
10 PEPA

In this lecture note we consider another class of performance modelling languages—
stochastic extensions of process algebras, particularly the stochastic process algebra, PEPA.
Like queueing networks and stochastic Petri nets, and their variants, these formal lan-
guages can be regarded as high-level model specification languages for low-level stochastic
models. As we will see, the development of SPA has been very similar to that of SPN:
in both cases an untimed formalism, used for studying the correct functional behaviour
of systems, is extended by associating exponential delays with actions and reachability
analysis is used to construct a corresponding Markov process.

Process algebras emerged as a modelling technique for the functional analysis of concur-
rent systems approximately thirty years ago. Over the last twenty years there have been
several attempts to take advantage of the attractive features of this modelling paradigm
within the field of performance evaluation.

10.1 Stochastic Process Algebra

Stochastic process algebras (SPA) were first proposed as a tool for performance and de-
pendability modelling in 1990. Compared with existing performance modelling formalisms
SPA offered something new—formally defined compositionality. Queueing networks, have
an inherent compositionality but this is implicit and informal. As we have seen stochastic
extensions of Petri nets have a semantic model but, in general, no clear compositional
structure. In the process algebra the compositionality is explicit—provided by the combi-
nators of the language—and formal—supported by the semantics and equivalence relations
of the language.

It was immediately clear that having this explicit structure within models offers benefits
for model construction:

• when a system consists of interacting components, the components, can each be
modelled separately, and then composed to form the larger system;

• models have a clear structure and are easy to understand;

• models can be constructed systematically, by either elaboration or refinement;

• the possibility of maintaining a library of model components, supporting model
reusability, is introduced.

Furthermore researchers have shown that in some cases the compositional structure in
the model construction can be exploited during model analysis, meaning that a number
of smaller Markov processes can be solved instead of a single large one.

10.1.1 Classical Process Algebras

Process algebras are abstract languages used for the specification and design of concurrent
systems. The most widely used process algebras are Milner’s Calculus of Communicating
Systems (CCS) and Hoare’s Communicating Sequential Processes (CSP) and the SPAs



Performance Modelling LN-10

take inspiration from both these formalisms. Models in CCS and CSP have been used
extensively to establish the correct behaviour of complex systems by deriving qualitative
properties such as freedom from deadlock or livelock.

In the process algebra approach systems are modelled as collections of entities, called
agents, which execute atomic actions. These actions are the building blocks of the lan-
guage and they are used to describe sequential behaviours which may run concurrently,
and synchronisations or communications between them.

In order to carry out performance modelling it was necessary to quantify the delay
associated with activities and the probabilities associated with choices. In PEPA, as in
SPN, this is achieved by assuming that the duration of each action is governed by a
random variable which is exponentially distributed. This means that there is a randomly
distributed delay for each action and the choice between actions is governed by a race
condition meaning that there is an implicit probabilistic choice.

10.2 Modelling in PEPA

PEPA models are described as interactions of components. Each component can perform
a set of actions: an action a ∈ Act is described as a pair (α, r), where α ∈ A is the
type of the action and r ∈ R+ is the parameter of the negative exponential distribution
governing its duration. Whenever a process P can perform an action, an instance of a
given probability distribution is sampled: the resulting number specifies how long it will
take to complete the action. A small but powerful set of combinators is used to build up
complex behaviour from simpler behaviour. The combinators are: prefix, choice, parallel
composition and abstraction. We explain each of the combinators informally below.

Prefix: A component may have purely sequential behaviour, repeatedly undertaking
one activity after another and eventually returning to the beginning of its behaviour. A
simple example is a web service within a distributed system, which can serve one request
at a time. Each application requiring the web service will need to gain access to the
service which will then only be made available for another application when a response
has been successfully transferred.

WS
def
= (request,>).(serve, µ).(respond,>).WS

In some cases, as here, the rate of an action is outside the control of this component. Such
actions are carried out jointly with another component, with this component playing a
passive role. For example, the web service is passive with respect to the request action,
as it cannot influence the rate at which requests arrive, and this is recorded by the
distinguished symbol, > (called “top”).

Choice: A choice between two possible behaviours is represented as the sum of the
possibilities. For example, if we consider an application in a distributed system, a compu-
tation may have two possible outcomes: access to a locally available method is required
(with probability p1) or access to a remote web service is necessary (with probability
p2 = 1− p1). In this example the think action denotes processing within the application.

