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State Space Explosion

The numerical solution of CTMC models such as those built using
stochastic Petri nets and stochastic process algebras, like PEPA,
relies on construction of the N x N infinitesimal generator matrix
Q, and the N-dimensional probability vector 7, where N is the size
of the state space.

Unfortunately, the size of these entities often exceeds what can be
handled in memory.

This problem is known as state space explosion.

(All discrete state modelling approaches are prone to this problem.)
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A simple example: processors and resources

Proco = (taskl,n).Procy
Proc; & (task2, ry).Procg
Reso, & (taskl, r3).Resy
Resy & (reset, rs).Resgo

Procog P4 Resg

{task1}
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A simple example: processors and resources

Procg & (taskl, r).Procy
Proc; & (task2, ry).Procg
Reso, & (taskl, r3).Resy
Res; % (reset,r).Reso

Procog P4 Resg

{task1}

Procog B Resg

{task1}

(task2, rp) (reset, rg)
(taskl, R)
Proc; B Res;
{task1}
(reset, rg) (task2, rp)

Proc; B4 Resy,  Procy B4 Res;

{task1} {task1}

R = min(ry, r3)
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A simple example: processors and resources

Procy B Resq

{task1}
def (task2, rp) (reset, rg)
Procg » (taskl, r).Procy (taskL, R)
Proc; = (task2,r).Proc
Yo ( 12) 0 Proc; P Res,
Resy = (taskl,rs).Res; {taska}
def
Res; = (reset,rs).Resq (reset, rz) (task2, 1)

Proc; B4 Res Procog B Res
Procog P4 Resg 1 (oskay 1570 0 (Zory 1

{task1}
N R = min(ry, r3)
—R R 0 0
Q _ 0 —(r2 + I’4) ra rn
r 0 —r 0

ra 0 0 — Iy
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Simple example : multiple instances

Proco = (taskl,n).Proc;
Proc; % (task2,r).Proco
Resy % (taskl,rs).Res;
Res; % (reset, r).Resq

Proco[Np] {Dﬁ Reso[Ng]

task1}



Introduction

Simple example : multiple instances

Procg & (
Procy & (
Resg & (
Resq & (

Proco[Np] .

taskl, r).Procy
task2, r).Procy
taskl, r3).Res;
reset, ry).Resg

B Res

task1}

o[ Ng]

CTMC interpretation

Processors (Np)  Resources (Ng)  States (2VPHNR)
1 4

8

16

32

64

128
256
512
1024
2048
4096
8192
16384
32768
65536
131072
262144
524288
1048576

HEHOORONNOOTOARWWNN R

oo
HOOOONNODGTUADWWNN =

o
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Simple example : multiple instances

CTMC interpretation

Processors (Np)  Resources (Ng)  States (2VPHNR)
1 4

8

16

32

64

128
256
512
1024
2048
4096
8192
16384
32768
65536
131072
262144
524288
1048576

Proco = (taskl,n).Proc;

(
Procy gef (task2, ry).Procg
£ (task1, rs).Res;

(

reset, ry).Resg

Resy =
Res;

Proco[Np] {Dﬁ Reso[Ng]

task1}

HHOOOWONNODACTORDWWNN R

oo
HOOOONNODGTUADWWNN =

o

The size of state space: 2VP x 2Nk,
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Tackling state space explosion

m To overcome state-space explosion problem in CTMCs, many
mathematical tools and approaches have been proposed.

m We will use the stochastic process algebra, PEPA as an
example, and give an overview of four different approaches to
tackling the state space explosion problem.

m state space reduction via aggregation;

decomposed solution techniques

m stochastic simulation over the discrete state space;

fluid approximation of the state space.
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Model reduction

Performance Modelling using CTMC

Model Construction

m describing the system using
a high level modelling formalism

m generating the underlying CTMC
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Performance Modelling using CTMC

Model Construction @

m describing the system using
a high level modelling formalism
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Model reduction

Performance Modelling using CTMC

Model Construction

m describing the system using
a high level modelling formalism

m generating the underlying CTMC
Model Manipulation

m model simplification

m model aggregation

PROCESS
..... -S>
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Performance Modelling using CTMC

Model Construction

m describing the system using
a high level modelling formalism

m generating the underlying CTMC
Model Manipulation

m model simplification

m model aggregation
Model Solution

m solving the CTMC to find steady
state probability distribution

m deriving performance measures
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one model by another which is more attractive from
a solution point of view, e.g. smaller state space,
special class of model, etc.



Model Manipulation

Model simplification: use a model-model equivalence to substitute
one model by another which is more attractive from
a solution point of view, e.g. smaller state space,
special class of model, etc.

Model aggregation: use a state-state equivalence to establish a
partition of the state space of a model, and replace
each set of states by one macro-state, i.e. take a
different stochastic representation of the same model.
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Strong Equivalence in PEPA

Strong equivalence in PEPA is a bisimulation in the style of Larsen
of Skou.

(d,u)

(ar el o'V o

Q

(ar)

(b,s)
Observability is assumed to include the ability to record timing
information over a number of runs.

Two processes are equivalent if they can undertake the same
actions, at the same rate, and arrive at processes that are
equivalent.



Model reduction

Strong Equivalence in PEPA

Strong equivalence in PEPA is a bisimulation in the style of Larsen
of Skou.

(d,u) (c.h)

(d,u)
@
Q (a,r

(a,r) b5

Observability is assumed to include the ability to record timing
information over a number of runs.

Two processes are equivalent if they can undertake the same
actions, at the same rate, and arrive at processes that are
equivalent.

