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Process Algebra

Models consist of agents which engage in actions.

α.P
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agent/
component

The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

Process algebra model Labelled transition system-
SOS rules
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Example

Consider a web server which offers html pages for download:

Server
def
= get.download .rel .Server

Its clients might be web browsers, in a domain with a local cache of
frequently requested pages. Thus any display request might result
in an access to the server or in a page being loaded from the cache.

Browser
def
= display .(cache.Browser + get.download .rel .Browser)

A simple version of the Web can be considered to be the
interaction of these components:

WEB
def
=
(
Browser ‖ Browser

)
| Server
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Qualitative Analysis

The labelled transition system underlying a process algebra
model can be used for functional verification e.g.: reachability
analysis, specification matching and model checking.

Will the system arrive
in a particular state?
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Stochastic process algebras

Process algebras where models are decorated with quantitative
information used to generate a stochastic process are stochastic
process algebras (SPA).
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Interplay between process algebra and Markov process

The theoretical development underpinning PEPA has focused
on the interplay between the process algebra and the
underlying mathematical structure, the Markov process.

From the process algebra side the Markov chain had a
profound influence on the design of the language and in
particular on the interactions between components.

From the Markov chain perspective the process algebra
structure has been exploited to find aspects of independence
even between interacting components.
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Performance Evaluation Process Algebra

Models are constructed from components which engage in
activities.

(α, r).P
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�* 6 H
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action type
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activity rate
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exponential distribution)

component/
derivative

The language is used to generate a CTMC for performance
modelling.
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LABELLED
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CTMC Q- -

SOS rules state transition

diagram
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PEPA

S ::= (α, r).S | S + S | A
P ::= S | P ��

L
P | P/L

PREFIX: (α, r).S designated first action

CHOICE: S + S competing components

CONSTANT: A
def
= S assigning names

COOPERATION: P ��
L
P α /∈ L individual actions

α ∈ L shared actions

HIDING: P/L abstraction α ∈ L⇒ α→ τ
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Example: Browsers, server and download

Server
def
= (get,>).(download , µ).(rel ,>).Server

Browser
def
= (display , pλ).(get, g).(download ,>).(rel , r).Browser

+ (display , (1− p)λ).(cache,m).Browser

WEB
def
=

(
Browser ‖ Browser

)
��
L
Server

where L = {get, download , rel}
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PEPA activities and rates

When enabled an activity, a = (α, λ), will delay for a period
determined by its associated distribution function, i.e. the
probability that the activity a happens within a period of time of
length t is Fa(t) = 1− e−λt .
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PEPA activities and rates

We can think of this as the activity setting a timer whenever
it becomes enabled.

The time allocated to the timer is determined by the rate of
the activity.

If several activities are enabled at the same time each will
have its own associated timer.

When the first timer finishes that activity takes place—the
activity is said to complete or succeed.

This means that the activity is considered to “happen”: an
external observer will witness the event of activity of type α.

An activity may be preempted, or aborted, if another one
completes first.
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external observer will witness the event of activity of type α.

An activity may be preempted, or aborted, if another one
completes first.
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PEPA and Markov processes

In a PEPA model if we define the stochastic process X (t), such
that X (t) = C i indicates that the system behaves as component
C i at time t, then X (t) is a Markov process which can be
characterised by a matrix, QQQ.

A stationary or equilibrium probability distribution, π(·), exists for
every time-homogeneous irreducible Markov process whose states
are all positive-recurrent.

This distribution is found by solving the global balance equation

πQQQ = 0

subject to the normalisation condition∑
π(C i ) = 1.
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PEPA and time

All PEPA models are time-homogeneous since all activities are
time-homogeneous: the rate and type of activities enabled by a
component are independent of time.
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PEPA and irreducibility and positive-recurrence

The other conditions, irreducibility and positive-recurrent states,
are easily expressed in terms of the derivation graph of the PEPA
model.

We only consider PEPA models with a finite number of states so if
the model is irreducible then all states must be positive-recurrent
i.e. the derivation graph is strongly connected.

In terms of the PEPA model this means that all behaviours of the
system must be recurrent; in particular, for every choice, whichever
path is chosen it must eventually return to the point where the
choice can be made again, possibly with a different outcome.
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Structured Operational Semantics

PEPA is defined using a Plotkin-style structured operational
semantics (a “small step” semantics).

In this style of semantics we build a labelled transition system to
capture the possible evolutions or derivations of a model.

A labelled transition system is a set of process terms P, a set of
action labels A and a relation P ×A× P given by the operational
rules.

In the rules, the derivation below the line can be inferred from the
premise above the line.

