the basal rate (derived from the constant rate r by means of
some simple relations proposed in [32,47]). Using this it is possible to calculate
the actual rate a j(X(t)) of the reaction, that is the probability of the reaction R j

occurring in time (t, t + ∆t) given that the system is in a specific state.

The translation of a Bio-PEPA model for Gillespie simulation is similar to the ap-
proach proposed for ODEs. The initial number of molecules for the species i can
be calculated easily from the concentration as Xi,0 = xi,0 × v × NA, where v is the
volume of the compartment of the species and NA is the Avogadro number, i.e the
number of molecules in a mole of a substance. For details see [15]. The main draw-
backs are the definition of the rates and the correctness of the approach for general
kinetic laws and reactions with more than two reactants. Indeed Gillespie’s stochas-
tic simulation algorithm supposes elementary reactions with at most two reactants
and constant rates (mass-action kinetics). If the model contains only this kind of
reactions the translation is straightforward. If there are non-elementary reactions
and general kinetic laws, it is a widely-used approach to consider them translated
directly into a stochastic context. This is not always valid and some counterexam-
ples have been demonstrated [6]. The authors of [6] showed that when Gillespie’s
algorithm is applied to Hill kinetics in the context of the transcription initiation
of autoregulated genes, the magnitude of fluctuations is overestimated. The appli-
cation of Gillespie’s algorithm in the case of general kinetics laws is discussed by
several authors [1,11]. Rao and Arkin [1] show that this approach is valid in the case
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of some specific kinetic laws, such as Michaelis-Menten and inhibition. However,
it is important to remember that these laws are approximations and that specific
conditions (such as “S � E” in the case of Michaelis-Menten) hold. The deriva-
tion of Gillespie’s rates for reactions with more than two reactants is presented in
[47] and these reactions are supported by various stochastic simulators (for instance
[4]). Here we follow the same approach proposed in [39]: we apply Gillespie’s al-
gorithm, but particular attention must be paid to the interpretation of the simulation
results and to their validity.

8.4 From Bio-PEPA to PRISM

PRISM [45] is a probabilistic model checker, a tool for the formal modelling and
analysis of systems which exhibit random or probabilistic behaviour. PRISM has
been used to analyse systems from a various application domains. Models are de-
scribed using the PRISM language, a simple state-based language and it is possi-
ble to specify quantitative properties of the system using a temporal logic, called
CSL [2,12] (Continuous Stochastic Logic). For our purposes the underlying mathe-
matical model of a PRISM model is a CTMC with levels. However we present the
translation separately as the models are specified in the PRISM language.

The PRISM language is composed of modules and variables. A model is composed
of a number of modules which can interact with each other. A module contains a
number of local variables. The values of these variables at any given time constitute
the state of the module. The global state of the whole model is determined by the
local state of all modules. The behaviour of each module is described by a set of
commands. Each update describes a transition which the module can make if the
guard is true. A transition is specified by giving the new values of the variables in
the module, possibly as a function of other variables. Each update is also assigned
a probability (or in some cases a rate) which will be assigned to the corresponding
transition.

We map Bio-PEPA systems to PRISM models where the variables express lev-
els of concentration. Alternatively, it is possible to derive PRISM models where
molecules are counted instead of levels. The two mappings are similar, the only
differences are in the definition of the possible values for the species and the rates.
Specifically, the values for the species are given in terms of levels or molecules and
the rates must be chosen in order to take the interpretation into account. When lev-
els are considered we use the rates defined above whereas in the case of molecules
the rates are the ones for Gillespie’s simulation. The maximum level/concentration
for each species must be given in the specification of Bio-PEPA system and, if
necessary, the maximum number of molecules can be derived from it.

