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Introduction

In the previous lecture we introduced continuous or fluid
approximation as a means to tackle state space explosion.

The approach taken was a pragmatic one based on the
activity matrix and no formal results were given about the
correctness of such an approach.

Here we reconsider the approach with a particular focus on
the types of systems that it is well-suited for: systems with
collective dynamics.

Moreover we give a more formal derivation of the system of
ordinary differential equations that are used to approximate
the discrete event system we are interested in.
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Collective Dynamics

The behaviour of many systems can be interpreted as the result of
the collective behaviour of a large number of interacting entities.

For such systems we are often as interested in the population level
behaviour as we are in the behaviour of the individual entities.
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Collective Behaviour

In the natural world there are many instances of collective
behaviour and its consequences:
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Collective Behaviour

This is also true in the man-made and engineered world:

Spread of H1N1 virus in 2009
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Collective Behaviour

This is also true in the man-made and engineered world:

Love Parade, Germany 2006
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Collective Behaviour

This is also true in the man-made and engineered world:

Map of the Internet 2009
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Collective Behaviour

This is also true in the man-made and engineered world:

Self assessment tax returns 31st January each year
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Process Algebra and Collective Dynamics

Process algebra are well-suited to modelling such systems

Developed to represent concurrent behaviour compositionally;

Capture the interactions between individuals explicitly;

Incorporate formal apparatus for reasoning about the
behaviour of systems;

Stochastic extensions, such as PEPA, enable quantified
behaviour of the dynamics of systems.

In the CODA project we are developing stochastic process algebras
and associated theory, tailored to the construction and evaluation
of the collective dynamics of large systems of interacting entities.
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Performance as an emergent behaviour

A shift in perspective allows us to model the interactions between
individual components but then only the consider the system as a
whole as an interaction of populations.

This allows us to model much larger systems than previously
possible but in making the shift we are no longer able to collect
any information about individuals in the system.
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Performance as an emergent behaviour

We must instead think about the performance of the collective
point of view. Service providers often want to do this in any case.

For example making contracts in terms of service level agreements.

Example Service Level Agreement

90% of requests receive a response within 3 seconds.

Qualitative Service Level Agreement

Less than 1% of the responses received within 3 seconds will read
“System is overloaded, try again later”.
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Novelty

The novelty of the CODA project has been twofold:

Linking process algebra and continuous mathematical models
for dynamic evaluation represents a paradigm shift in how
such systems are studied.

The prospect of formally-based quantified evaluation of
dynamic behaviour could have significant impact in
application domains such as:
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The novelty of the CODA project has been twofold:

Linking process algebra and continuous mathematical models
for dynamic evaluation represents a paradigm shift in how
such systems are studied.

The prospect of formally-based quantified evaluation of
dynamic behaviour could have significant impact in
application domains such as:

Large scale software systems
Issues of scalability are important for user satisfaction and
resource efficiency but such issues are difficult to investigate using
discrete state models.
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application domains such as:

Biochemical signalling pathways
Understanding these pathways has the potential to improve the
quality of life through enhanced drug treatment and better drug
design.
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The novelty of the CODA project has been twofold:

Linking process algebra and continuous mathematical models
for dynamic evaluation represents a paradigm shift in how
such systems are studied.

The prospect of formally-based quantified evaluation of
dynamic behaviour could have significant impact in
application domains such as:

Epidemiological systems
Improved modelling of these systems could lead to improved
disease prevention and treatment in nature and better security in
computer systems.
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Solving discrete state models

Under the SOS semantics a PEPA model is mapped to a
Continuous Time Markov Chain (CTMC) with global states
determined by the local states of all the participating components.

When the size of the state space is not too large they are
amenable to numerical solution (linear algebra) to determine a
steady state or transient probability distribution.

Alternatively they may be studied using stochastic simulation.
Each run generates a single trajectory through the state space.
Many runs are needed in order to obtain average behaviours.

As the size of the state space becomes large it becomes infeasible
to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.
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Continuous Approximation

The major limitation of the CTMC approach is the state space
explosion problem.

