
1/ 133

SPAs for performance modelling:
Lecture 3 — Model Manipulations

Jane Hillston

LFCS, School of Informatics
The University of Edinburgh

Scotland

10th April 2013

2/ 133

Outline

1 Recap

2 Equivalence relations in Markov Chains

3 Equivalence relations in Process Algebra

4 Querying models

Recap 3/ 133

Outline

1 Recap

2 Equivalence relations in Markov Chains

3 Equivalence relations in Process Algebra

4 Querying models

Recap 4/ 133

Dynamic behaviour

The behaviour of a model is dictated by the semantic rules
governing the combinators of the language.

The possible evolutions of a model are captured by applying
these rules exhaustively, generating a labelled transition
system.

This can be viewed as a graph in which each node is a state
of the model (comprised of the local states of each of the
components) and the arcs represent the actions which can
cause the move from one state to another.

The language is also equipped with observational equivalence
which can be used to compare models.

Recap 5/ 133

Dynamic behaviour

The behaviour of a model is dictated by the semantic rules
governing the combinators of the language.

The possible evolutions of a model are captured by applying
these rules exhaustively, generating a labelled transition
system.

This can be viewed as a graph in which each node is a state
of the model (comprised of the local states of each of the
components) and the arcs represent the actions which can
cause the move from one state to another.

The language is also equipped with observational equivalence
which can be used to compare models.

Recap 6/ 133

Dynamic behaviour

The behaviour of a model is dictated by the semantic rules
governing the combinators of the language.

The possible evolutions of a model are captured by applying
these rules exhaustively, generating a labelled transition
system.

This can be viewed as a graph in which each node is a state
of the model (comprised of the local states of each of the
components) and the arcs represent the actions which can
cause the move from one state to another.

The language is also equipped with observational equivalence
which can be used to compare models.

Recap 7/ 133

Dynamic behaviour

The behaviour of a model is dictated by the semantic rules
governing the combinators of the language.

The possible evolutions of a model are captured by applying
these rules exhaustively, generating a labelled transition
system.

This can be viewed as a graph in which each node is a state
of the model (comprised of the local states of each of the
components) and the arcs represent the actions which can
cause the move from one state to another.

The language is also equipped with observational equivalence
which can be used to compare models.

Recap 8/ 133

PEPA Eclipse Plug-In input

P1
def
= (start, r1).P2 P2

def
= (run, r2).P3 P3

def
= (stop, r3).P1

P1 ‖ P1

Recap 9/ 133

PEPA Eclipse Plug-In input

P1
def
= (start, r1).P2 P2

def
= (run, r2).P3 P3

def
= (stop, r3).P1

P1 ‖ P1

State space

1 P1 ‖ P1

2 P1 ‖ P2

3 P2 ‖ P1

4 P1 ‖ P3

5 P2 ‖ P2

6 P3 ‖ P1

7 P3 ‖ P2

8 P3 ‖ P2

9 P3 ‖ P3

Recap 10/ 133

PEPA Eclipse Plug-In input

P1
def
= (start, r1).P2 P2

def
= (run, r2).P3 P3

def
= (stop, r3).P1

P1 ‖ P1

CTMC representation computed by the plug-in

−2r1 r1 r1 0 0 0 0 0 0
0 −r1 − r2 0 r2 r1 0 0 0 0
0 0 −r1 − r2 0 r1 r2 0 0 0
r3 0 0 −r1 − r3 0 0 0 r1 0
0 0 0 0 −2r2 0 r2 r2 0
r3 0 0 0 0 −r1 − r3 r1 0 0
0 r3 0 0 0 0 −r2 − r3 0 r2
0 0 r3 0 0 0 0 −r2 − r3 r2
0 0 0 r3 0 r3 0 0 −2r3

Recap 11/ 133

The PEPA Eclipse Plug-in processing the model

Recap 12/ 133

Performance Modelling using CTMC

Model Construction

describing the system using
a high level modelling formalism

generating the underlying CTMC

Model Manipulation

model simplification

model aggregation

Model Solution

solving the CTMC to find steady
state probability distribution

deriving performance measures

MARKOV Q =

.....
.....

.....
.....

.....

..........
.....

PROCESS

SYSTEM

DIAGRAM
TRANSITION

STATE

Recap 13/ 133

Performance Modelling using CTMC

Model Construction

describing the system using
a high level modelling formalism

generating the underlying CTMC

Model Manipulation

model simplification

model aggregation

Model Solution

solving the CTMC to find steady
state probability distribution

deriving performance measures

MARKOV Q =

.....
.....

.....
.....

.....

..........
.....

PROCESS

SYSTEM

HIGH LEVEL MODEL

Recap 14/ 133

Performance Modelling using CTMC

Model Construction

describing the system using
a high level modelling formalism

generating the underlying CTMC

Model Manipulation

model simplification

model aggregation

Model Solution

solving the CTMC to find steady
state probability distribution

deriving performance measures

MARKOV Q =

.....
.....

.....
.....

.....

..........
.....

PROCESS

MODEL

Recap 15/ 133

Performance Modelling using CTMC

Model Construction

describing the system using
a high level modelling formalism

generating the underlying CTMC

Model Manipulation

model simplification

model aggregation

Model Solution

solving the CTMC to find steady
state probability distribution

deriving performance measures

.....
.....
MARKOV
PROCESS

.....

Q =

MODEL

Recap 16/ 133

Performance Modelling using CTMC

Model Construction

describing the system using
a high level modelling formalism

generating the underlying CTMC

Model Manipulation

model simplification

model aggregation

Model Solution

solving the CTMC to find steady
state probability distribution

deriving performance measures

Equivalence relations in Markov Chains 17/ 133

Outline

1 Recap

2 Equivalence relations in Markov Chains

3 Equivalence relations in Process Algebra

4 Querying models

Equivalence relations in Markov Chains 18/ 133

Equivalence relations in Performance Modelling

Equivalence relations are used, often informally, in performance
modelling to manipulate models into an alternative form which is
somehow easier to solve:

Model simplification: use a model-model equivalence to substitute
one model by another which is more attractive from
a solution point of view, e.g. smaller state space,
special class of model, etc.

Model aggregation: use a state-state equivalence to establish a
partition of the state space of a model, and replace
each set of states by one macro-state, i.e. take a
different stochastic representation of the same model.

Equivalence relations in Markov Chains 19/ 133

Equivalence relations in Performance Modelling

Equivalence relations are used, often informally, in performance
modelling to manipulate models into an alternative form which is
somehow easier to solve:

Model simplification: use a model-model equivalence to substitute
one model by another which is more attractive from
a solution point of view, e.g. smaller state space,
special class of model, etc.