Expressed as rates to equivalence classes of processes
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Model reduction

Strong Equivalence in PEPA

An equivalence relation R C C x C is a strong equivalence if
whenever (P, Q) € R then for all @ € A and for all S € C/R

q[P,S,a] = q[Q, S, a].
where

q[C;,S,a] = Z q(Ci7 Qaa)
GeS
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Strong Equivalence and Lumpability

m Given this definition it is fairly straightforward to show that if
we consider strong equivalence of states within a single model,
it induces an ordinarily lumpable partition on the state space
of the underlying Markov chain.

m Moreover it can be shown that strong equivalence is a
congruence.

m This means that aggregation based on lumpability can be
applied component by component, avoiding the previous
problem of having to construct the complete state space in
order to find the lumpable partitions.
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Using this result in practice

There are well-known algorithms such as Paige and Tarjan for
finding the maximal partition of a graph according to some
equivalence.

However in practice we would much rather construct the
aggregated state space directly.

The first approach to this used canonical forms but still worked
syntactically to identify states. [Gilmore, Hillston and Ribaudo,
IEEE TSE 2001].

A more recent approach shifts to a numerical representation of
states and transitions. [Jie Ding, PhD thesis, Edin. 2010]
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Losing identity

The syntactic nature of PEPA makes models easily understood by
humans, but not so convenient for approaches such as aggregation
and simulation.

In particular when we have many instances of the same component
type, in the PEPA expression these instances are distinguished by
their location (position from left to right) in the expression.

However, in general we do not care which such instance is involved
in an event, just that one of them is, i.e. it is sufficient to count
the instances that are in the possible local states.

Thus we change to a state representation which is a numerical
state vector.
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Reducing by lumpability

o 0 -0 -0 -0

When we use the numerical vector state representation for PEPA
we group together those expressions that have the same counts for
each of the local states and we are certain that the partition that
we induce on the state space is lumpable and so the lumped
process is still a Markov process.



Numerical Vector Form [QEST 2005]

For an arbitrary PEPA model M with n component types
Ci,i=1,2,---,n, each with d; distinct local derivatives, the
numerical vector form of M, m(M), is a vector with d = ", d;
entries.

The entry m[C;] records how many instances of the jth local
derivative of component type C; are exhibited in the current state.

The entries in the system vector or a sequential component'’s
vector are no longer syntactic terms representing the local
derivative, but the number of components currently exhibiting this
local derivative.
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Example revisited

Procy = (taskl,r).Procy

(
Proc; = (task2,r).Procg
Reso = (taskl,r).Res;
(

Res; = (reset,s).Resg

(Resg || Reso) B (Procy || Proco)

{task1}



Numerical vector form

For our example model:

m = (m[Prog), m[Proci], m[Resp|, m[Resi]) .



Numerical vector form

For our example model:
m = (m[Prog), m[Proci], m[Resp|, m[Resi]) .

When Np = Ng = 2, the system equation of the model determines
the starting state:

m = (Np,0, Ng,0) = (2,0,2,0)

We can apply the possible activities in each of the states until we
find all possible states.



Numerical vector form

The initial state is (2,0,2,0) where the entries in the vector are
counting the number of Resg, Res1, Procgy, Procy local derivatives
respectively, exhibited in the current state.



Numerical vector form

The initial state is (2,0,2,0) where the entries in the vector are
counting the number of Resg, Res1, Procgy, Procy local derivatives
respectively, exhibited in the current state.

If we consider the state (1,1,1,1) it is representing four distinct
syntactic states

Resq, Res1, Procg, Procy
Resy, Resq, Procq, Procy
Resg, Res1, Procy, Procg
Res1, Resq, Procy, Procg

)
)
)
)
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The resulting state space

2,0,2,0)'
reset ( e V\aSkZ
/ taskl T
t (2,0,l1) (1,1,2,0) k2
rese task2 reset ‘&
/ taskl \ T/
(2,0,0,2)' (11,2,1) ekl (0,2,2,0)
reset task2
(110,2) (0,211)
W reset/'
O 2,0, 2

The size of the state space: (Np + dp — 1)1 x (Ng + dg — 1)9~ 1,
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Solution of an aggregated model

Once we have the state space of the aggregated model we
construct the CTMC in the obvious way — associating one state
with each node in the aggregated state transition diagram.

This CTMC will typically have a smaller state space than the one
derived from the original state representation as a derivative graph,
and certainly no larger.

The steady state probability distribution can then be derived in the
usual way by solving the global balance equations.

The solution gives you the probability of being in the set of states
that have the same behaviour.
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Characterising efficient solution

PEPA MODEL
Storing and manipulating the
matrix which represents the
Zz """"" Markov process places limitations
..... 3 e on the size of model which
_ MARKOV
Q= PROCESS can be analysed.
...... Z
..... -S

— EQUILIBRIUM PROBABILITY
PiRR, DISTRIBUTION ....., Y
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Characterising efficient solution

Certain structures in the matrix are
PEPA MODEL known to be amenable to efficient,
decomposed solution.

