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Performance Modelling

Performance modelling is concerned with the dynamic behaviour of
systems and quantified assessment of that behaviour.

There are often conflicting interests at play:

Users typically want to optimise external measurements of the
dynamics such as response time (as small as possible),
throughput (as high as possible) or blocking probability
(preferably zero);

In contrast, system managers may seek to optimize internal
measurements of the dynamics such as utilisation (reasonably
high, but not too high), idle time (as small as possible) or
failure rates (as low as possible).
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Performance Modelling: Motivation

Capacity planning

How many clients can the
existing server support and
maintain reasonable response
times?
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Performance Modelling: Motivation

............

Mobile Telephone Antenna

System Configuration

How many frequencies do
you need to keep blocking
probabilities low?
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Performance Modelling: Motivation

System Tuning

What speed of conveyor belt
will minimize robot idle time
and maximize throughput
whilst avoiding lost widgets?
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Key notions

A model can be constructed to represent some aspect of the
dynamic behaviour of a system.

Once constructed, such a model becomes a tool with which we can
investigate the behaviour of the system.
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Modelling computer systems: the challenges

Physical distance

Network latency

Partial failures

Server may be down
Routers may be down

Scale

Workload characterisation

Resource sharing

Network contention
CPU load
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Modelling computer systems: the challenges

Time What representation of time will we use?

Randomness What kind of random number distributions will we
use?

Probability How can we have probabilities in the model without
uncertainty in the results?

Scale How can we escape the state-space explosion
problem?

Percentages What can it mean to have a fraction of a process?
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Quantitative Modelling: Motivation

Quality of Service issues

Can the server maintain
reasonable response
times?
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Quantitative Modelling: Motivation

Scalability issues

How many times do we
have to replicate this
service to support all of
the subscribers?
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Quantitative Modelling: Motivation
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Scalability issues

Will the server withstand
a distributed denial of
service attack?
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Quantitative Modelling: Motivation

Service-level agreements

What percentage of
downloads do complete
within the time we
advertised?
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Operational Laws

Operational laws are simple equations may be regarded as a
very abstract model of the average behaviour of almost any
system, based on the operational view of the system.

The laws are very general and make almost no assumptions
about the behaviour of the random variables characterising
the system.

Another advantage of the laws is their simplicity: this means
that they can be applied quickly without detailed knowledge.
We will use them sometimes to derive further data from the
output observed from models.
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Observable variables

REQUESTS

ARRIVE

REQUESTS

SATISFIEDSYSTEM

Operational laws are based on observable variables — values which
we could derive from watching a system over a finite period of time.

We assume that the system receives requests from its environment.

Each request generates a job or customer within the system.

When the job has been processed the system responds to the
environment with the completion of the corresponding request.
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Observations and measurements

If we observed such an abstract system we might measure the
following quantities:

T , the length of time we observe the system;

A, the number of request arrivals we observe;

C , the number of request completions we observe;

B, the total amount of time during which the system is
busy (B ≤ T );

N, the average number of jobs in the system.
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Four important quantities

From these observed values we can derive the following four
important quantities:

λ = A/T , the arrival rate;

X = C/T , the throughput or completion rate,

U = B/T , the utilisation;

S = B/C , the mean service time per completed job.
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Job flow balance

We will assume that the system is job flow balanced. This
means that the number of arrivals is equal to the number of
completions during an observation period, i.e. A = C .

This is a testable assumption because an analyst can always
test whether the assumption holds.

Note that if the system is job flow balanced the arrival rate
will be the same as the completion rate, that is, λ = X .
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Little’s Law

Little’s Law

N = XW

The average number of jobs in a system is equal to the product of
the throughput of the system and the average time spent in that
system by a job.



Operational laws 46/ 237

Example

Consider a disk that serves 40 requests/second (X = 40) and
suppose that on average there are 4 requests present in the disk
system (waiting to be served or in service) (N = 4).

Little’s law tells us that the average time spent at the disk by a
request must be 4/40 = 0.1 seconds.

