
1/ 155

SPAs for performance modelling:
Lecture 10 — Modelling hybrid systems with

Stochastic HYPE

Jane Hillston

LFCS, School of Informatics
The University of Edinburgh

Scotland

19th April 2013

2/ 155

Hybrid Systems

pool conveyor belt

machine1

machine2

BOTTLE BOTTLE

TANK

r

s

BOTTLE

3/ 155

Hybrid Systems

pool conveyor belt

machine1

machine2

BOTTLE BOTTLE

TANK

r

s

BOTTLE

4/ 155

Hybrid Systems

pool conveyor belt

machine1

machine2

BOTTLE BOTTLE

TANK

r

s

BOTTLE

5/ 155

Outline

1 Introduction

2 Example

3 Semantics

4 Bisimulations

5 Application: ZebraNet

Introduction 6/ 155

Outline

1 Introduction

2 Example

3 Semantics

4 Bisimulations

5 Application: ZebraNet

Introduction 7/ 155

Introduction

Hybrid systems, combining continuous and discrete behaviour,
arise in several application domains e.g. manufacturing systems,
genetic networks etc.

We were motivated by our success with PEPA, a stochastic process
algebra that models discrete state systems but which nevertheless
supports fluid approximation techniques.

From this experience we believed that it should be possible to
separate the implementation details of the continuous behaviour
from the specification of the influences at work on continuous
system variables.

We have also been motivated by incorporating more detailed
representation of space within our process algebra models.

Introduction 8/ 155

Introduction

Hybrid systems, combining continuous and discrete behaviour,
arise in several application domains e.g. manufacturing systems,
genetic networks etc.

We were motivated by our success with PEPA, a stochastic process
algebra that models discrete state systems but which nevertheless
supports fluid approximation techniques.

From this experience we believed that it should be possible to
separate the implementation details of the continuous behaviour
from the specification of the influences at work on continuous
system variables.

We have also been motivated by incorporating more detailed
representation of space within our process algebra models.

Introduction 9/ 155

Introduction

Hybrid systems, combining continuous and discrete behaviour,
arise in several application domains e.g. manufacturing systems,
genetic networks etc.

We were motivated by our success with PEPA, a stochastic process
algebra that models discrete state systems but which nevertheless
supports fluid approximation techniques.

From this experience we believed that it should be possible to
separate the implementation details of the continuous behaviour
from the specification of the influences at work on continuous
system variables.

We have also been motivated by incorporating more detailed
representation of space within our process algebra models.

Introduction 10/ 155

Introduction

Hybrid systems, combining continuous and discrete behaviour,
arise in several application domains e.g. manufacturing systems,
genetic networks etc.

We were motivated by our success with PEPA, a stochastic process
algebra that models discrete state systems but which nevertheless
supports fluid approximation techniques.

From this experience we believed that it should be possible to
separate the implementation details of the continuous behaviour
from the specification of the influences at work on continuous
system variables.

We have also been motivated by incorporating more detailed
representation of space within our process algebra models.

Introduction 11/ 155

Other formal approaches to hybrid systems

Hybrid automata are a well-established approach to modelling
hybrid systems which are supported by a number of tools and
analysis techniques. Their drawbacks are that they are graphical
rather than textual, and the approach is not generally
compositional.

There have also been a number of other process algebras for hybrid
systems:

ACPsrt
hs — Bergstra and Middelburg

HyPA — Cuijpers and Reniers

hybrid χ — van Beek et al

φ-calculus — Rounds and Song

These take a coarse-grained approach, with ODEs embedded
within the syntax.

Introduction 12/ 155

Other formal approaches to hybrid systems

Hybrid automata are a well-established approach to modelling
hybrid systems which are supported by a number of tools and
analysis techniques. Their drawbacks are that they are graphical
rather than textual, and the approach is not generally
compositional.

There have also been a number of other process algebras for hybrid
systems:

ACPsrt
hs — Bergstra and Middelburg

HyPA — Cuijpers and Reniers

hybrid χ — van Beek et al

φ-calculus — Rounds and Song

These take a coarse-grained approach, with ODEs embedded
within the syntax.

Introduction 13/ 155

Other formal approaches to hybrid systems

Hybrid automata are a well-established approach to modelling
hybrid systems which are supported by a number of tools and
analysis techniques. Their drawbacks are that they are graphical
rather than textual, and the approach is not generally
compositional.

There have also been a number of other process algebras for hybrid
systems:

ACPsrt
hs — Bergstra and Middelburg

HyPA — Cuijpers and Reniers

hybrid χ — van Beek et al

φ-calculus — Rounds and Song

These take a coarse-grained approach, with ODEs embedded
within the syntax.

Introduction 14/ 155

Introduction to Stochastic HYPE

behaviours to be included

discrete behaviour: instantaneous events

continuous behaviour: ordinary differentials equations (ODEs)

stochastic behaviour: exponentially-distributed durations

process algebra approach

formal languages for expressing concurrency

compositional semantics

notions of equivalence

the original definition of HYPE

only discrete and continuous behaviour

operational semantics define labelled transition system

mapping from labelled transition system to hybrid automaton

Introduction 15/ 155

Introduction to Stochastic HYPE

behaviours to be included

discrete behaviour: instantaneous events

continuous behaviour: ordinary differentials equations (ODEs)

stochastic behaviour: exponentially-distributed durations

process algebra approach

formal languages for expressing concurrency

compositional semantics

notions of equivalence

the original definition of HYPE

only discrete and continuous behaviour

operational semantics define labelled transition system

mapping from labelled transition system to hybrid automaton

Introduction 16/ 155

Introduction to Stochastic HYPE

behaviours to be included

discrete behaviour: instantaneous events

continuous behaviour: ordinary differentials equations (ODEs)

stochastic behaviour: exponentially-distributed durations

process algebra approach

formal languages for expressing concurrency

compositional semantics

notions of equivalence

the original definition of HYPE

only discrete and continuous behaviour

operational semantics define labelled transition system

mapping from labelled transition system to hybrid automaton

Introduction 17/ 155

HYPE actions

We distinguish two types of actions in a system:

events — instantaneous, discrete changes

a ∈ E

Each event is associated with an event condition: activation
conditions and variable resets.

activities — influences on a continuous aspect of system
behaviour, also termed flows

α ∈ A α(~X) = (ι, r , I (~X))

where

~X are formal parameters,
ι is the influence name and r is its rate,
I (~X) is the influence type, i.e. JI (~X)K = f (~X).

Introduction 18/ 155

HYPE actions

We distinguish two types of actions in a system:

events — instantaneous, discrete changes

a ∈ E

Each event is associated with an event condition: activation
conditions and variable resets.

activities — influences on a continuous aspect of system
behaviour, also termed flows

α ∈ A α(~X) = (ι, r , I (~X))

where

~X are formal parameters,
ι is the influence name and r is its rate,
I (~X) is the influence type, i.e. JI (~X)K = f (~X).

Introduction 19/ 155

HYPE actions

We distinguish two types of actions in a system:

events — instantaneous, discrete changes

a ∈ E

Each event is associated with an event condition: activation
conditions and variable resets.

activities — influences on a continuous aspect of system
behaviour, also termed flows

α ∈ A α(~X) = (ι, r , I (~X))

where
~X are formal parameters,

ι is the influence name and r is its rate,
I (~X) is the influence type, i.e. JI (~X)K = f (~X).

Introduction 20/ 155

HYPE actions

We distinguish two types of actions in a system:

events — instantaneous, discrete changes

a ∈ E

Each event is associated with an event condition: activation
conditions and variable resets.

activities — influences on a continuous aspect of system
behaviour, also termed flows

α ∈ A α(~X) = (ι, r , I (~X))

where
~X are formal parameters,
ι is the influence name and r is its rate,

I (~X) is the influence type, i.e. JI (~X)K = f (~X).

Introduction 21/ 155

HYPE actions

We distinguish two types of actions in a system:

events — instantaneous, discrete changes

a ∈ E

Each event is associated with an event condition: activation
conditions and variable resets.

activities — influences on a continuous aspect of system
behaviour, also termed flows

α ∈ A α(~X) = (ι, r , I (~X))

where
~X are formal parameters,
ι is the influence name and r is its rate,
I (~X) is the influence type, i.e. JI (~X)K = f (~X).

Introduction 22/ 155

Language considerations: ODEs versus flows

notation: V, a set of continuous variables

monolithic ODEs in existing hybrid process algebras

A
def
= . . . [dVdt = f (V)] . . .

flows in HYPE (Wj ⊆ V)

A1
def
= . . . (ι1, r1, I1(W1)) . . .

...
...

...

An
def
= . . . (ιn, rn, In(Wn)) . . .

and
dV

dt
=
∑
{rj .Ij(Wj) | iv(ιj) = V , . . . }

Introduction 23/ 155

Language considerations: ODEs versus flows

notation: V, a set of continuous variables

monolithic ODEs in existing hybrid process algebras

A
def
= . . . [dVdt = f (V)] . . .

flows in HYPE (Wj ⊆ V)

A1
def
= . . . (ι1, r1, I1(W1)) . . .

...
...

...

An
def
= . . . (ιn, rn, In(Wn)) . . .

and
dV

dt
=
∑
{rj .Ij(Wj) | iv(ιj) = V , . . . }

Introduction 24/ 155

Language considerations: ODEs versus flows

notation: V, a set of continuous variables

monolithic ODEs in existing hybrid process algebras

A
def
= . . . [dVdt = f (V)] . . .

flows in HYPE (Wj ⊆ V)

A1
def
= . . . (ι1, r1, I1(W1)) . . .

...
...

...