67



Performance Modelling LN-10

These alternatives are represented as shown below:

Appl
def
= (think, p1λ).(local,m).Appl + (think, p2λ).(request, rq).(respond, rp).Appl

A race condition governs the behaviour of simultaneously enabled actions so only one
action will complete. The continuous nature of the probability distributions ensures that
the actions cannot occur simultaneously. Thus a sum will behave as either one summand
or the other. When an action has more than one possible outcome, e.g. the think action
in the application, it is represented by a choice of separate actions, one for each possible
outcome. The rates of these actions are chosen to reflect their relative probabilities,
following the decomposition principle of the exponential distribution.

Parallel composition: In the web service example, we have already anticipated that
the application and the web service will be working together within the same system. This
will require them to cooperate when the application needs the service offered by the web
service, which is not available locally. In contrast, the local activities of the application
can be carried out independently of the web service. Cooperation over given actions is
reflected in the parallel composition by the cooperation set, L = {request, respond} in
this case. Actions in this set require the simultaneous involvement of both components.
The resulting action, a shared action, will have the same type as the two contributing
actions and a rate reflecting the rate of the action in the slowest participating component.
Note that this means that the rate of a passive action will become the rate of the action
it cooperates with.

If, for simplicity, we assume that the distributed system consists of just two independent
applications, the system is represented as the cooperation of the applications and the web
service as follows:

Sys1
def
=
(
Appl ‖ Appl

)
��
L
WS L = {request, respond}

The combinator ‖ is a degenerate form of the cooperation combinator, formed when two
components behave completely independently, without any cooperation between them, as
in the case of the two independent applications. This pure parallel combinator can be
thought of as cooperation over the empty set: (Appl ��

∅
Appl). When we have a number

of independent copies of a component it is sometimes convenient to use a vector notation
to abbreviate the presentation, e.g. Appl[5] ≡ Appl ‖ Appl ‖ Appl ‖ Appl ‖ Appl.

Abstraction: It is often convenient to hide some actions, making them private to the
component or components involved. The duration of the actions is unaffected, but their
type becomes hidden, appearing instead as the unknown type τ . Components cannot
synchronise on τ . For example, as we further develop the model of the distributed system
we may wish to hide the access of a application to its local method. This might lead to
a new representation of the application:

Appl′
def
= Appl/{local}

and a corresponding new representation of the system:

Sys2
def
=
(
Appl′ ‖ Appl′

)
��
L
WS L = {request, respond}

68



Performance Modelling LN-10

Use of the hiding combinator has two implications. Firstly, it ensures that no com-
ponents added to the model at a later stage can invoke this method of the application.
Secondly, private actions are deemed to have no contribution to the performance measures
being calculated and this might subsequently suggest simplifications to the model.

Throughout the simple example above we have used constants such as WS to asso-
ciate names with behaviours. Using recursive definitions we have been able to describe
components with infinite behaviours without the use of an explicit recursion operator.

Representing the components of the system as separate components means that we can
easily extend our model. Now we may want to consider a distributed system consisting
of more than two applications which act independently of each other but compete for
the use of web service. To enhance fault tolerance the web service may be replicated.
This extension may be achieved compositionally by combining more instances of the
components already described. For example, in the case of three applications and two
instances of the web service we have:

Sys3
def
= Appl[3] ��

L
WS[2] L = {request, respond}

10.3 Model analysis

The formality of the process algebra approach allows us to assign a precise meaning to
every language expression. This implies that once we have a language description of a
given system its behaviour can be deduced automatically. The meaning, or semantics, of
a PEPA expression is provided by structured operational semantics rules, which associate
a labelled multi-transition system with every expression in the language.

A labelled transition system (S, T, { t−→ | t ∈ T}) consists of a set of states S, a set of

transition labels T and a transition relation
t−→ ⊆ S × S. For PEPA the states are the

syntactic terms in the language, the transition labels are the actions ((type, rate) pairs),
and the transition relation is given by the semantic rules. A multi-transition relation is
used because the number of instances of a transition (action) is significant since it can
affect the timing behaviour of a component.

