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Introduction

Hybrid systems, combining continuous and discrete behaviour,
arise in several application domains e.g. manufacturing systems,
genetic networks etc.

We were motivated by our success with PEPA, a stochastic process
algebra that models discrete state systems but which nevertheless
supports fluid approximation techniques.

From this experience we believed that it should be possible to
separate the implementation details of the continuous behaviour
from the specification of the influences at work on continuous
system variables.

We have also been motivated by incorporating more detailed
representation of space within our process algebra models.
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Other formal approaches to hybrid systems

Hybrid automata are a well-established approach to modelling
hybrid systems which are supported by a number of tools and
analysis techniques. Their drawbacks are that they are graphical
rather than textual, and the approach is not generally
compositional.

There have also been a number of other process algebras for hybrid
systems:

ACPsrt
hs — Bergstra and Middelburg

HyPA — Cuijpers and Reniers

hybrid χ — van Beek et al

φ-calculus — Rounds and Song

These take a coarse-grained approach, with ODEs embedded
within the syntax.
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Introduction to Stochastic HYPE

behaviours to be included

discrete behaviour: instantaneous events

continuous behaviour: ordinary differentials equations (ODEs)

stochastic behaviour: exponentially-distributed durations

process algebra approach

formal languages for expressing concurrency

compositional semantics

notions of equivalence

the original definition of HYPE

only discrete and continuous behaviour

operational semantics define labelled transition system

mapping from labelled transition system to hybrid automaton
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HYPE actions

We distinguish two types of actions in a system:

events — instantaneous, discrete changes

a ∈ E

Each event is associated with an event condition: activation
conditions and variable resets.

activities — influences on a continuous aspect of system
behaviour, also termed flows

α ∈ A α(~X ) = (ι, r , I (~X ))

where

~X are formal parameters,
ι is the influence name and r is its rate,
I (~X ) is the influence type, i.e. JI (~X )K = f (~X ).
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Language considerations: ODEs versus flows

notation: V, a set of continuous variables

monolithic ODEs in existing hybrid process algebras

A
def
= . . . [dVdt = f (V)] . . .

flows in HYPE (Wj ⊆ V)

A1
def
= . . . (ι1, r1, I1(W1)) . . .

...
...

...

An
def
= . . . (ιn, rn, In(Wn)) . . .

and
dV

dt
=
∑
{rj .Ij(Wj) | iv(ιj) = V , . . . }
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Stochastic HYPE

In addition to the (instantaneous) events and activities, we now
also allow stochastic events.

ā ∈ E

Previously in HYPE we allowed non-urgent transitions to be
specified with the event condition ⊥.

This is now generalised to events not triggered by system variable
values but according to a random variable, which may depend on
the value of system variables.
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Stochastic HYPE model I

Subcomponents

S ::= a : α.Cs | ā : α.Cs | S + S

where a ∈ Ed , ā ∈ Es , Ed ∪ Es = E , α ∈ Act

subcomponent names: Cs(
−→
X ) = S

Components

P ::= Cs(
−→
X ) | C (

−→
X ) | P ��

L
P L ⊆ E

component names: C (
−→
X ) = P
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where a ∈ Ed , ā ∈ Es , Ed ∪ Es = E , α ∈ Act

subcomponent names: Cs(
−→
X ) = S

Components

P ::= Cs(
−→
X ) | C (

−→
X ) | P ��

L
P L ⊆ E

component names: C (
−→
X ) = P



Introduction 32/ 155

Stochastic HYPE model I

Subcomponents

S ::= a : α.Cs | ā : α.Cs | S + S
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Stochastic HYPE model II

Uncontrolled System

Σ ::= Cs(
−→
V ) | C (

−→
V ) | Σ ��

L
Σ L ⊆ E

where
−→
V are system variables (cf.

−→
X of C or Cs).

Controllers only have events:

M ::= a.M | 0 | M + M a ∈ E , L ⊆ E

Con ::= M | Con ��
L

Con.

A Controlled System is

ConSys ::= Σ ��
L

init.Con L ⊆ E .
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Stochastic HYPE model III

uncontrolled system controllers/sequencers(
C1(V) ��∗ · · · ��∗ Cn(V)

)
��∗ init.