One approach to this problem is to use continuous state variables
to approximate the discrete state space based on counting
variables.

d ddd dd-� � -d dd d-� -� -� -�d d d dd d d d-� -� -� -� -� -� -� -�d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.
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New mathematical structures: differential equations

Use a more abstract state representation rather than the
CTMC complete state space.

Assume that these state variables are subject to continuous
rather than discrete change.

No longer aim to calculate the probability distribution over
the entire state space of the model.

Appropriate for models in which there are large numbers of
components of the same type, i.e. models of populations and
situations of collective dynamics

.
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Kurtz’s Theorem

We seek to take advantage of Kurtz’s Theorem from the 1970’s
which gives conditions under which a sequence of population
Markov chains converges to a deterministic behaviour (within a
given time horizon), i.e. ∀t < T as N −→∞.

Kurtz’s result is given in terms of the size of the system, where size
is often taken to be the total population size.

In terms of a PEPA model we assume that there is an initial
population for each component type, and that all the
subpopulations are scaled at the same rate.

For example, a model P[XP ] ��
L

Q[XQ ], is scaled as

P[n × XP ] ��
L

Q[n × XQ ] for increasing n.
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Kurtz’s Theorem

The models in this sequence of CTMCs have ever increasing state
space as n grows.

Soit is difficult to compare the results obtained from the models
because the population size is growing so in absolute terms the
performance metrics will grow.

Therefore in order to make the models within the sequence
comparable we normalise the models, so that the counting
variables now represent a proportion rather than an absolute count.

In the literature this is sometimes called the occupancy measure.
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Scaling Conditions

We have a sequence X(N) of population CTMCs, for
increasing total population N.

We normalize such models, dividing variables by N: X
(N)

= X
N

We assume that each transition in the Markov chain is
characterised by an update vector v (cf. the columns of the
activity matrix)

For each such transition τ , the normalized update is v̄ = v/N

and the rate function is r̄τ (X
(N)

) = Nfτ (X
(N)

) (density
dependence).
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Fluid ODE

For a sequence of population CTMCs that satisfy these conditions
we can define the Fluid ODE:

Fluid ODE

The fluid ODE is ẋ = F (x), where

F (x) =
∑
τ∈T

vτ fτ (x)
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Fluid approximation theorem

Hypothesis

X
(N)

(t): a sequence of normalized population CTMC, residing
in E ⊂ Rn

∃x0 ∈ S such that X
(N)

(0)→ x0 in probability (initial
conditions)

x(t): solution of dx
dt = F (x), x(0) = x0, residing in E .

Theorem

For any finite time horizon T <∞, it holds that:

P( sup
0≤t≤T

||X(N)
(t)− x(t)|| > ε)→ 0.

T.G.Kurtz. Solutions of ordinary differential equations as limits of pure jump Markov processes.

Journal of Applied Probability, 1970.
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Simple example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r1).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] ��
{task1}

Res0[NR ]



Continuous Approximation 71/ 174

Simple example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r1).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] ��
{task1}

Res0[NR ]

CTMC interpretation
Processors (NP ) Resources (NR ) States (2NP +NR )
1 1 4
2 1 8
2 2 16
3 2 32
3 3 64
4 3 128
4 4 256
5 4 512
5 5 1024
6 5 2048
6 6 4096
7 6 8192
7 7 16384
8 7 32768
8 8 65536
9 8 131072
9 9 262144
10 9 524288
10 10 1048576
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Simple example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r1).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] ��
{task1}

Res0[NR ]

ODE interpretation
dx1
dt = −r1 min(x1, x3) + r2 x1

x1 = no. of Proc1
dx2
dt = r1 min(x1, x3)− r2 x1

x2 = no. of Proc2
dx3
dt = −r1 min(x1, x3) + r4 x4

x3 = no. of Res0
dx4
dt = r1 min(x1, x3)− r4 x4

x4 = no. of Res1
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100 processors and 80 resources (simulation run A)



Continuous Approximation 74/ 174

100 Processors and 80 resources (average of 100 runs)
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100 processors and 80 resources (average of 1000 runs)
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100 processors and 80 resources (ODE solution)
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Outline

1 Introduction
Collective Dynamics

2 Continuous Approximation

3 Fluid-Flow Semantics
Convergence results

4 Case study
Internet worms



Fluid-Flow Semantics 78/ 174

Deriving a Fluid Approximation of a PEPA model

The aim is to represent the CTMC implicitly (avoiding state space
explosion), and to generate the set of ODEs which are the fluid
limit of that CTMC.