Based on the transition relation, a derivation graph (DG), can be associated with each
language expression. This graph describes all the possible evolutions of any component
and provides a useful way to reason about the behaviour of a model. A certain amount of
care is needed in defining the derivation graph. Consider a simple component, P , which

will repeatedly carry out the action a = (α, r), i.e. P
def
= (α, r).P . For a classical process

algebra we need only consider which actions it is possible for an agent to perform. Thus,
the agent P +P has the same behaviour as the agent P—both are capable of an α named
action and subsequently behave as P—so these agents are considered to be equivalent.
In a SPA multiple instances of an action become apparent because the duration of an
action of that type will be the minimum of the corresponding random variables, i.e. the
apparent rate of the action will be the sum of the rates. Thus P +P appears to carry out
the first α named action at twice the rate of the agent P . Consequently the two cannot
be regarded as equivalent.

An example derivation graph is shown in Figure 20 where the DG of the PEPA model
Sys4, consisting of a single application accessing the web service, is shown. For didactic

69



Performance Modelling LN-10

purposes, in the left hand part of the figure we have expanded the derivatives of the
components Appl and WS.

Appl
def
= (think, p1λ).Appl1
+ (think, p2λ).Appl2

Appl1
def
= (local,m).Appl

Appl2
def
= (request, rq).Appl3

Appl3
def
= (respond, rp).Appl

WS
def
= (request,>).WS1

WS1
def
= (serve, µ).WS2

WS2
def
= (respond,>).WS

Sys4
def
= Appl ��

L
WS

L = {request, respond}

�
�

�
�	

@
@
@
@R

�-

?

?

(think, p1λ) (think, p2λ)

Appl��
L
WS

Appl1 ��
L
WS Appl2 ��

L
WS

Appl3 ��
L
WS1

Appl3 ��
L
WS2

(respond, rp)(local,m)

(request, rq)

(serve, µ)

Figure 20: Derivation graph underlying Sys4.

Looking at the DG we can derive qualitative properties of the model. In this case, for
instance, we can see that the PEPA model is free from deadlock and live. Moreover, the
Markov process underlying any finite PEPA component can be obtained directly from
the DG: a state of the Markov process is associated with each node of the graph and the
transitions between states are defined by considering the rates labelling the arcs. Since
all activity durations are exponentially distributed, the total transition rate between two
states will be the sum of the activity rates labelling arcs connecting the corresponding
nodes in the DG. Starting from the DG of Figure 20, the derivation of the corresponding
Markov process is straightforward and results in the generator matrix shown below.

Q =


−λ p1λ p2λ 0 0
m −m 0 0 0
0 0 −rq rq 0
0 0 0 −µ µ
rp 0 0 0 −rp


As with any Markov process-based technique, numerical solution of the global balance

equation will lead to the steady state probability distribution.

In order to ensure that the Markov process underlying a PEPA model is ergodic, the
DG of a PEPA model must be strongly connected.

Just as for SPN, performance measures such as throughput and utilisation are often
derived via a reward structure which is defined over the Markov process. This can either
be done explicitly by the modeller, or as we will see, automatically by the tool for com-
monly required measures. A reward structure associates a reward with each state of the
model. For steady state measures, the expected value of the reward (i.e. the sum over the
entire state space of (probability of a state × reward in that state)) is calculated. In a

70



Performance Modelling LN-10

process algebra it can be easier to associate rewards with actions. In this case the reward
associated with a state will be the total reward attached to the actions that the state
enables. Recall that in PEPA no reward can be attached to internal, τ , actions.

10.4 A PEPA model of the PC LAN Example with 4 nodes

The model below is a PEPA representation of the PC LAN with four nodes considered
in lecture note 4 (and again in lecture note 8). Each PC is represented by a separate
component which, when empty (e.g. PCn0) can either have an arrival or will allow the
token to “walk” past (walkonn). If the PC has a data packet waiting (PCn1) it remains in
that state until served by the token. The token moves round the LAN deciding what to do
at each node on the basis of the actions offered by the corresponding PC. Thus although
it looks as if it has a choice at each node, in fact only one of the actions walkonn and
serven will be enabled at any given time (these actions must be carried out in cooperation
with the appropriate PC).