In the following we focus on the definition of the the PRISM model in terms of
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concentration levels. We have the following correspondences:

• The model is defined as stochastic (this term is used in PRISM for CTMC).
• Each element in the set of parameters K is defined as a global constant.
• The concentration step, the maximum number of levels and the volume size for

each species are defined as global constants.
• Each species component is represented by a PRISM module. The species com-

ponent concentration is represented by a local variable and it can (generally) as-
sume values between 0 and Ni. For each sub-term (i.e. reaction where the species
is involved) we have a definition of a command. The name of the command is
related to the action α (and then to the associated reaction). The guards and the
change in levels are defined according to whether the element is a reactant, a
product or a modifier of the reactions.
• The functional rates are defined inside an auxiliary module.
• In PRISM the rate associated with an action is the product of the rates of the

commands in the different modules that cooperate. For each reaction, we give
the value “1” to the rate of each command involved in the reaction, with the ex-
ception of the command in the module containing the functional rates. In this
case the rate is the functional rate f , expressing the kinetic law. The rate associ-
ated with a reaction is given by 1 × 1 × ... × f = f , as desired.

9 Example: a simple genetic network

In order to show how to model genetic networks in Bio-PEPA, we consider a model
from [6]. The model describes a general genetic network with a negative feedback
through dimers, such as the one representing the control circuit for the λ repressor
protein CI of λ-phage in E.Coli.

In the present work the stochastic and deterministic simulations are obtained ex-
porting the Bio-PEPA system by means of the maps described above.

9.1 The biological model

A schema of the model is reported in Figure 2. The model is composed of three
biological entities that interact with each other through five reactions (of which one
is reversible). The biological entities are the mRNA molecule (M), the protein in
monomer form (P) and the protein in dimeric form (P2). The first reaction (1) is the
transcription of the mRNA (M) from the genes/DNA (not considered explicitly).
The protein P in the dimer form (P2), which is the final result of the network, has
an inhibitory effect on this process. The second reaction (2) is the translation of the
protein P from M. Other two reactions represent the degradation of M (3) and the
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mRNA  (M)
Degradation (3)

Protein (P)
Degradation (4)

Dimer protein (P2)

Dimerisation  (5− 5i)

Transcription  (1)

Translation  (2)

Fig. 2. Genetic network model

degradation of P (4). Finally there is the dimerization of P and its inverse process
(5,5i). All the reactions are described by mass-action kinetics with the exception of
the first reaction, which has a Michaelis-Menten kinetics.

9.2 The Bio-PEPA system

The translation of the model in Bio-PEPA is based on the following steps.

• Definition of compartments. The only compartment is defined as vcell : 1 (nM)−1.
• Definition of the set N .

M : H = 1,N = 1,V = vcell, unit = nM;

P : H = 30,N = 2,V = vcell, unit = nM;

P2 : H = 30,N = 6,V = vcell, unit = nM;

We consider N = 2 for P since the stoichiometry of P in the dimerization reaction
is 2. For illustrative purposes we consider a minimal number of levels in order to
keep the state space small.
• Definition of the set of functional rates FR.

fα1 =
v

KM+P2 ;

fα2 = f MA(k2); fα3 = f MA(k3); fα4 = f MA(k4);

fα5 = f MA(k5); fα5i = f MA(k5i)

where the suffix of the action type α refers to the number of the reaction as
reported in Fig. 2.
• Definition of the set of parameters. The parameter values are

KM = 356 nM; v = 2.19 s−1; k2 = 0.043 s−1; k3 = 0.0039 s−1;

k4 = 0.0007 s−1; k5 = 0.025 s−1nM−1; k5i = 0.5 s−1
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• Definition of the set of species components and of the model component.

M
def
= (α2, 1) ⊕ M + (α3, 1)↓M + (α1, 1)↑M

P
def
= (α4, 1)↓P + (α5, 2)↓P + (α5i, 2)↑P) + (α2, 1)↑P

P2 def
= (α1, 1) 	 P2 + (α5i, 1)↓P2 + (α5, 1)↑P2

(M(0) BC
{α2}

P(0)) BC
{α5 ,α5i}

P2(0)

9.3 Analysis

The model is amenable to a number of different analyses as we report in the fol-
lowing paragraphs.