If we know that each request requires 0.0225 seconds of disk
service we can then deduce that the average queueing time is
0.0775 seconds.
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Subsystems within Systems

REQUESTS

ARRIVE

REQUESTS

SATISFIED

SYSTEM

SUBSYSTEM

SUBSYSTEM

SUBSYSTEM

SUBSYSTEM

A system may be regarded as being made up of a number of
devices or resources.

Each of these may be treated as a system in its own right
from the perspective of operational laws.
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Subsystems within Systems

REQUESTS

ARRIVE
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SYSTEM

SUBSYSTEM

SUBSYSTEM
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SUBSYSTEM

An external request generates a job within the system; this job
may then circulate between the resources until all necessary
processing has been done; as it arrives at each resource it is
treated as a request, generating a job internal to that resource.
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Visit count

REQUESTS

ARRIVE

REQUESTS

SATISFIED
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SUBSYSTEM

In an observation interval we can count not only completions
external to the system, but also the number of completions at each
resource within the system.
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Visit count

REQUESTS
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We define the visit count, Vi , of the ith resource to be the ratio of
the number of completions at that resource to the number of
system completions Vi ≡ Ci/C .
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Visit count: example

For example, if, during an observation interval, we measure
10 system completions and 150 completions at a specific disk, then
on the average each system-level request requires
15 disk operations.
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Forced Flow Law

The forced flow law captures the relationship between the different
components within a system. It states that the throughputs or
flows, in all parts of a system must be proportional to one another.

Forced Flow Law

Xi = XVi

The throughput at the ith resource is equal to the product of the
throughput of the system and the visit count at that resource.
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Example

Consider a robotic workcell within a computerised
manufacturing system which processes widgets.

Suppose that processing each widget requires 4 accesses to
the lathe and 2 accesses to the press.

We know that the lathe processes 8 widgets in a minute and
we want to know the throughput of the press.

The throughput of the workcell will be proportional to the
lathe throughput, i.e. X = Xlathe/Vlathe = 8/4 = 2.

The throughput of the press will be
Xpress = X × Vpress = 2× 2 = 4.

Thus the press throughput is 4 widgets per minute.
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Utilisation Law

If we know the amount of processing each job requires at a
resource then we can calculate the utilisation of the resource.

Let us assume that each time a job visits the ith resource the
amount of processing, or service time it requires is Si .

(Note that service time is not necessarily the same as the
residence time of the job at that resource: in general a job
might have to wait for some time before processing begins.)

The total amount of service that a system job generates at
the ith resource is called the service demand, Di :

Di = SiVi
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Utilisation Law

The utilisation of a resource, the percentage of time that the ith
resource is in use processing to a job, is denoted Ui .

Utilisation Law

Ui = XiSi = XDi

The utilisation of a resource is equal to the product of the
throughput of that resource and the average service requirement at
that resource.
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Utilisation Example

Consider again the disk that is serving 40 requests/second,
each of which requires 0.0225 seconds of disk service.

The utilisation law tells us that the utilisation of the disk must
be 40× 0.0225 = 90%.
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Interactive Response Time Law

Back when most processing was done on shared mainframes,
think time, Z , was quite literally the length of time that a
programmer spent thinking before submitting another job.

More generally in interactive systems, jobs spend time in the
system not engaged in processing, or waiting for processing:
this may be because of interaction with a human user, or may
be for some other reason.

The key feature of such a system is that the residence time
can no longer be taken as a true reflection of the response
time of the system.
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Example

For example, if we are studying a cluster of workstations with
a central file server to investigate the load on the file server,
the think time might represent the average time that each
workstation spends processing locally without access to the
file server.

At the end of this non-processing period the job generates a
fresh request.
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Think time, residence time, response time

The think time represents the time between processing being
completed and the job becoming available as a request again.

Thus the residence time of the job, as calculated by Little’s
Law as the time from arrival to completion, is greater than
the system’s response time.
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Interactive Response Time Law

The interactive response time law reflects this: it calculates the
response time, R as follows:

Interactive Response Time Law

R = N/X − Z

The response time in an interactive system is the residence time
minus the think time.