PC10
def
= (arrive, λ).PC11 + (walkon2, ω).PC10

PC11
def
= (serve1, µ).PC10

PC20
def
= (arrive, λ).PC21 + (walkon3, ω).PC20

PC21
def
= (serve2, µ).PC20

PC30
def
= (arrive, λ).PC31 + (walkon4, ω).PC30

PC31
def
= (serve3, µ).PC30

PC40
def
= (arrive, λ).PC41 + (walkon1, ω).PC40

PC41
def
= (serve4, µ).PC40

Token1
def
= (walkon2, ω).Token2 + (serve1, µ).(walk 2, ω).Token2

Token2
def
= (walkon3, ω).Token3 + (serve2, µ).(walk 3, ω).Token3

Token3
def
= (walkon4, ω).Token4 + (serve3, µ).(walk 4, ω).Token4

Token4
def
= (walkon1, ω).Token1 + (serve4, µ).(walk 1, ω).Token1

LAN
def
= (PC10 ‖ PC20 ‖ PC30 ‖ PC40) ��

L
Token1

where L = {walkon1,walkon2,walkon3,walkon4, serve1, serve2, serve3, serve4}.

Here we have arbitrarily chosen a starting state in which all the PCs are empty and the
Token is at PC1.

71



Performance Modelling LN-10

10.5 Tool support for PEPA

A later note will give more details of the tool support for PEPA, which is the PEPA
Plug-in for Eclipse. Here we just give a first example of using the tool to derive some
information about the simple web service example presented in Section 2.2.

The form of PEPA models presented in notes and papers is based on the typesetting
program LaTeX. For the tool there is a concrete syntax using standard ASCII characters.
Thus the model shown on the left hand side of Figure 20 is represented in the WS.pepa

file shown below.

p1 = 0.3;

p2 = 0.7;

lambda = 1.0;

m = 100;

rq = 500;

rp = 200;

mu = 20;

Appl = (think, p1*lambda).Appl1 + (think,p2*lambda).Appl2;

Appl1 = (local,m).Appl;

Appl2 = (request, rq).Appl3;

Appl3 = (respond, rp).Appl;

WS = (request,infty).WS1;

WS1 = (serve, mu). WS2;

WS2 = (respond, infty).WS;

Appl[1] <request,respond> WS[1]

In the tool there is an editing pane in the centre of the screen. This is where you can
type in new PEPA files. When a file is saved it is parsed and subjected to static analysis.
Any errors will be reported in the Problems view, below the Editor view.

It is important to note that there are two stages to Markovian analysis of a model,
mymodel.pepa:

1. In the first stage the state space of the PEPA model is generated using the PEPA
- CTMC - Derive command. A tabular representation of the derived state space is
shown in the State Space View.

2. In the second stage this state space is interpreted as a Markov process and solved for
steady state, using the appropriate solver. This achieved by selecting the command
PEPA - CTMC - Steady State Analysis. Once the model is solved the State Space
View will be updated with a column showing the steady state probability of each
row.

Additionally some performance measures are derived automatically based on the struc-
ture of the model. Thus in the Performance Evaluation View at the right hand side of
the screen you can find the throughput of each action, the relative probability of each
state within each component, and the average number of instances of each state in each
component.

72



Performance Modelling LN-10

Figure 21: Screenshot of the PEPA Plugin for Eclipse

A screenshot of the tool, with the model in the Editor pane and the results of steady
state analysis, is shown in Figure 21.

Documentation for the tool can be found at http://www.dcs.ed.ac.uk/pepa/documentation/
whilst the tool itself can be downloaded from http://www.dcs.ed.ac.uk/pepa/tools/

plugin/download.html. The second practical will involve using the PEPA Plugin for
Eclipse so you are encouraged to install the tool and familiarise yourself with it.

10.6 Assumptions

The assumptions that we need to make about our models are those that we need to make
for Markov modelling in general. Just as when we were considering GSPNs we were able
to express some of these assumptions in terms of the Petri net, we can express some of
the assumptions in terms of PEPA.

In order to ensure that the underlying Markov process is ergodic, i.e. does have a
steady state probability distribution, the derivation graph of a PEPA model must be
strongly connected. Necessary conditions for ergodicity, have been defined in terms of
syntactic rules for PEPA models; e.g. if cooperation occurs it must be the highest level
combinator—you cannot have a choice between two components which are themselves
cooperation expressions.

Jane Hillston 〈Jane.Hillston@ed.ac.uk〉. October 24, 2012.

73