An
def
= . . . (ιn, rn, In(Wn)) . . .

and
dV

dt
=
∑
{rj .Ij(Wj) | iv(ιj) = V , . . . }

Introduction 25/ 155

Language considerations: ODEs versus flows

notation: V, a set of continuous variables

monolithic ODEs in existing hybrid process algebras

A
def
= . . . [dVdt = f (V)] . . .

flows in HYPE (Wj ⊆ V)

A1
def
= . . . (ι1, r1, I1(W1)) . . .

...
...

...

An
def
= . . . (ιn, rn, In(Wn)) . . .

and
dV

dt
=
∑
{rj .Ij(Wj) | iv(ιj) = V , . . . }

Introduction 26/ 155

Stochastic HYPE

In addition to the (instantaneous) events and activities, we now
also allow stochastic events.

ā ∈ E

Previously in HYPE we allowed non-urgent transitions to be
specified with the event condition ⊥.

This is now generalised to events not triggered by system variable
values but according to a random variable, which may depend on
the value of system variables.

Introduction 27/ 155

Stochastic HYPE

In addition to the (instantaneous) events and activities, we now
also allow stochastic events.

ā ∈ E

Previously in HYPE we allowed non-urgent transitions to be
specified with the event condition ⊥.

This is now generalised to events not triggered by system variable
values but according to a random variable, which may depend on
the value of system variables.

Introduction 28/ 155

Stochastic HYPE

In addition to the (instantaneous) events and activities, we now
also allow stochastic events.

ā ∈ E

Previously in HYPE we allowed non-urgent transitions to be
specified with the event condition ⊥.

This is now generalised to events not triggered by system variable
values but according to a random variable, which may depend on
the value of system variables.

Introduction 29/ 155

Stochastic HYPE model I

Subcomponents

S ::= a : α.Cs | ā : α.Cs | S + S

where a ∈ Ed , ā ∈ Es , Ed ∪ Es = E , α ∈ Act

subcomponent names: Cs(
−→
X) = S

Components

P ::= Cs(
−→
X) | C (

−→
X) | P ��

L
P L ⊆ E

component names: C (
−→
X) = P

Introduction 30/ 155

Stochastic HYPE model I

Subcomponents

S ::= a : α.Cs | ā : α.Cs | S + S

where a ∈ Ed , ā ∈ Es , Ed ∪ Es = E , α ∈ Act

subcomponent names: Cs(
−→
X) = S

Components

P ::= Cs(
−→
X) | C (

−→
X) | P ��

L
P L ⊆ E

component names: C (
−→
X) = P

Introduction 31/ 155

Stochastic HYPE model I

Subcomponents

S ::= a : α.Cs | ā : α.Cs | S + S

where a ∈ Ed , ā ∈ Es , Ed ∪ Es = E , α ∈ Act

subcomponent names: Cs(
−→
X) = S

Components

P ::= Cs(
−→
X) | C (

−→
X) | P ��

L
P L ⊆ E

component names: C (
−→
X) = P

Introduction 32/ 155

Stochastic HYPE model I

Subcomponents

S ::= a : α.Cs | ā : α.Cs | S + S

where a ∈ Ed , ā ∈ Es , Ed ∪ Es = E , α ∈ Act

subcomponent names: Cs(
−→
X) = S

Components

P ::= Cs(
−→
X) | C (

−→
X) | P ��

L
P L ⊆ E

component names: C (
−→
X) = P

Introduction 33/ 155

Stochastic HYPE model II

Uncontrolled System

Σ ::= Cs(
−→
V) | C (

−→
V) | Σ ��

L
Σ L ⊆ E

where
−→
V are system variables (cf.

−→
X of C or Cs).

Controllers only have events:

M ::= a.M | 0 | M + M a ∈ E , L ⊆ E

Con ::= M | Con ��
L

Con.

A Controlled System is

ConSys ::= Σ ��
L

init.Con L ⊆ E .

Introduction 34/ 155

Stochastic HYPE model II

Uncontrolled System

Σ ::= Cs(
−→
V) | C (

−→
V) | Σ ��

L
Σ L ⊆ E

where
−→
V are system variables (cf.

−→
X of C or Cs).

Controllers only have events:

M ::= a.M | 0 | M + M a ∈ E , L ⊆ E

Con ::= M | Con ��
L

Con.

A Controlled System is

ConSys ::= Σ ��
L

init.Con L ⊆ E .

Introduction 35/ 155

Stochastic HYPE model II

Uncontrolled System

Σ ::= Cs(
−→
V) | C (

−→
V) | Σ ��

L
Σ L ⊆ E

where
−→
V are system variables (cf.

−→
X of C or Cs).

Controllers only have events:

M ::= a.M | 0 | M + M a ∈ E , L ⊆ E

Con ::= M | Con ��
L

Con.

A Controlled System is

ConSys ::= Σ ��
L

init.Con L ⊆ E .

Introduction 36/ 155

Stochastic HYPE model III

uncontrolled system controllers/sequencers(
C1(V) ��∗ · · · ��∗ Cn(V)

)
��∗ init.

(
Con1 ��

L2
· · · ��

Lm
Conm

)
well-defined subcomponent

C (V)
def
=
∑
j

aj : αj .C (V) + init : α .C (V)

events have event conditions: guards/durations and resets

ec(aj) = (g(V),V ′ = g ′(V)) with g : R|V| → {true, false} discrete

ec(aj) = (f (V),V ′ = f ′(V)) with f : R|V| → [0,∞) stochastic

Introduction 37/ 155

Stochastic HYPE model III

uncontrolled system

controllers/sequencers

(
C1(V) ��∗ · · · ��∗ Cn(V)

)

��∗ init.
(
Con1 ��

L2
· · · ��

Lm
Conm

)
well-defined subcomponent

C (V)
def
=
∑
j

aj : αj .C (V) + init : α .C (V)

events have event conditions: guards/durations and resets

ec(aj) = (g(V),V ′ = g ′(V)) with g : R|V| → {true, false} discrete

ec(aj) = (f (V),V ′ = f ′(V)) with f : R|V| → [0,∞) stochastic

Introduction 38/ 155

Stochastic HYPE model III

uncontrolled system

controllers/sequencers

(
C1(V) ��∗ · · · ��∗ Cn(V)

)
��∗

init.
(
Con1 ��

L2
· · · ��

Lm
Conm

)
well-defined subcomponent

C (V)
def
=
∑
j

aj : αj .C (V) + init : α .C (V)

events have event conditions: guards/durations and resets

ec(aj) = (g(V),V ′ = g ′(V)) with g : R|V| → {true, false} discrete

ec(aj) = (f (V),V ′ = f ′(V)) with f : R|V| → [0,∞) stochastic

Introduction 39/ 155

Stochastic HYPE model III

uncontrolled system controllers/sequencers(
C1(V) ��∗ · · · ��∗ Cn(V)

)
��∗ init.

(
Con1 ��

L2
· · · ��

Lm
Conm

)

well-defined subcomponent

C (V)
def
=
∑
j

aj : αj .C (V) + init : α .C (V)

events have event conditions: guards/durations and resets

ec(aj) = (g(V),V ′ = g ′(V)) with g : R|V| → {true, false} discrete

ec(aj) = (f (V),V ′ = f ′(V)) with f : R|V| → [0,∞) stochastic

Introduction 40/ 155

Stochastic HYPE model III

uncontrolled system controllers/sequencers(
C1(V) ��∗ · · · ��∗ Cn(V)

)
��∗ init.

(
Con1 ��

L2
· · · ��

Lm
Conm

)
well-defined subcomponent

C (V)
def
=
∑
j

aj : αj .C (V) + init : α .C (V)

events have event conditions: guards/durations and resets

ec(aj) = (g(V),V ′ = g ′(V)) with g : R|V| → {true, false} discrete

ec(aj) = (f (V),V ′ = f ′(V)) with f : R|V| → [0,∞) stochastic

Introduction 41/ 155

Stochastic HYPE model III

uncontrolled system controllers/sequencers(
C1(V) ��∗ · · · ��∗ Cn(V)

)
��∗ init.

(
Con1 ��

L2
· · · ��

Lm
Conm

)
well-defined subcomponent

C (V)
def
=
∑
j

aj : αj .C (V) + init : α .C (V)

subcomponents are parameterised by variables

events have event conditions: guards/durations and resets

ec(aj) = (g(V),V ′ = g ′(V)) with g : R|V| → {true, false} discrete

ec(aj) = (f (V),V ′ = f ′(V)) with f : R|V| → [0,∞) stochastic

Introduction 42/ 155

Stochastic HYPE model III

uncontrolled system controllers/sequencers(
C1(V) ��∗ · · · ��∗ Cn(V)

)
��∗ init.

(
Con1 ��

L2
· · · ��

Lm
Conm

)
well-defined subcomponent

C (V)
def
=
∑
j

aj : αj .C (V) + init : α .C (V)

events have event conditions: guards/durations and resets

ec(aj) = (g(V),V ′ = g ′(V)) with g : R|V| → {true, false} discrete

ec(aj) = (f (V),V ′ = f ′(V)) with f : R|V| → [0,∞) stochastic

Introduction 43/ 155

Stochastic HYPE model III

uncontrolled system controllers/sequencers(
C1(V) ��∗ · · · ��∗ Cn(V)

)
��∗ init.

(
Con1 ��

L2
· · · ��

Lm
Conm

)
well-defined subcomponent

C (V)
def
=
∑
j

aj : αj .C (V) + init : α .C (V)

events have event conditions: guards/durations and resets

ec(aj) = (g(V),V ′ = g ′(V)) with g : R|V| → {true, false} discrete

ec(aj) = (f (V),V ′ = f ′(V)) with f : R|V| → [0,∞) stochastic

Introduction 44/ 155

Stochastic HYPE model III

uncontrolled system controllers/sequencers(
C1(V) ��∗ · · · ��∗ Cn(V)

)
��∗ init.

