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Dynamic behaviour

The behaviour of a model is dictated by the semantic rules
governing the combinators of the language.

The possible evolutions of a model are captured by applying
these rules exhaustively, generating a labelled transition
system.

This can be viewed as a graph in which each node is a state
of the model (comprised of the local states of each of the
components) and the arcs represent the actions which can
cause the move from one state to another.

The language is also equipped with observational equivalence
which can be used to compare models.
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PEPA Eclipse Plug-In input

P1
def
= (start, r1).P2 P2

def
= (run, r2).P3 P3

def
= (stop, r3).P1

P1 ‖ P1
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PEPA Eclipse Plug-In input

P1
def
= (start, r1).P2 P2

def
= (run, r2).P3 P3

def
= (stop, r3).P1

P1 ‖ P1

State space

1 P1 ‖ P1

2 P1 ‖ P2

3 P2 ‖ P1

4 P1 ‖ P3

5 P2 ‖ P2

6 P3 ‖ P1

7 P3 ‖ P2

8 P3 ‖ P2

9 P3 ‖ P3
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PEPA Eclipse Plug-In input

P1
def
= (start, r1).P2 P2

def
= (run, r2).P3 P3

def
= (stop, r3).P1

P1 ‖ P1

CTMC representation computed by the plug-in

−2r1 r1 r1 0 0 0 0 0 0
0 −r1 − r2 0 r2 r1 0 0 0 0
0 0 −r1 − r2 0 r1 r2 0 0 0
r3 0 0 −r1 − r3 0 0 0 r1 0
0 0 0 0 −2r2 0 r2 r2 0
r3 0 0 0 0 −r1 − r3 r1 0 0
0 r3 0 0 0 0 −r2 − r3 0 r2
0 0 r3 0 0 0 0 −r2 − r3 r2
0 0 0 r3 0 r3 0 0 −2r3
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The PEPA Eclipse Plug-in processing the model
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Performance Modelling using CTMC

Model Construction

describing the system using
a high level modelling formalism

generating the underlying CTMC

Model Manipulation

model simplification

model aggregation

Model Solution

solving the CTMC to find steady
state probability distribution

deriving performance measures

MARKOV Q = 
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SYSTEM

DIAGRAM
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Equivalence relations in Performance Modelling

Equivalence relations are used, often informally, in performance
modelling to manipulate models into an alternative form which is
somehow easier to solve:

Model simplification: use a model-model equivalence to substitute
one model by another which is more attractive from
a solution point of view, e.g. smaller state space,
special class of model, etc.

Model aggregation: use a state-state equivalence to establish a
partition of the state space of a model, and replace
each set of states by one macro-state, i.e. take a
different stochastic representation of the same model.
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Aggregation and lumpability

Model aggregation: use a state-state equivalence to establish
a partition of the state space of a model, and replace each set
of states by one macro-state.

This is not as straightforward as it may seem if we wish the
aggregated process to still be a Markov process — an arbitrary
partition will not in general preserve the Markov property.

A lumpable partition is the only partition of a Markov process
which preserves the Markov property.
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Reducing by lumpability

As appealling as this is, it is not the case that it is always
mathematically legitimate.

In particular, arbitarily lumping the states of a Markov chain, will
typically give rise to a stochastic process which no longer satisfies
the Markov condition.
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Lumpability

In the early 1960’s Kemeny and Snell established the
conditions under which it was possible to lump a Markov
chain and still have a Markov chain afterwards.

In particular these conditions were characterised by conditions
on the rates which are straightforward to check.

However checking the conditions did involve constructing the
complete Markov chain first.

This is something of a catch-22 situation when the problem is
that the state space of the Markov chain is too large to
handle.
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Lumpability

If the original state space is {X1,X2, . . . ,Xn} then the aggregated
state space is some {X[1],X[2], . . . ,X[N]} where N < n and ideally
N << n.

In order to define a Markov chain in terms of the aggregated states
we first need to work out the transition rates between these
macro-states.
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Lumped transition rates

If the transition rates of the original process are q(Xi ,Xk) then the
transition rates into any partition from a state is

q(Xi ,X[j]) =
∑
k∈[j]

q(Xi ,Xj)

Transition rates between partitions are the weighted sum of the
transition rates of each state in the first partition to the second
partition, weighted by the conditional steady state probability of
that state in the partition, πj(·)

q(X[j],X[i ]) =
∑
k∈[j]

πj(Xk)q(Xk ,X[i ])
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Ordinary, Exact and Strict Lumpability

A Markov process is ordinarily lumpable with respect to a
partition χ = {X[i ]} iff, for any X[k],X[l ] ∈ χ,Xi ,Xj ∈ X[k]

q(Xi ,X[l ]) = q(Xj ,X[l ])

χ is an exactly lumpable partition iff, for any
X[k],X[l ] ∈ χ,Xi ,Xj ∈ X[l ]

q(X[k],Xi ) = q(X[k],Xj)

χ is a strictly lumpable partition iff it is ordinarily lumpable
and exactly lumpable.
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Equivalence Relations

It is standard for a process algebra to be equipped with a semantic
equivalence — a notion of equivalence related to the operational
semantics of the language.