Model aggregation: use a state-state equivalence to establish a
partition of the state space of a model, and replace
each set of states by one macro-state, i.e. take a
different stochastic representation of the same model.

Equivalence relations in Markov Chains 20/ 133

Equivalence relations in Performance Modelling

Equivalence relations are used, often informally, in performance
modelling to manipulate models into an alternative form which is
somehow easier to solve:

Model simplification: use a model-model equivalence to substitute
one model by another which is more attractive from
a solution point of view, e.g. smaller state space,
special class of model, etc.

Model aggregation: use a state-state equivalence to establish a
partition of the state space of a model, and replace
each set of states by one macro-state, i.e. take a
different stochastic representation of the same model.

Equivalence relations in Markov Chains 21/ 133

Aggregation and lumpability

Model aggregation: use a state-state equivalence to establish
a partition of the state space of a model, and replace each set
of states by one macro-state.

This is not as straightforward as it may seem if we wish the
aggregated process to still be a Markov process — an arbitrary
partition will not in general preserve the Markov property.

A lumpable partition is the only partition of a Markov process
which preserves the Markov property.

Equivalence relations in Markov Chains 22/ 133

Aggregation and lumpability

Model aggregation: use a state-state equivalence to establish
a partition of the state space of a model, and replace each set
of states by one macro-state.

This is not as straightforward as it may seem if we wish the
aggregated process to still be a Markov process — an arbitrary
partition will not in general preserve the Markov property.

A lumpable partition is the only partition of a Markov process
which preserves the Markov property.

Equivalence relations in Markov Chains 23/ 133

Aggregation and lumpability

Model aggregation: use a state-state equivalence to establish
a partition of the state space of a model, and replace each set
of states by one macro-state.

This is not as straightforward as it may seem if we wish the
aggregated process to still be a Markov process — an arbitrary
partition will not in general preserve the Markov property.

A lumpable partition is the only partition of a Markov process
which preserves the Markov property.

Equivalence relations in Markov Chains 24/ 133

Reducing by lumpability

Equivalence relations in Markov Chains 25/ 133

Reducing by lumpability

Equivalence relations in Markov Chains 26/ 133

Reducing by lumpability

As appealling as this is, it is not the case that it is always
mathematically legitimate.

In particular, arbitarily lumping the states of a Markov chain, will
typically give rise to a stochastic process which no longer satisfies
the Markov condition.

Equivalence relations in Markov Chains 27/ 133

Reducing by lumpability

As appealling as this is, it is not the case that it is always
mathematically legitimate.

In particular, arbitarily lumping the states of a Markov chain, will
typically give rise to a stochastic process which no longer satisfies
the Markov condition.

Equivalence relations in Markov Chains 28/ 133

Lumpability

In the early 1960’s Kemeny and Snell established the
conditions under which it was possible to lump a Markov
chain and still have a Markov chain afterwards.

In particular these conditions were characterised by conditions
on the rates which are straightforward to check.

However checking the conditions did involve constructing the
complete Markov chain first.

This is something of a catch-22 situation when the problem is
that the state space of the Markov chain is too large to
handle.

Equivalence relations in Markov Chains 29/ 133

Lumpability

In the early 1960’s Kemeny and Snell established the
conditions under which it was possible to lump a Markov
chain and still have a Markov chain afterwards.

In particular these conditions were characterised by conditions
on the rates which are straightforward to check.

However checking the conditions did involve constructing the
complete Markov chain first.

This is something of a catch-22 situation when the problem is
that the state space of the Markov chain is too large to
handle.

Equivalence relations in Markov Chains 30/ 133

Lumpability

In the early 1960’s Kemeny and Snell established the
conditions under which it was possible to lump a Markov
chain and still have a Markov chain afterwards.

In particular these conditions were characterised by conditions
on the rates which are straightforward to check.

However checking the conditions did involve constructing the
complete Markov chain first.

This is something of a catch-22 situation when the problem is
that the state space of the Markov chain is too large to
handle.

Equivalence relations in Markov Chains 31/ 133

Lumpability

In the early 1960’s Kemeny and Snell established the
conditions under which it was possible to lump a Markov
chain and still have a Markov chain afterwards.

In particular these conditions were characterised by conditions
on the rates which are straightforward to check.

However checking the conditions did involve constructing the
complete Markov chain first.

This is something of a catch-22 situation when the problem is
that the state space of the Markov chain is too large to
handle.

Equivalence relations in Markov Chains 32/ 133

Lumpability

If the original state space is {X1,X2, . . . ,Xn} then the aggregated
state space is some {X[1],X[2], . . . ,X[N]} where N < n and ideally
N << n.

In order to define a Markov chain in terms of the aggregated states
we first need to work out the transition rates between these
macro-states.

Equivalence relations in Markov Chains 33/ 133

Lumpability

If the original state space is {X1,X2, . . . ,Xn} then the aggregated
state space is some {X[1],X[2], . . . ,X[N]} where N < n and ideally
N << n.

In order to define a Markov chain in terms of the aggregated states
we first need to work out the transition rates between these
macro-states.

Equivalence relations in Markov Chains 34/ 133

Lumped transition rates

If the transition rates of the original process are q(Xi ,Xk) then the
transition rates into any partition from a state is

q(Xi ,X[j]) =
∑
k∈[j]

q(Xi ,Xj)

Transition rates between partitions are the weighted sum of the
transition rates of each state in the first partition to the second
partition, weighted by the conditional steady state probability of
that state in the partition, πj(·)

q(X[j],X[i]) =
∑
k∈[j]

πj(Xk)q(Xk ,X[i])

Equivalence relations in Markov Chains 35/ 133

Lumped transition rates

If the transition rates of the original process are q(Xi ,Xk) then the
transition rates into any partition from a state is

q(Xi ,X[j]) =
∑
k∈[j]

q(Xi ,Xj)

Transition rates between partitions are the weighted sum of the
transition rates of each state in the first partition to the second
partition, weighted by the conditional steady state probability of
that state in the partition, πj(·)

q(X[j],X[i]) =
∑
k∈[j]

πj(Xk)q(Xk ,X[i])

Equivalence relations in Markov Chains 36/ 133

Ordinary, Exact and Strict Lumpability

A Markov process is ordinarily lumpable with respect to a
partition χ = {X[i]} iff, for any X[k],X[l] ∈ χ,Xi ,Xj ∈ X[k]

q(Xi ,X[l]) = q(Xj ,X[l])

χ is an exactly lumpable partition iff, for any
X[k],X[l] ∈ χ,Xi ,Xj ∈ X[l]

q(X[k],Xi) = q(X[k],Xj)

χ is a strictly lumpable partition iff it is ordinarily lumpable
and exactly lumpable.