Note that if the think time is zero, Z = 0 and R = W , then the
interactive response time law simply becomes Little’s Law.
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Interactive Response Time Law: Example

Suppose that the library catalogue system has 64 interactive
users connected via Browsers, that the average think time is
30 seconds, and that system throughput is 2
interactions/second.

Then the interactive response time law tells us that the
response time must be 64/2− 30 = 2 seconds.
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The discrete event view

In general we wish to have a more detailed (mechanistic) view of
the system under study than that presented by the operational
laws. In this course we will consider discrete event systems.

The state of the system is characterised by variables which take
distinct values and which change by discrete events, i.e. at a
distinct time something happens within the system which results in
a change in one or more of the state variables.
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The discrete event view: example

We might be interested in the number of nodes in a communication
network which are currently waiting to send a message N.

If a node, which was not previously waiting, generates a
message and is now waiting to send then N → N + 1, or

If a node, which was previously waiting, successfully transmits
its message then N → N − 1.
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Discrete time vs. Continuous time

Within discrete event systems there is a distinction between a
discrete time representation and a continuous time representation:

Discrete time: such models only consider the system at
predetermined moments in time, which are typically
evenly spaced, eg. at each clock “tick”.

Continuous time: such models consider the system at the time of
each event so the time parameter in such models is
conceptually continuous.

At levels of abstraction above the hardware clock continuous time
models are generally appropriate for computer and communication
systems.
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Quantitative modelling

When systems are modelled to verify their functional behaviour
(correctness), all definite values are abstracted away — qualitative
modelling.

In contrast, performance modelling is quantitative modelling as we
must take into account explicit values for time (latency, service
time etc.) and probability (choices, alternative outcomes, mixed
workload).

Probability will be used to represent randomness (e.g. from human
users) but also as an abstraction over unknown values (e.g. service
times).
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Random experiments and events

To apply probability theory to the process under study, we
view it as a random experiment.

The sample space of a random experiment is the set of all
individual outcomes of the experiment.

These individual outcomes are also called sample points or
elementary events.

An event is a subset of a sample space.
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Random variables

We are interested in the dynamics of a system as events happen
over time.

A function which associates a (real-valued) number with the
outcome of an experiment is known as a random variable.

Formally, a random variable X is a real-valued function defined on
a sample space Ω.
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Measurable functions

If X is a random variable, and x is a real number, we write X ≤ x
for the event

{ω : ω ∈ Ω and X (ω) ≤ x }

and we write X = x for the event

{ω : ω ∈ Ω and X (ω) = x }

We require that for a random variable X , the set X ≤ x is an event
for each real x . This is necessary so that probability calculations
can be made. A function having this property is said to be a
measurable function or measurable in the Borel sense.
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Distribution function

For each random variable X we define its distribution function F
for each real x by

F (x) = Pr[X ≤ x ]

We associate another function p(·), called the probability mass
function, with X (pmf), for each x :

p(x) = Pr[X = x ]

A random variable X is continuous if p(x) = 0 for all real x .

(If X is a continuous random variable, then X can assume
infinitely many values, and so it is reasonable that the probability
of its assuming any specific value we choose beforehand is zero.)
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Exponential random variables, distribution function

The random variable X is said to be an exponential random
variable with parameter λ (λ > 0) or to have an exponential
distribution with parameter λ if it has the distribution function

F (x) =

{
1− e−λx for x > 0
0 for x ≤ 0

Some authors call this distribution the negative exponential
distribution.
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Exponential random variables, distribution function

The random variable X is said to be an exponential random
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Exponential random variables, density function

The density function f = dF/dx is given by

f (x) =

{
λe−λx if x > 0
0 if x ≤ 0
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Mean, or expected value

If X is a continuous random variable with density function f (·), we
define the mean or expected value of X , µ = E [X ] by

µ = E [X ] =

∫ ∞
−∞

xf (x)dx

If X is a discrete random variable with probability mass function
p(·), we define the mean or expected value of X ∈ S , µ = E [X ] by

E (X ) =
∑
x∈S

xp(x)
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Mean, or expected value, of the exponential distribution

Suppose X has an exponential distribution with parameter λ > 0.

