
1/ 143

SPAs for performance modelling:
Lecture 7 — Scalable Analysis

Jane Hillston

LFCS, School of Informatics
The University of Edinburgh

Scotland

16th April 2013



2/ 143

Outline

1 Fluid Rewards

2 Introduction to Simulation

3 Simulation in PEPA



Fluid Rewards 3/ 143

Outline

1 Fluid Rewards

2 Introduction to Simulation

3 Simulation in PEPA



Fluid Rewards 4/ 143

Introduction

As defined so far the fluid approximation generates a set of ODEs
which record the evolution over time of the population counts of
the local states or derivatives within a model.

This can be informative and particularly when we look at the
complete set of counts, can tell us a lot about the behaviour of the
system.

Nevertheless we will often want to derive performance measures
other than the straightforward utilisations that can be inferred
directly from counts.



Fluid Rewards 5/ 143

Introduction

As defined so far the fluid approximation generates a set of ODEs
which record the evolution over time of the population counts of
the local states or derivatives within a model.

This can be informative and particularly when we look at the
complete set of counts, can tell us a lot about the behaviour of the
system.

Nevertheless we will often want to derive performance measures
other than the straightforward utilisations that can be inferred
directly from counts.



Fluid Rewards 6/ 143

Introduction

As defined so far the fluid approximation generates a set of ODEs
which record the evolution over time of the population counts of
the local states or derivatives within a model.

This can be informative and particularly when we look at the
complete set of counts, can tell us a lot about the behaviour of the
system.

Nevertheless we will often want to derive performance measures
other than the straightforward utilisations that can be inferred
directly from counts.



Fluid Rewards 7/ 143

Fluid Rewards

Just as we use rewards to help us to derive performance measures
from numerical CTMC analysis, so we also do for performance
measures from fluid models.

In particular we define notions of action throughput, capacity
utilisation, and average response time as reward structures which
may be transparently inferred from the process algebraic
description.

This is underpinned by characterisation of the conditions under
which

ρ(Xn(t)) ≈ ρ(x(t))ρ′(n)

when we know that the fluid approximation Xn(t) ≈ nx(t) holds
and where ρ′ is a reward-dependent deterministic function.



Fluid Rewards 8/ 143

Fluid Rewards

Just as we use rewards to help us to derive performance measures
from numerical CTMC analysis, so we also do for performance
measures from fluid models.

In particular we define notions of action throughput, capacity
utilisation, and average response time as reward structures which
may be transparently inferred from the process algebraic
description.

This is underpinned by characterisation of the conditions under
which

ρ(Xn(t)) ≈ ρ(x(t))ρ′(n)

when we know that the fluid approximation Xn(t) ≈ nx(t) holds
and where ρ′ is a reward-dependent deterministic function.



Fluid Rewards 9/ 143

Fluid Rewards

Just as we use rewards to help us to derive performance measures
from numerical CTMC analysis, so we also do for performance
measures from fluid models.

In particular we define notions of action throughput, capacity
utilisation, and average response time as reward structures which
may be transparently inferred from the process algebraic
description.

This is underpinned by characterisation of the conditions under
which

ρ(Xn(t)) ≈ ρ(x(t))ρ′(n)

when we know that the fluid approximation Xn(t) ≈ nx(t) holds
and where ρ′ is a reward-dependent deterministic function.



Fluid Rewards 10/ 143

The Continuous Mapping Theorem

Our extension of reward structures to fluid models depends on the
Continuous Mapping Theorem.

Continuous Mapping Theorem

Let Yn be a random variable with ranges in Rd and Yn
P−→ c , with

c ∈ Rk . Let g : Rd −→ Rk be continuous at c . Then,

g(Yn)
P−→ g(c).

See for example P. Billingsley, Probability and Measure, 3rd ed. Wiley,

1995.



Fluid Rewards 11/ 143

Applying this to rewards

This result is directly applicable to study the convergence of
ρ(Xn(t)/n) toward ρ(x(t)) by letting Yn(t) = Xn(t)/n, for any t.