(
Con1 ��

L2
· · · ��

Lm
Conm

)
well-defined subcomponent

C (V)
def
=
∑
j

aj : αj .C (V) + init : α .C (V)

events have event conditions: guards/durations and resets

ec(aj) = (g(V),V ′ = g ′(V)) with g : R|V| → {true, false} discrete

ec(aj) = (f (V),V ′ = f ′(V)) with f : R|V| → [0,∞) stochastic
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Simple Example: shuttle bus

We consider the simple example of an idealised shuttle bus which
serves two stops, X 0 and X 1.

When the shuttle bus arrives at one stop, it will stop for a while,
say 5 minutes, and then move to the other stop. Thus, there are
two flows influencing the shuttle bus. The first is the time flow and
the other influences the position of the shuttle bus.
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Shuttle bus example

We represent the two flows by two subcomponents below:

Movement = init : (x , 0, const).Movement

+ toX0 : (x ,−s, const).Movement

+ toX1 : (x , s, const).Movement

+ stop : (x , 0, const).Movement

Time = init : (t, 1, const).Time

In Movement, there are three distinct activities:

(x , 0, const) — stopped at a station;

(x ,−s, const) — travelling from X 1 to X 0; and

(x , s, const) — travelling from X 0 to X 1.
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Shuttle bus example: uncontrolled system

The uncontrolled system is constructed by the combination of
subsystems:

Sys def
= Movement ��

init
Time

Note that no causal or temporal constraints on the events have
been imposed yet (hence ”uncontrolled”).

For instance, we need to specify that the shuttle bus can only
move to X 1 when it has previously moved to X 0 and stopped for 5
minutes.
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Shuttle bus example: controller

Conmovement = stop.toX1.stop.toX0.Conmovement

Controllers consist of only event prefixes, but these may be
affected by the state of the system through event conditions.

The controlled system is constructed from synchronization of the
controller and the uncontrolled system:

ShuttleBusCtrl = Sys ��
M

init.Conmovement

with M = {init, toX0, toX1, stop}.
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Influences and event conditions

We need to link each influence with an actual variable, e.g.

iv(x) = Pos, iv(t) = T

where Pos captures the position of the shuttle bus, T , the current
time. In this case we define the influence types as const = 1.

We also define the event conditions ec to trigger each event:

ec(init) = (true,Pos ′ = X0 ∧ T ′ = 0)

ec(stop) = (Pos ≤ X0 ∨ Pos ≥ X1,ArrivalTime ′ = Time)

ec(toX1) = (Pos ≤ X0 ∧ T − ArrivalTime == five min, true)

ec(toX0) = (f = e−5(T−ArrivalTime), true)
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Semantics for HYPE

HYPE is given a structured operational semantics, in terms of
system configurations where (broadly speaking) a configuration is a
set of influences currently at play in the system.

This gives us a semantics which allows us to reason about models
and compare them in terms of bisimulation equivalence.

It does not give us a means to execute models as the
implementation details of influence definitions and event conditions
are not captured.

To get an executable interpretation of a model we map to a form
of hybrid automaton:
Transition-Driven Stochastic Hybrid Automata (TDSHA),
which are themselves given a semantics in terms of
Piecewise Deterministic Markov Processes (PDMP).
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Operational semantics

Prefix with
influence: 〈

a : (ι, r , I ).E , σ
〉 a−→

〈
E , σ[ι 7→ (r , I )]

〉
Prefix without
influence: 〈

a.E , σ
〉 a−→

〈
E , σ

〉
Choice:

〈
E , σ

〉 a−→
〈
E ′, σ′

〉〈
E + F , σ

〉 a−→
〈
E ′, σ′

〉 〈
F , σ

〉 a−→
〈
F ′, σ′

〉〈
E + F , σ

〉 a−→
〈
F ′, σ′

〉
Constant:

〈
E , σ

〉 a−→
〈
E ′, σ′

〉〈
A, σ

〉 a−→
〈
E ′, σ′

〉 (A
def
= E )
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Operational semantics (continued)

Parallel without
synchronisation:

〈
E , σ

〉 a−→
〈
E ′, σ′

〉〈
E ��

M
F , σ

〉 a−→
〈
E ′ ��

M
F , σ′

〉 a 6∈ M

〈
F , σ

〉 a−→
〈
F ′, σ′

〉〈
E ��

M
F , σ

〉 a−→
〈
E ��

M
F ′, σ′

〉 a 6∈ M

Parallel with
synchronisation:

〈
E , σ

〉 a−→
〈
E ′, τ

〉 〈
F , σ

〉 a−→
〈
F ′, τ ′

〉〈
E ��

M
F , σ

〉 a−→
〈
E ′ ��

M
F ′, Γ(σ, τ, τ ′)

〉
a ∈ M, Γ defined
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Operational semantics (continued)

updating function: σ[ι 7→ (r , I )]

σ[ι 7→ (r , I )](x) =

{
(r , I ) if x = ι

σ(x) otherwise

change identifying function: Γ : S × S × S → S

(Γ(σ, τ, τ ′))(ι) =


τ(ι) if σ(ι) = τ ′(ι)

τ ′(ι) if σ(ι) = τ(ι)

undefined otherwise

Γ is defined for all well-defined stochastic HYPE models

syntactic restrictions on influences and events
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Transition-driven stochastic hybrid automata

TDSHA: transition-driven stochastic hybrid automata
⊆ PDMP: piecewise deterministic Markov processes

set of modes, Q and set of continuous variables, X

instantaneous transitions

source mode, target mode, event name
guard: activation condition over variables
reset: function determining new values of variables
priority/weight: to resolve non-determinism

stochastic transitions

source mode, target mode, event name
rate: function defining speed of transition
guard: activation condition over variables
reset: function determining new values of variables
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Transition-driven stochastic hybrid automata (continued)

continuous transitions (flows)

source mode

vector specifying variables involved

Lipschitz continuous function

continuous behaviour in a mode

consider all continuous transitions in that mode

trajectory is given by solution of dX/dt =
∑

s · f (X)

instantaneous behaviour: fire when guard becomes true

stochastic behaviour: fire according to rate

product of TDSHAs

pairs of modes and union of variables
combining transitions
(with conditions on resets and initial values)
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Transition-driven stochastic hybrid automata (continued)
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Piecewise deterministic Markov processes

class of stochastic processes

continuous trajectories over subsets of R|X|

instantaneous jumps at boundaries of regions

stochastic jumps when guards are true

jumps to boundaries are prohibited
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Two equivalent semantics

compositional mapping to TDSHA

define TDSHA for each subcomponent (no event conditions)

define TDSHA for each sequential controller

use TDSHA product to compose into TDSHA of whole model

mapping from LTS to TDSHA

event labelled transition system over configurations

configuration: 〈Sys ��∗ Con, σ〉

state: σ : influence 7→ (influence strength, influence type)

configurations are mapped to modes

states giving ODEs which become continuous transitions(dV

dt

)
σ

=
∑{

r · JI (
−→
W )K

∣∣ iv(ι) = V , σ(ι) = (r , I (
−→
W ))

}
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Well-behaved stochastic HYPE models

PDMP definition only allow jumps to interiors of regions

finite sequences of instantaneous events in TDSHA can be
combined and mapped to a jump to an interior

avoid instantaneous Zeno behaviour: infinite sequences of
instantaneous events occurring at a time point

finite sequence of instantaneous events is delimited by
stochastic event or period of continuous evolution

we have defined an algorithm to check when a stochastic
HYPE model is well-behaved.



Semantics 100/ 155

Well-behaved stochastic HYPE models

PDMP definition only allow jumps to interiors of regions

finite sequences of instantaneous events in TDSHA can be
combined and mapped to a jump to an interior

avoid instantaneous Zeno behaviour: infinite sequences of
instantaneous events occurring at a time point

finite sequence of instantaneous events is delimited by
stochastic event or period of continuous evolution

we have defined an algorithm to check when a stochastic
HYPE model is well-behaved.



Semantics 101/ 155

Well-behaved stochastic HYPE models

PDMP definition only allow jumps to interiors of regions

finite sequences of instantaneous events in TDSHA can be
combined and mapped to a jump to an interior

avoid instantaneous Zeno behaviour: infinite sequences of
instantaneous events occurring at a time point

finite sequence of instantaneous events is delimited by
stochastic event or period of continuous evolution

we have defined an algorithm to check when a stochastic
HYPE model is well-behaved.