Then

µ = E [X ] =

∫ ∞
−∞

xλe−λxdx =
1

λ
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Exponential inter-event time distribution

The time interval between successive events can also be deduced.

Let F (t) be the distribution function of T , the time between
events. Consider Pr(T > t) = 1− F (t):

Pr(T > t) = Pr(No events in an interval of length t)

= 1− F (t)

= 1− (1− e−λt)

= e−λt



CTMC-based performance modelling 112/ 237

Memoryless property of the exponential distribution

The memoryless property of the exponential distribution is so
called because the time to the next event is independent of when
the last event occurred.
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Memoryless property of the exponential distribution

Suppose that the last event was at time 0. What is the probability
that the next event will be after t + s, given that time t has
elapsed since the last event, and no events have occurred?

Pr(T > t + s | T > t) =
Pr(T > t + s and T > t)

Pr(T > t)

=
e−λ(t+s)

e−λt

= e−λs

This value is independent of t (and so the time already spent has
not been remembered).
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Stochastic Process

Formally, a stochastic model is one represented as a stochastic
process;

A stochastic process is a set of random
variables{X (t), t ∈ T}.

T is called the index set usually taken to represent time.

Since we consider continuous time models T = R≥0, the set
of non-negative real numbers.
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State Space

The state space of a stochastic process is the set of all possible
values that the random variables X (t) can assume.

Each of these values is called a state of the process.

Any set of instances of {X (t), t ∈ T} can be regarded as a path of
a particle moving randomly in the state space, S , its position at
time t being X (t).

These paths are called sample paths or realisations of the
stochastic process.
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Properties of Stochastic Processes

In this course we will focus on stochastic processes with the
following properties:
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Properties of Stochastic Processes

In this course we will focus on stochastic processes with the
following properties:

{X (t)} is a Markov process.

This implies that {X (t)} has the Markov or memoryless property:
given the value of X (t) at some time t ∈ T , the future path X (s)
for s > t does not depend on knowledge of the past history X (u)
for u < t, i.e. for t1 < · · · < tn < tn+1,

Pr(X (tn+1) = xn+1 | X (tn) = xn, . . . ,X (t1) = x1) =

Pr(X (tn+1) = xn+1 | X (tn) = xn)
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Properties of Stochastic Processes

In this course we will focus on stochastic processes with the
following properties:

{X (t)} is irreducible.

This implies that all states in S can be reached from all
other states, by following the transitions of the process. If we draw
a directed graph of the state space with a node for each state and
an arc for each event, or transition, then for any pair of nodes there
is a path connecting them, i.e. the graph is strongly connected.
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Properties of Stochastic Processes

In this course we will focus on stochastic processes with the
following properties:

{X (t)} is stationary:

for any t1, . . . tn ∈ T and t1 + τ, . . . , tn + τ ∈ T (n ≥ 1),
then the process’s joint distributions are unaffected by the change
in the time axis and so,

FX (t1+τ)...X (tn+τ) = FX (t1)...X (tn)
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Properties of Stochastic Processes

In this course we will focus on stochastic processes with the
following properties:

{X (t)} is time homogeneous:

the behaviour of the system does not depend on when it is
observed. In particular, the transition rates between states are
independent of the time at which the transitions occur. Thus, for
all t and s, it follows that

Pr(X (t + τ) = xk | X (t) = xj) = Pr(X (s + τ) = xk | X (s) = xj).
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Performance Modelling using CTMC
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Performance Modelling using CTMC
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A negative exponentially distributed duration is associated with each transition.
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Performance Modelling using CTMC
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these parameters form the entries of the infinitesimal generator matrix Q
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Exit rate and sojourn time

In any stochastic process the time spent in a state is called the
sojourn time.