(
Con1 ��

L2
· · · ��

Lm
Conm

)
well-defined subcomponent

C (V)
def
=
∑
j

aj : αj .C (V) + init : α .C (V)

events have event conditions: guards/durations and resets

ec(aj) = (g(V),V ′ = g ′(V)) with g : R|V| → {true, false} discrete

ec(aj) = (f (V),V ′ = f ′(V)) with f : R|V| → [0,∞) stochastic

Introduction 45/ 155

Stochastic HYPE model III

uncontrolled system controllers/sequencers(
C1(V) ��∗ · · · ��∗ Cn(V)

)
��∗ init.

(
Con1 ��

L2
· · · ��

Lm
Conm

)
well-defined subcomponent

C (V)
def
=
∑
j

aj : αj .C (V) + init : α .C (V)

events have event conditions: guards/durations and resets

ec(aj) = (g(V),V ′ = g ′(V)) with g : R|V| → {true, false} discrete

ec(aj) = (f (V),V ′ = f ′(V)) with f : R|V| → [0,∞) stochastic

Introduction 46/ 155

Stochastic HYPE model III

uncontrolled system controllers/sequencers(
C1(V) ��∗ · · · ��∗ Cn(V)

)
��∗ init.

(
Con1 ��

L2
· · · ��

Lm
Conm

)
well-defined subcomponent

C (V)
def
=
∑
j

aj : αj .C (V) + init : α .C (V)

events have event conditions: guards/durations and resets

ec(aj) = (g(V),V ′ = g ′(V)) with g : R|V| → {true, false} discrete

ec(aj) = (f (V),V ′ = f ′(V)) with f : R|V| → [0,∞) stochastic

Introduction 47/ 155

Stochastic HYPE model III

uncontrolled system controllers/sequencers(
C1(V) ��∗ · · · ��∗ Cn(V)

)
��∗ init.

(
Con1 ��

L2
· · · ��

Lm
Conm

)
well-defined subcomponent

C (V)
def
=
∑
j

aj : αj .C (V) + init : α .C (V)

Introduction 48/ 155

Stochastic HYPE model III

uncontrolled system controllers/sequencers(
C1(V) ��∗ · · · ��∗ Cn(V)

)
��∗ init.

(
Con1 ��

L2
· · · ��

Lm
Conm

)
well-defined subcomponent

C (V)
def
=
∑
j

aj : αj .C (V) + init : α .C (V)

influences are defined by a triple

Introduction 49/ 155

Stochastic HYPE model III

uncontrolled system controllers/sequencers(
C1(V) ��∗ · · · ��∗ Cn(V)

)
��∗ init.

(
Con1 ��

L2
· · · ��

Lm
Conm

)
well-defined subcomponent

C (V)
def
=
∑
j

aj : αj .C (V) + init : α .C (V)

influences are defined by a triple

αj = (ιj , rj , Ij(V))

Introduction 50/ 155

Stochastic HYPE model III

uncontrolled system controllers/sequencers(
C1(V) ��∗ · · · ��∗ Cn(V)

)
��∗ init.

(
Con1 ��

L2
· · · ��

Lm
Conm

)
well-defined subcomponent

C (V)
def
=
∑
j

aj : αj .C (V) + init : α .C (V)

influences are defined by a triple

αj = (ιj , rj , Ij(V))

influence names are mapped to variables

iv(ιj) ∈ V

Introduction 51/ 155

Stochastic HYPE model IV

uncontrolled system controllers/sequencers(
C1(V) ��∗ · · · ��∗ Cn(V)

)
��∗ init.

(
Con1 ��

L2
· · · ��

Lm
Conm

)

controller grammar

M ::= a.M | 0 | M + M

Con ::= M | Con ��∗ Con

Introduction 52/ 155

Stochastic HYPE model IV

uncontrolled system controllers/sequencers(
C1(V) ��∗ · · · ��∗ Cn(V)

)
��∗ init.

(
Con1 ��

L2
· · · ��

Lm
Conm

)

controller grammar

M ::= a.M | 0 | M + M

Con ::= M | Con ��∗ Con

Introduction 53/ 155

Stochastic HYPE model IV

uncontrolled system controllers/sequencers(
C1(V) ��∗ · · · ��∗ Cn(V)

)
��∗ init.

(
Con1 ��

L2
· · · ��

Lm
Conm

)
controller grammar

M ::= a.M | 0 | M + M

Con ::= M | Con ��∗ Con

Introduction 54/ 155

Stochastic HYPE model IV

uncontrolled system controllers/sequencers(
C1(V) ��∗ · · · ��∗ Cn(V)

)
��∗ init.

(
Con1 ��

L2
· · · ��

Lm
Conm

)
controller grammar

M ::= a.M | 0 | M + M

Con ::= M | Con ��∗ Con

Introduction 55/ 155

Stochastic HYPE model IV

uncontrolled system controllers/sequencers(
C1(V) ��∗ · · · ��∗ Cn(V)

)
��∗ init.

(
Con1 ��

L2
· · · ��

Lm
Conm

)
controller grammar

M ::= a.M | 0 | M + M

Con ::= M | Con ��∗ Con

Introduction 56/ 155

Stochastic HYPE model IV

uncontrolled system controllers/sequencers(
C1(V) ��∗ · · · ��∗ Cn(V)

)
��∗ init.

(
Con1 ��

L2
· · · ��

Lm
Conm

)
controller grammar

M ::= a.M | 0 | M + M

Con ::= M | Con ��∗ Con

Example 57/ 155

Outline

1 Introduction

2 Example

3 Semantics

4 Bisimulations

5 Application: ZebraNet

Example 58/ 155

Simple Example: shuttle bus

We consider the simple example of an idealised shuttle bus which
serves two stops, X 0 and X 1.

When the shuttle bus arrives at one stop, it will stop for a while,
say 5 minutes, and then move to the other stop. Thus, there are
two flows influencing the shuttle bus. The first is the time flow and
the other influences the position of the shuttle bus.

Example 59/ 155

Shuttle bus example

We represent the two flows by two subcomponents below:

Movement = init : (x , 0, const).Movement

+ toX0 : (x ,−s, const).Movement

+ toX1 : (x , s, const).Movement

+ stop : (x , 0, const).Movement

Time = init : (t, 1, const).Time

In Movement, there are three distinct activities:

(x , 0, const) — stopped at a station;

(x ,−s, const) — travelling from X 1 to X 0; and

(x , s, const) — travelling from X 0 to X 1.

Example 60/ 155

Shuttle bus example

We represent the two flows by two subcomponents below:

Movement = init : (x , 0, const).Movement

+ toX0 : (x ,−s, const).Movement

+ toX1 : (x , s, const).Movement

+ stop : (x , 0, const).Movement

Time = init : (t, 1, const).Time

In Movement, there are three distinct activities:

(x , 0, const) — stopped at a station;

(x ,−s, const) — travelling from X 1 to X 0; and

(x , s, const) — travelling from X 0 to X 1.

Example 61/ 155

Shuttle bus example: uncontrolled system

The uncontrolled system is constructed by the combination of
subsystems:

Sys def
= Movement ��

init
Time

Note that no causal or temporal constraints on the events have
been imposed yet (hence ”uncontrolled”).

For instance, we need to specify that the shuttle bus can only
move to X 1 when it has previously moved to X 0 and stopped for 5
minutes.

Example 62/ 155

Shuttle bus example: uncontrolled system

The uncontrolled system is constructed by the combination of
subsystems:

Sys def
= Movement ��

init
Time

Note that no causal or temporal constraints on the events have
been imposed yet (hence ”uncontrolled”).

For instance, we need to specify that the shuttle bus can only
move to X 1 when it has previously moved to X 0 and stopped for 5
minutes.

Example 63/ 155

Shuttle bus example: controller

Conmovement = stop.toX1.stop.toX0.Conmovement

Controllers consist of only event prefixes, but these may be
affected by the state of the system through event conditions.

The controlled system is constructed from synchronization of the
controller and the uncontrolled system:

ShuttleBusCtrl = Sys ��
M

init.Conmovement

with M = {init, toX0, toX1, stop}.

Example 64/ 155

Shuttle bus example: controller

Conmovement = stop.toX1.stop.toX0.Conmovement

Controllers consist of only event prefixes, but these may be
affected by the state of the system through event conditions.

The controlled system is constructed from synchronization of the
controller and the uncontrolled system:

ShuttleBusCtrl = Sys ��
M

init.Conmovement

with M = {init, toX0, toX1, stop}.

Example 65/ 155

Influences and event conditions

We need to link each influence with an actual variable, e.g.

iv(x) = Pos, iv(t) = T

where Pos captures the position of the shuttle bus, T , the current
time. In this case we define the influence types as const = 1.

We also define the event conditions ec to trigger each event:

ec(init) = (true,Pos ′ = X0 ∧ T ′ = 0)

ec(stop) = (Pos ≤ X0 ∨ Pos ≥ X1,ArrivalTime ′ = Time)

ec(toX1) = (Pos ≤ X0 ∧ T − ArrivalTime == five min, true)

ec(toX0) = (f = e−5(T−ArrivalTime), true)

Example 66/ 155

Influences and event conditions

We need to link each influence with an actual variable, e.g.

iv(x) = Pos, iv(t) = T

where Pos captures the position of the shuttle bus, T , the current
time. In this case we define the influence types as const = 1.