Equivalence relations in Markov Chains 37/ 133

Ordinary, Exact and Strict Lumpability

A Markov process is ordinarily lumpable with respect to a
partition χ = {X[i]} iff, for any X[k],X[l] ∈ χ,Xi ,Xj ∈ X[k]

q(Xi ,X[l]) = q(Xj ,X[l])

χ is an exactly lumpable partition iff, for any
X[k],X[l] ∈ χ,Xi ,Xj ∈ X[l]

q(X[k],Xi) = q(X[k],Xj)

χ is a strictly lumpable partition iff it is ordinarily lumpable
and exactly lumpable.

Equivalence relations in Markov Chains 38/ 133

Ordinary, Exact and Strict Lumpability

A Markov process is ordinarily lumpable with respect to a
partition χ = {X[i]} iff, for any X[k],X[l] ∈ χ,Xi ,Xj ∈ X[k]

q(Xi ,X[l]) = q(Xj ,X[l])

χ is an exactly lumpable partition iff, for any
X[k],X[l] ∈ χ,Xi ,Xj ∈ X[l]

q(X[k],Xi) = q(X[k],Xj)

χ is a strictly lumpable partition iff it is ordinarily lumpable
and exactly lumpable.

Equivalence relations in Process Algebra 39/ 133

Outline

1 Recap

2 Equivalence relations in Markov Chains

3 Equivalence relations in Process Algebra

4 Querying models

Equivalence relations in Process Algebra 40/ 133

Equivalence Relations

It is standard for a process algebra to be equipped with a semantic
equivalence — a notion of equivalence related to the operational
semantics of the language.

In CCS-style process algebras, equivalence relations are defined
based on the notion of observability.

The idea is that each process should be able to mimic the
behaviour of the other process sufficiently that an external observer
cannot distinguish them via observation.

This symmetric relation is known as bisimulation.

Equivalence relations in Process Algebra 41/ 133

Equivalence Relations

It is standard for a process algebra to be equipped with a semantic
equivalence — a notion of equivalence related to the operational
semantics of the language.

In CCS-style process algebras, equivalence relations are defined
based on the notion of observability.

The idea is that each process should be able to mimic the
behaviour of the other process sufficiently that an external observer
cannot distinguish them via observation.

This symmetric relation is known as bisimulation.

Equivalence relations in Process Algebra 42/ 133

Equivalence Relations

It is standard for a process algebra to be equipped with a semantic
equivalence — a notion of equivalence related to the operational
semantics of the language.

In CCS-style process algebras, equivalence relations are defined
based on the notion of observability.

The idea is that each process should be able to mimic the
behaviour of the other process sufficiently that an external observer
cannot distinguish them via observation.

This symmetric relation is known as bisimulation.

Equivalence relations in Process Algebra 43/ 133

Equivalence Relations

It is standard for a process algebra to be equipped with a semantic
equivalence — a notion of equivalence related to the operational
semantics of the language.

In CCS-style process algebras, equivalence relations are defined
based on the notion of observability.

The idea is that each process should be able to mimic the
behaviour of the other process sufficiently that an external observer
cannot distinguish them via observation.

This symmetric relation is known as bisimulation.

Equivalence relations in Process Algebra 44/ 133

Congruence relation

In process algebras we are particularly interested in relations which
are congruences with respect to the operators of the language.

For example,

if we have two process terms P and P ′ which are related by a
congruence relation R, i.e. P R P ′ or (P,P ′) ∈ R,

then in any expression E which includes P, we can substitute
P ′ to get an expression E ′

and know that (E , E ′) ∈ R.

To prove that a relation is a congruence we need to show that this
substitutivity for equivalent processes holds for each operator of
the language.

Equivalence relations in Process Algebra 45/ 133

Congruence relation

In process algebras we are particularly interested in relations which
are congruences with respect to the operators of the language.

For example,

if we have two process terms P and P ′ which are related by a
congruence relation R, i.e. P R P ′ or (P,P ′) ∈ R,

then in any expression E which includes P, we can substitute
P ′ to get an expression E ′

and know that (E , E ′) ∈ R.

To prove that a relation is a congruence we need to show that this
substitutivity for equivalent processes holds for each operator of
the language.

Equivalence relations in Process Algebra 46/ 133

Congruence relation

In process algebras we are particularly interested in relations which
are congruences with respect to the operators of the language.

For example,

if we have two process terms P and P ′ which are related by a
congruence relation R, i.e. P R P ′ or (P,P ′) ∈ R,

then in any expression E which includes P, we can substitute
P ′ to get an expression E ′

and know that (E , E ′) ∈ R.

To prove that a relation is a congruence we need to show that this
substitutivity for equivalent processes holds for each operator of
the language.

Equivalence relations in Process Algebra 47/ 133

Classic Bisimulation

Q
(a,r)

(a,r)
(b,s)

(c,t) (d,u)

P

(d,u)
(c,t)

(b,s)
(a,r)

Equivalence relations in Process Algebra 48/ 133

Classic Bisimulation

Q
(a,r)

(a,r)
(b,s)

(c,t) (d,u)

P

(d,u)
(c,t)

(b,s)
(a,r)

Equivalence relations in Process Algebra 49/ 133

Classic Bisimulation

Q
(a,r)

(a,r)
(b,s)

(c,t) (d,u)

P

(d,u)
(c,t)

(b,s)
(a,r)

Equivalence relations in Process Algebra 50/ 133

Classic Bisimulation

Q
(a,r)

(a,r)
(b,s)

(c,t) (d,u)

P

(d,u)
(c,t)

(b,s)
(a,r)

Equivalence relations in Process Algebra 51/ 133

Markovian bisimulation

In PEPA observation is assumed to include the ability to record
timing information over a number of runs.

Equivalence relations in Process Algebra 52/ 133

Markovian bisimulation

Q
(a,r)

(a,r)
(b,s)

(c,t) (d,u)

P

(d,u)
(c,t)

(b,s)
(a,r)

Equivalence relations in Process Algebra 53/ 133

Markovian bisimulation

Q
(a,r)

(a,r)
(b,s)

(c,t) (d,u)

P

(d,u)
(c,t)

(b,s)
(a,r)

Equivalence relations in Process Algebra 54/ 133

Markovian bisimulation

Q
(a,r)

(a,r)
(b,s)

(c,t) (d,u)

P

(d,u)
(c,t)

(b,s)
(a,r)

Equivalence relations in Process Algebra 55/ 133

Equivalence Relations

Q
(a,r)

(a,r)
(b,s)

(c,t) (d,u)

P

(d,u)
(c,t)

(b,s)
(a,r)

Equivalence relations in Process Algebra 56/ 133

Markovian bisimulation

The resulting equivalence relation is a bisimulation in the style of
Larsen and Skou, and coincides with the Markov process notion of
lumpability.