In a Markov process the rate of leaving a state xi , qi the exit rate,
is exponentially distributed with the rate which is the sum of all

the individual transitions that leave the state, i.e. qi =
N∑

j=1,j 6=i

qi ,j .

This follow from the superposition principle of exponential
distributions.

It follows that the sojourn time will be 1/qi .

Note that it follows from the Markov property that sojourn times
are memoryless.
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Transition rates and transition probabilities

At time τ , the probability that there is a state transition in the
interval (τ, τ + dt) is qidt + o(dt).

When a transition out of state xi occurs, the new state is xj with
probability pij , which must depend only on i and j (Markov).

Thus, for i 6= j , i , j ∈ S ,
Pr(X (τ + dt) = j | X (τ) = i) = qijdt + o(dt)
where the qij = qipij , by the decomposition property.

The qij are called the instantaneous transition rates.

The transition probability pij is the probability, given that a
transition out of state i occurs, that it is the transition to state j .
By the definition of conditional probability, this is pij = qij/qi .
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The qij are called the instantaneous transition rates.

The transition probability pij is the probability, given that a
transition out of state i occurs, that it is the transition to state j .
By the definition of conditional probability, this is pij = qij/qi .
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Infinitesimal Generator Matrix

The state transition diagram of a Markov process captures all the
information about the states of the system and the transitions
which can occur between then.

When we are reasoning about the process we find it convenient to
capture this information in a matrix, Q , termed the infinitesimal
generator matrix.

For a state space of size N, this is a N × N matrix, where entry
q(i , j) or qi ,j , records the transition rate of moving from state xi to
state xj .

By convention, the diagonal entries qi ,i are the negative row sum
for row i , i.e.

qi ,i =
N∑

j=1,j 6=i

qi ,j
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Steady state probability distribution

In performance modelling we are often interested in the probability
distribution of the random variable X (t) over the state space S , as
the system settles into a regular pattern of behaviour.

This is termed the steady state probability distribution.

From this probability distribution we will derive performance
measures based on subsets of states where some condition holds.
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Existence of a steady state probability distribution

For every time-homogeneous, finite, irreducible Markov process
with state space S , there exists a steady state probability
distribution

{πk , xk ∈ S}

This distribution is the same as the limiting or long term
probability distribution:

πk = lim
t→>

Pr(X (t) = xk | X (0) = x0)

This distribution is reached when the initial state no longer has any
influence.
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Probability flux

In steady state, πi is the proportion of time that the process
spends in state xi .

Recall qij is the instantaneous probability that the model makes a
transition from state xi to state xj .

Thus, in an instant of time, the probability that a transition will
occur from state xi to state xj is the probability that the model
was in state xi , πi, multiplied by the transition rate qij .

This is called the probability flux from state xi to state xj .
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Global balance equations

In steady state, equilibrium is maintained so for any state the total
probability flux out is equal to the total probability flux into the
state.

πi ×
∑

xj∈S ,j 6=i

qij︸ ︷︷ ︸
flux out of xi

=
∑

xj∈S ,j 6=i

(πj × qji)︸ ︷︷ ︸
flux into xi

(If this were not true the distribution over states would change. )
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Global balance equations

Recall that the diagonal elements of the infinitesimal generator
matrix Q are the negative sum of the other elements in the row,
i.e. qii = −

∑
xj∈S ,j 6=i qij .

We can use this to rearrange the flux balance equation to be:∑
xj∈S

πjqji = 0.

Expressing the unknown values πi as a row vector π, we can write
this as a matrix equation:

π Q = 0
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Normalising constant

The πi are unknown — they are the values we wish to find.

If there are N states in the state space, the global balance
equations give us N equations in N unknowns.

However this collection of equations is irreducible.

Fortunately, since {πi} is a probability distribution we also know
that the normalisation condition holds:∑

xi∈S

πi = 1

With these n + 1 equations we can use standard linear algebra
techniques to solve the equations and find the n unknowns, {πi}.
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Example

Consider a system with multiple CPUs, each with its own
private memory, and one common memory which can be
accessed only by one processor at a time.