1 S e 5
..... | w3 S e
o e 1 _ [ "MARKov 0= MARKOV
RKOV 1 Q= PROCESS | eeses = PROCESS
Q |PROCESS |
e m———- +
- S e
1 e -

7= EQUILIBRIUM PROBABILITY
P PyPy e DISTRIBUTION .., pN>



Characterising efficient solution

; B —

' PEPA MODEL —
AR : SUBMODELS

..... S
L U Ty
“MARKOV _ MARKOV
Q= PROCESS | Q= PROCESS

—t= ( EQUILIBRIUM PROBABILITY
p.0p, ww DISTRIBUTION ...,p,

Finding the corresponding structures in the process
algebra means that these techniques can be applied
automatically, before the monolithic matrix is formed.
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Decomposed solution: product form models

p(M)
p(M) = G x p(m,) x p(m,) x ... x p(m,)

In isolation, find the steady Form the steady state
statistically independent state distribution p for distribution of M as the product of

submodels m, m,, ..., m, each of the submodels m, the solutions for each submodel m,
and a normalising constant

Partition the model M into n

When do PEPA components behave as if they were statistically
independent...”?



Product Form PEPA Models

P551H52
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Product Form PEPA Models

PESlHSQ

Add restricted direct interaction
between components with a
particular structure
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Product Form PEPA Models
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Product Form PEPA Models
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Add restricted direct interaction Add indirect interaction via a third

between components with a component with a particular
particular structure structure and type of interaction
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51,55 and L all restricted L and R restricted (wrt S; and S5)
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Product Form PEPA Models

PESlHSQ

Add restricted direct interaction Add indirect interaction via a third

between components with a component with a particular
particular structure structure and type of interaction
PESlBLQSQ PE(SlHSQ)DFR
51,55 and L all restricted L and R restricted (wrt S; and S5)
m Quasi-reversibility m Boucherie resource contention
m Reversibility m Queueing discipline models

m Routing process approach m Quasi-separability
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as being exact.
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Approximate solutions

Numerical solution of the full Markov process is regarded as the
exact result and aggregation based on lumpability is also regarded
as being exact.

However due to the difficulties of staying within the confines of the
Markov property most techniques for tackling state space explosion
are not exact.

We are sometimes prepared to trade exactness for tractability.
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Time Scale Decomposition

m Based on a well-established technique in the underlying
CTMC, this approach partitions the states of the process
according to the rates at which they undertake activities.

m The assumption is that the model will form local equilibria
within “islands” of fast activities, before occasitionally moving
on to a different “island” via a slow activity.

m Fast interacting states are modelled in detail in isolation, and
an aggregated model captures the transitions between the
clusters of states.
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Time Scale Decomposition in SPA [Mertsiotakis 98]

m Activities are partitioned into fast activities and slow activities.

m In SPA models, null cooperation over slow action types is used
to identify the islands of fast activity, and each is solved as a
separate model.

m Similarly the aggregated model, with one state per cluster of
fast activity is found by disabling the fast activities, again
through null cooperation.

m Each of the resulting CTMCs is solved and the results
combined to give the overall solution.



Throughput Approximation in SPA [Mertsiotakis 98]

m The model is partitioned into two in such a way that there is
a one flow each way between them.

m In SPA terms this means that the two subcomponents interact
between a pair of actions, each passive with respect to one of
them.

m Each subcomponent is solved in isolation to give an estimate
of the throughput of the interface activity for which it is
active, and assuming a rate for the interface activity for which
it is passive.

m This pair of solutions is carried out iteratively, each time

updating the passive rate according to the previous solution
until convergence is achieved.
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consider is the use of fluid or continuous approximation.



Fluid Approximation

The fourth approach to tackling state space explosion that we
consider is the use of fluid or continuous approximation.

Here the key idea is to approximate the behaviour of a discrete
event system which jumps between discrete states by a continuous
system which moves smoothly over a continuous state space.
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Continuously varying counting variables

When this is applied in performance models the state space is
usually characterised by counting variables:

m the number of customers in a queue,
m the number of servers who are busy, or

m the number of local derivatives in a particular state in a PEPA
model.

Allowing continuous variables for these quantities might seem odd
to begin with — what does it mean for 0.65 servers to be busy?
— but when we think of it as the expectation it becomes easier to
interpret.
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Simple illustrative example

Tiny example

Py € (start, r).P, Py & (run, r).Ps Ps & (stop, r).Py
System = (P || P1)

This example defines a system with nine reachable states:

| PP AP P B P P
A P P 3P| P B P3| P>
B P Ps a P Ps B P Ps

The transitions between states have quantified duration r which
can be evaluated against a CTMC or ODE interpretation.



Analysis based on Continuous-time Markov Chains

Tiny example

Py € (start, r).P, Py & (run, r).Ps Ps & (stop, r).Py
System = (P || P1)

Using transient analysis we can evaluate the probability of each
state with respect to time. For t = 0:

1.0000 0.0000 0.0000
0.0000 0.0000 B 0.0000
0.0000 @ 0.0000 E 0.0000
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Analysis based on Continuous-time Markov Chains

Tiny example

Py € (start, r).P, Py & (run, r).Ps Ps & (stop, r).Py
System = (P || P1)

Using transient analysis we can evaluate the probability of each
state with respect to time. For t = 1:

0.1642 0.1567 0.0842
0.1567 0.1496 B 0.0804
0.0842 @ 0.0804 B 0.0432



Analysis based on Continuous-time Markov Chains

Tiny example

Py € (start, r).P, Py & (run, r).Ps Ps & (stop, r).Py
System = (P || P1)

Using transient analysis we can evaluate the probability of each
state with respect to time. For t = 2:

0.1056 0.1159 0.1034
0.1159 0.1272 B 0.1135
0.1034 @ 0.1135 @ 0.1012
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Analysis based on Continuous-time Markov Chains

Tiny example

Py € (start, r).P, Py & (run, r).Ps Ps & (stop, r).Py
System = (P || P1)

Using transient analysis we can evaluate the probability of each
state with respect to time. For t = 3:

0.1082 0.1106 0.1100
0.1106 0.1132 B 0.1125
0.1100 @ 0.1125 @ 0.1119
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Analysis based on Continuous-time Markov Chains

Tiny example

Py € (start, r).P, Py & (run, r).Ps Ps & (stop, r).Py
System = (P || P1)

Using transient analysis we can evaluate the probability of each
state with respect to time. For t = 4:

0.1106 0.1108 0.1111
0.1108 0.1110 B 0.1113
0.1111 @ 0.1113 B 0.1116
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Analysis based on Continuous-time Markov Chains

Tiny example

Py € (start, r).P, Py & (run, r).Ps Ps & (stop, r).Py
System = (P || P1)

Using transient analysis we can evaluate the probability of each
state with respect to time. For t = 5:

0.1111 0.1110 0.1111
0.1110 0.1110 A 0.1111
0.1111 @ 0.1111 @ 0.1111



Analysis based on Continuous-time Markov Chains

Tiny example

Py € (start, r).P, Py & (run, r).Ps Ps & (stop, r).Py
System = (P || P1)

Using transient analysis we can evaluate the probability of each
state with respect to time. For t = 6:

0.1111 0.1111 0.1111
0.1111 0.1110 A 0.1111
0.1111 @A 0.1111 E 0.1111
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Analysis based on Continuous-time Markov Chains

Tiny example

Py € (start, r).P, Py & (run, r).Ps Ps & (stop, r).Py
System = (P || P1)

Using transient analysis we can evaluate the probability of each
state with respect to time. For t = 7:

0.1111 0.1111 0.1111
0.1111 0.1111 A 0.1111
0.1111 @A 0.1111 E 0.1111



Analysis based on Ordinary Differential Equations

Tiny example

Py € (start, r).P, Py & (run, r).Ps Ps & (stop, r).Py
System = (P || P1)

Using the ordinary differential equation semantics we can com-
pute the expected number of each type of component.

For t = 0: Py 2.0000
P, 0.0000
P3 0.0000
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Analysis based on Ordinary Differential Equations

Tiny example

Py € (start, r).P, Py & (run, r).Ps Ps & (stop, r).Py
System = (P || P1)

Using the ordinary differential equation semantics we can com-
pute the expected number of each type of component.

For t =1: Py 0.8121
P, 0.7734
P; 0.4144
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Analysis based on Ordinary Differential Equations

Tiny example

Py € (start, r).P, Py & (run, r).Ps Ps & (stop, r).Py
System = (P || P1)

Using the ordinary differential equation semantics we can com-
pute the expected number of each type of component.

For t = 2: Py 0.6490
P, 0.7051
P3 0.6457
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Analysis based on Ordinary Differential Equations

Tiny example

Py € (start, r).P, Py & (run, r).Ps Ps & (stop, r).Py
System = (P || P1)

Using the ordinary differential equation semantics we can com-
pute the expected number of each type of component.

For t = 3: Py 0.6587
P> 0.6719
P3; 0.6692



Analysis based on Ordinary Differential Equations

Tiny example

Py € (start, r).P, Py & (run, r).Ps Ps & (stop, r).Py
System = (P || P1)

Using the ordinary differential equation semantics we can com-
pute the expected number of each type of component.

For t = 4: Py 0.6648
P> 0.6665
P3; 0.6685
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Analysis based on Ordinary Differential Equations

Tiny example

Py € (start, r).P, Py & (run, r).Ps Ps & (stop, r).Py
System = (P || P1)

Using the ordinary differential equation semantics we can com-
pute the expected number of each type of component.

For t = 5: P; 0.6666
P, 0.6663
P3; 0.6669
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Analysis based on Ordinary Differential Equations

Tiny example

Py € (start, r).P, Py & (run, r).Ps Ps & (stop, r).Py
System = (P || P1)

Using the ordinary differential equation semantics we can com-
pute the expected number of each type of component.

For t = 6: P; 0.6666
P, 0.6666
P3; 0.6666
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Analysis based on Ordinary Differential Equations

Tiny example

Py € (start, r).P, Py & (run, r).Ps Ps & (stop, r).Py
System = (P || P1)

Using the ordinary differential equation semantics we can com-
pute the expected number of each type of component.

Fort=7: Py 0.6666
P, 0.6666
P; 0.6666
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Fluid Approximation

Analysis based on Ordinary Differential Equations

Slightly larger example

Py € (start, r).P, Py & (run, r).Ps Ps & (stop, r).Py
System < (Py || Py || Py)

A slightly larger example with a third copy of the process also
initiated in state P;.
For t = 0: P;  3.0000

P> 0.0000
P53 0.0000
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Analysis based on Ordinary Differential Equations

Slightly larger example

Py € (start, r).P, Py & (run, r).Ps Ps & (stop, r).Py
System < (Py || Py || Py)

A slightly larger example with a third copy of the process also
initiated in state P;.
For t = 1: Py 1.1782

P, 1.1628
P3 0.6590
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Fluid Approximation

Analysis based on Ordinary Differential Equations

Slightly larger example

Py € (start, r).P, Py & (run, r).Ps Ps & (stop, r).Py
System < (Py || Py || Py)

A slightly larger example with a third copy of the process also
initiated in state P;.
For t = 2: Py 0.9766

P, 1.0754
P; 0.9479
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Analysis based on Ordinary Differential Equations

Slightly larger example

P, & (start,r).P> P> dZEf(run, r).Ps Ps dZEf(StOPa r)-P1
System = (Py || Py || P1)

A slightly larger example with a third copy of the process also
initiated in state P;.
For t = 3: Py 0.9838

P, 1.0142
Ps;  1.0020
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Analysis based on Ordinary Differential Equations

Slightly larger example
P3 & (stop, r).P;

Py € (start, r).P, Py € (run, r).Ps
System Z (Py || Py || P1)

A slightly larger example with a third copy of the process also
initiated in state P;.