Note that in this semantics the rate information is only treated as
an additional label.
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Structured Operational Semantics: Prefix and Choice

Prefix

(α, r).E
(α,r)
−−−→ E

Choice

E
(α,r)
−−−→ E ′

E + F
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Structured Operational Semantics: Cooperation (α /∈ L)
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Structured Operational Semantics: Cooperation (α ∈ L)

Cooperation
E

(α,r1)
−−−→ E ′ F

(α,r2)
−−−→ F ′

E ��
L

F
(α,R)
−−−→ E ′ ��

L
F ′

(α ∈ L)

where R =
r1

rα(E )

r2
rα(F )

min(rα(E ), rα(F ))
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Apparent Rate

rα((β, r).P) =

{
r β = α
0 β 6= α

rα(P + Q) = rα(P) + rα(Q)

rα(A) = rα(P) where A
def
= P

rα(P ��
L
Q) =

{
rα(P) + rα(Q) α /∈ L
min(rα(P), rα(Q)) α ∈ L

rα(P/L) =

{
rα(P) α /∈ L
0 α ∈ L
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Structured Operational Semantics: Hiding

Hiding

E
(α,r)
−−−→ E ′

E/L
(α,r)
−−−→ E ′/L

(α /∈ L)

E
(α,r)
−−−→ E ′

E/L
(τ,r)
−−−→ E ′/L

(α ∈ L)
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Structured Operational Semantics: Hiding
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Structured Operational Semantics: Constants

Constant

E
(α,r)−→ E ′

A
(α,r)−→ E ′

(A
def
= E )
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Properties of the definition (1)

PEPA has no “nil” (a deadlocked process).

This is because the PEPA language is intended for modelling
non-stop processes (such as Web servers, operating systems, or
manufacturing processes) rather than for modelling terminating
processes (a compilation, a sorting routine, and so forth).
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Creating a deadlocked process

When we are interested in transient behaviour we use the
deadlocked process Stop to signal a component which performs no
further actions.

Stop
def
=

((
(a, r).Stop

)
��
{a,b}

(
(b, r).Stop

))
/{ a, b }
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Properties of the definition (2)

Cooperation in PEPA is multi-way. Two, three, four or more
partners may cooperate, and they all need to synchronise for the
activity to happen.

This comes from the fact that synchronisation has the form
a, a→ a (as in CSP) instead of a, ā→ τ (as in CCS and the
π-calculus).

This is used to have “witnesses” to events (known as stochastic
probes).
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Properties of the definition (3)

Because of its mapping onto a CTMC, PEPA has an
interleaving semantics.

Other modelling formalisms based on CTMCs are also based
on an interleaving semantics (e.g. Generalised Stochastic Petri
nets).

As we have seen a continuous time Markov chain (CTMC) is
generated from a PEPA model via its structured operational
semantics.

Linear algebra is used to solve the model in terms of
equilibrium behaviour.

The resulting probability distribution is seldom the ultimate
goal of performance analysis; a modeller derives performance
measures from this distribution via a reward structure.
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Integrated analysis

Qualitative verification can now be complemented by quantitative
verification.
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Integrated analysis: Reachability analysis

How long will it take
for the system to arrive

in a particular state?

f f
f f f fif

f f
- - -

?
��
��

���

-

���
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Integrated analysis: Specification matching

With what probability
does system behaviour
match its specification?

f
f f f

f
-

6

-

?

�
�
��

∼=
?

f f
f f f ff

f f
- - -

?
��
��

���

-
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Integrated analysis: Specification matching

Does the “frequency
profile” of the

system match that
of the specification?

f
f f f0.5

f 0.5

-

6

-
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�
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f f f f0.6

f0.4f f
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Integrated analysis: Model checking

Does a given property φ
hold within the system

with a given probability?
φ
��

��
��
��

��

PPPPPPPPPP
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Integrated analysis: Model checking

For a given starting state
how long is it until

a given property φ holds?
φ
��

��
��
��

��

PPPPPPPPPP
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The Importance of Being Exponential

@
@
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@
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@@R

Stop ‖ (β, s).Stop (α, r).Stop ‖ Stop

Stop ‖ Stop

(α, r).Stop ‖ (β, s).Stop

(β, s)

(α, r) (β, s)

(α, r) (β, s)

(α, r)
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The Importance of Being Exponential
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The Importance of Being Exponential
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The Importance of Being Exponential

@
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Stop ‖ Stop
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The memoryless property of the negative exponential distribution
means that residual times do not need to be recorded.
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The exponential distribution and the expansion law

We retain the expansion law of classical process algebra:

(α, r).Stop ‖ (β, s).Stop =

(α, r).(β, s).(Stop ‖ Stop) + (β, s).(α, r).(Stop ‖ Stop)

only if the negative exponential distribution is used.
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Parallel Composition

Parallel composition is the basis of the compositionality in a
process algebra

— it defines which components interact and
how.