Semantics 102/ 155

Well-behaved stochastic HYPE models

PDMP definition only allow jumps to interiors of regions

finite sequences of instantaneous events in TDSHA can be
combined and mapped to a jump to an interior

avoid instantaneous Zeno behaviour: infinite sequences of
instantaneous events occurring at a time point

finite sequence of instantaneous events is delimited by
stochastic event or period of continuous evolution

we have defined an algorithm to check when a stochastic
HYPE model is well-behaved.



Semantics 103/ 155

Well-behaved stochastic HYPE models

PDMP definition only allow jumps to interiors of regions

finite sequences of instantaneous events in TDSHA can be
combined and mapped to a jump to an interior

avoid instantaneous Zeno behaviour: infinite sequences of
instantaneous events occurring at a time point

finite sequence of instantaneous events is delimited by
stochastic event or period of continuous evolution

we have defined an algorithm to check when a stochastic
HYPE model is well-behaved.



Bisimulations 104/ 155

Outline

1 Introduction

2 Example

3 Semantics

4 Bisimulations

5 Application: ZebraNet



Bisimulations 105/ 155

Equivalence semantics for stochastic HYPE

stochastic system bisimulation with respect to ≡ over states
(models that only differ in their controlled systems)

given an equivalence relation B ⊆ C × C

then for all (P,Q) ∈ B, σ ≡ τ , C ∈ (F/B)/ ≡,

1 for all a ∈ Ed , whenever 〈P, σ〉 a−→ 〈P ′, σ′〉 ∈ C ,

∃ 〈Q ′, τ ′〉 ∈ C with 〈Q, τ〉 a−→ 〈Q ′, τ ′〉
and whenever 〈Q, τ〉 a−→ 〈Q ′, τ ′〉 ∈ C ,

∃ 〈P ′, σ′〉 ∈ C with 〈P, σ〉 a−→ 〈P ′, σ′〉.

2 for all a ∈ Es , r(〈P, σ〉, a,C ) = r(〈Q, τ〉, a,C ).

notation: P ∼≡ Q

equivalence defined in terms of labelled transition system and
without reference to variable values
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then for all (P,Q) ∈ B, σ ≡ τ , C ∈ (F/B)/ ≡,

1 for all a ∈ Ed , whenever 〈P, σ〉 a−→ 〈P ′, σ′〉 ∈ C ,

∃ 〈Q ′, τ ′〉 ∈ C with 〈Q, τ〉 a−→ 〈Q ′, τ ′〉
and whenever 〈Q, τ〉 a−→ 〈Q ′, τ ′〉 ∈ C ,

∃ 〈P ′, σ′〉 ∈ C with 〈P, σ〉 a−→ 〈P ′, σ′〉.

2 for all a ∈ Es , r(〈P, σ〉, a,C ) = r(〈Q, τ〉, a,C ).

notation: P ∼≡ Q

equivalence defined in terms of labelled transition system and
without reference to variable values
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Properties of the Bisimulation

∼≡ is a congruence

This ensures that if P and Q are uncontrolled systems, and
P ∼≡ Q, then if they are placed under the same controller
then the controlled systems P ��∗ C ∼≡ Q ��∗ C .

If P ∼≡ Q are controlled systems, in bisimilar configurations
the corresponding set of ODEs will be the same.
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Equivalence semantics for TDSHA

TDSHA labelled bisimulation

given a measurable relation B ⊆ (Q1 × Rn1)× (Q2 × Rn2)

then for all ((q1, x1), (q2, x2)) ∈ B

out1(x1) = out2(x2)

exit rates of q1 and q2 must be equal

disjunction of guards must evaluate to the same for x1 and x2

disjunction of guards must become true at the same time

for all a ∈ Ed , one step priorities must match

for all a ∈ Es , one step probabilities must match

notation: T1 ∼`
T T2
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Results

∼≡ is a congruence (under certain conditions on ≡)

if Con1 ∼≡ Con2 then Sys ��∗ init.Con1 ∼≡ Sys ��∗ init.Con2

additively equivalent: σ
.