In CCS-style process algebras, equivalence relations are defined
based on the notion of observability.

The idea is that each process should be able to mimic the
behaviour of the other process sufficiently that an external observer
cannot distinguish them via observation.

This symmetric relation is known as bisimulation.
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Congruence relation

In process algebras we are particularly interested in relations which
are congruences with respect to the operators of the language.

For example,

if we have two process terms P and P ′ which are related by a
congruence relation R, i.e. P R P ′ or (P,P ′) ∈ R,

then in any expression E which includes P, we can substitute
P ′ to get an expression E ′

and know that (E , E ′) ∈ R.

To prove that a relation is a congruence we need to show that this
substitutivity for equivalent processes holds for each operator of
the language.
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Classic Bisimulation

Q
(a,r)

(a,r)
(b,s)

(c,t) (d,u)

P

(d,u)
(c,t)

(b,s)
(a,r)
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Markovian bisimulation

In PEPA observation is assumed to include the ability to record
timing information over a number of runs.
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Equivalence Relations
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Markovian bisimulation

The resulting equivalence relation is a bisimulation in the style of
Larsen and Skou, and coincides with the Markov process notion of
lumpability.

Moreover this bisimulation is a congruence for all the combinators
of PEPA.
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Strong Equivalence in PEPA

Definition

An equivalence relation R ⊆ C × C is a strong equivalence if
whenever (P,Q) ∈ R then for all α ∈ A and for all S ∈ C/R

q[P, S , α] = q[Q,S , α].

where
q[Ci ,S , α] =

∑
Cj∈S

q(Ci ,Cj , α)
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Weak equivalence relations

In classic process algebras it is usual to consider weak equivalence
relations in addition to the strong style of relations already
discussed.

In a weak relation the internal τ actions are abstracted so that the
observer does not see internal actions.

However weak equivalence relations are difficult to obtain for
stochastic process algebra which have integrated time and action,
although there some results from Bernardo et al.
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Weak equivalence relations

The problem is that whilst τ.α.P has the same observable
behaviour as α.P it is not true that (τ, s).(α, r).P has the same
observable behaviour as (α, r).P.

The issue is that in the first process there is a delay (exponentially
distributed with mean s) before the activity of type α commences,
whereas in the second process the α activity starts immediately.

There seems to be no possibility of eliminating single τ type
activities in a stochastically timed process algebra.
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Weak equivalence relations

There is, however, the possibility of eliminating sequences of τ
activities, e.g. reducing (τ, s).(τ, r).P to (τ, t).P for an
appropriate t.

The difficulty is that the convolution of two exponentially
distributed delays is no longer exponentially delayed.

Nevertheless the usual decision is to maintain the exponential
distribution and the same mean duration: i.e. t is chosen to be

rs

r + s
.
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Weak equivalence relations

For PEPA the closest has been the definition of weak isomorphism
which collapses a sequence of τ actions to a single τ action with
the same mean duration.

In general any reduction based on this will be an approximation of
the original model due to the use of the exponential distribution for
the aggregate action.

However, syntactic conditions have been identified for when this
will be exact due to insensitivity.

Weak bisimulation relations are not typically preserved by the
choice operator although they can be congruence relations with
respect to the other operators.
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Other equivalences

Further results on weak bisimulation have been obtained for SPA
with orthogonal time and action such as IMC but even in this case
there are some subtleties and it is not straightforward.

Whilst most work on equivalences in SPAs have focussed on
bisimulation style equivalences, Marco Bernardo and co-authors
have developed branching and testing equivalences in the context
of the stochastic process algebra EMPA, and consequently for
CTMCs.
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Querying models

So far we have focussed on the construction of the model and
demonstrated the use of some particular examples to derive
quantitative measures.

PEPA is complemented by a couple of formal approaches to query
models.

stochastic model checking based on a stochastic logic; and

(eXtended) stochastic probes within the PEPA model.
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Model checking

Model checking requires two inputs:

a description of the system, usually given in some high-level
modelling formalism such as a process algebra description, or
a Petri net;

a specification of one or more desired properties of the system,
normally using termporal logics such as CTL (Computational
Tree Logic) or LTL (Linear-time Temporal Logic).
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Model checking

From the high-level description the model checker constructs a
labelled transition system which captures all possible behaviours of
the system.