Moreover this bisimulation is a congruence for all the combinators
of PEPA.

Equivalence relations in Process Algebra 57/ 133

Markovian bisimulation

The resulting equivalence relation is a bisimulation in the style of
Larsen and Skou, and coincides with the Markov process notion of
lumpability.

Moreover this bisimulation is a congruence for all the combinators
of PEPA.

Equivalence relations in Process Algebra 58/ 133

Strong Equivalence in PEPA

Definition

An equivalence relation R ⊆ C × C is a strong equivalence if
whenever (P,Q) ∈ R then for all α ∈ A and for all S ∈ C/R

q[P, S , α] = q[Q,S , α].

where
q[Ci ,S , α] =

∑
Cj∈S

q(Ci ,Cj , α)

Equivalence relations in Process Algebra 59/ 133

Weak equivalence relations

In classic process algebras it is usual to consider weak equivalence
relations in addition to the strong style of relations already
discussed.

In a weak relation the internal τ actions are abstracted so that the
observer does not see internal actions.

However weak equivalence relations are difficult to obtain for
stochastic process algebra which have integrated time and action,
although there some results from Bernardo et al.

Equivalence relations in Process Algebra 60/ 133

Weak equivalence relations

In classic process algebras it is usual to consider weak equivalence
relations in addition to the strong style of relations already
discussed.

In a weak relation the internal τ actions are abstracted so that the
observer does not see internal actions.

However weak equivalence relations are difficult to obtain for
stochastic process algebra which have integrated time and action,
although there some results from Bernardo et al.

Equivalence relations in Process Algebra 61/ 133

Weak equivalence relations

In classic process algebras it is usual to consider weak equivalence
relations in addition to the strong style of relations already
discussed.

In a weak relation the internal τ actions are abstracted so that the
observer does not see internal actions.

However weak equivalence relations are difficult to obtain for
stochastic process algebra which have integrated time and action,
although there some results from Bernardo et al.

Equivalence relations in Process Algebra 62/ 133

Weak equivalence relations

The problem is that whilst τ.α.P has the same observable
behaviour as α.P it is not true that (τ, s).(α, r).P has the same
observable behaviour as (α, r).P.

The issue is that in the first process there is a delay (exponentially
distributed with mean s) before the activity of type α commences,
whereas in the second process the α activity starts immediately.

There seems to be no possibility of eliminating single τ type
activities in a stochastically timed process algebra.

Equivalence relations in Process Algebra 63/ 133

Weak equivalence relations

The problem is that whilst τ.α.P has the same observable
behaviour as α.P it is not true that (τ, s).(α, r).P has the same
observable behaviour as (α, r).P.

The issue is that in the first process there is a delay (exponentially
distributed with mean s) before the activity of type α commences,
whereas in the second process the α activity starts immediately.

There seems to be no possibility of eliminating single τ type
activities in a stochastically timed process algebra.

Equivalence relations in Process Algebra 64/ 133

Weak equivalence relations

The problem is that whilst τ.α.P has the same observable
behaviour as α.P it is not true that (τ, s).(α, r).P has the same
observable behaviour as (α, r).P.

The issue is that in the first process there is a delay (exponentially
distributed with mean s) before the activity of type α commences,
whereas in the second process the α activity starts immediately.

There seems to be no possibility of eliminating single τ type
activities in a stochastically timed process algebra.

Equivalence relations in Process Algebra 65/ 133

Weak equivalence relations

There is, however, the possibility of eliminating sequences of τ
activities, e.g. reducing (τ, s).(τ, r).P to (τ, t).P for an
appropriate t.

The difficulty is that the convolution of two exponentially
distributed delays is no longer exponentially delayed.

Nevertheless the usual decision is to maintain the exponential
distribution and the same mean duration: i.e. t is chosen to be

rs

r + s
.

Equivalence relations in Process Algebra 66/ 133

Weak equivalence relations

There is, however, the possibility of eliminating sequences of τ
activities, e.g. reducing (τ, s).(τ, r).P to (τ, t).P for an
appropriate t.

The difficulty is that the convolution of two exponentially
distributed delays is no longer exponentially delayed.

Nevertheless the usual decision is to maintain the exponential
distribution and the same mean duration: i.e. t is chosen to be

rs

r + s
.

Equivalence relations in Process Algebra 67/ 133

Weak equivalence relations

There is, however, the possibility of eliminating sequences of τ
activities, e.g. reducing (τ, s).(τ, r).P to (τ, t).P for an
appropriate t.

The difficulty is that the convolution of two exponentially
distributed delays is no longer exponentially delayed.

Nevertheless the usual decision is to maintain the exponential
distribution and the same mean duration: i.e. t is chosen to be

rs

r + s
.

Equivalence relations in Process Algebra 68/ 133

Weak equivalence relations

For PEPA the closest has been the definition of weak isomorphism
which collapses a sequence of τ actions to a single τ action with
the same mean duration.

In general any reduction based on this will be an approximation of
the original model due to the use of the exponential distribution for
the aggregate action.

However, syntactic conditions have been identified for when this
will be exact due to insensitivity.

Weak bisimulation relations are not typically preserved by the
choice operator although they can be congruence relations with
respect to the other operators.

Equivalence relations in Process Algebra 69/ 133

Weak equivalence relations

For PEPA the closest has been the definition of weak isomorphism
which collapses a sequence of τ actions to a single τ action with
the same mean duration.

In general any reduction based on this will be an approximation of
the original model due to the use of the exponential distribution for
the aggregate action.

However, syntactic conditions have been identified for when this
will be exact due to insensitivity.

Weak bisimulation relations are not typically preserved by the
choice operator although they can be congruence relations with
respect to the other operators.

Equivalence relations in Process Algebra 70/ 133

Weak equivalence relations

For PEPA the closest has been the definition of weak isomorphism
which collapses a sequence of τ actions to a single τ action with
the same mean duration.

In general any reduction based on this will be an approximation of
the original model due to the use of the exponential distribution for
the aggregate action.

However, syntactic conditions have been identified for when this
will be exact due to insensitivity.

Weak bisimulation relations are not typically preserved by the
choice operator although they can be congruence relations with
respect to the other operators.