For t = 4: Py 0.9981
P, 0.9995
P3 1.0023
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Fluid Approximation

Analysis based on Ordinary Differential Equations

Slightly larger example

Py € (start, r).P, Py & (run, r).Ps Ps & (stop, r).Py
System < (Py || Py || Py)

A slightly larger example with a third copy of the process also
initiated in state P;.
For t = 5: Py 1.0001

P> 0.9996
P; 1.0003
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Fluid Approximation

Analysis based on Ordinary Differential Equations

Slightly larger example

Py € (start, r).P, Py & (run, r).Ps Ps & (stop, r).Py
System < (Py || Py || Py)

A slightly larger example with a third copy of the process also
initiated in state P;.
For t = 6: Py 1.0001

P> 0.9999
P; 1.0000



Fluid Approximation

Analysis based on Ordinary Differential Equations

Slightly larger example

Py € (start, r).P, Py & (run, r).Ps Ps & (stop, r).Py
System < (Py || Py || Py)

A slightly larger example with a third copy of the process also
initiated in state P;.
Fort =7: Py 1.0000

P> 0.9999
P;0.9999
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Analysis based on Ordinary Differential Equations

Slightly larger example

P, & (start,r).P> P> dZEf(run, r).Ps Ps dZEf(StOPa r)-P1
System = (Py || Py || P1)

A slightly larger example with a third copy of the process also
initiated in state P;.
For t = 8: P; 1.0000

P, 1.0000
P; 1.0000
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Isn’t this just the Chapman-Kolmogorov equations?

It is possible to perform transient analysis of a continuous-time
Markov chain by solving the Chapman-Kolmogorov differential
equations:

[Stewart, 1994]



Isn’t this just the Chapman-Kolmogorov equations?

It is possible to perform transient analysis of a continuous-time
Markov chain by solving the Chapman-Kolmogorov differential
equations:

[Stewart, 1994]

That's not what we're doing. We go directly to ODEs.



Fluid approximation

m In a PEPA model the state at any current time is the local
derivative or state of each component of the model.
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m We can represent the state of the system as the count of the
current number of each possible local derivative or component

type.
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each count as a continuous variable, and the state of the
model as a whole as the set of such variables.
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Fluid approximation

m In a PEPA model the state at any current time is the local
derivative or state of each component of the model.

m We can represent the state of the system as the count of the
current number of each possible local derivative or component

type.

m We can approximate the behaviour of the model by treating
each count as a continuous variable, and the state of the
model as a whole as the set of such variables.

m The evolution of each count variable can then be described by
an ordinary differential equation (assuming rates are
deterministic).



Fluid approximation

m In a PEPA model the state at any current time is the local
derivative or state of each component of the model.

m We can represent the state of the system as the count of the
current number of each possible local derivative or component

type.

m We can approximate the behaviour of the model by treating
each count as a continuous variable, and the state of the
model as a whole as the set of such variables.

m The evolution of each count variable can then be described by
an ordinary differential equation (assuming rates are
deterministic).

Appropriate for models in which there are large numbers of
components of the same type.



Fluid Approximation

Differential equations from PEPA models

m The PEPA definitions of the component specify the activities
which can increase or decrease the number of components
exhibited in the current state.

m The cooperations show when the number of instances of
another component will have an influence on the evolution of
this component.

N

N
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Example revisited

Proco = (taskl,n).Procy
Proc; % (task2,r,).Proco
Resy = (taskl, n).Resy

(

Res; reset, r3).Resg

Proco[Np] {Dﬁ Reso[Ng]

task1}



Example revisited

m taskl decreases Procy and Resg

Proco = (taskl,n).Procy

Proc: % (task2, rp).Proco m taskl increases Proci; and Res;

(
(

Resy & (task1, ). Res, m task?2 decreases Proci and
(

Res, increases Procg

reset, ry).Resg
m reset decreases Res; and

Proco[Np] {Dﬂ Resg[NR] increases Resg

task1}

We can capture exactly this relationship between activities and
components the activity matrix which has one row for each
component and one column for each activity.



Fluid Approximation 125/ 228

Example revisited

Proc, & (taskl,r).Procy
Proc; = (task2, r2).Proco et
o Proco | =1 | 1 0
Resy = (taskl,r).Res; Procy | 1 | =1| 0
Res; 2 (reset, r;).Resg Resp | =1 | 0 1

Resy 1 0 -1

task1}

Proco[Np] {Dﬁ Reso[Ng]

We can capture exactly this relationship between activities and
components the activity matrix which has one row for each
component and one column for each activity.



Example revisited

ODE interpretation

% = —r min(xy,x3) + r2x
Proco & (taskl,r).Procy q x1 = no. of Proc,
e X — 1
Proc; % (task2,r,).Proco TI? = n min(x1,x3) — r2x
Resy % (taskl,r).Res; xz = no. of Procy
Res; 2 (reset, r;).Resg % = —r min(xy,x3) + 1 xa
Proco[Ns] 11 Reso[Ne] x3 = no. of Resy
roc es,
0P ey oLTR ddit“ =n min(Xl,X3) — 1 X4

X4 = no. of Res;

We can capture exactly this relationship between activities and
components the activity matrix which has one row for each
component and one column for each activity.