We also define the event conditions ec to trigger each event:

ec(init) = (true,Pos ′ = X0 ∧ T ′ = 0)

ec(stop) = (Pos ≤ X0 ∨ Pos ≥ X1,ArrivalTime ′ = Time)

ec(toX1) = (Pos ≤ X0 ∧ T − ArrivalTime == five min, true)

ec(toX0) = (f = e−5(T−ArrivalTime), true)

Semantics 67/ 155

Outline

1 Introduction

2 Example

3 Semantics

4 Bisimulations

5 Application: ZebraNet

Semantics 68/ 155

Semantics for HYPE

HYPE is given a structured operational semantics, in terms of
system configurations where (broadly speaking) a configuration is a
set of influences currently at play in the system.

This gives us a semantics which allows us to reason about models
and compare them in terms of bisimulation equivalence.

It does not give us a means to execute models as the
implementation details of influence definitions and event conditions
are not captured.

To get an executable interpretation of a model we map to a form
of hybrid automaton:
Transition-Driven Stochastic Hybrid Automata (TDSHA),
which are themselves given a semantics in terms of
Piecewise Deterministic Markov Processes (PDMP).

Semantics 69/ 155

Semantics for HYPE

HYPE is given a structured operational semantics, in terms of
system configurations where (broadly speaking) a configuration is a
set of influences currently at play in the system.

This gives us a semantics which allows us to reason about models
and compare them in terms of bisimulation equivalence.

It does not give us a means to execute models as the
implementation details of influence definitions and event conditions
are not captured.

To get an executable interpretation of a model we map to a form
of hybrid automaton:
Transition-Driven Stochastic Hybrid Automata (TDSHA),
which are themselves given a semantics in terms of
Piecewise Deterministic Markov Processes (PDMP).

Semantics 70/ 155

Semantics for HYPE

HYPE is given a structured operational semantics, in terms of
system configurations where (broadly speaking) a configuration is a
set of influences currently at play in the system.

This gives us a semantics which allows us to reason about models
and compare them in terms of bisimulation equivalence.

It does not give us a means to execute models as the
implementation details of influence definitions and event conditions
are not captured.

To get an executable interpretation of a model we map to a form
of hybrid automaton:
Transition-Driven Stochastic Hybrid Automata (TDSHA),
which are themselves given a semantics in terms of
Piecewise Deterministic Markov Processes (PDMP).

Semantics 71/ 155

Semantics for HYPE

HYPE is given a structured operational semantics, in terms of
system configurations where (broadly speaking) a configuration is a
set of influences currently at play in the system.

This gives us a semantics which allows us to reason about models
and compare them in terms of bisimulation equivalence.

It does not give us a means to execute models as the
implementation details of influence definitions and event conditions
are not captured.

To get an executable interpretation of a model we map to a form
of hybrid automaton:
Transition-Driven Stochastic Hybrid Automata (TDSHA),
which are themselves given a semantics in terms of
Piecewise Deterministic Markov Processes (PDMP).

Semantics 72/ 155

Operational semantics

Prefix with
influence: 〈

a : (ι, r , I).E , σ
〉 a−→

〈
E , σ[ι 7→ (r , I)]

〉
Prefix without
influence: 〈

a.E , σ
〉 a−→

〈
E , σ

〉
Choice:

〈
E , σ

〉 a−→
〈
E ′, σ′

〉〈
E + F , σ

〉 a−→
〈
E ′, σ′

〉 〈
F , σ

〉 a−→
〈
F ′, σ′

〉〈
E + F , σ

〉 a−→
〈
F ′, σ′

〉
Constant:

〈
E , σ

〉 a−→
〈
E ′, σ′

〉〈
A, σ

〉 a−→
〈
E ′, σ′

〉 (A
def
= E)

Semantics 73/ 155

Operational semantics

Prefix with
influence: 〈

a : (ι, r , I).E , σ
〉 a−→

〈
E , σ[ι 7→ (r , I)]

〉
Prefix without
influence: 〈

a.E , σ
〉 a−→

〈
E , σ

〉
Choice:

〈
E , σ

〉 a−→
〈
E ′, σ′

〉〈
E + F , σ

〉 a−→
〈
E ′, σ′

〉 〈
F , σ

〉 a−→
〈
F ′, σ′

〉〈
E + F , σ

〉 a−→
〈
F ′, σ′

〉
Constant:

〈
E , σ

〉 a−→
〈
E ′, σ′

〉〈
A, σ

〉 a−→
〈
E ′, σ′

〉 (A
def
= E)

Semantics 74/ 155

Operational semantics

Prefix with
influence: 〈

a : (ι, r , I).E , σ
〉 a−→

〈
E , σ[ι 7→ (r , I)]

〉
Prefix without
influence: 〈

a.E , σ
〉 a−→

〈
E , σ

〉
Choice:

〈
E , σ

〉 a−→
〈
E ′, σ′

〉〈
E + F , σ

〉 a−→
〈
E ′, σ′

〉 〈
F , σ

〉 a−→
〈
F ′, σ′

〉〈
E + F , σ

〉 a−→
〈
F ′, σ′

〉
Constant:

〈
E , σ

〉 a−→
〈
E ′, σ′

〉〈
A, σ

〉 a−→
〈
E ′, σ′

〉 (A
def
= E)

Semantics 75/ 155

Operational semantics (continued)

Parallel without
synchronisation:

〈
E , σ

〉 a−→
〈
E ′, σ′

〉〈
E ��

M
F , σ

〉 a−→
〈
E ′ ��

M
F , σ′

〉 a 6∈ M

〈
F , σ

〉 a−→
〈
F ′, σ′

〉〈
E ��

M
F , σ

〉 a−→
〈
E ��

M
F ′, σ′

〉 a 6∈ M

Parallel with
synchronisation:

〈
E , σ

〉 a−→
〈
E ′, τ

〉 〈
F , σ

〉 a−→
〈
F ′, τ ′

〉〈
E ��

M
F , σ

〉 a−→
〈
E ′ ��

M
F ′, Γ(σ, τ, τ ′)

〉
a ∈ M, Γ defined

Semantics 76/ 155

Operational semantics (continued)

Parallel without
synchronisation:

〈
E , σ

〉 a−→
〈
E ′, σ′

〉〈
E ��

M
F , σ

〉 a−→
〈
E ′ ��

M
F , σ′

〉 a 6∈ M

〈
F , σ

〉 a−→
〈
F ′, σ′

〉〈
E ��

M
F , σ

〉 a−→
〈
E ��

M
F ′, σ′

〉 a 6∈ M

Parallel with
synchronisation:

〈
E , σ

〉 a−→
〈
E ′, τ

〉 〈
F , σ

〉 a−→
〈
F ′, τ ′

〉〈
E ��

M
F , σ

〉 a−→
〈
E ′ ��

M
F ′, Γ(σ, τ, τ ′)

〉
a ∈ M, Γ defined

Semantics 77/ 155

Operational semantics (continued)

updating function: σ[ι 7→ (r , I)]

σ[ι 7→ (r , I)](x) =

{
(r , I) if x = ι

σ(x) otherwise

change identifying function: Γ : S × S × S → S

(Γ(σ, τ, τ ′))(ι) =


τ(ι) if σ(ι) = τ ′(ι)

τ ′(ι) if σ(ι) = τ(ι)

undefined otherwise

Γ is defined for all well-defined stochastic HYPE models

syntactic restrictions on influences and events

Semantics 78/ 155

Operational semantics (continued)

updating function: σ[ι 7→ (r , I)]

σ[ι 7→ (r , I)](x) =

{
(r , I) if x = ι

σ(x) otherwise

change identifying function: Γ : S × S × S → S

(Γ(σ, τ, τ ′))(ι) =


τ(ι) if σ(ι) = τ ′(ι)

τ ′(ι) if σ(ι) = τ(ι)

undefined otherwise

Γ is defined for all well-defined stochastic HYPE models

syntactic restrictions on influences and events

Semantics 79/ 155

Operational semantics (continued)

updating function: σ[ι 7→ (r , I)]

σ[ι 7→ (r , I)](x) =

{
(r , I) if x = ι

σ(x) otherwise

change identifying function: Γ : S × S × S → S

(Γ(σ, τ, τ ′))(ι) =


τ(ι) if σ(ι) = τ ′(ι)

τ ′(ι) if σ(ι) = τ(ι)

undefined otherwise

Γ is defined for all well-defined stochastic HYPE models

syntactic restrictions on influences and events

Semantics 80/ 155

Transition-driven stochastic hybrid automata

TDSHA: transition-driven stochastic hybrid automata
⊆ PDMP: piecewise deterministic Markov processes

set of modes, Q and set of continuous variables, X

instantaneous transitions

source mode, target mode, event name
guard: activation condition over variables
reset: function determining new values of variables
priority/weight: to resolve non-determinism

stochastic transitions

source mode, target mode, event name
rate: function defining speed of transition
guard: activation condition over variables
reset: function determining new values of variables

Semantics 81/ 155

Transition-driven stochastic hybrid automata

TDSHA: transition-driven stochastic hybrid automata
⊆ PDMP: piecewise deterministic Markov processes

set of modes, Q and set of continuous variables, X

instantaneous transitions

source mode, target mode, event name
guard: activation condition over variables
reset: function determining new values of variables
priority/weight: to resolve non-determinism

stochastic transitions

source mode, target mode, event name
rate: function defining speed of transition
guard: activation condition over variables
reset: function determining new values of variables

Semantics 82/ 155

Transition-driven stochastic hybrid automata

TDSHA: transition-driven stochastic hybrid automata
⊆ PDMP: piecewise deterministic Markov processes

set of modes, Q and set of continuous variables, X

instantaneous transitions

source mode, target mode, event name
guard: activation condition over variables
reset: function determining new values of variables
priority/weight: to resolve non-determinism

stochastic transitions

source mode, target mode, event name
rate: function defining speed of transition
guard: activation condition over variables
reset: function determining new values of variables