Equivalence relations in Process Algebra 71/ 133

Weak equivalence relations

For PEPA the closest has been the definition of weak isomorphism
which collapses a sequence of τ actions to a single τ action with
the same mean duration.

In general any reduction based on this will be an approximation of
the original model due to the use of the exponential distribution for
the aggregate action.

However, syntactic conditions have been identified for when this
will be exact due to insensitivity.

Weak bisimulation relations are not typically preserved by the
choice operator although they can be congruence relations with
respect to the other operators.

Equivalence relations in Process Algebra 72/ 133

Other equivalences

Further results on weak bisimulation have been obtained for SPA
with orthogonal time and action such as IMC but even in this case
there are some subtleties and it is not straightforward.

Whilst most work on equivalences in SPAs have focussed on
bisimulation style equivalences, Marco Bernardo and co-authors
have developed branching and testing equivalences in the context
of the stochastic process algebra EMPA, and consequently for
CTMCs.

Equivalence relations in Process Algebra 73/ 133

Other equivalences

Further results on weak bisimulation have been obtained for SPA
with orthogonal time and action such as IMC but even in this case
there are some subtleties and it is not straightforward.

Whilst most work on equivalences in SPAs have focussed on
bisimulation style equivalences, Marco Bernardo and co-authors
have developed branching and testing equivalences in the context
of the stochastic process algebra EMPA, and consequently for
CTMCs.

Querying models 74/ 133

Outline

1 Recap

2 Equivalence relations in Markov Chains

3 Equivalence relations in Process Algebra

4 Querying models

Querying models 75/ 133

Querying models

So far we have focussed on the construction of the model and
demonstrated the use of some particular examples to derive
quantitative measures.

PEPA is complemented by a couple of formal approaches to query
models.

stochastic model checking based on a stochastic logic; and

(eXtended) stochastic probes within the PEPA model.

Querying models 76/ 133

Querying models

So far we have focussed on the construction of the model and
demonstrated the use of some particular examples to derive
quantitative measures.

PEPA is complemented by a couple of formal approaches to query
models.

stochastic model checking based on a stochastic logic; and

(eXtended) stochastic probes within the PEPA model.

Querying models 77/ 133

Model checking

Model checking requires two inputs:

a description of the system, usually given in some high-level
modelling formalism such as a process algebra description, or
a Petri net;

a specification of one or more desired properties of the system,
normally using termporal logics such as CTL (Computational
Tree Logic) or LTL (Linear-time Temporal Logic).

Querying models 78/ 133

Model checking

Model checking requires two inputs:

a description of the system, usually given in some high-level
modelling formalism such as a process algebra description, or
a Petri net;

a specification of one or more desired properties of the system,
normally using termporal logics such as CTL (Computational
Tree Logic) or LTL (Linear-time Temporal Logic).

Querying models 79/ 133

Model checking

From the high-level description the model checker constructs a
labelled transition system which captures all possible behaviours of
the system.

The model checking algorithms then automatically verify whether
or not each property is satisfied in the system.

Querying models 80/ 133

Model checking

From the high-level description the model checker constructs a
labelled transition system which captures all possible behaviours of
the system.

The model checking algorithms then automatically verify whether
or not each property is satisfied in the system.

Querying models 81/ 133

Stochastic model checking

In stochastic model checking it is assumed that the labelled
transition system is a Continuous Time Markov Chain (CTMC).

This makes stochastic process algebras suitable high-level language
for stochastic model checking.

The logic is also enhanced to query not just logical behaviour
(whether some property is satisfied or not) but also quantified
behaviour (e.g. the probability that a property is satisfied at a
particular time).

Querying models 82/ 133

Stochastic model checking

In stochastic model checking it is assumed that the labelled
transition system is a Continuous Time Markov Chain (CTMC).

This makes stochastic process algebras suitable high-level language
for stochastic model checking.

The logic is also enhanced to query not just logical behaviour
(whether some property is satisfied or not) but also quantified
behaviour (e.g. the probability that a property is satisfied at a
particular time).

Querying models 83/ 133

Stochastic model checking

In stochastic model checking it is assumed that the labelled
transition system is a Continuous Time Markov Chain (CTMC).

This makes stochastic process algebras suitable high-level language
for stochastic model checking.

The logic is also enhanced to query not just logical behaviour
(whether some property is satisfied or not) but also quantified
behaviour (e.g. the probability that a property is satisfied at a
particular time).

Querying models 84/ 133

Model checking

There are two broad approaches to model checking:

Explicit state model checking (exhaustive exploration for all
possible states/executions): exact results obtained via
numerical computation.

Statistical model-checking (discrete event simulation and
sampling over multiple runs): approximate results.

Querying models 85/ 133

A logical foundation for a specification language

The expression, and testing for satisfaction of equilibrium
properties, can be seen to be closely related to the specification,
and model checking of a formula expressed in Larsen and Skou’s
probabilistic modal logic (PML).

We give a modified interpretation of such formulae suitable for
reasoning about PEPA’s continuous time models.

We exploit the operators of modal logic to be more discriminating
about which states contribute to the reward measure.

In particular, we can select a state based on model behaviour
which is not immediately local to the state.

Querying models 86/ 133

A logical foundation for a specification language

The expression, and testing for satisfaction of equilibrium
properties, can be seen to be closely related to the specification,
and model checking of a formula expressed in Larsen and Skou’s
probabilistic modal logic (PML).

We give a modified interpretation of such formulae suitable for
reasoning about PEPA’s continuous time models.

We exploit the operators of modal logic to be more discriminating
about which states contribute to the reward measure.

In particular, we can select a state based on model behaviour
which is not immediately local to the state.

Querying models 87/ 133

A logical foundation for a specification language

The expression, and testing for satisfaction of equilibrium
properties, can be seen to be closely related to the specification,
and model checking of a formula expressed in Larsen and Skou’s
probabilistic modal logic (PML).

We give a modified interpretation of such formulae suitable for
reasoning about PEPA’s continuous time models.

We exploit the operators of modal logic to be more discriminating
about which states contribute to the reward measure.

In particular, we can select a state based on model behaviour
which is not immediately local to the state.

Querying models 88/ 133

A logical foundation for a specification language

The expression, and testing for satisfaction of equilibrium
properties, can be seen to be closely related to the specification,
and model checking of a formula expressed in Larsen and Skou’s
probabilistic modal logic (PML).

We give a modified interpretation of such formulae suitable for
reasoning about PEPA’s continuous time models.

We exploit the operators of modal logic to be more discriminating
about which states contribute to the reward measure.

In particular, we can select a state based on model behaviour
which is not immediately local to the state.