In general, however, the performance index of interest is expressed
as a reward ρ(Xn(t)). Thus we restrict to reward structures which
are not explicitly dependent upon the scaling factor n.

i.e., the reward structure ρ must satisfy the condition that there
exists some ρ′ such that

ρ(Xn(t)/n) = ρ(Xn(t))/ρ′(n).

Then, the asymptotic convergence in probability

ρ(Xn(t)/n)
P−→ ρ(x(t)) intuitively means that for sufficiently large

n,
ρ(Xn(t)) ≈ ρ′(n)ρ(x(t)).



Fluid Rewards 12/ 143

Applying this to rewards

This result is directly applicable to study the convergence of
ρ(Xn(t)/n) toward ρ(x(t)) by letting Yn(t) = Xn(t)/n, for any t.

In general, however, the performance index of interest is expressed
as a reward ρ(Xn(t)). Thus we restrict to reward structures which
are not explicitly dependent upon the scaling factor n.

i.e., the reward structure ρ must satisfy the condition that there
exists some ρ′ such that

ρ(Xn(t)/n) = ρ(Xn(t))/ρ′(n).

Then, the asymptotic convergence in probability

ρ(Xn(t)/n)
P−→ ρ(x(t)) intuitively means that for sufficiently large

n,
ρ(Xn(t)) ≈ ρ′(n)ρ(x(t)).



Fluid Rewards 13/ 143

Applying this to rewards

This result is directly applicable to study the convergence of
ρ(Xn(t)/n) toward ρ(x(t)) by letting Yn(t) = Xn(t)/n, for any t.

In general, however, the performance index of interest is expressed
as a reward ρ(Xn(t)). Thus we restrict to reward structures which
are not explicitly dependent upon the scaling factor n.

i.e., the reward structure ρ must satisfy the condition that there
exists some ρ′ such that

ρ(Xn(t)/n) = ρ(Xn(t))/ρ′(n).

Then, the asymptotic convergence in probability

ρ(Xn(t)/n)
P−→ ρ(x(t)) intuitively means that for sufficiently large

n,
ρ(Xn(t)) ≈ ρ′(n)ρ(x(t)).



Fluid Rewards 14/ 143

Applying this to rewards

This result is directly applicable to study the convergence of
ρ(Xn(t)/n) toward ρ(x(t)) by letting Yn(t) = Xn(t)/n, for any t.

In general, however, the performance index of interest is expressed
as a reward ρ(Xn(t)). Thus we restrict to reward structures which
are not explicitly dependent upon the scaling factor n.

i.e., the reward structure ρ must satisfy the condition that there
exists some ρ′ such that

ρ(Xn(t)/n) = ρ(Xn(t))/ρ′(n).

Then, the asymptotic convergence in probability

ρ(Xn(t)/n)
P−→ ρ(x(t)) intuitively means that for sufficiently large

n,
ρ(Xn(t)) ≈ ρ′(n)ρ(x(t)).



Fluid Rewards 15/ 143

Example model

Download
def
= (transfer , r1).Think

Think
def
= (think, r2).Download

Upload
def
= (transfer , r3).Log

Log
def
= (log , r4).Upload

System
def
= Download [NC ] ��

{transfer}
Upload [NS ]

The reduced context of System is

red(System) = Download ��
{transfer}

Upload

and the generating functions are defined as follows:

ψtransfer (ξ, (−1, 1,−1, 1) = min(r1ξ1, r3ξ3)

ψthink(ξ, (1,−1, 0, 0)) = r2ξ2

ψlog (ξ, (0, 0, 1,−1)) = r4ξ4



Fluid Rewards 16/ 143

Example model

Download
def
= (transfer , r1).Think

Think
def
= (think, r2).Download

Upload
def
= (transfer , r3).Log

Log
def
= (log , r4).Upload

System
def
= Download [NC ] ��

{transfer}
Upload [NS ]

The reduced context of System is

red(System) = Download ��
{transfer}

Upload

and the generating functions are defined as follows:

ψtransfer (ξ, (−1, 1,−1, 1) = min(r1ξ1, r3ξ3)