Semantics 83/ 155

Transition-driven stochastic hybrid automata

TDSHA: transition-driven stochastic hybrid automata
⊆ PDMP: piecewise deterministic Markov processes

set of modes, Q and set of continuous variables, X

instantaneous transitions

source mode, target mode, event name
guard: activation condition over variables
reset: function determining new values of variables
priority/weight: to resolve non-determinism

stochastic transitions

source mode, target mode, event name
rate: function defining speed of transition
guard: activation condition over variables
reset: function determining new values of variables

Semantics 84/ 155

Transition-driven stochastic hybrid automata (continued)

continuous transitions (flows)

source mode

vector specifying variables involved

Lipschitz continuous function

continuous behaviour in a mode

consider all continuous transitions in that mode

trajectory is given by solution of dX/dt =
∑

s · f (X)

instantaneous behaviour: fire when guard becomes true

stochastic behaviour: fire according to rate

product of TDSHAs

pairs of modes and union of variables
combining transitions
(with conditions on resets and initial values)

Semantics 85/ 155

Transition-driven stochastic hybrid automata (continued)

continuous transitions (flows)

source mode

vector specifying variables involved

Lipschitz continuous function

continuous behaviour in a mode

consider all continuous transitions in that mode

trajectory is given by solution of dX/dt =
∑

s · f (X)

instantaneous behaviour: fire when guard becomes true

stochastic behaviour: fire according to rate

product of TDSHAs

pairs of modes and union of variables
combining transitions
(with conditions on resets and initial values)

Semantics 86/ 155

Transition-driven stochastic hybrid automata (continued)

continuous transitions (flows)

source mode

vector specifying variables involved

Lipschitz continuous function

continuous behaviour in a mode

consider all continuous transitions in that mode

trajectory is given by solution of dX/dt =
∑

s · f (X)

instantaneous behaviour: fire when guard becomes true

stochastic behaviour: fire according to rate

product of TDSHAs

pairs of modes and union of variables
combining transitions
(with conditions on resets and initial values)

Semantics 87/ 155

Transition-driven stochastic hybrid automata (continued)

continuous transitions (flows)

source mode

vector specifying variables involved

Lipschitz continuous function

continuous behaviour in a mode

consider all continuous transitions in that mode

trajectory is given by solution of dX/dt =
∑

s · f (X)

instantaneous behaviour: fire when guard becomes true

stochastic behaviour: fire according to rate

product of TDSHAs

pairs of modes and union of variables
combining transitions
(with conditions on resets and initial values)

Semantics 88/ 155

Transition-driven stochastic hybrid automata (continued)

continuous transitions (flows)

source mode

vector specifying variables involved

Lipschitz continuous function

continuous behaviour in a mode

consider all continuous transitions in that mode

trajectory is given by solution of dX/dt =
∑

s · f (X)

instantaneous behaviour: fire when guard becomes true

stochastic behaviour: fire according to rate

product of TDSHAs

pairs of modes and union of variables
combining transitions
(with conditions on resets and initial values)

Semantics 89/ 155

Piecewise deterministic Markov processes

class of stochastic processes

continuous trajectories over subsets of R|X|

instantaneous jumps at boundaries of regions

stochastic jumps when guards are true

jumps to boundaries are prohibited

Semantics 90/ 155

Piecewise deterministic Markov processes

class of stochastic processes

continuous trajectories over subsets of R|X|

instantaneous jumps at boundaries of regions

stochastic jumps when guards are true

jumps to boundaries are prohibited

Semantics 91/ 155

Two equivalent semantics

compositional mapping to TDSHA

define TDSHA for each subcomponent (no event conditions)

define TDSHA for each sequential controller

use TDSHA product to compose into TDSHA of whole model

mapping from LTS to TDSHA

event labelled transition system over configurations

configuration: 〈Sys ��∗ Con, σ〉

state: σ : influence 7→ (influence strength, influence type)

configurations are mapped to modes

states giving ODEs which become continuous transitions(dV

dt

)
σ

=
∑{

r · JI (
−→
W)K

∣∣ iv(ι) = V , σ(ι) = (r , I (
−→
W))

}

Semantics 92/ 155

Two equivalent semantics

compositional mapping to TDSHA

define TDSHA for each subcomponent (no event conditions)

define TDSHA for each sequential controller

use TDSHA product to compose into TDSHA of whole model

mapping from LTS to TDSHA

event labelled transition system over configurations

configuration: 〈Sys ��∗ Con, σ〉

state: σ : influence 7→ (influence strength, influence type)

configurations are mapped to modes

states giving ODEs which become continuous transitions(dV

dt

)
σ

=
∑{

r · JI (
−→
W)K

∣∣ iv(ι) = V , σ(ι) = (r , I (
−→
W))

}

Semantics 93/ 155

Two equivalent semantics

compositional mapping to TDSHA

define TDSHA for each subcomponent (no event conditions)

define TDSHA for each sequential controller

use TDSHA product to compose into TDSHA of whole model

mapping from LTS to TDSHA

event labelled transition system over configurations

configuration: 〈Sys ��∗ Con, σ〉

state: σ : influence 7→ (influence strength, influence type)

configurations are mapped to modes

states giving ODEs which become continuous transitions(dV

dt

)
σ

=
∑{

r · JI (
−→
W)K

∣∣ iv(ι) = V , σ(ι) = (r , I (
−→
W))

}

Semantics 94/ 155

Two equivalent semantics

compositional mapping to TDSHA

define TDSHA for each subcomponent (no event conditions)

define TDSHA for each sequential controller

use TDSHA product to compose into TDSHA of whole model

mapping from LTS to TDSHA

event labelled transition system over configurations

configuration: 〈Sys ��∗ Con, σ〉

state: σ : influence 7→ (influence strength, influence type)

configurations are mapped to modes

states giving ODEs which become continuous transitions(dV

dt

)
σ

=
∑{

r · JI (
−→
W)K

∣∣ iv(ι) = V , σ(ι) = (r , I (
−→
W))

}

Semantics 95/ 155

Two equivalent semantics

compositional mapping to TDSHA

define TDSHA for each subcomponent (no event conditions)

define TDSHA for each sequential controller

use TDSHA product to compose into TDSHA of whole model

mapping from LTS to TDSHA

event labelled transition system over configurations

configuration: 〈Sys ��∗ Con, σ〉

state: σ : influence 7→ (influence strength, influence type)

configurations are mapped to modes

states giving ODEs which become continuous transitions(dV

dt

)
σ

=
∑{

r · JI (
−→
W)K

∣∣ iv(ι) = V , σ(ι) = (r , I (
−→
W))

}

Semantics 96/ 155

Two equivalent semantics

compositional mapping to TDSHA

define TDSHA for each subcomponent (no event conditions)

define TDSHA for each sequential controller

use TDSHA product to compose into TDSHA of whole model

mapping from LTS to TDSHA

event labelled transition system over configurations

configuration: 〈Sys ��∗ Con, σ〉

state: σ : influence 7→ (influence strength, influence type)

configurations are mapped to modes

states giving ODEs which become continuous transitions(dV

dt

)
σ

=
∑{

r · JI (
−→
W)K

∣∣ iv(ι) = V , σ(ι) = (r , I (
−→
W))

}

Semantics 97/ 155

Two equivalent semantics

compositional mapping to TDSHA

define TDSHA for each subcomponent (no event conditions)

define TDSHA for each sequential controller

use TDSHA product to compose into TDSHA of whole model

mapping from LTS to TDSHA

event labelled transition system over configurations

configuration: 〈Sys ��∗ Con, σ〉

state: σ : influence 7→ (influence strength, influence type)

configurations are mapped to modes

states giving ODEs which become continuous transitions(dV

dt

)
σ

=
∑{

r · JI (
−→
W)K

∣∣ iv(ι) = V , σ(ι) = (r , I (
−→
W))

}

Semantics 98/ 155

Two equivalent semantics

compositional mapping to TDSHA

define TDSHA for each subcomponent (no event conditions)

define TDSHA for each sequential controller

use TDSHA product to compose into TDSHA of whole model

mapping from LTS to TDSHA

event labelled transition system over configurations

configuration: 〈Sys ��∗ Con, σ〉

state: σ : influence 7→ (influence strength, influence type)

configurations are mapped to modes

states giving ODEs which become continuous transitions(dV

dt

)
σ

=
∑{

r · JI (
−→
W)K

∣∣ iv(ι) = V , σ(ι) = (r , I (
−→
W))

}

Semantics 99/ 155

Well-behaved stochastic HYPE models

PDMP definition only allow jumps to interiors of regions

finite sequences of instantaneous events in TDSHA can be
combined and mapped to a jump to an interior

avoid instantaneous Zeno behaviour: infinite sequences of
instantaneous events occurring at a time point

finite sequence of instantaneous events is delimited by
stochastic event or period of continuous evolution

we have defined an algorithm to check when a stochastic
HYPE model is well-behaved.

Semantics 100/ 155

Well-behaved stochastic HYPE models

PDMP definition only allow jumps to interiors of regions

finite sequences of instantaneous events in TDSHA can be
combined and mapped to a jump to an interior

avoid instantaneous Zeno behaviour: infinite sequences of
instantaneous events occurring at a time point

finite sequence of instantaneous events is delimited by
stochastic event or period of continuous evolution

we have defined an algorithm to check when a stochastic
HYPE model is well-behaved.

Semantics 101/ 155

Well-behaved stochastic HYPE models

PDMP definition only allow jumps to interiors of regions

finite sequences of instantaneous events in TDSHA can be
combined and mapped to a jump to an interior

avoid instantaneous Zeno behaviour: infinite sequences of
instantaneous events occurring at a time point

finite sequence of instantaneous events is delimited by
stochastic event or period of continuous evolution

we have defined an algorithm to check when a stochastic
HYPE model is well-behaved.