Querying models 89/ 133

Larsen and Skou’s PML

F ::= tt (truth)

| ∇α (inability)

| ¬F (negation)

| F1 ∧ F2 (conjunction)

| 〈α〉µF (“at least”)

Querying models 90/ 133

Transition rates to set of processes

Definition

P
(α,ν)
−−−→ S if for all P ′ ∈ S , P

α
−−→ P ′ and∑

{r | P
(α,r)
−−−→ P ′,P ′ ∈ S} = ν.

Querying models 91/ 133

Interpreting PML over PEPA processes

Let P be a model of a PEPA process.

P |= tt

P |= ¬F if P 6|= F

P |= F1 ∧ F2 if P |= F1 and P |= F2

P |= ∇α if P 6α−→

P |= 〈α〉µF if P
(α,ν)
−−−→ S for some ν ≥ µ,

and for all P ′ ∈ S ,P ′ |= F

Querying models 92/ 133

Interpreting PML over PEPA processes

Let P be a model of a PEPA process.

P |= tt

P |= ¬F if P 6|= F

P |= F1 ∧ F2 if P |= F1 and P |= F2

P |= ∇α if P 6α−→

P |= 〈α〉µF if P
(α,ν)
−−−→ S for some ν ≥ µ,

and for all P ′ ∈ S ,P ′ |= F

Querying models 93/ 133

Interpreting PML over PEPA processes

Let P be a model of a PEPA process.

P |= tt

P |= ¬F if P 6|= F

P |= F1 ∧ F2 if P |= F1 and P |= F2

P |= ∇α if P 6α−→

P |= 〈α〉µF if P
(α,ν)
−−−→ S for some ν ≥ µ,

and for all P ′ ∈ S ,P ′ |= F

Querying models 94/ 133

Interpreting PML over PEPA processes

Let P be a model of a PEPA process.

P |= tt

P |= ¬F if P 6|= F

P |= F1 ∧ F2 if P |= F1 and P |= F2

P |= ∇α if P 6α−→

P |= 〈α〉µF if P
(α,ν)
−−−→ S for some ν ≥ µ,

and for all P ′ ∈ S ,P ′ |= F

Querying models 95/ 133

Interpreting PML over PEPA processes

Let P be a model of a PEPA process.

P |= tt

P |= ¬F if P 6|= F

P |= F1 ∧ F2 if P |= F1 and P |= F2

P |= ∇α if P 6α−→

P |= 〈α〉µF if P
(α,ν)
−−−→ S for some ν ≥ µ,

and for all P ′ ∈ S ,P ′ |= F

Querying models 96/ 133

Interpreting PML over PEPA processes

Let P be a model of a PEPA process.

P |= tt

P |= ¬F if P 6|= F

P |= F1 ∧ F2 if P |= F1 and P |= F2

P |= ∇α if P 6α−→

P |= 〈α〉µF if P
(α,ν)
−−−→ S for some ν ≥ µ,

and for all P ′ ∈ S ,P ′ |= F

Querying models 97/ 133

Modal characterisation of strong equivalence

Let P be a model of a PEPA process. Then

P ∼= Q iff for all F , P |= F iff Q |= F

i.e. two PEPA processes are strongly equivalent (in particular, their
underlying Markov chains are lumpably equivalent) if and only if
they both satisfy, in the setting where rates are quantified, the
same set of PML formulae.

Querying models 98/ 133

Modal characterisation of strong equivalence

Let P be a model of a PEPA process. Then

P ∼= Q iff for all F , P |= F iff Q |= F

i.e. two PEPA processes are strongly equivalent (in particular, their
underlying Markov chains are lumpably equivalent) if and only if
they both satisfy, in the setting where rates are quantified, the
same set of PML formulae.

Querying models 99/ 133

Using PML

PML is interesting because of its characterisation of strong
equivalence in PEPA, but it is not a very useful logic from a
practical point of view.

In particular it is not supported by any model checking tools.

For real use in practice we use the richer logic Continuous
Stochastic Logic (CSL).

Querying models 100/ 133

Using PML

PML is interesting because of its characterisation of strong
equivalence in PEPA, but it is not a very useful logic from a
practical point of view.

In particular it is not supported by any model checking tools.

For real use in practice we use the richer logic Continuous
Stochastic Logic (CSL).

Querying models 101/ 133

Using PML

PML is interesting because of its characterisation of strong
equivalence in PEPA, but it is not a very useful logic from a
practical point of view.

In particular it is not supported by any model checking tools.

For real use in practice we use the richer logic Continuous
Stochastic Logic (CSL).

Querying models 102/ 133

PRISM model and model checking

Probabilistic model checking in PRISM is based on a CTMC
and the logic CSL.

Formally the mapping from PEPA is based on the structured
operational semantics, generating the underlying CTMC in the
usual way.

In practice PEPA is an input language for PRISM with a
direct mapping between PEPA components and the
interacting, reactive modules of the PRISM input language.

Note, however, that this places a restriction to have
synchronisations in which only one participant is active as
PRISM cannot handle the apparent rate based calculations of
cooperation in PEPA.

Querying models 103/ 133

PRISM model and model checking

Probabilistic model checking in PRISM is based on a CTMC
and the logic CSL.

Formally the mapping from PEPA is based on the structured
operational semantics, generating the underlying CTMC in the
usual way.

In practice PEPA is an input language for PRISM with a
direct mapping between PEPA components and the
interacting, reactive modules of the PRISM input language.

Note, however, that this places a restriction to have
synchronisations in which only one participant is active as
PRISM cannot handle the apparent rate based calculations of
cooperation in PEPA.

Querying models 104/ 133

PRISM model and model checking

Probabilistic model checking in PRISM is based on a CTMC
and the logic CSL.

Formally the mapping from PEPA is based on the structured
operational semantics, generating the underlying CTMC in the
usual way.

In practice PEPA is an input language for PRISM with a
direct mapping between PEPA components and the
interacting, reactive modules of the PRISM input language.

Note, however, that this places a restriction to have
synchronisations in which only one participant is active as
PRISM cannot handle the apparent rate based calculations of
cooperation in PEPA.

Querying models 105/ 133

PRISM model and model checking

Probabilistic model checking in PRISM is based on a CTMC
and the logic CSL.

Formally the mapping from PEPA is based on the structured
operational semantics, generating the underlying CTMC in the
usual way.

In practice PEPA is an input language for PRISM with a
direct mapping between PEPA components and the
interacting, reactive modules of the PRISM input language.

Note, however, that this places a restriction to have
synchronisations in which only one participant is active as
PRISM cannot handle the apparent rate based calculations of
cooperation in PEPA.