First of all, from the Bio-PEPA system we can derive the SLTS and the CTMC.
Remember that both consider levels of concentration. The transition system con-
sists of 42 states and 108 transitions, in the case we consider the information about
species listed above. The states are described by the levels of the single compo-
nents. Specifically, we can define a state using a vector (M(lM), P(lP), P2(lP2)),
where li, for i = M, P, P2, represents the level of each component. The parame-
ter li can assume the values 0 and 1 in the case of M, the values 0, 1, 2 for P and
values between 0 and 6 for P2. The labels γt of the stochastic transition system
contain the action type α j and the rate rα j , calculated by applying the associated
function fα j to the quantitative information collected in the labels of the capability
relation and dividing this by the step size of the reactants/products involved in the
reaction. These rates are the ones associated with the CTMC transitions.

A second kind of analysis concerns differential equations. The stoichiometry matrix
D associated with the system is

R1 R2 R3 R4 R5 R5i

M +1 0 -1 0 0 0 x1

P 0 +1 0 -1 -2 +2 x2

P2 0 0 0 0 +1 -1 x3

The kinetic-law vector is vT
KL = v/(K + x3); k2 × x1; k3 × x1; k4 × x2; k5 × x2

2; k5i × x3).
The system of ODEs is obtained as dx̄/dt = D × vKL:

32



dx1

dt
=

v
K + x3

− k3 × x1

dx2

dt
= k2 × x1 − k4 × x2 − 2 × k5 × x2

2 + 2 × k5i × x3

dx2

dt
= k5 × x2

2 − k5i × x3

The derivation of the Gillespie’s simulation model is straightforward and not re-
ported here.

The simulation results are depicted in Figure 3. We consider both deterministic and
stochastic simulation. The two simulation graphs show the same behaviour (with
the exception of some noise in the Gillespie’s simulation), as expected.

Fig. 3. ODE and Gillespie simulation results. In the case of Gillespie we consider 10 runs.

Finally, we consider the analysis by means of PRISM with levels. The full trans-
lation of the model into PRISM is reported in [15]. Each species is represented by
a PRISM module and the reactions in which it is involved are captured by com-
mands. In the following we report the definition of the modules representing the
protein in the monomer and dimer form respectively.

module p

p : [0..N p] init 0;

[a2] p < N p→ (p′ = p + 1);

[a4] p > 0→ (p′ = p − 1);

[a5] p > 0→ (p′ = p − 2);

[a5i] p < N p→ (p′ = p + 2);

endmodule

module pd

p2 : [0..N p2] init 0;

[a5i] p2 > 0→ (p2′ = p2 − 1);

[a5] p2 < N p2→ (p2′ = p2 + 1);

endmodule

The variables p and p2 are local with respect to each of the two modules and
represent the species “protein in monomer form” and “protein in dimer form”, re-
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spectively. The possible values are [0..N p] for p and [0..N p2] for p2, while the
initial values are 0. The monomer P is involved in four reactions while the dimer
form P2 in just two. We have an additional module with the functional rates.

Properties of the system can be expressed formally in CSL and analysed against
the constructed model. Two simple examples of possible queries are considered
below. A first query considers the probability that the monomer is at level i at time
T. The property is expressed by the form “P =?[...]”, that returns a numerical value
representing the probability of the proposition inside the square brackets. In our
case the query is P =?[true U[T,T ] p = i], where U is the bounded until op-
erator and [T,T ] indicates a single time instant. A property of the form “prop1
U[time] prop2” is true for a path if time defines an interval of real values and the
path is such that prop2 becomes true at a time instant which falls within the interval
and prop1 is true in all time instants up to that point. The second query concerns
the proportion of the protein in monomer form (P) relative to the total quantity of
the protein (i.e. P + P2). In order to define this property, we need a reward struc-
ture. State rewards can be specified using multiple reward items, each of the form
“guard:reward;”, where guard is a predicate and reward is an expression. States of
the model which satisfy the predicate in the guard are assigned the corresponding
reward. Specifically, in our case we define the reward:

rewards

true : p
(p+p2) ;

endrewards

This reward assigns the value p
(p+p2) to each state of the system. We can ask for the

frequency of P by using the query R =?[I = T ]. This is an instantaneous reward
property, i.e. it refers to the reward of a model at a particular instant in time T . The
property “I = T” associates with a path the reward in the state of that path when
exactly T time units have elapsed. The letter “R” indicates that the property refers
to a reward structure. The results of the two queries are reported in Fig. 4.