In classical process algebra is it often associated with
communication.

When the activities of the process algebra have a duration the
definition of parallel composition becomes more complex.

The issue of what it means for two timed activities to
synchronise is a vexed one....
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Who Synchronises...?

Even within classical process algebras there is variation in the
interpretation of parallel composition:

CCS-style

Actions are partitioned into
input and output pairs.
Communication or
synchronisation takes places
between conjugate pairs.
The resulting action has
silent type τ .

CSP-style

No distinction between input
and output actions.
Communication or
synchronisation takes place
on the basis of shared names.
The resulting action has the
same name.

Most stochastic process algebras adopt CSP-style synchronisation.



The nature of synchronisation 111/ 126

Who Synchronises...?

Even within classical process algebras there is variation in the
interpretation of parallel composition:

CCS-style

Actions are partitioned into
input and output pairs.
Communication or
synchronisation takes places
between conjugate pairs.
The resulting action has
silent type τ .

CSP-style

No distinction between input
and output actions.
Communication or
synchronisation takes place
on the basis of shared names.
The resulting action has the
same name.

Most stochastic process algebras adopt CSP-style synchronisation.



The nature of synchronisation 112/ 126

Who Synchronises...?

Even within classical process algebras there is variation in the
interpretation of parallel composition:

CCS-style

Actions are partitioned into
input and output pairs.
Communication or
synchronisation takes places
between conjugate pairs.
The resulting action has
silent type τ .

CSP-style

No distinction between input
and output actions.
Communication or
synchronisation takes place
on the basis of shared names.
The resulting action has the
same name.

Most stochastic process algebras adopt CSP-style synchronisation.



The nature of synchronisation 113/ 126

Who Synchronises...?

Even within classical process algebras there is variation in the
interpretation of parallel composition:

CCS-style

Actions are partitioned into
input and output pairs.
Communication or
synchronisation takes places
between conjugate pairs.
The resulting action has
silent type τ .

CSP-style

No distinction between input
and output actions.
Communication or
synchronisation takes place
on the basis of shared names.
The resulting action has the
same name.

Most stochastic process algebras adopt CSP-style synchronisation.



The nature of synchronisation 114/ 126

Timed Synchronisation

P1
r1
s 1

P2
r2
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Timed Synchronisation

P1
r1
s 1

P2
r2
s 2

r1
s 1

r2
s 2

s = max(s  , s  )1 2

Barrier Synchronisation
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Timed Synchronisation

P1
r1
s 1

P2
r2
s 2

r1
s 1

r2
s 2

s = max(s  , s  )1 2

s is no longer exponentially distributed
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Timed Synchronisation

P1
r1
s 1

P2
r2
s 2

s?

r?

algebraic considerations limit choices
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Timed Synchronisation

P1
r1
s 1

P2
r2
s 2

r1
s 1

r2
s 2

r = r  x r1 2

TIPP: new rate is product of individual rates
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Timed Synchronisation

P1
r  =?1

P2
r2
s 2

r2
s 2

r = r 2

r  =?1

EMPA: one participant is passive
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Timed Synchronisation

P1
r1
s 1

P2
r2
s 2

r1
s 1

r2
s 2

1 2r = min(r  , r  )

bounded capacity: new rate is the minimum of the rates
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Bounded capacity

Within the cooperation framework, PEPA assumes bounded
capacity: that is, a component cannot be made to perform an
activity faster by cooperation, so the rate of a shared activity is the
minimum of the apparent rates of the activity in the cooperating
components.
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Apparent Rate

rα((β, r).P) =

{
r β = α
0 β 6= α

rα(P + Q) = rα(P) + rα(Q)

rα(A) = rα(P) where A
def
= P

rα(P ��
L
Q) =

{
rα(P) + rα(Q) α /∈ L
min(rα(P), rα(Q)) α ∈ L

rα(P/L) =

{
rα(P) α /∈ L
0 α ∈ L

This is used to calculate pairwise cooperation rates: the overall
rate of cooperation must not exceed either of the constituent
apparent rates.
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Cooperation in PEPA

In PEPA each component has a bounded capacity to carry out
activities of any particular type, determined by the apparent
rate for that type.

Synchronisation, or cooperation cannot make a component
exceed its bounded capacity.

Thus the apparent rate of a cooperation is the minimum of
the apparent rates of the co-operands.
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