Querying models 106/ 133

The CSL logic

The syntax of CSL is as follows:

φ ::= true | a | ¬φ | φ ∧ φ |
P∼p[φ UI φ] | S∼p[φ] |
R∼r [I=t] | R∼r [C≤t] | R∼r [F φ] | R∼r [S]

where a is an atomic proposition, ∼∈ {<,≤,≥, >}, p ∈ [0, 1], I is
an interval of R≥0 and r , t ∈ R≥0.

P and S are probabilistic operators which include a probabilistic
bound ∼p.

R is a reward operator with a reward bound ∼ r .

Querying models 107/ 133

Probabilistic operators

A formula S∼p[φ] is true in state s if the probability that the
formula φ being satisfied in a steady state reached from state s
meets the bound ∼p.

A formula P∼p[φ UI φ] is true in a state s if the probability of the
formula (φ UI φ) being satisfied from state s meets the bound ∼p.

A formula of type φ1 UI φ2 is an until formula.

It is true of a path σ through the state space if, for some time
instant t ∈ I , at time t in the path σ the CSL subformula φ2 is
true and the subformula φ1 is true at all preceding time instants.

Querying models 108/ 133

Probabilistic operators

A formula S∼p[φ] is true in state s if the probability that the
formula φ being satisfied in a steady state reached from state s
meets the bound ∼p.

A formula P∼p[φ UI φ] is true in a state s if the probability of the
formula (φ UI φ) being satisfied from state s meets the bound ∼p.

A formula of type φ1 UI φ2 is an until formula.

It is true of a path σ through the state space if, for some time
instant t ∈ I , at time t in the path σ the CSL subformula φ2 is
true and the subformula φ1 is true at all preceding time instants.

Querying models 109/ 133

Probabilistic operators

A formula S∼p[φ] is true in state s if the probability that the
formula φ being satisfied in a steady state reached from state s
meets the bound ∼p.

A formula P∼p[φ UI φ] is true in a state s if the probability of the
formula (φ UI φ) being satisfied from state s meets the bound ∼p.

A formula of type φ1 UI φ2 is an until formula.

It is true of a path σ through the state space if, for some time
instant t ∈ I , at time t in the path σ the CSL subformula φ2 is
true and the subformula φ1 is true at all preceding time instants.

Querying models 110/ 133

The CSL Reward operator

The CSL reward operator R is used to express properties
concerning the expected value of rewards.

R∼r [I=t] asserts that the expected value of the state reward at
time instant t meets the bound ∼ r .

R∼r [C≤t] refers to the expected reward accumulated up until t.

R∼r [F φ] asserts that the expected reward accumulated before a
state satisfying φ is reached meets the bound ∼ r .

R∼r [S] asserts that the long-run/steady state expected reward
meets the bound ∼ r .

Querying models 111/ 133

The CSL Reward operator

The CSL reward operator R is used to express properties
concerning the expected value of rewards.

R∼r [I=t] asserts that the expected value of the state reward at
time instant t meets the bound ∼ r .

R∼r [C≤t] refers to the expected reward accumulated up until t.

R∼r [F φ] asserts that the expected reward accumulated before a
state satisfying φ is reached meets the bound ∼ r .

R∼r [S] asserts that the long-run/steady state expected reward
meets the bound ∼ r .

Querying models 112/ 133

The CSL Reward operator

The CSL reward operator R is used to express properties
concerning the expected value of rewards.

R∼r [I=t] asserts that the expected value of the state reward at
time instant t meets the bound ∼ r .

R∼r [C≤t] refers to the expected reward accumulated up until t.

R∼r [F φ] asserts that the expected reward accumulated before a
state satisfying φ is reached meets the bound ∼ r .

R∼r [S] asserts that the long-run/steady state expected reward
meets the bound ∼ r .

Querying models 113/ 133

The CSL Reward operator

The CSL reward operator R is used to express properties
concerning the expected value of rewards.

R∼r [I=t] asserts that the expected value of the state reward at
time instant t meets the bound ∼ r .

R∼r [C≤t] refers to the expected reward accumulated up until t.

R∼r [F φ] asserts that the expected reward accumulated before a
state satisfying φ is reached meets the bound ∼ r .

R∼r [S] asserts that the long-run/steady state expected reward
meets the bound ∼ r .

Querying models 114/ 133

The CSL Reward operator

The CSL reward operator R is used to express properties
concerning the expected value of rewards.

R∼r [I=t] asserts that the expected value of the state reward at
time instant t meets the bound ∼ r .

R∼r [C≤t] refers to the expected reward accumulated up until t.

R∼r [F φ] asserts that the expected reward accumulated before a
state satisfying φ is reached meets the bound ∼ r .

R∼r [S] asserts that the long-run/steady state expected reward
meets the bound ∼ r .

Querying models 115/ 133

Example CSL formulae

P>0.9[true U[0,4.5] served] — the probability that a request is
served within the first 4.5 seconds is greater than 0.9;

P≤0.1[true U[10,∞) error] — the probability that an error
occurs after 10 seconds of operation is at most 0.1;

down −→ P>0.75[¬fail U[1,2] up] — when a shutdown occurs,
the probability of system recovery being completed in between
1 and 2 hours without further failures occurring is greater
than 0.75;

S<0.01[insufficient routers] — in the long-run, the probability
that an inadequate number of routers are operational is less
than 0.01.

Querying models 116/ 133

Example CSL formulae

P>0.9[true U[0,4.5] served] — the probability that a request is
served within the first 4.5 seconds is greater than 0.9;

P≤0.1[true U[10,∞) error] — the probability that an error
occurs after 10 seconds of operation is at most 0.1;

down −→ P>0.75[¬fail U[1,2] up] — when a shutdown occurs,
the probability of system recovery being completed in between
1 and 2 hours without further failures occurring is greater
than 0.75;

S<0.01[insufficient routers] — in the long-run, the probability
that an inadequate number of routers are operational is less
than 0.01.

Querying models 117/ 133

Example CSL formulae

P>0.9[true U[0,4.5] served] — the probability that a request is
served within the first 4.5 seconds is greater than 0.9;

P≤0.1[true U[10,∞) error] — the probability that an error
occurs after 10 seconds of operation is at most 0.1;

down −→ P>0.75[¬fail U[1,2] up] — when a shutdown occurs,
the probability of system recovery being completed in between
1 and 2 hours without further failures occurring is greater
than 0.75;

S<0.01[insufficient routers] — in the long-run, the probability
that an inadequate number of routers are operational is less
than 0.01.