Semantics 102/ 155

Well-behaved stochastic HYPE models

PDMP definition only allow jumps to interiors of regions

finite sequences of instantaneous events in TDSHA can be
combined and mapped to a jump to an interior

avoid instantaneous Zeno behaviour: infinite sequences of
instantaneous events occurring at a time point

finite sequence of instantaneous events is delimited by
stochastic event or period of continuous evolution

we have defined an algorithm to check when a stochastic
HYPE model is well-behaved.

Semantics 103/ 155

Well-behaved stochastic HYPE models

PDMP definition only allow jumps to interiors of regions

finite sequences of instantaneous events in TDSHA can be
combined and mapped to a jump to an interior

avoid instantaneous Zeno behaviour: infinite sequences of
instantaneous events occurring at a time point

finite sequence of instantaneous events is delimited by
stochastic event or period of continuous evolution

we have defined an algorithm to check when a stochastic
HYPE model is well-behaved.

Bisimulations 104/ 155

Outline

1 Introduction

2 Example

3 Semantics

4 Bisimulations

5 Application: ZebraNet

Bisimulations 105/ 155

Equivalence semantics for stochastic HYPE

stochastic system bisimulation with respect to ≡ over states
(models that only differ in their controlled systems)

given an equivalence relation B ⊆ C × C

then for all (P,Q) ∈ B, σ ≡ τ , C ∈ (F/B)/ ≡,

1 for all a ∈ Ed , whenever 〈P, σ〉 a−→ 〈P ′, σ′〉 ∈ C ,

∃ 〈Q ′, τ ′〉 ∈ C with 〈Q, τ〉 a−→ 〈Q ′, τ ′〉
and whenever 〈Q, τ〉 a−→ 〈Q ′, τ ′〉 ∈ C ,

∃ 〈P ′, σ′〉 ∈ C with 〈P, σ〉 a−→ 〈P ′, σ′〉.

2 for all a ∈ Es , r(〈P, σ〉, a,C) = r(〈Q, τ〉, a,C).

notation: P ∼≡ Q

equivalence defined in terms of labelled transition system and
without reference to variable values

Bisimulations 106/ 155

Equivalence semantics for stochastic HYPE

stochastic system bisimulation with respect to ≡ over states
(models that only differ in their controlled systems)

given an equivalence relation B ⊆ C × C

then for all (P,Q) ∈ B, σ ≡ τ , C ∈ (F/B)/ ≡,

1 for all a ∈ Ed , whenever 〈P, σ〉 a−→ 〈P ′, σ′〉 ∈ C ,

∃ 〈Q ′, τ ′〉 ∈ C with 〈Q, τ〉 a−→ 〈Q ′, τ ′〉
and whenever 〈Q, τ〉 a−→ 〈Q ′, τ ′〉 ∈ C ,

∃ 〈P ′, σ′〉 ∈ C with 〈P, σ〉 a−→ 〈P ′, σ′〉.

2 for all a ∈ Es , r(〈P, σ〉, a,C) = r(〈Q, τ〉, a,C).

notation: P ∼≡ Q

equivalence defined in terms of labelled transition system and
without reference to variable values

Bisimulations 107/ 155

Equivalence semantics for stochastic HYPE

stochastic system bisimulation with respect to ≡ over states
(models that only differ in their controlled systems)

given an equivalence relation B ⊆ C × C

then for all (P,Q) ∈ B, σ ≡ τ , C ∈ (F/B)/ ≡,

1 for all a ∈ Ed , whenever 〈P, σ〉 a−→ 〈P ′, σ′〉 ∈ C ,

∃ 〈Q ′, τ ′〉 ∈ C with 〈Q, τ〉 a−→ 〈Q ′, τ ′〉
and whenever 〈Q, τ〉 a−→ 〈Q ′, τ ′〉 ∈ C ,

∃ 〈P ′, σ′〉 ∈ C with 〈P, σ〉 a−→ 〈P ′, σ′〉.

2 for all a ∈ Es , r(〈P, σ〉, a,C) = r(〈Q, τ〉, a,C).

notation: P ∼≡ Q

equivalence defined in terms of labelled transition system and
without reference to variable values

Bisimulations 108/ 155

Equivalence semantics for stochastic HYPE

stochastic system bisimulation with respect to ≡ over states
(models that only differ in their controlled systems)

given an equivalence relation B ⊆ C × C

then for all (P,Q) ∈ B, σ ≡ τ , C ∈ (F/B)/ ≡,

1 for all a ∈ Ed , whenever 〈P, σ〉 a−→ 〈P ′, σ′〉 ∈ C ,

∃ 〈Q ′, τ ′〉 ∈ C with 〈Q, τ〉 a−→ 〈Q ′, τ ′〉
and whenever 〈Q, τ〉 a−→ 〈Q ′, τ ′〉 ∈ C ,

∃ 〈P ′, σ′〉 ∈ C with 〈P, σ〉 a−→ 〈P ′, σ′〉.

2 for all a ∈ Es , r(〈P, σ〉, a,C) = r(〈Q, τ〉, a,C).

notation: P ∼≡ Q

equivalence defined in terms of labelled transition system and
without reference to variable values

Bisimulations 109/ 155

Equivalence semantics for stochastic HYPE

stochastic system bisimulation with respect to ≡ over states
(models that only differ in their controlled systems)

given an equivalence relation B ⊆ C × C

then for all (P,Q) ∈ B, σ ≡ τ , C ∈ (F/B)/ ≡,

1 for all a ∈ Ed , whenever 〈P, σ〉 a−→ 〈P ′, σ′〉 ∈ C ,

∃ 〈Q ′, τ ′〉 ∈ C with 〈Q, τ〉 a−→ 〈Q ′, τ ′〉
and whenever 〈Q, τ〉 a−→ 〈Q ′, τ ′〉 ∈ C ,

∃ 〈P ′, σ′〉 ∈ C with 〈P, σ〉 a−→ 〈P ′, σ′〉.

2 for all a ∈ Es , r(〈P, σ〉, a,C) = r(〈Q, τ〉, a,C).

notation: P ∼≡ Q

equivalence defined in terms of labelled transition system and
without reference to variable values

Bisimulations 110/ 155

Equivalence semantics for stochastic HYPE

stochastic system bisimulation with respect to ≡ over states
(models that only differ in their controlled systems)

given an equivalence relation B ⊆ C × C

then for all (P,Q) ∈ B, σ ≡ τ , C ∈ (F/B)/ ≡,

1 for all a ∈ Ed , whenever 〈P, σ〉 a−→ 〈P ′, σ′〉 ∈ C ,

∃ 〈Q ′, τ ′〉 ∈ C with 〈Q, τ〉 a−→ 〈Q ′, τ ′〉
and whenever 〈Q, τ〉 a−→ 〈Q ′, τ ′〉 ∈ C ,

∃ 〈P ′, σ′〉 ∈ C with 〈P, σ〉 a−→ 〈P ′, σ′〉.

2 for all a ∈ Es , r(〈P, σ〉, a,C) = r(〈Q, τ〉, a,C).

notation: P ∼≡ Q

equivalence defined in terms of labelled transition system and
without reference to variable values

Bisimulations 111/ 155

Equivalence semantics for stochastic HYPE

stochastic system bisimulation with respect to ≡ over states
(models that only differ in their controlled systems)

given an equivalence relation B ⊆ C × C

then for all (P,Q) ∈ B, σ ≡ τ , C ∈ (F/B)/ ≡,

1 for all a ∈ Ed , whenever 〈P, σ〉 a−→ 〈P ′, σ′〉 ∈ C ,

∃ 〈Q ′, τ ′〉 ∈ C with 〈Q, τ〉 a−→ 〈Q ′, τ ′〉
and whenever 〈Q, τ〉 a−→ 〈Q ′, τ ′〉 ∈ C ,

∃ 〈P ′, σ′〉 ∈ C with 〈P, σ〉 a−→ 〈P ′, σ′〉.

2 for all a ∈ Es , r(〈P, σ〉, a,C) = r(〈Q, τ〉, a,C).

notation: P ∼≡ Q

equivalence defined in terms of labelled transition system and
without reference to variable values

Bisimulations 112/ 155

Properties of the Bisimulation

∼≡ is a congruence

This ensures that if P and Q are uncontrolled systems, and
P ∼≡ Q, then if they are placed under the same controller
then the controlled systems P ��∗ C ∼≡ Q ��∗ C .

If P ∼≡ Q are controlled systems, in bisimilar configurations
the corresponding set of ODEs will be the same.

Bisimulations 113/ 155

Properties of the Bisimulation

∼≡ is a congruence

This ensures that if P and Q are uncontrolled systems, and
P ∼≡ Q, then if they are placed under the same controller
then the controlled systems P ��∗ C ∼≡ Q ��∗ C .

If P ∼≡ Q are controlled systems, in bisimilar configurations
the corresponding set of ODEs will be the same.

Bisimulations 114/ 155

Properties of the Bisimulation

∼≡ is a congruence

This ensures that if P and Q are uncontrolled systems, and
P ∼≡ Q, then if they are placed under the same controller
then the controlled systems P ��∗ C ∼≡ Q ��∗ C .

If P ∼≡ Q are controlled systems, in bisimilar configurations
the corresponding set of ODEs will be the same.