The model checking algorithms then automatically verify whether
or not each property is satisfied in the system.
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Stochastic model checking

In stochastic model checking it is assumed that the labelled
transition system is a Continuous Time Markov Chain (CTMC).

This makes stochastic process algebras suitable high-level language
for stochastic model checking.

The logic is also enhanced to query not just logical behaviour
(whether some property is satisfied or not) but also quantified
behaviour (e.g. the probability that a property is satisfied at a
particular time).
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Model checking

There are two broad approaches to model checking:

Explicit state model checking (exhaustive exploration for all
possible states/executions): exact results obtained via
numerical computation.

Statistical model-checking (discrete event simulation and
sampling over multiple runs): approximate results.
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A logical foundation for a specification language

The expression, and testing for satisfaction of equilibrium
properties, can be seen to be closely related to the specification,
and model checking of a formula expressed in Larsen and Skou’s
probabilistic modal logic (PML).

We give a modified interpretation of such formulae suitable for
reasoning about PEPA’s continuous time models.

We exploit the operators of modal logic to be more discriminating
about which states contribute to the reward measure.

In particular, we can select a state based on model behaviour
which is not immediately local to the state.
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Larsen and Skou’s PML

F ::= tt (truth)

| ∇α (inability)

| ¬F (negation)

| F1 ∧ F2 (conjunction)

| 〈α〉µF (“at least”)
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Transition rates to set of processes

Definition

P
(α,ν)
−−−→ S if for all P ′ ∈ S , P

α
−−→ P ′ and∑

{r | P
(α,r)
−−−→ P ′,P ′ ∈ S} = ν.
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Interpreting PML over PEPA processes

Let P be a model of a PEPA process.

P |= tt

P |= ¬F if P 6|= F

P |= F1 ∧ F2 if P |= F1 and P |= F2

P |= ∇α if P 6α−→

P |= 〈α〉µF if P
(α,ν)
−−−→ S for some ν ≥ µ,

and for all P ′ ∈ S ,P ′ |= F
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Modal characterisation of strong equivalence

Let P be a model of a PEPA process. Then

P ∼= Q iff for all F , P |= F iff Q |= F

i.e. two PEPA processes are strongly equivalent (in particular, their
underlying Markov chains are lumpably equivalent) if and only if
they both satisfy, in the setting where rates are quantified, the
same set of PML formulae.
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Using PML

PML is interesting because of its characterisation of strong
equivalence in PEPA, but it is not a very useful logic from a
practical point of view.

In particular it is not supported by any model checking tools.

For real use in practice we use the richer logic Continuous
Stochastic Logic (CSL).
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PRISM model and model checking

Probabilistic model checking in PRISM is based on a CTMC
and the logic CSL.

Formally the mapping from PEPA is based on the structured
operational semantics, generating the underlying CTMC in the
usual way.

In practice PEPA is an input language for PRISM with a
direct mapping between PEPA components and the
interacting, reactive modules of the PRISM input language.

Note, however, that this places a restriction to have
synchronisations in which only one participant is active as
PRISM cannot handle the apparent rate based calculations of
cooperation in PEPA.



Querying models 103/ 133

PRISM model and model checking

Probabilistic model checking in PRISM is based on a CTMC
and the logic CSL.

Formally the mapping from PEPA is based on the structured
operational semantics, generating the underlying CTMC in the
usual way.

In practice PEPA is an input language for PRISM with a
direct mapping between PEPA components and the
interacting, reactive modules of the PRISM input language.

Note, however, that this places a restriction to have
synchronisations in which only one participant is active as
PRISM cannot handle the apparent rate based calculations of
cooperation in PEPA.



Querying models 104/ 133

PRISM model and model checking

Probabilistic model checking in PRISM is based on a CTMC
and the logic CSL.

Formally the mapping from PEPA is based on the structured
operational semantics, generating the underlying CTMC in the
usual way.

In practice PEPA is an input language for PRISM with a
direct mapping between PEPA components and the
interacting, reactive modules of the PRISM input language.

Note, however, that this places a restriction to have
synchronisations in which only one participant is active as
PRISM cannot handle the apparent rate based calculations of
cooperation in PEPA.



Querying models 105/ 133

PRISM model and model checking

Probabilistic model checking in PRISM is based on a CTMC
and the logic CSL.

Formally the mapping from PEPA is based on the structured
operational semantics, generating the underlying CTMC in the
usual way.

In practice PEPA is an input language for PRISM with a
direct mapping between PEPA components and the
interacting, reactive modules of the PRISM input language.