The CPUs execute in private memory for a random time
before issuing a common memory access request. Assume that
this random time is exponentially distributed with parameter λ
(the average time a CPU spends executing in private memory
between two common memory access requests is 1/λ).

The common memory access duration is also assumed to be
exponentially distributed, with parameter µ (the average
duration of a common memory access is 1/µ).
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Example

If the system has only one processor, it has only two states:

1 The processor is executing in its private memory;
2 The processor is accessing common memory.

The system behaviour can be modelled by a 2-state Markov
process whose state transition diagram and generator matrix are as
shown below:

��
��

��
��

1 2

� �
� �6

?λ

µ
Q =

(
−λ λ
µ −µ

)
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Example

��
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1 2
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?λ

µ
Q =

(
−λ λ
µ −µ

)
If we consider the probability flux in and out of state 1 we obtain:
π1 λ = π2µ. Similarly, for state 2: π2 µ = π1λ.

We know from the normalisation condition that: π1 + π2= 1.

Thus the steady state probability distribution is

π =

(
µ

µ+ λ
,

λ

µ+ λ

)
.

From this we can deduce, for example, that the probability that the
processor is executing in private memory is µ/(µ+ λ).
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Solving the global balance equations

In general our systems of equations will be too large to contemplate
solving them by hand, so we want to be able to take advantage of
linear algebra packages which can solve matrix equations of the
form Ax = b, where A is an N × N matrix, x is a column vector of
N unknowns, and b is a column vector of N values.
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Solving the global balance equations

First we must resolve two problems:

1 Our global balance equation is expressed in terms of a row
vector of unknowns π, π Q = 0: the unknowns.

This problem is resolved by transposing the equation, i.e.
QTπ = 0, where the right hand side is now a column vector
of zeros, rather than a row vector.
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Solving the global balance equations

2 We must eliminate the redundancy in the global balance
equations and add in the normalisation condition.

We replace one of the global balance equations by the
normalisation condition. In QT this corresponds to replacing
one row by a row of 1’s. We usually choose the last row and
denote the modified matrix QT

N .

We must also make the corresponding change to the
“solution” vector 0, to be a column vector with 1 in the last
row, and zeros everywhere else. We denote this vector, eN .

Now we can use any linear algebra solution package, such as
maple or xmaple to solve the resulting equation:

QT
Nπ = eN
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Example

Consider the two-processor version of the multiprocessor with
processors A and B.

We assume that the processors have different timing
characteristics, the private memory access of A being governed by
an exponential distribution with parameter λA, the common
memory access of B being governed by an exponential distribution
with parameter µB , etc.
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Example: state space

Now the state space becomes:

1 A and B both executing in their private memories;

2 B executing in private memory, and A accessing common
memory;

3 A executing in private memory, and B accessing common
memory;

4 A accessing common memory, B waiting for common memory;

5 B accessing common memory, A waiting for common memory;
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Example: state space
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Example: generator matrix

Q =


−(λA + λB) λA λB 0 0

µA −(µA + λB) 0 λB 0
µB 0 −(µB + λA) 0 λA
0 0 µA −µA 0
0 µB 0 0 −µB
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Example: modified generator matrix

QT
N =


−(λA + λB) µA µB 0 0

λA −(µA + λB) 0 0 µB
λB 0 −(µB + λA) µA 0
0 λB 0 −µA 0
1 1 1 1 1
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Example: steady state probability distribution

If we choose the following values for the parameters:

λA = 0.05 λB := 0.1 µA = 0.02 µB = 0.05

solving the matrix equation, and rounding figures to 4 significant
figures, we obtain:

π = (0.0693, 0.0990, 0.1683, 0.4951, 0.1683)
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Deriving Performance Measures

SYSTEM MARKOV Q = 

.....
.....

.....
.....

.....

..........
.....

PROCESS

..... .....

DIAGRAM
TRANSITION

STATE

= EQUILIBRIUM PROBABILITY
DISTRIBUTIONp , p , p ,  , p

N21 3
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Deriving Performance Measures

SYSTEM MARKOV Q = 

.....
.....