Querying models 118/ 133

Example CSL formulae

P>0.9[true U[0,4.5] served] — the probability that a request is
served within the first 4.5 seconds is greater than 0.9;

P≤0.1[true U[10,∞) error] — the probability that an error
occurs after 10 seconds of operation is at most 0.1;

down −→ P>0.75[¬fail U[1,2] up] — when a shutdown occurs,
the probability of system recovery being completed in between
1 and 2 hours without further failures occurring is greater
than 0.75;

S<0.01[insufficient routers] — in the long-run, the probability
that an inadequate number of routers are operational is less
than 0.01.

Querying models 119/ 133

Computation in PRISM

The underlying computation in PRISM for explicit state model
checking involves a combination of:

graph-theoretical algorithms, for conventional temporal logic
model checking and qualitative probabilistic model
checking;

numerical computation, for quantitative probabilistic model
checking, i.e. calculation of probabilities and reward
values.

Querying models 120/ 133

Computation in PRISM

Graph algorithms are used to find the satisfiability set for each
formula φ: Sat(φ) = {s ∈ S | s |= φ}.

Sat(true) = S

Sat(a) = {s | a ∈ L(s)}

Sat(¬φ) = S \ Sat(φ)

Sat(φ ∧ ψ) = Sat(φ) ∩ Sat(ψ)

Sat(P∼p[φ]) = {s ∈ S | ProbC (s, φ) ∼ p}

Sat(S∼p[ψ]) = {s ∈ S |
∑

s′|=ψ π
C
s (s ′) ∼ p}.

Querying models 121/ 133

Statistical model checking

Symbolic model checking works very well provided it is possible to
explicitly build the entire state space.

Unfortunately, state space explosion means that this is not always
possible. In these cases the most commonly used alternative is
statistical model checking.

The basic idea of statistical model checking is to simulate the
system for finitely many runs, and use statistics to infer whether
the samples provide evidence for the satisfaction or violation of the
property of interest.

Querying models 122/ 133

Statistical model checking

Symbolic model checking works very well provided it is possible to
explicitly build the entire state space.

Unfortunately, state space explosion means that this is not always
possible. In these cases the most commonly used alternative is
statistical model checking.

The basic idea of statistical model checking is to simulate the
system for finitely many runs, and use statistics to infer whether
the samples provide evidence for the satisfaction or violation of the
property of interest.

Querying models 123/ 133

Statistical model checking

Symbolic model checking works very well provided it is possible to
explicitly build the entire state space.

Unfortunately, state space explosion means that this is not always
possible. In these cases the most commonly used alternative is
statistical model checking.

The basic idea of statistical model checking is to simulate the
system for finitely many runs, and use statistics to infer whether
the samples provide evidence for the satisfaction or violation of the
property of interest.

Querying models 124/ 133

Advantages of statistical model checking

Much larger models can be handled since the state space does
not need to be constructed and stored all at once.

Since the approach is based on observations and samples it
can be applied to any system which is executable — the
underlying stochastic process does not need to be a CTMC.

Since many independent samples are required it is susceptible
to coarse-grained parallelization.

Querying models 125/ 133

Advantages of statistical model checking

Much larger models can be handled since the state space does
not need to be constructed and stored all at once.

Since the approach is based on observations and samples it
can be applied to any system which is executable — the
underlying stochastic process does not need to be a CTMC.

Since many independent samples are required it is susceptible
to coarse-grained parallelization.

Querying models 126/ 133

Advantages of statistical model checking

Much larger models can be handled since the state space does
not need to be constructed and stored all at once.

Since the approach is based on observations and samples it
can be applied to any system which is executable — the
underlying stochastic process does not need to be a CTMC.

Since many independent samples are required it is susceptible
to coarse-grained parallelization.

Querying models 127/ 133

Advantages of statistical model checking

Much larger models can be handled since the state space does
not need to be constructed and stored all at once.

Since the approach is based on observations and samples it
can be applied to any system which is executable — the
underlying stochastic process does not need to be a CTMC.

Since many independent samples are required it is susceptible
to coarse-grained parallelization.

These advantages are off-set by the disadvantage that is it an
approximation compared with the exact, explicit state approach.

Querying models 128/ 133

General framework

Consider a CTMC X and a property φ.

An execution or run of X is a, possibly infinite, sequence of states
in X .

We wish to decide P∼p[φ], i.e. whether X satisfies φ with
probability satisfying the bound ∼ p.

The result of each execution is taken to be the result of a Bernoulli
trial, 0 or 1, according to whether φ is satisfied or not.

Let q be the probability that φ is satisfied, then we seek to
establish if q ∼ p.

Querying models 129/ 133

General framework

Consider a CTMC X and a property φ.

An execution or run of X is a, possibly infinite, sequence of states
in X .

We wish to decide P∼p[φ], i.e. whether X satisfies φ with
probability satisfying the bound ∼ p.

The result of each execution is taken to be the result of a Bernoulli
trial, 0 or 1, according to whether φ is satisfied or not.

Let q be the probability that φ is satisfied, then we seek to
establish if q ∼ p.

Querying models 130/ 133

General framework

Consider a CTMC X and a property φ.

An execution or run of X is a, possibly infinite, sequence of states
in X .

We wish to decide P∼p[φ], i.e. whether X satisfies φ with
probability satisfying the bound ∼ p.

The result of each execution is taken to be the result of a Bernoulli
trial, 0 or 1, according to whether φ is satisfied or not.

Let q be the probability that φ is satisfied, then we seek to
establish if q ∼ p.

Querying models 131/ 133

General framework

Consider a CTMC X and a property φ.

An execution or run of X is a, possibly infinite, sequence of states
in X .

We wish to decide P∼p[φ], i.e. whether X satisfies φ with
probability satisfying the bound ∼ p.

The result of each execution is taken to be the result of a Bernoulli
trial, 0 or 1, according to whether φ is satisfied or not.

Let q be the probability that φ is satisfied, then we seek to
establish if q ∼ p.

Querying models 132/ 133

General framework

Consider a CTMC X and a property φ.

An execution or run of X is a, possibly infinite, sequence of states
in X .

We wish to decide P∼p[φ], i.e. whether X satisfies φ with
probability satisfying the bound ∼ p.

The result of each execution is taken to be the result of a Bernoulli
trial, 0 or 1, according to whether φ is satisfied or not.

Let q be the probability that φ is satisfied, then we seek to
establish if q ∼ p.

Querying models 133/ 133

Schematic for statistical model checking

Generation

Verification

Analysis

?

a path

?

update estimator

?

enough paths

more paths
needed

- � high-level model

� property

� reliability parameters

	Recap
	Equivalence relations in Markov Chains
	Equivalence relations in Process Algebra
	Querying models