Differential equations from PEPA models

m As we have already seen in deriving the activity matrix, the
PEPA definitions of the component specify the activities
which can increase or decrease the number of components
exhibited in the current state.

m Moreover we can see for each component, which activities are
entry activities and exit activities respectively.

m The cooperations show when the number of instances of
another component will have an influence on the evolution of
this component.
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Differential equations from PEPA models

m As we have already seen in deriving the activity matrix, the
PEPA definitions of the component specify the activities
which can increase or decrease the number of components
exhibited in the current state.

m Moreover we can see for each component, which activities are
entry activities and exit activities respectively.

m The cooperations show when the number of instances of
another component will have an influence on the evolution of
this component.

In the following derivation we restrict to the case where all
components that cooperate on an activity have the same rate for
that activity.

128/ 228



Differential equations from PEPA models

Let N(C,J., t) denote the number of Cj; type components at time t.
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Let N(C,J., t) denote the number of Cj; type components at time t.

Consider the change in a small time dt:

N(Ci;, t +0t) — N(Cj, t) =
— Z rx  min  (N(Cg,t))dt

(a,r)€EX(Cy;) Ci epre(a,r)

exit activities

+ > rx min (N(Ck. 1))t
(a,r)€En(C;) Ck Epre(ar)

/

entry activities
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Differential equations from PEPA models

Let N(C,J., t) denote the number of Cj; type components at time t.

Consider the change in a small time dt:

N(Ci;, t +0t) — N(Cj, t) =
— Z rx  min  (N(Cg,t))dt

Cklepre(a,r)
(a,r)EEX(C;j)

exit activities

+ > rx min (N(Ck. 1))t
(a,r)€En(C;) Ck Epre(ar)

entry activities



Differential equations from PEPA models

Let N(C,J., t) denote the number of Cj; type components at time t.

Consider the change in a small time dt:

N(Ci;, t +0t) — N(Cj, t) =
— Z rx  min  (N(Cg,t))dt

Cklepre(a,r)
(a,r)e EX(C;J.)

exit activities

+ ) rx  min  (N(Cyt)dt

Ck Epre(a,r)
(a,r)EEn(C,-j)

entry activities
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Differential equations from PEPA models

Let N(C,J., t) denote the number of Cj; type components at time t.

Consider the change in a small time dt:

N(Ci;, t +0t) — N(Cj, t) =
— Z rx  min  (N(Cg,t))dt

Cklepre(a,r)
(a,r)e EX(C;J.)

exit activities
+ Z rx  min  (N(C,t))dt

Ck Epre(a,r)
(oa,r)eEn(C,-j)

entry activities
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Differential equations from PEPA models

Let N(C,J., t) denote the number of Cj; type components at time t.

Dividing by dt and taking the limit, 6t — O:

dN(Cj, t
(dtj)—— Z r X min (N(Ck/,t))
(Oc,r)EEX(C,-j) Ck,Gpre(a’r)

+ Z rx  min  (N(C,t))

Cx €pre(c,r)
(a,r)EEn(C,-j)

135/ 228



Activity matrix

Derivation of the system of ODEs representing the PEPA model
can proceed via the activity matrix which records the influence of
each activity on each component type/derivative.

The matrix has one row for each component type and one column
for each activity type.

One ODE is generated corresponding to each row of the matrix,
taking into account the negative entries in the non-zero columns as
these are the components for which this is an exit activity.



Activity matrix for the small example

‘ taski ‘ tasko ‘ reset ‘
Procy | —1 +1 0 X1
Procy +1 -1 0 X2

Resy | —1 0 +1 | x3
Resi | +1 0 -1 | xa




Activity matrix to ODEs

The entry in the (/,/)-th position in the matrix can be —1,0, or 1.

m If the entry is -1 it means that this local state undertakes an
activity of that type and so when the activity is completed
there will be one less instance of this local state.
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Activity matrix to ODEs

The entry in the (/,/)-th position in the matrix can be —1,0, or 1.

m If the entry is -1 it means that this local state undertakes an
activity of that type and so when the activity is completed
there will be one less instance of this local state.

m If the entry is O this local state is not involved in this activity.
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Fluid Approximation

Activity matrix to ODEs

The

entry in the (/,/)-th position in the matrix can be —1,0, or 1.

If the entry is -1 it means that this local state undertakes an
activity of that type and so when the activity is completed
there will be one less instance of this local state.

If the entry is O this local state is not involved in this activity.

If the entry is 1 it means that this local state is produced
when the activity of that type is completed, so there will be
one more instance of this local state.



ODEs

O minGa (0, 5(0) + ()
dxjgt) = nmin(x(t), x3(t)) — r2xo(t)
dxjgt) = —nmin(x(t), xs(t)) + sxa(t)
dngt) = xymin(xg(t),x3(t)) — sxa(t)

m The form of ODEs is independent of the number of instances
of components in the model.



Fluid Approximation

ODEs

Xm(t)
dt
dX2(t)
dt
dX3(f)
dt
dX4(t)
dt

—rmin(xy(t), x3(t)) + r2xa(t)
rimin(xy(t), x3(t)) — raxa(t)
—ry min(xy(t), x3(t)) + sxa(t)

x1 min(xy(t), x3(t)) — sxa(t)

m The form of ODEs is independent of the number of instances
of components in the model.

m The only impact of changing the number of instances is to
alter the initial conditions.



Initialising the ODEs

Consider the model Procg[100] {Esﬂ} Reso[80].

There are initially 100 processors, all starting in state Procg and 80
resources, all of which start in state Resg.
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Initialising the ODEs

Consider the model Procg[100] {Esﬂ} Reso[80].