.....
.....

.....

..........
.....

PROCESS

..... .....

DIAGRAM
TRANSITION

STATE

e.g. throughput, response time, utilisation

= EQUILIBRIUM PROBABILITY
DISTRIBUTIONp , p , p ,  , p

N21 3

PERFORMANCE MEASURES
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Deriving Performance Measures

Broadly speaking, there are three ways in which performance
measures can be derived from the steady state distribution of a
Markov process.

These different methods can be thought of as corresponding to
different types of measure:

state-based measures, e.g. utilisation;

rate-based measures, e.g. throughput;

other measures which fall outside the above categories, e.g.
response time.
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State-based measures

State-based measures correspond to the probability that the model
is in a state, or a subset of states, which satisfy some condition.

For example, utilisation will correspond to those states where a
resource is in use.

If we consider the multiprocessor example, the utilisation of the
common memory, Umem, is the total probability that the model is
in one of the states in which the common memory is in use:

Umem = π2 + π3 + π4 + π5 = 93.07%
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State-based measures

Other examples of state-based measures are idle time, or the
number of jobs in a system.

Some measures such as the number of jobs will involve a weighted
sum of steady state probabilities, weighted by the appropriate value
(expectation).

For example, if we consider jobs waiting for the common memory
to be queued in that subsystem, then the average number of jobs
in the common memory, Nmem, is:

Nmem = (1× π2) + (1× π3) + (2× π4) + (2× π5) = 1.594
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Nmem = (1× π2) + (1× π3) + (2× π4) + (2× π5) = 1.594



Continuous Time Markov Chains Derivation of Performance Measures 203/ 237

State-based measures

Other examples of state-based measures are idle time, or the
number of jobs in a system.

Some measures such as the number of jobs will involve a weighted
sum of steady state probabilities, weighted by the appropriate value
(expectation).

For example, if we consider jobs waiting for the common memory
to be queued in that subsystem, then the average number of jobs
in the common memory, Nmem, is:

Nmem = (1× π2) + (1× π3) + (2× π4) + (2× π5) = 1.594



Continuous Time Markov Chains Derivation of Performance Measures 204/ 237

Rate-based measures

Rate-based measures are those which correspond to the predicted
rate at which some event occurs.

This will be the product of the rate of the event, and the
probability that the event is enabled, i.e. the probability of being in
one of the states from which the event can occur.
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Example: rate-based measures

In order to calculate the throughput of the common memory, we
need the average number of accesses from either processor which it
satisfies in unit time.

Xmem is thus calculated as:

Xmem = (µA × (π2 + π4)) + (µB × (π3 + π5)) = 0.0287

or, approximately one access every 35 milliseconds.
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Other measures

The other measures are those which are neither rate-based or
state-based.

In these cases, we usually use one of the operational laws to derive
the information we need, based on values that we have obtained
from solution of the model.

For example, applying Little’s Law to the common memory we see
that

Wmem = Nmem/Xmem = 1.594/0.0287 = 55.54 milliseconds
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Assumptions

Stochastic Hypothesis

“The behaviour of a real system during a given
period of time is characterised by the probability

distributions of a stochastic process.”
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Assumptions

All delays and inter-event times are exponentially distributed.

(This will often not fit with observations of real systems.)

We make the assumption because of the nice mathematical
properties of the exponential distribution, and because it is
the only distribution giving us a Markov process.

Plus only a single parameter to be fitted (the rate), which can
be easily derived from observations of the average duration.

The Markov/memoryless assumption that future behaviour is
only dependent on the current state, not on the past history is
a reasonable assumption for computer and communication
systems, if we choose our states carefully.

We generally assume that the Markov process is finite, time
homogeneous and irreducible.
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Difficulties of working with Markov processes

SYSTEM MARKOV Q = 

.....
.....

.....
.....

.....

..........
.....

PROCESS

..... .....