= τ iff for all V ∈ V and f (W)

sum(σ,V , f (W)) = sum(τ,V , f (W))

where sum(σ,V , f (W )) =∑
{| r | iv(ι) = V , σ(ι) = (r , I (W )), f (W) = JI (W )K |}

P1 ∼
.
= P2 implies T(P1) ∼`

T T(P2)
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Applications of stochastic HYPE

biological systems

Repressilator: 3 gene system with inhibition

circadian clock of Ostreococcus tauri

human-constructed systems

planetary orbiter

railway crossing (train gate)

opportunistic networks

combined systems

Zebranet: MSc dissertation of Cheng Feng
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ZebraNet modelling

animal-based opportunistic network

collect data from zebra with low human intervention
data sent from zebra to zebra, both wearing collars
mobile base station for data collection on a fixed route
high latency is tolerated but lack of delivery is not

existing simulation used to validate stochastic HYPE model1

syntactic extension to allow definition of parameterised
subcomponents and automated expansion

model elements

two-dimensional model of zebra movement
model of energy consumption for collar equipment
model of transmission protocol: direct and flooding
two-dimensional model of ferry movement

1
P. Juang et al. Energy-efficient computing for wildlife tracking: Design trade-offs and early experiences with

zebranet. ACM SIGPLAN Notices, 37:96107, 2002.
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Mobility model of zebras

Zebras have three distinct movement patterns:
grazing, grazing-walking, and fast-moving.

Movement is also influenced by the proximity of watering holes and
the state of thirstiness of the zebra.

The HYPE model captures all these influences on the
(x , y)-position of the zebra.
Additional variables capture the speed and mode of movement, the
thirstiness and the distance from the watering hole.



Application: ZebraNet 136/ 155

Mobility model of zebras

Zebras have three distinct movement patterns:
grazing, grazing-walking, and fast-moving.

Movement is also influenced by the proximity of watering holes and
the state of thirstiness of the zebra.

The HYPE model captures all these influences on the
(x , y)-position of the zebra.
Additional variables capture the speed and mode of movement, the
thirstiness and the distance from the watering hole.



Application: ZebraNet 137/ 155

Mobility model of zebras I

The variables recording the state of the zebra with respect to its
movement include its x and y coordinates, its speed and direction
of travel, its thirstiness, the nearest water source and its current
mode of travel.

For example, the flow influencing the x-position of a zebra is
represented by the subcomponent:

ZXmove = init : (zebra x#, 0, const).ZXmove +

move off : (zebra x#, 0, const).ZXmove +

move on : (zebra x#, 1, cos(D2R(angle#)) ∗ z speed#).ZXmove

Many more events and variables are used to give a faithful
representation of zebra movement: fine-grained compositionality is
used extensively.
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Mobility model of zebras II

Then, if we combine the two subcomponents of a zebra’s
movement, we get the component which represents the mobility
model of zebras:

Compmobility model
def
= ZXmove ��

∗
ZebraYmove
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Controller for the mobility model

Separate controllers are defined to impose appropriate constraints
on each aspect affecting movement.

These are then combined to give the controller for the mobility
model:

Conmobility model = Conmove [N] ��
∅

Conspeed change on[N]

��
∅

Connew day [N]

where N represents the number of zebras in the model.
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The trajectory of a zebra’s position in one month

Solid lines show the position of the watering hole.
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Other aspects

The other elements of zebra behaviour are modelled in a similar
compositional style:

data sharing between zebras and with the ferry

battery consumption

The complete model is then the composition of the uncontrolled systems
and controllers for each element:

Zebra = Compmobility model ��∗ Compdata model ��∗ Compenergy model

Conzebra = Conmobility model ��∅ Condata model ��∅ Conenergy model

A number of zebras are then combined with the data ferry and time:

Sys = Zebra[N] ��
∗

Ferry ��
∗

Time

Con = Conzebra ��∅ Conferry ��∅ Contime

ZebraNetCtrl = Sys ��
∗

init.Con
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Results

The resulting model is 440 lines of HYPE definitions, compared
with 5941 lines of code in C in the original ZNetSim model.

Moreover it was developed in less than three weeks.

Unfortunately the model suffers from flow and event explosion,
meaning that computationally it is extremely expensive to simulate
in the SimHyA tool.

The parameterised nature of the model means that we can
represent arbitrary numbers of zebras but currently the simulation
is limited to 6 zebras.

We compared the results with the original ZNetSim model and
conducted some experiments of our own.
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Comparison of success rate under infinite storage and
bandwidth
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Comparison of success rate under constrained storage and
bandwidth
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Data collected by protocol
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Data collected with different ranges for the mobile base
station
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