10 Conclusions

In this paper we have presented Bio-PEPA, a modification of the process alge-
bra PEPA for the modelling and the analysis of biochemical networks. Bio-PEPA
allows us to represent explicitly some features of biochemical networks, such as
stoichiometry and general kinetic laws. Thus not only elementary reactions with
constant rates, but also complex reactions described by general kinetic laws can
be considered. The potential to consider various kinds of kinetic laws permits us
to model a vast number of biochemical networks. Indeed complex reactions are
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Fig. 4. PRISM query results. The figure at the top reports the graph of the proportion of
monomer P over the total protein with respect to time.Below it is depicted the probability
that the monomer protein is at levels 0, 1 and 2, with respect to time.

frequently found in models as abstractions of sequences of elementary steps and
reducing to elementary reactions is often impossible and undesirable.

Bio-PEPA is in enriched with some notions of equivalence. We have presented def-
initions of isomorphism and strong bisimulation which are similar to the relations
defined for PEPA in [36]. These equivalences are quite strict. A further investiga-
tion concerns the definition of other forms of equivalence, more appropriate for
studying biological systems.

A principal feature of Bio-PEPA is the possibility of mapping the system to dif-
ferent kinds of analysis. In this work we have shown how to derive a CTMC with
levels from a Bio-PEPA system and we have discussed the derivation of ODEs,
stochastic simulation and PRISM models. Indeed Bio-PEPA has been defined as an
intermediate language for the formal representation of the model. We have extended
the definition of CTMC with levels, defined in [10], to the case of general kinetic
laws and to different levels for the species. The main benefit of this approach with
respect to stochastic simulation is the reduction in state space which leaves models

35



amenable to numerical solution and model checking. Compared with ODE-based
analysis the important stochastic aspect of behaviour is retained. The approach is
based on some assumptions.

First of all, all the species must have a finite maximum concentration. This is to
ensure a finite state space in the corresponding CTMC, making numerical solution
feasible. However, we can have a species without a limiting value. In these cases
we can consider a maximum level for the values greater than a certain (high) value.
A second point concerns the assumption that all the species have the same step
size. This may be a problem when the species can have maximum concentrations
belonging to different concentration scales; some species can have only few levels
whereas others can have many. Furthermore, some species (for instance genes) are
present in the system only in few copies and in this case the representation in terms
of continuous concentration is wrong. In order to handle this situation, Bio-PEPA
could be enriched with discrete variables. The possibility to consider different step
sizes and discrete variables is a topic for future work.

The different kinds of analysis proposed for Bio-PEPA are strongly related. An
area for further work will concern a deeper study of these relationships, in partic-
ular for the CTMC with levels and Gillespie models. An outstanding problem is
the application of Gillespie’s stochastic simulation with general kinetic laws. In-
deed the original definition of the algorithm in [32] is based on the assumption of
elementary reactions. However recently there have been some extensions to handle
reactions with general kinetic laws and with more that two reactants. The approach
proposed in this work is to use Gillespie simulation also in the general context, but
to be careful about the interpretation of the results. The validation of the model
against experimental data and prior knowledge is extremely important in this situa-
tion. In particular, if we obtain results different from the ones expected, the problem
could be in the application of Gillespie’s algorithm with the reactions present in the
model.

In Bio-PEPA compartments are assumed to be static and are simply represented by
names. This choice is motivated by the fact that, even though compartments play
an important role in biological systems, at the present the quantitative information
about them is poor. Most biochemical networks in the literature and databases (see
for instance [42]) describe static compartments and often are based on strong as-
sumptions. For example, all compartments are assumed to have the same volume
or all the species are well-mixed when in reality they are not. In the present work
we fix our attention to these kinds of network and Bio-PEPA is able to represent
most features of them. In the future, we plan to extend the language in order model
more complex definition of compartments, based on general assumptions.

Finally, a tool for the analysis of biochemical networks using Bio-PEPA is under
implementation and a translation from SBML into Bio-PEPA is planned.
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[27] L. Dematté, C. Priami, A. Romanel, Modelling and simulation of biological processes
in BlenX, SIGMETRICS Performance Evaluation Review 35:4 (2008) 32–39.
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