The existing (CTMC) SOS semantics is not suitable for this
purpose because it constructs the state space of the CTMC
explicitly.

SPA
MODEL

SYMBOLIC
LABELLED

TRANSITION
SYSTEM

ABSTRACT
CTMC Q

or
ODEs FM(x)

- -
SOS rules generator

functions
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explicitly.

SPA
MODEL

LABELLED
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition

diagram

SPA
MODEL

SYMBOLIC
LABELLED

TRANSITION
SYSTEM

ABSTRACT
CTMC Q

or
ODEs FM(x)

- -
SOS rules generator

functions



Fluid-Flow Semantics 81/ 174

Deriving a Fluid Approximation of a PEPA model

The aim is to represent the CTMC implicitly (avoiding state space
explosion), and to generate the set of ODEs which are the fluid
limit of that CTMC.

The existing (CTMC) SOS semantics is not suitable for this
purpose because it constructs the state space of the CTMC
explicitly.

We define a structured operational semantics which defines the pos-
sible transitions of an arbitrary abstract state and from this derive
the ODEs.
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Generating functions

The population-based semantics gives rise to generating
functions, denoted by fα(ξ, l), giving the rate at which an
activity of type α is executed, and the state change due to its
execution as a vector l .

Thus in the previous example the shared action task1 is
captured by the function

ftask1

(
ξ, (−1, 1,−1, 1)

)
= min(r ξProc0 , r ξRes0 ),

task1 decreases the population counts of Proc0 and Res0

and, correspondingly, increases the population counts of Proc1

and Res1 at a rate which is dependent upon the current state.

This is just as we saw with the activity matrix construction
but now obtained through SOS rules.
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Fluid Structured Operational Semantics

In order to get to the implicit representation of the CTMC we need
to:

1 Remove excess components (Context Reduction)

2 Collect the transitions of the reduced context (Jump Multiset)

3 Calculate the rate of the transitions in terms of an arbitrary
state of the CTMC.

Once this is done we can extract the vector field FM(x) from the
jump multiset.
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Semantics by example

In these slides I will illustrate this approach to the scalable
semantics using the previous Processor-Resource example.

But the full SOS rules can be found in the paper:

Tribastone M, Gilmore S, Hillston J,
Scalable Differential Analysis of Process Algebra Models
Transactions on Software Engineering 38(1), 2012
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Context Reduction

Proc0
def
= (task1 , r1 ).Proc1

Proc1
def
= (task2 , r2 ).Proc0

Res0
def
= (task1 , r3 ).Res1

Res1
def
= (reset, r4 ).Res0

System
def
= Proc0 [NP ] ��

{task1}
Res0 [NR ]

⇓

R(System) = {Proc0 ,Proc1} ��
{task1}

{Res0 ,Res1}

Population Vector

ξ = (ξ1, ξ2, ξ3, ξ4)
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Location Dependency

System
def
= Proc0 [N ′C ] ��

{task1}
Res0 [NS ] ‖ Proc0 [N ′′C ]

⇓

{Proc0 ,Proc1} ��
{task1}

{Res0 ,Res1} ‖ {Proc0 ,Proc1}

Population Vector

ξ = (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6)
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Location Dependency

System
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= Proc0 [N ′C ] ��

{task1}
Res0 [NS ] ‖ Proc0 [N ′′C ]

⇓

{Proc0 ,Proc1} ��
{task1}

{Res0 ,Res1} ‖ {Proc0 ,Proc1}

Population Vector

ξ = (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6)