Bisimulations 115/ 155

Equivalence semantics for TDSHA

TDSHA labelled bisimulation

given a measurable relation B ⊆ (Q1 × Rn1)× (Q2 × Rn2)

then for all ((q1, x1), (q2, x2)) ∈ B

out1(x1) = out2(x2)

exit rates of q1 and q2 must be equal

disjunction of guards must evaluate to the same for x1 and x2

disjunction of guards must become true at the same time

for all a ∈ Ed , one step priorities must match

for all a ∈ Es , one step probabilities must match

notation: T1 ∼`
T T2

Bisimulations 116/ 155

Equivalence semantics for TDSHA

TDSHA labelled bisimulation

given a measurable relation B ⊆ (Q1 × Rn1)× (Q2 × Rn2)

then for all ((q1, x1), (q2, x2)) ∈ B

out1(x1) = out2(x2)

exit rates of q1 and q2 must be equal

disjunction of guards must evaluate to the same for x1 and x2

disjunction of guards must become true at the same time

for all a ∈ Ed , one step priorities must match

for all a ∈ Es , one step probabilities must match

notation: T1 ∼`
T T2

Bisimulations 117/ 155

Equivalence semantics for TDSHA

TDSHA labelled bisimulation

given a measurable relation B ⊆ (Q1 × Rn1)× (Q2 × Rn2)

then for all ((q1, x1), (q2, x2)) ∈ B

out1(x1) = out2(x2)

exit rates of q1 and q2 must be equal

disjunction of guards must evaluate to the same for x1 and x2

disjunction of guards must become true at the same time

for all a ∈ Ed , one step priorities must match

for all a ∈ Es , one step probabilities must match

notation: T1 ∼`
T T2

Bisimulations 118/ 155

Equivalence semantics for TDSHA

TDSHA labelled bisimulation

given a measurable relation B ⊆ (Q1 × Rn1)× (Q2 × Rn2)

then for all ((q1, x1), (q2, x2)) ∈ B

out1(x1) = out2(x2)

exit rates of q1 and q2 must be equal

disjunction of guards must evaluate to the same for x1 and x2

disjunction of guards must become true at the same time

for all a ∈ Ed , one step priorities must match

for all a ∈ Es , one step probabilities must match

notation: T1 ∼`
T T2

Bisimulations 119/ 155

Equivalence semantics for TDSHA

TDSHA labelled bisimulation

given a measurable relation B ⊆ (Q1 × Rn1)× (Q2 × Rn2)

then for all ((q1, x1), (q2, x2)) ∈ B

out1(x1) = out2(x2)

exit rates of q1 and q2 must be equal

disjunction of guards must evaluate to the same for x1 and x2

disjunction of guards must become true at the same time

for all a ∈ Ed , one step priorities must match

for all a ∈ Es , one step probabilities must match

notation: T1 ∼`
T T2

Bisimulations 120/ 155

Results

∼≡ is a congruence (under certain conditions on ≡)

if Con1 ∼≡ Con2 then Sys ��∗ init.Con1 ∼≡ Sys ��∗ init.Con2

additively equivalent: σ
.

= τ iff for all V ∈ V and f (W)

sum(σ,V , f (W)) = sum(τ,V , f (W))

where sum(σ,V , f (W)) =∑
{| r | iv(ι) = V , σ(ι) = (r , I (W)), f (W) = JI (W)K |}

P1 ∼
.
= P2 implies T(P1) ∼`

T T(P2)

Bisimulations 121/ 155

Results

∼≡ is a congruence (under certain conditions on ≡)

if Con1 ∼≡ Con2 then Sys ��∗ init.Con1 ∼≡ Sys ��∗ init.Con2

additively equivalent: σ
.

= τ iff for all V ∈ V and f (W)

sum(σ,V , f (W)) = sum(τ,V , f (W))

where sum(σ,V , f (W)) =∑
{| r | iv(ι) = V , σ(ι) = (r , I (W)), f (W) = JI (W)K |}

P1 ∼
.
= P2 implies T(P1) ∼`

T T(P2)

Bisimulations 122/ 155

Results

∼≡ is a congruence (under certain conditions on ≡)

if Con1 ∼≡ Con2 then Sys ��∗ init.Con1 ∼≡ Sys ��∗ init.Con2

additively equivalent: σ
.

= τ iff for all V ∈ V and f (W)

sum(σ,V , f (W)) = sum(τ,V , f (W))

where sum(σ,V , f (W)) =∑
{| r | iv(ι) = V , σ(ι) = (r , I (W)), f (W) = JI (W)K |}

P1 ∼
.
= P2 implies T(P1) ∼`

T T(P2)

Bisimulations 123/ 155

Results

∼≡ is a congruence (under certain conditions on ≡)

if Con1 ∼≡ Con2 then Sys ��∗ init.Con1 ∼≡ Sys ��∗ init.Con2

additively equivalent: σ
.

= τ iff for all V ∈ V and f (W)

sum(σ,V , f (W)) = sum(τ,V , f (W))

where sum(σ,V , f (W)) =∑
{| r | iv(ι) = V , σ(ι) = (r , I (W)), f (W) = JI (W)K |}

P1 ∼
.
= P2 implies T(P1) ∼`

T T(P2)

Application: ZebraNet 124/ 155

Outline

1 Introduction

2 Example

3 Semantics

4 Bisimulations

5 Application: ZebraNet

Application: ZebraNet 125/ 155

Applications of stochastic HYPE

biological systems

Repressilator: 3 gene system with inhibition

circadian clock of Ostreococcus tauri

human-constructed systems

planetary orbiter

railway crossing (train gate)

opportunistic networks

combined systems

Zebranet: MSc dissertation of Cheng Feng

Application: ZebraNet 126/ 155

Applications of stochastic HYPE

biological systems

Repressilator: 3 gene system with inhibition

circadian clock of Ostreococcus tauri

human-constructed systems

planetary orbiter

railway crossing (train gate)

opportunistic networks

combined systems

Zebranet: MSc dissertation of Cheng Feng

Application: ZebraNet 127/ 155

Applications of stochastic HYPE

biological systems

Repressilator: 3 gene system with inhibition

circadian clock of Ostreococcus tauri

human-constructed systems

planetary orbiter

railway crossing (train gate)

opportunistic networks

combined systems

Zebranet: MSc dissertation of Cheng Feng

Application: ZebraNet 128/ 155

ZebraNet modelling

animal-based opportunistic network

collect data from zebra with low human intervention
data sent from zebra to zebra, both wearing collars
mobile base station for data collection on a fixed route
high latency is tolerated but lack of delivery is not

existing simulation used to validate stochastic HYPE model1

syntactic extension to allow definition of parameterised
subcomponents and automated expansion

model elements

two-dimensional model of zebra movement
model of energy consumption for collar equipment
model of transmission protocol: direct and flooding
two-dimensional model of ferry movement

1
P. Juang et al. Energy-efficient computing for wildlife tracking: Design trade-offs and early experiences with

zebranet. ACM SIGPLAN Notices, 37:96107, 2002.

Application: ZebraNet 129/ 155

ZebraNet modelling

animal-based opportunistic network

collect data from zebra with low human intervention
data sent from zebra to zebra, both wearing collars
mobile base station for data collection on a fixed route
high latency is tolerated but lack of delivery is not

existing simulation used to validate stochastic HYPE model1

syntactic extension to allow definition of parameterised
subcomponents and automated expansion

model elements

two-dimensional model of zebra movement
model of energy consumption for collar equipment
model of transmission protocol: direct and flooding
two-dimensional model of ferry movement

1
P. Juang et al. Energy-efficient computing for wildlife tracking: Design trade-offs and early experiences with

zebranet. ACM SIGPLAN Notices, 37:96107, 2002.

Application: ZebraNet 130/ 155

ZebraNet modelling

animal-based opportunistic network

collect data from zebra with low human intervention
data sent from zebra to zebra, both wearing collars
mobile base station for data collection on a fixed route
high latency is tolerated but lack of delivery is not

existing simulation used to validate stochastic HYPE model1

syntactic extension to allow definition of parameterised
subcomponents and automated expansion

model elements

two-dimensional model of zebra movement
model of energy consumption for collar equipment
model of transmission protocol: direct and flooding
two-dimensional model of ferry movement

1
P. Juang et al. Energy-efficient computing for wildlife tracking: Design trade-offs and early experiences with

zebranet. ACM SIGPLAN Notices, 37:96107, 2002.

Application: ZebraNet 131/ 155

ZebraNet modelling

animal-based opportunistic network

collect data from zebra with low human intervention
data sent from zebra to zebra, both wearing collars
mobile base station for data collection on a fixed route
high latency is tolerated but lack of delivery is not

existing simulation used to validate stochastic HYPE model1

syntactic extension to allow definition of parameterised
subcomponents and automated expansion

model elements

two-dimensional model of zebra movement

model of energy consumption for collar equipment
model of transmission protocol: direct and flooding
two-dimensional model of ferry movement

1
P. Juang et al. Energy-efficient computing for wildlife tracking: Design trade-offs and early experiences with

zebranet. ACM SIGPLAN Notices, 37:96107, 2002.

Application: ZebraNet 132/ 155

ZebraNet modelling

animal-based opportunistic network

collect data from zebra with low human intervention
data sent from zebra to zebra, both wearing collars
mobile base station for data collection on a fixed route
high latency is tolerated but lack of delivery is not

existing simulation used to validate stochastic HYPE model1

syntactic extension to allow definition of parameterised
subcomponents and automated expansion

model elements

two-dimensional model of zebra movement
model of energy consumption for collar equipment

model of transmission protocol: direct and flooding
two-dimensional model of ferry movement

1
P. Juang et al. Energy-efficient computing for wildlife tracking: Design trade-offs and early experiences with

zebranet. ACM SIGPLAN Notices, 37:96107, 2002.

Application: ZebraNet 133/ 155

ZebraNet modelling

animal-based opportunistic network

collect data from zebra with low human intervention
data sent from zebra to zebra, both wearing collars
mobile base station for data collection on a fixed route
high latency is tolerated but lack of delivery is not

existing simulation used to validate stochastic HYPE model1

syntactic extension to allow definition of parameterised
subcomponents and automated expansion

model elements

two-dimensional model of zebra movement
model of energy consumption for collar equipment
model of transmission protocol: direct and flooding

two-dimensional model of ferry movement

1
P. Juang et al. Energy-efficient computing for wildlife tracking: Design trade-offs and early experiences with

zebranet. ACM SIGPLAN Notices, 37:96107, 2002.

