
11 PEPA Case Study: Web Service Composition

As an example of a realistic case study, we consider a business application which is com-
posed from a number of offered web services. Furthermore there is an access control issue,
as it must be ensured that the web service consumer has the necessary authority to exe-
cute the web services it requests. A schematic representation of the system is depicted in
Fig. 22.

1

2

4

6

7

3

8

5

WS component
for SMS

Application

Logic

Session

Manager

Location request

WS SMS notification

MMS deliveryLocation result

Start Session

SMS

End Session

Check request validity

Web Service Consumer

Web Service Provider

Policy Access Provider

WS component
for MMS

WS component
for location

Figure 22: Schematic representation of the web service composition

The scenario is as follows. Several web services are combined to define the business logic
of an application. For example, consider an application to find the nearest restaurant for
a user and show it on a map. This could involve web services for SMS and MMS handling
in addition to the User Location web service. Moreover, a user should not be able to
gain access to location information of an arbitary user. This is where the access control
aspect becomes important. Therefore, in addition to the requested web services, the
web service provider may need to interact with some authorisation component to check
that the current user has the correct authority to access the requested information. In
adddition the service provider may stipulate some further conditions, such as that only
one location request may be made per session:

1. The user activates a service by sending an SMS to a service centre number. This is
handled by an appropriate web service.

2. This initiates a start-session message to be sent to the Policy Access Provider.

3. A notification is sent to the application that an SMS has arrived.

Performance Modelling LN-11

4. The application requests the user’s location from a location web service.

5. The web service contacts the session manager within the policy access provider to
check the validity of the request.

6. If the validity check is OK the location web service will return the location to the
application which uses it to construct the appropriate map for the user.

7. This is then passed as an MMS to the MMS web service which delivers it to the
user.

8. The MMS web service terminates the session with the Session Manager.

We model such a system with the following PEPA model. It has three types of model
component, corresponding to the three large rectangles in Figure 22. Note that although
the Web Service Provider consists of three distinct elements, we are interested in the
session associated with each Web Service Consumer. Each session is associated with an
instance of the Web Service Provider. Thus, concurrency is introduced into the model
by allowing multiple sessions rather than by representing the constituent web services
separately.

11.1 Component Customer

The customer’s behaviour is simply modelled with two local states. In the first state
the customer sends a request to the system via the getSMS action. She then waits for
a response which triggers the getMap transition if it is successful. Thus we associate
the user-perceived system performance with the throughput of this action, which can
be calculated directly from the steady-state probability distribution of the underlying
Markov chain.

Customer
def
= (getSMS , r1).Customer 1

Customer 1
def
= (getMap,>).Customer + (get404 ,>).Customer

In this model sending either an error message get404 or the requested map occur at
the same rate r8 and MMS passing between web services is ten times as fast as the
communication with the user.

11.2 Component WSConsumer

The web service consumer, WSConsumer , follows a simple pattern of behaviour. Once it
is notified that a session has been started by the user (via SMS message), it initiates a
request for the user’s current location and waits for a response. If the request was valid,
the location is returned and used to compute the appropriate map for the user, which is
then sent via an MMS message, using the web service for this.

75

Performance Modelling LN-11

WSConsumer
def
= (notify ,>).WSConsumer 2

WSConsumer 2
def
= (locReq , r4).WSConsumer 3

WSConsumer 3
def
= (locRes ,>).WSConsumer 4 + (locErr ,>).WSConsumer

WSConsumer 4
def
= (compute, r7).WSConsumer 5

WSConsumer 5
def
= (sendMMS , r9).WSConsumer

11.3 Component WSProvider

As explained above, although the Web Service Provider can be viewed as consisting
of three independent web services, the use of sessions restricts a user’s access to these
services to be sequential. We assume that there is a distinct instance of the component
WSProvider for each distinct session. As each would be in a distinct thread it is reasonable
for there to be concurrency at this level. The activities of the component are as outlined
in the scenario above. Note that the checkValid action is represented twice, to capture
the two possible distinct outcomes of the action. If the check is successful the location
must be returned to the Web Service Consumer in the form of a map (getMap). However,
if the check revealed an invalid request (locErr) then an error must be returned to the
Web Service Consumer (get404) and the session terminated (stopSession).