Fluid-Flow Semantics 97/ 174

Fluid Structured Operational Semantics by Example

Proc0
def
= (task1 , r1 ).Proc1

Proc1
def
= (task2 , r2 ).Proc0

Res0
def
= (task1 , r3 ).Res1

Res1
def
= (reset, r4 ).Res0

System
def
= Proc0 [NP ] ��

{task1}
Res0 [NR ]

ξ = (ξ1, ξ2, ξ3, ξ4)

Proc0
task1 ,r1−−−−−−→ Proc1

Proc0
task1 ,r1 ξ1−−−−−−−→∗ Proc1

Res0
task1 ,r3−−−−−−→ Res1

Res0
task1 ,r3 ξ3−−−−−−−→∗ Res1

Proc0 ��
{task1}

Res0
task1 ,r(ξ)
−−−−−−−→∗ Proc1 ��

{task1}
Res1
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Fluid Structured Operational Semantics by Example
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Apparent Rate Calculation

Proc0
task1 ,r1−−−−−−→ Proc1

Proc0
task1 ,r1 ξ1−−−−−−−→∗ Proc1

Res0
task1 ,r3−−−−−−→ Res1

Res0
task1 ,r3 ξ3−−−−−−−→∗ Res1

Proc0 ��
{task1}

Res0
task1 ,r(ξ)
−−−−−−−→∗ Proc1 ��

{task1}
Res1

r(ξ) =
r1ξ1

r∗task1 (Proc0 , ξ)

r3ξ4

r∗task1 (Res0 , ξ)
min

(
r∗task1 (Proc0 , ξ) , r∗task1 (Res0 , ξ)

)
=

r1ξ1

r1ξ1

r3ξ3

r3ξ3
min

(
r1ξ1, r3ξ3

)
=min

(
r1ξ1, r3ξ3

)
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Apparent Rate Calculation

Proc0
task1 ,r1−−−−−−→ Proc1

Proc0
task1 ,r1 ξ1−−−−−−−→∗ Proc1

Res0
task1 ,r3−−−−−−→ Res1

Res0
task1 ,r3 ξ3−−−−−−−→∗ Res1

Proc0 ��
{task1}

Res0
task1 ,r(ξ)
−−−−−−−→∗ Proc1 ��

{task1}
Res1

r(ξ) =
r1ξ1

r∗task1 (Proc0 , ξ)

r3ξ4

r∗task1 (Res0 , ξ)
min

(
r∗task1 (Proc0 , ξ) , r∗task1 (Res0 , ξ)

)
=

r1ξ1

r1ξ1

r3ξ3

r3ξ3
min

(
r1ξ1, r3ξ3

)
=min

(
r1ξ1, r3ξ3

)
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f (ξ, l , α) as the Generator Matrix of the Lumped CTMC

(P0 ‖ P0 ) ��
{task1}

(R0 ‖ R0 ‖ R0 )

(P1 ‖ P0 ) ��
{task1}

R1 ‖ R0 ‖ R0 )

(P1 ‖ P0 ) ��
{task1}

(R0 ‖ R1 ‖ R0 )

(P1 ‖ P0 ) ��
{task1}

(R0 ‖ R0 ‖ R1 )

(P0 ‖ P1 ) ��
{task1}

(R1 ‖ R0 ‖ R0 )

(P0 ‖ P1 ) ��
{task1}

(R0 ‖ R1 ‖ R0 )

(P0 ‖ P1 ) ��
{task1}

(R0 ‖ R0 ‖ R1 )
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r

r = r1

2r1

r3

3r3
min(2r1, 3r3) = 1

6 min(2r1, 3r3)
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f (ξ, l , α) as the Generator Matrix of the Lumped CTMC
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f (ξ, l , α) as the Generator Matrix of the Lumped CTMC
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f (ξ, l , α) as the Generator Matrix of the Lumped CTMC

(P0 ‖ P0 ) ��
{task1}

(R0 ‖ R0 ‖ R0 )