DIAGRAM
TRANSITION

STATE

e.g. throughput, response time, utilisation

= EQUILIBRIUM PROBABILITY
DISTRIBUTIONp , p , p ,  , p

N21 3

PERFORMANCE MEASURES

Whilst Markov process-based modelling has many advantages, work-
ing directly in terms of the state transition diagram or infinitesimal
generator matrix is at best time-consuming and error prone, and
often simply infeasible.
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Difficulties of working with Markov processes

SYSTEM MARKOV Q = 

.....
.....

.....
.....

.....

..........
.....

PROCESS

..... .....

DIAGRAM
TRANSITION

STATE

e.g. throughput, response time, utilisation

e.g. queueing networks and
stochastic Petri nets

= EQUILIBRIUM PROBABILITY
DISTRIBUTIONp , p , p ,  , p

N21 3

PERFORMANCE MEASURES

HIGH−LEVEL
MODELLING FORMALISM

For this reason various high level modelling formalisms have been
introduced to make the job of constructing the state transition dia-
gram and/or infinitesimal generator matrix easier.
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The PEPA project

The PEPA project started in Edinburgh in 1991.

It was motivated by problems encountered when carrying out
performance analysis of large computer and communication
systems, based on numerical analysis of Markov processes.

Process algebras offered a compositional description technique
supported by apparatus for formal reasoning.

Performance Evaluation Process Algebra (PEPA) sought to
address these problems by the introduction of a suitable
process algebra.

We have sought to investigate and exploit the interplay
between the process algebra and the continuous time Markov
chain (CTMC).
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Performance Evaluation Process Algebra

PEPA (Performance Evaluation Process Algebra) is a
high-level modelling language for distributed systems. It can
be used to develop models of existing systems (abstraction) or
designs for proposed ones (specification).

PEPA can capture performance information in a process
algebra setting. It is a stochastic process algebra.

For technical details the definitive reference is A
Compositional Approach to Performance Modelling, Hillston,
Cambridge University Press, 1996.
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Strengths of stochastic process algebras

SPAs have strengths in the areas of semantic definition, inherent
compositionality and the existence of important equivalence
relations (including bisimulation). This relation provides the basis
for aggregation of PEPA models.
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Terminology

The components in a PEPA model engage, cooperatively or
individually, in activities.

Each activity has an action type which corresponds to the actions
of the system being modelled.

To represent unimportant or unknown actions there is a
distinguished action type, τ .
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Quantitative aspects

Every activity in PEPA has an associated activity rate which may
be any positive real number, or the distinguished symbol “>”,
meaning unspecified, read as ‘top’.

Components and activities are primitives. PEPA also provides a
small set of combinators.
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PEPA syntax

S ::= (α, r).S (prefix)

| S1 + S2 (choice)

| X (variable)

C ::= C1
��
L

C2 (cooperation)

| C / L (hiding)

| S (sequential)
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PEPA: informal semantics (sequential sublanguage)

(α, r).S
The activity (α, r) takes time ∆t (drawn from the
exponential distribution with parameter r).

S1 + S2
In this choice either S1 or S2 will complete an
activity first. The other is discarded.
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PEPA: informal semantics (combinators)

C1
��
L

C2

All activities of C1 and C2 with types in L are
shared: others remain individual.
NOTATION: write C1 ‖ C2 if L is empty.

C / L
Activities of C with types in L are hidden (τ type
activities) to be thought of as internal delays.
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Example: M/M/1/N/N queue

Arrival0
def
= (accept, λ).Arrival1

Arrival i
def
= (accept, λ).Arrival i + 1 + (serve,>).Arrival i − 1

(0 < i < N)
ArrivalN

def
= (serve,>).ArrivalN − 1

Server
def
= (serve, µ).Server
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Example: M/M/1/N/N queue

Queue0 Queue1

� �
� �N

(accept, λ)

H

(serve, µ)

�
�

I
(accept, λ)

N

(serve, µ)

. . .

�(accept, λ)

�
(serve, µ)

J

H
QueueN − 1

� �
� �

H

(accept, λ)

N

(serve, µ)

QueueN

Queue i ≡ Arrival i ��
{serve}

Server
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