WSProvider
def
= (getSMS ,>).WSProvider 2

WSProvider 2
def
= (startSession, r2).WSProvider 3

WSProvider 3
def
= (notify , r3).WSProvider 4

WSProvider 4
def
= (locReq ,>).WSProvider 5

WSProvider 5
def
= (checkValid , 99 · >).WSProvider 6 + (checkValid ,>).WSProvider 10

WSProvider 6
def
= (locRes , r6).WSProvider 7

WSProvider 7
def
= (sendMMS ,>).WSProvider 8

WSProvider 8
def
= (getMap, r8).WSProvider 9

WSProvider 9
def
= (stopSession, r2).WSProvider

WSProvider 10
def
= (locErr , r6).WSProvider 11

WSProvider 11
def
= (get404 , r8).WSProvider 9

11.4 Component PAProvider

In our model the Policy Access Provider has a very simple behaviour. It simply maintains
a thread for each session and carries out the validity check on behalf of the Web Service
Provider.

76

Performance Modelling LN-11

PAProvider
def
= (startSession,>).PAProvider

+ (checkValid , r5).PAProvider

+ (stopSession,>).PAProvider

This representation of the PAProvider is stateless and we will later contrast its be-
haviour with an alternative stateful form.

11.5 Model Component WSComp

The complete system is represented by some number of instances of the components
interacting on their shared activities:

WSComp
def
=

(
(Customer [NC] ��

L1
WSProvider [NWSP]) ��

L2
WSConsumer [NWSC]

)
��
L3

PAProvider [NPAP]

where the cooperation sets are

L1 = {getSMS , getMap, get404}
L2 = {notify , locReq , locRes , locErr , sendMMS}
L3 = {startSession, checkValid , stopSession}

and NC , NWSC , NWSP and NPAP are the number of instances of Customer , WSConsumer ,
WSProvider and PAProvider respectively.

11.6 Performance Analysis of the Web Service Composition

In this section we carry out steady-state analysis on the Web Service Composition case
study in order to tune the parameters of the system. To accomplish this task we use a
modified version of the model in which the customer is explicitly modelled as a component
of the system. The values for each rate are shown in Table 3.

Suppose that we want to design the system in such a way that it can handle 30 inde-
pendent customers. The modeller may have constraints on some parameters such as the
network delays because those are limited by the available technology. However, there are
a number of degrees of freedom which let her vary, for example, the number of threads
of control of the components of the system. The purpose is to deliver a satisfactory ser-
vice in a cost-effective way. The simplest example of a cost function may be a linearly
dependency on the number of copies of a component or the rate at which an activity is
performed.

The graph in Fig. 23 shows the throughput of the getMap action as the number of
customers varies between 1 and 30. Each line represents a given number of copies of the
WSProvider component in the system. When the total number of customers is 30, two
providers lead to a throughput which is twice as much as in the base system configuration

77

Performance Modelling LN-11

parameter value explanation
r1 0.0010 rate at which customers request maps
r2 0.5 rate at which a session can be started
r3 0.1 notification exchange between consumer and

provider
r4 0.1 rate at which requests for customer’s location

can be satisfied
r5 0.05 rate at which the provider can check the validity

of the incoming request
r6 0.1 rate at which location information can be re-

turned to the consumer
r7 0.05 rate at which maps can be generated
r8 0.02 rate at which MMS messages can be sent from

provider to customer
r9 10.0 ∗ r8 rate at which MMS messages can be sent via

the Web Service

Table 3: Parameters used in the performance analysis of the Web Service composition

with one provider only. However, as the number of providers increases the incremental
benefit becomes less significant. In particular, the system with four copies is just 8.7%
faster than the system with three. In the following we set NWSP , the number of copies of
WSProvider , to be 3.