(P1 ‖ P0 ) ��
{task1}

(R1 ‖ R0 ‖ R0 )

(P1 ‖ P0 ) ��
{task1}

(R0 ‖ R1 ‖ R0 )

(P1 ‖ P0 ) ��
{task1}
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(P0 ‖ P1 ) ��
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(P0 ‖ P1 ) ��
{task1}

(R0 ‖ R1 ‖ R0 )

(P0 ‖ P1 ) ��
{task1}
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(2, 0, 3, 0) -min(2r1, 3r3)
(1, 1, 2, 1)(2, 0, 3, 0) -min(2r1, 3r3)
(1, 1, 2, 1)
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Jump Multiset

Proc0 ��
{task1}

Res0
task1 ,r(ξ)−−−−−−−→∗ Proc1 ��

{task1}
Res1

r(ξ) = min
(
r1ξ1, r3ξ3

)

Proc1 ��
{task1}

Res0
task2 ,ξ2r2−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0
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Equivalent Transitions

Some transitions may give the same information:

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc1 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc1 ��

{task1}
Res0

i.e., Res1 may perform an action independently from the rest of
the system.

This is captured by the procedure used for the construction of the
generator function f (ξ, l , α)
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Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

Take l = (0, 0, 0, 0)

Add −1 to all elements of l corresponding to the indices of
the components in the lhs of the transition

l = (−1, 0, 0,−1)

Add +1 to all elements of l corresponding to the indices of
the components in the rhs of the transition

l = (−1 + 1, 0,+1,−1) = (0, 0,+1,−1)

f
(
ξ, (0, 0,+1,−1), reset

)
= ξ4r4
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Construction of f (ξ, l , α)

Proc0 ��
{task1}

Res0
task1 ,r(ξ)−−−−−−−→∗ Proc1 ��

{task1}
Res1

Proc1 ��
{task1}

Res0
task2 ,ξ2r ′2−−−−−−−→∗ Proc0 ��

{task1}
Res0

Proc0 ��
{task1}

Res1
reset,ξ4r4−−−−−−−→∗ Proc0 ��

{task1}
Res0

f (ξ, (−1,+1,−1,+1), task1) = r(ξ)

f (ξ, (+1,−1, 0, 0), task2) = ξ2r2

f (ξ, (0, 0,+1,−1), reset) = ξ4r4
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Capturing behaviour in the Generator Function

Proc0
def
= (task1 , r1 ).Proc1

Proc1
def
= (task2 , r2 ).Proc0

Res0
def
= (task1 , r3 ).Res1

Res1
def
= (reset, r4 ).Res0

System
def
= Proc0 [NP ] ��

{task1}
Res0 [NR ]

Numerical Vector Form

ξ = (ξ1, ξ2, ξ3, ξ4) ∈ N4, ξ1 + ξ2 = NP and ξ3 + ξ4 = NR

Generator Function

f (ξ, l , α) :
f (ξ, (−1, 1,−1, 1), task1) = min (r1ξ1, r3ξ3)

f (ξ, (1,−1, 0, 0), task2) = r2ξ2

f (ξ, (0, 0, 1,−1), reset) = r4ξ4
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Extraction of the ODE from f

Generator Function

f (ξ, (−1, 1,−1, 1), task1) = min (r1ξ1, r3ξ3)
f (ξ, (1,−1, 0, 0), task2) = r2ξ2

f (ξ, (0, 0, 1,−1), reset) = r4ξ4

Differential Equations

dx

dt
= FM(x) =

∑
l∈Zd

l
∑
α∈A

f (x , l , α)

= (−1, 1,−1, 1) min (r1x1, r3x3) + (1,−1, 0, 0)r2x2

+ (0, 0, 1,−1)r4x4



Fluid-Flow Semantics 122/ 174

Extraction of the ODE from f

Generator Function

f (ξ, (−1, 1,−1, 1), task1) = min (r1ξ1, r3ξ3)
f (ξ, (1,−1, 0, 0), task2) = r2ξ2

f (ξ, (0, 0, 1,−1), reset) = r4ξ4

Differential Equations

dx1

dt
= −min (r1x1, r3x3) + r2 x2

dx2

dt
= min (r1x1, r3x3)− r2 x2

dx3

dt
= −min (r1x1, r3x3) + r4 x4

dx4

dt
= min (r1x1, r3x3)− r4 x4
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Density Dependence