ψthink(ξ, (1,−1, 0, 0)) = r2ξ2

ψlog (ξ, (0, 0, 1,−1)) = r4ξ4



Fluid Rewards 17/ 143

Example model

Download
def
= (transfer , r1).Think

Think
def
= (think, r2).Download

Upload
def
= (transfer , r3).Log

Log
def
= (log , r4).Upload

System
def
= Download [NC ] ��

{transfer}
Upload [NS ]

The reduced context of System is

red(System) = Download ��
{transfer}

Upload

and the generating functions are defined as follows:

ψtransfer (ξ, (−1, 1,−1, 1) = min(r1ξ1, r3ξ3)

ψthink(ξ, (1,−1, 0, 0)) = r2ξ2

ψlog (ξ, (0, 0, 1,−1)) = r4ξ4



Fluid Rewards 18/ 143

Action Throughput

The reward function for the action throughput of α ∈ A, denoted
by Thα(ω) is

Thα(ω) =
∑
l∈Zd

ψα(ω, l).

The generic argument ω is intended to be Xn(t)/n for the
Markovian reward and x(t) for its deterministic approximation.

Therefore the deterministic approximation of the throughput of
action α is

Thα(x(t)) =
∑
l∈Zd

ψα(x(t), l).

It holds that Thα(Xn(t)/n) = Thα(Xn(t))/n because of the
density dependence of the generating functions.



Fluid Rewards 19/ 143

Action Throughput for the example

Download
def
= (transfer , r1).Think

Think
def
= (think, r2).Download

Upload
def
= (transfer , r3).Log

Log
def
= (log , r4).Upload

System
def
= Download [NC ] ��

{transfer}
Upload [NS ]

Ththink(ω) = r2ω2

Thlog (ω) = r4ω4

Thtransfer (ω) = min(r1ω1, r3ω3).



Fluid Rewards 20/ 143

Capacity Utilisation

The notion of capacity utilisation captures not just whether a
component is in use but the proportion of its capacity that is being
utilised.

Recall that the apparent rate of a component with respect to an
activity type records its capacity to perform activity of that type.

When activities are carried out in cooperation, a component may
be slowed down by the bounded capacity of the cooperating
component, meaning that its capacity is not fully utilised.

In contrast individual activities always represent 100% utilisation
when they are enabled.



Fluid Rewards 21/ 143

Capacity Utilisation

The notion of capacity utilisation captures not just whether a
component is in use but the proportion of its capacity that is being
utilised.

Recall that the apparent rate of a component with respect to an
activity type records its capacity to perform activity of that type.

When activities are carried out in cooperation, a component may
be slowed down by the bounded capacity of the cooperating
component, meaning that its capacity is not fully utilised.

In contrast individual activities always represent 100% utilisation
when they are enabled.



Fluid Rewards 22/ 143

Capacity Utilisation

The notion of capacity utilisation captures not just whether a
component is in use but the proportion of its capacity that is being
utilised.

Recall that the apparent rate of a component with respect to an
activity type records its capacity to perform activity of that type.

When activities are carried out in cooperation, a component may
be slowed down by the bounded capacity of the cooperating
component, meaning that its capacity is not fully utilised.

In contrast individual activities always represent 100% utilisation
when they are enabled.



Fluid Rewards 23/ 143

Capacity Utilisation

The notion of capacity utilisation captures not just whether a
component is in use but the proportion of its capacity that is being
utilised.

Recall that the apparent rate of a component with respect to an
activity type records its capacity to perform activity of that type.

When activities are carried out in cooperation, a component may
be slowed down by the bounded capacity of the cooperating
component, meaning that its capacity is not fully utilised.

In contrast individual activities always represent 100% utilisation
when they are enabled.



Fluid Rewards 24/ 143

Capacity Utilisation

Let Ci denote a derivative set in the reduced context with Ni

distinct derivatives Ci ,1,Ci ,2, . . .Ci ,Ni
.