Fig. 24 shows the effect that the rate at which the users initiate the request (r1) has on
the getMap throughput for different numbers of copies of the WSConsumer . Every line
starts to plateau at approximately r1 = 0.010 following an initial sharp increase. This
suggests that the system can guarantee satisfactory behaviour under the constraint that
the users’ request rate is below that threshold. In addition, the graph gives the modeller
insights into the suitable number of operating threads of control of WSConsumer , which
we believe is two as the additional third copy is not well matched by performance boost.
Hence, in order to tune PAProvider—the remaining system component—we set NWSC to
that value.

The same approach can be applied to the optimisation of the number of copies of
PAProvider . Here we are particularly interested in the overall impact of the rate at which
the validity check is performed. Slower rates may mean more computationally expensive
validation, whereas faster rates may involve less accuracy and lower security of the system.
Such effects are measured in Fig. 25 where the getMap throughput is plotted against r5
for different PAProvider pool sizes. A sharp increase followed by a constant levelling off
suggests that optimal rate values lie on the left of the plateau, as faster rates do not
improve the system considerably. As for the optimal number of copies of PAProvider ,
deploying two copies rather than one dramatically increases the quality of service of the
overall system. With a similar approach as previously discussed, the modeller may want
to consider the trade-off between the cost of adding a third copy and the throughput
increase.

78

Performance Modelling LN-11

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0 5 10 15 20 25 30

T
hr

ou
gh

pu
t g

et
M

ap

Number of Customers

Number of WSProviders=1
Number of WSProviders=2
Number of WSProviders=3
Number of WSProviders=4

Figure 23: Throughput of getMap for varying number of WSProvider and customers

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0.022

 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

T
hr

ou
gh

pu
t g

et
M

ap

Rate r1

Number of WSConsumers=1
Number of WSConsumers=2
Number of WSConsumers=3

Figure 24: Throughput of getMap for varying number of WSConsumer and r1

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

T
hr

ou
gh

pu
t g

et
M

ap

Rate r5

Number of PAProviders=1
Number of PAProviders=2
Number of PAProviders=3

Figure 25: Throughput of getMap for varying number of PAProvider and r5

79

Performance Modelling LN-11

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

T
hr

ou
gh

pu
t g

et
M

ap

Rate r5

Number of PAProviders=1
Number of PAProviders=2
Number of PAProviders=3

Figure 26: Throughput of getMap for varying number of stateful PAProvider and r5

11.7 Evaluation of an alternative design of PAProvider

We conclude by showing how this model can be used to evaluate alternative designs of
parts of the system. Here, we focus on PAProvider which has been originally modelled
as a stateless component. Any of its services can be called at any point, the correctness
of the system being guaranteed by implementation-specific constraints such as session
identifiers being uniquely assigned to the clients and passed as parameters of the method
calls.

Another design of a component which offers the same functionalities is that of a stateful
provider. In PEPA such a service can be modelled as a sequential component with three
local states:

PAProvider
def
= (startSession,>).PAProvider 2

PAProvider 2
def
= (checkValid , r5).PAProvider 3

PAProvider 3
def
= (stopSession,>).PAProvider

This implementation has the consequence that there can never at any point be more
than NWSP WSProvider which have started a session with a PAProvider . This is because
the provider has to release a previous session in order to start another one.

The graph in Fig. 26 measures the same metrics as in Fig. 25 when the stateful provider
is employed. It shows that the incremental gain in adding more copies has become more
noteworthy. However, the modeller may prefer the original version, as three copies of
the stateful provider deliver about as much throughput as only one copy of the stateless
implementation.

Jane Hillston 〈Jane.Hillston@ed.ac.uk〉. October 24, 2012.

80