Density dependence of parametric apparent rates

Let r∗α (P, ξ) be the parametric apparent rate of action type α in
process P. For any n ∈ N and α ∈ A,

r∗α (P, ξ) = n · r?α (P, ξ/n)

Density dependence of parametric transition rates

If P
(α,r(ξ))−−−−−→∗ Q then, for any n ∈ N, r(ξ) = n · r(ξ/n)
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Generating functions give rise to density dependent rates

Generating functions give rise to density dependent rates

Let M be a PEPA model with generating functions f (ξ, l , α)
derived as demonstrated. Then the corresponding sequence of
CTMCs will be density dependent.
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Lipschitz continuity

Since Lipschitz continuity is preserved by summation, in order to
verify that the vector field FM(x) is Lipschitz it suffices to prove
that any parametric rate generated by the semantics is Lipschitz.

Lipschitz continuity of parametric apparent rates

Let r∗α (P, ξ) be the parametric apparent rate of action type α in
process P. There exists a constant L ∈ R such that for all
x , y ∈ Rd , x 6= y ,

‖r?α (P, x)− r?α (P, y)‖
‖x − y‖

≤ L

Lipschitz continuity of rate functions

If P
(α,r(x))−−−−−→∗ P ′ then r(x) ≤ r∗α (P, x) and thus it follows that

r(x) is Lipschitz continuous.
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Kurtz’s Theorem

Kurtz’s Theorem for PEPA

Let x(t), 0 ≤ t ≤ T satisfy the initial value problem
dx
dt = F (x(t)), x(0) = δ, specified from a PEPA model.

Let {Xn(t)} be a family of CTMCs with parameter n ∈ N
generated as explained and let Xn(0) = n · δ. Then,

∀ε > 0 lim
n→∞

P

(
sup
t≤T
‖Xn(t)/n − x(t)‖ > ε

)
= 0.

Moreover Lipschitz continuity of the vector field guarantees
existence and uniqueness of the solution to the initial value
problem. This allows the time horizon to be extended to ∞.

M.Tribastone, S.Gilmore and J.Hillston. Scalable Differential Analysis of Process Algebra Models. IEEE TSE 2012.
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A note about passive actions

The scalable semantics which have been presented do not have
rules for passive actions.

The reason is that the passive partner within a model will act as a
switch.

When it is present in any number the rate of the action will
proceed at the rate determined by the activity rate and the
population of the other partner.

When it is absent the rate will become zero.

This will cause a discontinuity in the rate of the activity meaning
that the Lipschitz continuity condition required to apply Kurtz’s
theorem will no longer hold.
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Internet worms: Background

Internet worms are malicious programs that exploit operating
system security weaknesses to propagate themselves.

While the security flaws go unpatched, the worm spreads
epidemic-like and uses large amounts of available bandwidth.

Far more destructive is the worms’ effect on the Internet
routing infrastructure, as the worms tend to overload the
connecting routers with nonexistent IP lookups.

Worms like Nimbda, Slammer, Code Red, Sasser and Code
Red 2 have caused the Internet to become unusable for many
hours at a time until security patches could be applied and
routers fixed.

The estimated cost of computer worms and related activities
is at least $50 billion a year.
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An Internet-scale Problem

We wish to study the emergent behaviour of Internet worms
as they spread to thousands and then hundreds-of-thousands
of hosts.

Explicit state-based methods for calculating steady-state,
transient or passage-time measures are limited to state-spaces
of the order of 109.

By transforming our stochastic process algebra model into a
set of ODEs, we can obtain a plot of model behaviour against
time for models with global state spaces in excess of 1010000

states.



Case study Internet worms 141/ 174

An Internet-scale Problem

We wish to study the emergent behaviour of Internet worms
as they spread to thousands and then hundreds-of-thousands
of hosts.