Application: ZebraNet 134/ 155

ZebraNet modelling

animal-based opportunistic network

collect data from zebra with low human intervention
data sent from zebra to zebra, both wearing collars
mobile base station for data collection on a fixed route
high latency is tolerated but lack of delivery is not

existing simulation used to validate stochastic HYPE model1

syntactic extension to allow definition of parameterised
subcomponents and automated expansion

model elements

two-dimensional model of zebra movement
model of energy consumption for collar equipment
model of transmission protocol: direct and flooding
two-dimensional model of ferry movement

1
P. Juang et al. Energy-efficient computing for wildlife tracking: Design trade-offs and early experiences with

zebranet. ACM SIGPLAN Notices, 37:96107, 2002.

Application: ZebraNet 135/ 155

Mobility model of zebras

Zebras have three distinct movement patterns:
grazing, grazing-walking, and fast-moving.

Movement is also influenced by the proximity of watering holes and
the state of thirstiness of the zebra.

The HYPE model captures all these influences on the
(x , y)-position of the zebra.
Additional variables capture the speed and mode of movement, the
thirstiness and the distance from the watering hole.

Application: ZebraNet 136/ 155

Mobility model of zebras

Zebras have three distinct movement patterns:
grazing, grazing-walking, and fast-moving.

Movement is also influenced by the proximity of watering holes and
the state of thirstiness of the zebra.

The HYPE model captures all these influences on the
(x , y)-position of the zebra.
Additional variables capture the speed and mode of movement, the
thirstiness and the distance from the watering hole.

Application: ZebraNet 137/ 155

Mobility model of zebras I

The variables recording the state of the zebra with respect to its
movement include its x and y coordinates, its speed and direction
of travel, its thirstiness, the nearest water source and its current
mode of travel.

For example, the flow influencing the x-position of a zebra is
represented by the subcomponent:

ZXmove = init : (zebra x#, 0, const).ZXmove +

move off : (zebra x#, 0, const).ZXmove +

move on : (zebra x#, 1, cos(D2R(angle#)) ∗ z speed#).ZXmove

Many more events and variables are used to give a faithful
representation of zebra movement: fine-grained compositionality is
used extensively.

Application: ZebraNet 138/ 155

Mobility model of zebras I

The variables recording the state of the zebra with respect to its
movement include its x and y coordinates, its speed and direction
of travel, its thirstiness, the nearest water source and its current
mode of travel.

For example, the flow influencing the x-position of a zebra is
represented by the subcomponent:

ZXmove = init : (zebra x#, 0, const).ZXmove +

move off : (zebra x#, 0, const).ZXmove +

move on : (zebra x#, 1, cos(D2R(angle#)) ∗ z speed#).ZXmove

Many more events and variables are used to give a faithful
representation of zebra movement: fine-grained compositionality is
used extensively.

Application: ZebraNet 139/ 155

Mobility model of zebras I

The variables recording the state of the zebra with respect to its
movement include its x and y coordinates, its speed and direction
of travel, its thirstiness, the nearest water source and its current
mode of travel.

For example, the flow influencing the x-position of a zebra is
represented by the subcomponent:

ZXmove = init : (zebra x#, 0, const).ZXmove +

move off : (zebra x#, 0, const).ZXmove +

move on : (zebra x#, 1, cos(D2R(angle#)) ∗ z speed#).ZXmove

Many more events and variables are used to give a faithful
representation of zebra movement: fine-grained compositionality is
used extensively.

Application: ZebraNet 140/ 155

Mobility model of zebras II

Then, if we combine the two subcomponents of a zebra’s
movement, we get the component which represents the mobility
model of zebras:

Compmobility model
def
= ZXmove ��

∗
ZebraYmove

Application: ZebraNet 141/ 155

Controller for the mobility model

Separate controllers are defined to impose appropriate constraints
on each aspect affecting movement.

These are then combined to give the controller for the mobility
model:

Conmobility model = Conmove [N] ��
∅

Conspeed change on[N]

��
∅

Connew day [N]

where N represents the number of zebras in the model.

Application: ZebraNet 142/ 155

Controller for the mobility model

Separate controllers are defined to impose appropriate constraints
on each aspect affecting movement.

These are then combined to give the controller for the mobility
model:

Conmobility model = Conmove [N] ��
∅

Conspeed change on[N]

��
∅

Connew day [N]

where N represents the number of zebras in the model.

Application: ZebraNet 143/ 155

The trajectory of a zebra’s position in one month

Solid lines show the position of the watering hole.

Application: ZebraNet 144/ 155

Other aspects

The other elements of zebra behaviour are modelled in a similar
compositional style:

data sharing between zebras and with the ferry

battery consumption

The complete model is then the composition of the uncontrolled systems
and controllers for each element:

Zebra = Compmobility model ��∗ Compdata model ��∗ Compenergy model

Conzebra = Conmobility model ��∅ Condata model ��∅ Conenergy model

A number of zebras are then combined with the data ferry and time:

Sys = Zebra[N] ��
∗

Ferry ��
∗

Time

Con = Conzebra ��∅ Conferry ��∅ Contime

ZebraNetCtrl = Sys ��
∗

init.Con

Application: ZebraNet 145/ 155

Other aspects

The other elements of zebra behaviour are modelled in a similar
compositional style:

data sharing between zebras and with the ferry

battery consumption

The complete model is then the composition of the uncontrolled systems
and controllers for each element:

Zebra = Compmobility model ��∗ Compdata model ��∗ Compenergy model

Conzebra = Conmobility model ��∅ Condata model ��∅ Conenergy model

A number of zebras are then combined with the data ferry and time:

Sys = Zebra[N] ��
∗

Ferry ��
∗

Time

Con = Conzebra ��∅ Conferry ��∅ Contime

ZebraNetCtrl = Sys ��
∗

init.Con

Application: ZebraNet 146/ 155

Other aspects

The other elements of zebra behaviour are modelled in a similar
compositional style:

data sharing between zebras and with the ferry

battery consumption

The complete model is then the composition of the uncontrolled systems
and controllers for each element:

Zebra = Compmobility model ��∗ Compdata model ��∗ Compenergy model

Conzebra = Conmobility model ��∅ Condata model ��∅ Conenergy model

A number of zebras are then combined with the data ferry and time:

Sys = Zebra[N] ��
∗

Ferry ��
∗

Time

Con = Conzebra ��∅ Conferry ��∅ Contime

ZebraNetCtrl = Sys ��
∗

init.Con

Application: ZebraNet 147/ 155

Results

The resulting model is 440 lines of HYPE definitions, compared
with 5941 lines of code in C in the original ZNetSim model.

Moreover it was developed in less than three weeks.

Unfortunately the model suffers from flow and event explosion,
meaning that computationally it is extremely expensive to simulate
in the SimHyA tool.

The parameterised nature of the model means that we can
represent arbitrary numbers of zebras but currently the simulation
is limited to 6 zebras.

We compared the results with the original ZNetSim model and
conducted some experiments of our own.

Application: ZebraNet 148/ 155

Results

The resulting model is 440 lines of HYPE definitions, compared
with 5941 lines of code in C in the original ZNetSim model.

Moreover it was developed in less than three weeks.

Unfortunately the model suffers from flow and event explosion,
meaning that computationally it is extremely expensive to simulate
in the SimHyA tool.

The parameterised nature of the model means that we can
represent arbitrary numbers of zebras but currently the simulation
is limited to 6 zebras.

We compared the results with the original ZNetSim model and
conducted some experiments of our own.

Application: ZebraNet 149/ 155

Results

The resulting model is 440 lines of HYPE definitions, compared
with 5941 lines of code in C in the original ZNetSim model.

Moreover it was developed in less than three weeks.

Unfortunately the model suffers from flow and event explosion,
meaning that computationally it is extremely expensive to simulate
in the SimHyA tool.

The parameterised nature of the model means that we can
represent arbitrary numbers of zebras but currently the simulation
is limited to 6 zebras.

We compared the results with the original ZNetSim model and
conducted some experiments of our own.

Application: ZebraNet 150/ 155

Results

The resulting model is 440 lines of HYPE definitions, compared
with 5941 lines of code in C in the original ZNetSim model.

Moreover it was developed in less than three weeks.

Unfortunately the model suffers from flow and event explosion,
meaning that computationally it is extremely expensive to simulate
in the SimHyA tool.

The parameterised nature of the model means that we can
represent arbitrary numbers of zebras but currently the simulation
is limited to 6 zebras.

We compared the results with the original ZNetSim model and
conducted some experiments of our own.

Application: ZebraNet 151/ 155

Results

The resulting model is 440 lines of HYPE definitions, compared
with 5941 lines of code in C in the original ZNetSim model.

Moreover it was developed in less than three weeks.

Unfortunately the model suffers from flow and event explosion,
meaning that computationally it is extremely expensive to simulate
in the SimHyA tool.

The parameterised nature of the model means that we can
represent arbitrary numbers of zebras but currently the simulation
is limited to 6 zebras.

We compared the results with the original ZNetSim model and
conducted some experiments of our own.

Application: ZebraNet 152/ 155

Comparison of success rate under infinite storage and
bandwidth

Application: ZebraNet 153/ 155

Comparison of success rate under constrained storage and
bandwidth

Application: ZebraNet 154/ 155

Data collected by protocol

Application: ZebraNet 155/ 155

Data collected with different ranges for the mobile base
station

	Introduction
	Example
	Semantics
	Bisimulations
	Application: ZebraNet