The capacity utilisation of Ci , denoted by CUCi , measures the
proportion of time that the derivatives of Ci are engaged in some
action:

CUCi (ω) =

∑
α∈A

∑
l∈L(Ci ) ψα(ω, l)∑

α∈A
∑Ni

j=1 rα(Ci ,j)ωi ,j

where L(Ci ) is subset of jumps that Ci is involved in.



Fluid Rewards 25/ 143

Capacity Utilisation for the example

Download
def
= (transfer , r1).Think

Think
def
= (think, r2).Download

Upload
def
= (transfer , r3).Log

Log
def
= (log , r4).Upload

System
def
= Download [NC ] ��

{transfer}
Upload [NS ]

CUC1(ω) =
min(r1ω1, r3ω3) + r2ω2

r1ω1 + r2ω2

CUC2(ω) =
min(r1ω1, r3ω3) + r4ω4

r3ω3 + r4ω4



Fluid Rewards 26/ 143

Average Response Time

As previously the approach to average response time is via Little’s
Law.

For an arbitrary PEPA component we assume that the set of
derivative Ci can be partitioned into {Si ,Si} denoting local states
that are inside and outside the ”system” respectively.

Let µli and µi
l be the subsets of the jump vector l corresponding to

the population vectors of Si and Si respectively.

By the conservativeness of PEPA models, these jump vectors
(µli ∪ µi l) must have either zero or two non-zero entries.

Two non-zero entries with one entry in each jump vector indicate a
transition into or out of the system.



Fluid Rewards 27/ 143

Average Response Time

As previously the approach to average response time is via Little’s
Law.

For an arbitrary PEPA component we assume that the set of
derivative Ci can be partitioned into {Si ,Si} denoting local states
that are inside and outside the ”system” respectively.

Let µli and µi
l be the subsets of the jump vector l corresponding to

the population vectors of Si and Si respectively.

By the conservativeness of PEPA models, these jump vectors
(µli ∪ µi l) must have either zero or two non-zero entries.

Two non-zero entries with one entry in each jump vector indicate a
transition into or out of the system.



Fluid Rewards 28/ 143

Average Response Time

As previously the approach to average response time is via Little’s
Law.

For an arbitrary PEPA component we assume that the set of
derivative Ci can be partitioned into {Si ,Si} denoting local states
that are inside and outside the ”system” respectively.

Let µli and µi
l be the subsets of the jump vector l corresponding to

the population vectors of Si and Si respectively.

By the conservativeness of PEPA models, these jump vectors
(µli ∪ µi l) must have either zero or two non-zero entries.

Two non-zero entries with one entry in each jump vector indicate a
transition into or out of the system.



Fluid Rewards 29/ 143

Average Response Time

As previously the approach to average response time is via Little’s
Law.

For an arbitrary PEPA component we assume that the set of
derivative Ci can be partitioned into {Si ,Si} denoting local states
that are inside and outside the ”system” respectively.

Let µli and µi
l be the subsets of the jump vector l corresponding to

the population vectors of Si and Si respectively.

By the conservativeness of PEPA models, these jump vectors
(µli ∪ µi l) must have either zero or two non-zero entries.

Two non-zero entries with one entry in each jump vector indicate a
transition into or out of the system.



Fluid Rewards 30/ 143

Average Response Time

As previously the approach to average response time is via Little’s
Law.

For an arbitrary PEPA component we assume that the set of
derivative Ci can be partitioned into {Si ,Si} denoting local states
that are inside and outside the ”system” respectively.

Let µli and µi
l be the subsets of the jump vector l corresponding to

the population vectors of Si and Si respectively.

By the conservativeness of PEPA models, these jump vectors
(µli ∪ µi l) must have either zero or two non-zero entries.

Two non-zero entries with one entry in each jump vector indicate a
transition into or out of the system.