Explicit state-based methods for calculating steady-state,
transient or passage-time measures are limited to state-spaces
of the order of 109.

By transforming our stochastic process algebra model into a
set of ODEs, we can obtain a plot of model behaviour against
time for models with global state spaces in excess of 1010000

states.



Case study Internet worms 142/ 174

An Internet-scale Problem

We wish to study the emergent behaviour of Internet worms
as they spread to thousands and then hundreds-of-thousands
of hosts.

Explicit state-based methods for calculating steady-state,
transient or passage-time measures are limited to state-spaces
of the order of 109.

By transforming our stochastic process algebra model into a
set of ODEs, we can obtain a plot of model behaviour against
time for models with global state spaces in excess of 1010000

states.



Case study Internet worms 143/ 174

Susceptible-Infective-Removed (SIR) model

We apply a version of an SIR model of infection to various
computer worm attack models.

An SIR model explicitly represents the total number of
susceptible, infective and removed hosts in a system and is
more commonly used to model disease epidemics.

ds(t)

dt
= −β s(t) i(t)

di(t)

dt
= β s(t) i(t)− γ i(t)

dr(t)

dt
= γ i(t)
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Susceptible-Infective-Removed over a network

This is our most basic infection model and is used to verify
that we get recognisable qualitative results.

Initially, there are N susceptible computers and one infected
computer.

As the system evolves more susceptible computers become
infected from the growing infective population.

An infected computer can be patched so that it is no longer
infected or susceptible to infection.

This state is termed removed and is an absorbing state for
that component in the system.
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Susceptible-Infective-Removed over a network

The capacity of the network is dictated by the parameter M,
the number of concurrent, independent connections that the
network can sustain.

Additionally, an attempted network connection can fail or
timeout as indicated by the fail action.

This might be due to network contention or the lack of
availability of a susceptible machine to infect.

As large scale worm infections tend not to waste time
determining whether a given host is already infected or not,
we assume that a certain number of infections will attempt to
reinfect hosts; in this instance, the host is unaffected.
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Susceptible-Infective-Removed over a network

S
def
= (infectS , β).I

I
def
= (infectI , β).I + (infectS , β).I + (patch, γ).R

R
def
= Stop

Net
def
= (infectI , β).Net ′

Net ′
def
= (infectS , β).Net + (fail , δ).Net

Sys
def
= (S [N] ‖ I ) ��

L
Net[M]

where L = { infectI , infectS }
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Patch rate γ = 0.1. Connection failure rate δ = 0.5
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Patch rate γ = 0.3. Connection failure rate δ = 0.5
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Increasing machine patch rate γ from 0.1 to 0.3
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Susceptible-Infective-Removed-Reinfection (SIRR) model

As with the SIR model, we constrain infection to occur over a
limited network resource, constrained by the number of
independent network connections in the system, M.

A small modification in the process model of infection allows
for removed computers to become susceptible again after a
delay.

We use this to model a faulty or incomplete security upgrade
or the mistaken removal of security patches which had
previously defended the machine against attack.
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Susceptible-Infective-Removed-Reinfection (SIRR) model

S
def
= (infectS , β).I

I
def
= (infectI , β).I + (infectS , β).I + (patch, γ).R

R
def
= (unsecure, µ).S

Net
def
= (infectI , β).Net ′

Net ′
def
= (infectS , β).Net + (fail , δ).Net

Sys
def
= (S [1000] ‖ I ) ��

L
Net[M]

where L = {infectI , infectS}
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Unsecured SIR model (200 network channels)
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Unsecured SIR model (50 network channels)
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Unsecured SIR model (20 network channels)
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Conclusions

The scale of the effects of Internet worms defeats attempts to
model their behaviour in very close detail.

Process algebra modelling allows the details of interactions to
be recorded on the individual level but then abstracted away
into appropriate population-based representations.

The scale of problems which can be modelled in this way
vastly exceeds those which are founded on explicit state
representations.
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