There are initially 100 processors, all starting in state Procg and 80
resources, all of which start in state Resg.

Then we set the initial conditions of the ODEs to be:

x(0) =100 x(0)=0 x3(0)=80 x4(0)=0



Initialising the ODEs

Consider the model Procg[100] {Esﬂ} Reso[80].

There are initially 100 processors, all starting in state Procg and 80
resources, all of which start in state Resg.

Then we set the initial conditions of the ODEs to be:
x1(0) =100 x(0)=0 x3(0)=80 x4(0)=0

The system of ODEs can then be given to any suitable numerical
solver as an initial value problem.



100 processors and 80 resources (simulation run A)

105

100
a5

value

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
time

M Proc_0 M Proc_l M Res_ Res_L
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100 processors and 80 resources (simulation run B)

value

105
100

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

time

M Proc_0 M Proc_l M Res_ Res_L
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100 processors and 80 resources (simulation run C)

105
100

value

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
time
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100 processors and 80 resources (simulation run D)

105

value

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
time
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100 processors and 80 resources (average of 10 runs)
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value
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time
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100 Processors and 80 resources (average of 100 runs)

105

value

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
time

M Proc_0 M Proc_l M Res_ Res_L
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100 processors and 80 resources (average of 1000 runs)

105

value

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
time

M Proc_0 M Proc_l M Res_ Res_L




100 processors and 80 resources (average of 10000 runs)

105

value

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
time

M Proc_0 M Proc_l M Res_ Res_L




100 processors and 80 resources (ODE solution)

105

value

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
time

M Proc_0 M Proc_l M Res_ Res_L




Outline

Case Study



Example: Secure Web Service use

Second party H» Broker % Web service H» First party H i

m The example which we consider is a Web service which has
two types of clients:

m first party application clients which access the web service
across a secure intranet, and

m second party browser clients which access the Web service
across the Internet.

m Second party clients route their service requests via trusted
brokers.
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m The example which we consider is a Web service which has
two types of clients:

m first party application clients which access the web service
across a secure intranet, and
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m Second party clients route their service requests via trusted
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Scalability and replication

Second party H» Broker % Web service H» First party H i

m To ensure scalability the Web service is replicated across
multiple hosts.

m Multiple brokers are available.

m There are numerous first party clients behind the firewall using
the service via remote method invocations across the secure
intranet.

m There are numerous second party clients outside the firewall.
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m Second party clients need to use encryption to ensure
authenticity and confidentiality. First party clients do not.




Security and use of encryption

Second party H» Broker % Web service H» First party H i

m Second party clients need to use encryption to ensure
authenticity and confidentiality. First party clients do not.

m Brokers add decryption and encryption steps to build
end-to-end security from point-to-point security.



Security and use of encryption

Second party H» Broker % Web service H» First party H i

m Second party clients need to use encryption to ensure
authenticity and confidentiality. First party clients do not.

m Brokers add decryption and encryption steps to build
end-to-end security from point-to-point security.
m When processing a request from a second party client brokers
decrypt the request before re-encrypting it for the Web service.



Security and use of encryption

Second party H» Broker % Web service H» First party H i

m Second party clients need to use encryption to ensure
authenticity and confidentiality. First party clients do not.

m Brokers add decryption and encryption steps to build
end-to-end security from point-to-point security.
m When processing a request from a second party client brokers
decrypt the request before re-encrypting it for the Web service.
m When the response to a request is returned to the broker it
decrypts the response before re-encrypting it for the client.
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PEPA model: Second party clients

Second party H» Broker % Web service H» First party

m A second party client composes service requests, encrypts
these and sends them to its broker.

m It then waits for a response from the broker.
m The rate at which the first three activities happen is under the
control of the client.

m The rate at which responses are produced is determined by
the interaction of the broker and the service endpoint.
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Second party H» Broker % Web service H» First party

m The broker is inactive until it receives a request.

m It then decrypts the request before re-encrypting it for the
Web service to ensure end-to-end security.

m It forwards the request to the Web service and then waits for
a response.

m The corresponding decryption and re-encrytion are performed
before returning the response to the client.
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PEPA model: Brokers

Second party H»

Broker

Brokerjgje
BrOkerdec,input
BrOkerenc,input

Brokersending
Brokerwa,-t,-ng
Broker joc. resp
Brokerenc_resp

Broker,ep/y,-ng

(requesty, T).Brokergec input
(decryptp, rb,dec,sp) .Brokerenc_input
(encryptys, b enc.ws)- BrOkersending
(request s, rp_req)-Brokeryajting
(response,s, T).Broker e resp
(decrypt s, rb_dec.ws)- Brokerenc resp
(
(

encryptsy, rb,enc,sp) . BrOkerrep/ying
responsep, ', resp)- Brokerigje
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Second party H» Broker : Web service H» First party H 3

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

m The lifetime of a first party client mirrors that of a second
party client except that encryption need not be used when all
of the communication is conducted across a secure intranet.

m Also the service may be invoked by a remote method
invocation to the host machine instead of via HTTP.

m Thus the first party client experiences the Web service as a
blocking remote method invocation.
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PEPA model: Web service

Second party H» Broker : Web service H» First party H 3

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

m There are two ways in which the service is executed, leading
to a choice in the process algebra model taking the service
process into one or other of its two modes of execution.

m In either case, the duration of the execution of the service
itself is unchanged.

m The difference is only in whether encryption is needed and
whether the result is delivered via HTTP or not.