Fluid Rewards 31/ 143

Throughput of Arrivals

Consider the cases:

{−1} ∈ µli and {+1} ∈ µi l : this represents a departure from
the system

{+1} ∈ µli and {−1} ∈ µi l : this represents an entry into the
system

Based on this reasoning we can define the throughput of arrivals:

Throughput of arrivals

The throughput of arrivals of S i into the system, denoted λS i , is
the sum of the throughputs, for all action types, across all
transitions such at {+1} ∈ µli and {−1} ∈ µi l :

λS i (ω) =
∑

α∈A,{+1}∈µli ,{−1}∈µi
l

ψα(ω, l)



Fluid Rewards 32/ 143

Throughput of Arrivals

Consider the cases:

{−1} ∈ µli and {+1} ∈ µi l : this represents a departure from
the system

{+1} ∈ µli and {−1} ∈ µi l : this represents an entry into the
system

Based on this reasoning we can define the throughput of arrivals:

Throughput of arrivals

The throughput of arrivals of S i into the system, denoted λS i , is
the sum of the throughputs, for all action types, across all
transitions such at {+1} ∈ µli and {−1} ∈ µi l :

λS i (ω) =
∑

α∈A,{+1}∈µli ,{−1}∈µi
l

ψα(ω, l)



Fluid Rewards 33/ 143

Number in the System

Number in the System

The population count of the users in the system, denoted by Ls i is

Ls i (ω) =
∑

Ci ,j ∈ S iωi ,j



Fluid Rewards 34/ 143

Convergence and Average Response Time

Convergence

For any S i ∈ Ci ,S i 6= ∅, it holds that

λS i (Xn(t)/n)
E−→ λS i (x(t))

and that
LS i (Xn(t)/n)

E−→ LS i (x(t))

.

Average Response Time

For any S i ∈ Ci ,S i 6= ∅, WS i is

WS i (ω) = LS i (ω)/λS i (ω)



Fluid Rewards 35/ 143

Convergence and Average Response Time

Convergence

For any S i ∈ Ci ,S i 6= ∅, it holds that

λS i (Xn(t)/n)
E−→ λS i (x(t))

and that
LS i (Xn(t)/n)

E−→ LS i (x(t))

.

Average Response Time

For any S i ∈ Ci ,S i 6= ∅, WS i is

WS i (ω) = LS i (ω)/λS i (ω)



Fluid Rewards 36/ 143

Average response time for the example

Download
def
= (transfer , r1).Think

Think
def
= (think, r2).Download

Upload
def
= (transfer , r3).Log

Log
def
= (log , r4).Upload

System
def
= Download [NC ] ��

{transfer}
Upload [NS ]

If we define the partition to be S i = {Download}, S i = {Think},
then

LS i (ω) = ω1

λS i (ω) = r2ω2

WS i (ω) =
ω1

r2ω2



Fluid Rewards 37/ 143

Fluid Rewards in detail

In these slides I have given an overview of the types of measures
that can be automatically derived.

As you have already seen these are implemented in the PEPA
Eclipse plug-in tool under the Scalable Analysis in the PEPA

menu.

Full details can be found in the paper:

M. Tribastone, J. Ding, S. Gilmore, J. Hillston
Fluid Rewards for a Stochastic Process Algebra
IEEE Trans. Software Eng. 38(4): 861-874 (2012)



Fluid Rewards 38/ 143

Fluid Rewards in detail

In these slides I have given an overview of the types of measures
that can be automatically derived.

As you have already seen these are implemented in the PEPA
Eclipse plug-in tool under the Scalable Analysis in the PEPA

menu.

Full details can be found in the paper:

M. Tribastone, J. Ding, S. Gilmore, J. Hillston
Fluid Rewards for a Stochastic Process Algebra
IEEE Trans. Software Eng. 38(4): 861-874 (2012)



Fluid Rewards 39/ 143

Fluid Rewards in detail

In these slides I have given an overview of the types of measures
that can be automatically derived.

As you have already seen these are implemented in the PEPA
Eclipse plug-in tool under the Scalable Analysis in the PEPA

menu.

Full details can be found in the paper:

M. Tribastone, J. Ding, S. Gilmore, J. Hillston
Fluid Rewards for a Stochastic Process Algebra
IEEE Trans. Software Eng. 38(4): 861-874 (2012)



Introduction to Simulation 40/ 143

Outline

1 Fluid Rewards

2 Introduction to Simulation

3 Simulation in PEPA



Introduction to Simulation 41/ 143

Introduction

SYSTEM

PERFORMANCE
MEASURES

SIMULATION
MODELS

ANALYTICAL
MODELS

abstraction
mathematicalalgorithmic

abstraction

observation
execution &

& derivation
analysis)

(mathematical
solution



Introduction to Simulation 42/ 143

Assumptions

We still assume that the system is characterised by a family of
random variables {X (t), t ∈ T}.