Note, however, that this places a restriction to have
synchronisations in which only one participant is active as
PRISM cannot handle the apparent rate based calculations of
cooperation in PEPA.



Querying models 106/ 133

The CSL logic

The syntax of CSL is as follows:

φ ::= true | a | ¬φ | φ ∧ φ |
P∼p[φ UI φ] | S∼p[φ] |
R∼r [I=t ] | R∼r [C≤t ] | R∼r [F φ] | R∼r [S]

where a is an atomic proposition, ∼∈ {<,≤,≥, >}, p ∈ [0, 1], I is
an interval of R≥0 and r , t ∈ R≥0.

P and S are probabilistic operators which include a probabilistic
bound ∼p.

R is a reward operator with a reward bound ∼ r .
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Probabilistic operators

A formula S∼p[φ] is true in state s if the probability that the
formula φ being satisfied in a steady state reached from state s
meets the bound ∼p.

A formula P∼p[φ UI φ] is true in a state s if the probability of the
formula (φ UI φ) being satisfied from state s meets the bound ∼p.

A formula of type φ1 UI φ2 is an until formula.

It is true of a path σ through the state space if, for some time
instant t ∈ I , at time t in the path σ the CSL subformula φ2 is
true and the subformula φ1 is true at all preceding time instants.
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The CSL Reward operator

The CSL reward operator R is used to express properties
concerning the expected value of rewards.

R∼r [I=t ] asserts that the expected value of the state reward at
time instant t meets the bound ∼ r .

R∼r [C≤t ] refers to the expected reward accumulated up until t.

R∼r [F φ] asserts that the expected reward accumulated before a
state satisfying φ is reached meets the bound ∼ r .

R∼r [S] asserts that the long-run/steady state expected reward
meets the bound ∼ r .
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Example CSL formulae

P>0.9[true U[0,4.5] served ] — the probability that a request is
served within the first 4.5 seconds is greater than 0.9;

P≤0.1[true U[10,∞) error ] — the probability that an error
occurs after 10 seconds of operation is at most 0.1;

down −→ P>0.75[¬fail U[1,2] up] — when a shutdown occurs,
the probability of system recovery being completed in between
1 and 2 hours without further failures occurring is greater
than 0.75;

S<0.01[insufficient routers] — in the long-run, the probability
that an inadequate number of routers are operational is less
than 0.01.
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Computation in PRISM

The underlying computation in PRISM for explicit state model
checking involves a combination of:

graph-theoretical algorithms, for conventional temporal logic
model checking and qualitative probabilistic model
checking;

numerical computation, for quantitative probabilistic model
checking, i.e. calculation of probabilities and reward
values.
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Computation in PRISM

Graph algorithms are used to find the satisfiability set for each
formula φ: Sat(φ) = {s ∈ S | s |= φ}.

Sat(true) = S

Sat(a) = {s | a ∈ L(s)}

Sat(¬φ) = S \ Sat(φ)

Sat(φ ∧ ψ) = Sat(φ) ∩ Sat(ψ)

Sat(P∼p[φ]) = {s ∈ S | ProbC (s, φ) ∼ p}

Sat(S∼p[ψ]) = {s ∈ S |
∑

s′|=ψ π
C
s (s ′) ∼ p}.
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Statistical model checking

Symbolic model checking works very well provided it is possible to
explicitly build the entire state space.

Unfortunately, state space explosion means that this is not always
possible. In these cases the most commonly used alternative is
statistical model checking.

The basic idea of statistical model checking is to simulate the
system for finitely many runs, and use statistics to infer whether
the samples provide evidence for the satisfaction or violation of the
property of interest.
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Advantages of statistical model checking

Much larger models can be handled since the state space does
not need to be constructed and stored all at once.

Since the approach is based on observations and samples it
can be applied to any system which is executable — the
underlying stochastic process does not need to be a CTMC.

Since many independent samples are required it is susceptible
to coarse-grained parallelization.
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Much larger models can be handled since the state space does
not need to be constructed and stored all at once.

Since the approach is based on observations and samples it
can be applied to any system which is executable — the
underlying stochastic process does not need to be a CTMC.

Since many independent samples are required it is susceptible
to coarse-grained parallelization.

These advantages are off-set by the disadvantage that is it an
approximation compared with the exact, explicit state approach.
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General framework

Consider a CTMC X and a property φ.

An execution or run of X is a, possibly infinite, sequence of states
in X .

We wish to decide P∼p[φ], i.e. whether X satisfies φ with
probability satisfying the bound ∼ p.

The result of each execution is taken to be the result of a Bernoulli
trial, 0 or 1, according to whether φ is satisfied or not.

Let q be the probability that φ is satisfied, then we seek to
establish if q ∼ p.
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Schematic for statistical model checking
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