PEPA model: Web service
Second party H» Broker % Web service H» First party H i
def
WSigle = (r equest s, )'WSdecoding
+  (invokews, T).WSmethod
def
Wsdecoding = (decryptReqys, r'ws dec_b)-WSexecution
def
WSexecution = (executeys, rws_exec)- Wssecurlng
def
Wssecuring = (encryptResps, Nys enc b)- Wsrespondmg
def
WSresponding = (responses, rys. resp_ b)-WSigie
def
WSmethod = (executews, rws_exec)- Wsreturnmg
def (

Wsreturning

resultys, rys. res) WS/d/e
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PEPA model: Web service

Second party H» Broker % Web service H» First party H i

WSidie request,,s, 1). Wsdecoding

(
(invokews, T).WSmethod
WSdecoding (decryptReqys, f'ws_dec_b)-WSexecution
WSexecution = (executews, rws_exec)- Wssecunng
Wssecuring = (encryptRespys, Nys enc b)- Wsrespondmg
(responseys, r'ys. resp_ b)-WSigie
(executews, rws_exec)- WSreturning
(

resultys, rys. res) WS/d/e

ws responding ~ —
WSmethod =

Wsreturning -
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PEPA model: Web service

Second party H» Broker % Web service H» First party H i

ws idle request s, T ) WS decoding

(
(invokeys, T).WS method
Wsdecoding (decryptReqys, f'ws_dec_b)-WSexecution
WSexecution = (executeys, rws_exec)- Wssecuring
Wssecuring = (encryptResps, Nys enc b)- Wsresponding
(response,ys, rws,resp,b)- WSidie
(executews, rws_exec)- WSreturning
(

resultys, Nys_res ) Wsid/e

WSresponding -
Wsmethod -

Wsreturning -
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PEPA model: Web service

Second party H» Broker % Web service H» First party H i

ws idle request,s, ) WS decoding

(
(invokews, T).WSmethod
Wsdecoding (decryptReqys, f'ws_dec_b)-WSexecution
WSexecution = (executeys, rws_exec)- Wssecurlng
Wssecuring = (encryptResps, Nys enc b)- Wsrespondmg
(responseys, rys. resp_ b)-WSigie
(executews, rws_exec)- WSreturning
(

resultys, rys. res) WS/d/e

WSresponding -
Wsmethod =

Wsreturning -
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L = {request,s, response,s }
M — { inVOkews, resultws }
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PEPA model: System composition

In the initial state of the system model we represent each of the
four component types being initially in their idle state.

System = (SPCigje =1 Broker;gje) P=1 (WSigje 1 FPCigye)

where K = {requesty, responsep }
L = {request,s, response,s }
M — { inVOkews, resultws }

This model represents the smallest possible instance of the system,
where there is one instance of each component type. We evaluate
the system as the number of clients, brokers, and copies of the
service increase.



Cost of analysis

m We compare ODE-based evaluation against other techniques
which could be used to analyse the model.



Cost of analysis

m We compare ODE-based evaluation against other techniques
which could be used to analyse the model.

m Steady-state and transient analysis as implemented by the
PRISM probabilistic model-checker.



Case Study 205/ 228

Cost of analysis

m We compare ODE-based evaluation against other techniques
which could be used to analyse the model.
m Steady-state and transient analysis as implemented by the
PRISM probabilistic model-checker.

m Monte Carlo Markov Chain simulation (a Java implementation
of Gillespie's Direct Method).
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with respect to time.



Time series analysis via ODEs

m We assume a system in which the number of clients of both
kinds, brokers, and web service instances are all 1000.

m We present the results from our ODE integrator as time-series
plots of the number of each type of component behaviour as a
function of time, as time runs from t = 0 to t = 100.

m The graphs show fluctuations in the numbers of components
with respect to time.

m We can observe an initial flurry of activity until the system
stabilises into its steady-state equilibrium at time (around)
t = 50.



Second party clients

Second party Client
1000 T T T T T
Decoding ——
Encoding —>—
Idle ——
800 Sending —=5— |
Waiting, s$5<
600 B
B
g
3
a
400 B
200 B
0 | | | | | | | |

time



Case Study

Brokers
Broker
1000 T T T T
Decoding input ——
Decoding response —>—
Encoding input —*—
800 Encoding response —&— |
Idle ——
Replying —=—
L Sending —+— _|
5 600 Waiting —>—
=]
g
a
400 - 7
200 [~ 7
0 3 | | | | | | | |

time



First party clients

First party Client
1000 T T T

T T

Blocked —+—

Calling —>—
Idle —*—

800

600

number

400

200

60 70 80 90 100

time



Case Study

Web service

Web Service
1000 T T T

T
Decoding ——
Execution —>—
Idle —*—
800 Method —&—
Responding —*—
Returning —=—
600 I Securing —+— _|

number

400

200

time



Summary

Outline

[@ Summary



Summary 223/ 228

Deriving quantitative data

PEPA models can be analysed for quantified dynamic behaviour in
a number of different ways.
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a number of different ways.

The language may be used to generate a Markov Process (CTMC).

PEPA SOS rules LABELLED  state transition
— TRANSITION -
MODEL SYSTEM diagram

CTMC Q
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Deriving quantitative data

PEPA models can be analysed for quantified dynamic behaviour in
a number of different ways.

The language may be used to generate a system of ordinary differ-
ential equations (ODEs).

PEPA  Syntactic ACTIVITY continuous ODE
—_— _ > S
MODEL  analysis MATRIX interpretation

Each of these has tool support so that the underlying model is
derived automatically according to the predefined rules.
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