As the value of time increases, and in response to the
“environment” (represented by random variables within the
model) the stochastic process progresses from state to state.

Any set of instances of {X (t), t ∈ T} can be regarded as a
path of a particle moving randomly in a state space, S , its
position at time t being X (t).

These paths are called sample paths.



Introduction to Simulation 43/ 143

Assumptions

We still assume that the system is characterised by a family of
random variables {X (t), t ∈ T}.

As the value of time increases, and in response to the
“environment” (represented by random variables within the
model) the stochastic process progresses from state to state.

Any set of instances of {X (t), t ∈ T} can be regarded as a
path of a particle moving randomly in a state space, S , its
position at time t being X (t).

These paths are called sample paths.



Introduction to Simulation 44/ 143

Assumptions

We still assume that the system is characterised by a family of
random variables {X (t), t ∈ T}.

As the value of time increases, and in response to the
“environment” (represented by random variables within the
model) the stochastic process progresses from state to state.

Any set of instances of {X (t), t ∈ T} can be regarded as a
path of a particle moving randomly in a state space, S , its
position at time t being X (t).

These paths are called sample paths.



Introduction to Simulation 45/ 143

Assumptions

We still assume that the system is characterised by a family of
random variables {X (t), t ∈ T}.

As the value of time increases, and in response to the
“environment” (represented by random variables within the
model) the stochastic process progresses from state to state.

Any set of instances of {X (t), t ∈ T} can be regarded as a
path of a particle moving randomly in a state space, S , its
position at time t being X (t).

These paths are called sample paths.



Introduction to Simulation 46/ 143

State space and sample paths



Introduction to Simulation 47/ 143

State space and sample paths



Introduction to Simulation 48/ 143

State space and sample paths



Introduction to Simulation 49/ 143

State space and sample paths



Introduction to Simulation 50/ 143

Sample paths and runs

Using the analytic approach of Markov processes we
characterised all possible sample paths by the global balance
equations.

Using simulation we investigate the sample paths directly.

We allow the model to trace out a sample path over the state
space.

Each run of the simulation model will generate another,
usually distinct, sample path.



Introduction to Simulation 51/ 143

Sample paths and runs

Using the analytic approach of Markov processes we
characterised all possible sample paths by the global balance
equations.

Using simulation we investigate the sample paths directly.

We allow the model to trace out a sample path over the state
space.

Each run of the simulation model will generate another,
usually distinct, sample path.



Introduction to Simulation 52/ 143

Sample paths and runs

Using the analytic approach of Markov processes we
characterised all possible sample paths by the global balance
equations.

Using simulation we investigate the sample paths directly.

We allow the model to trace out a sample path over the state
space.

Each run of the simulation model will generate another,
usually distinct, sample path.



Introduction to Simulation 53/ 143

Sample paths and runs

Using the analytic approach of Markov processes we
characterised all possible sample paths by the global balance
equations.

Using simulation we investigate the sample paths directly.

We allow the model to trace out a sample path over the state
space.

Each run of the simulation model will generate another,
usually distinct, sample path.



Introduction to Simulation 54/ 143

Benefits of simulation

There are a variety of reasons in general why simulation may be
preferable to analytical modelling:

Level of Abstraction It is not necessary to adhere to the
assumptions of Markovian modelling (although we
will in the simulation of PEPA models).

Transient Analysis As we have seen, transient analysis is possible
via numerical solution of a CTMC but it is
computationally costly, and can be easier to conduct
via simulation.

Size of State Space In contrast to numerical solution of a CTMC,
in a simulation model the state space is generated
“on-the-fly” by the model itself during execution so it
does not need to be all stored at once.



Introduction to Simulation 55/ 143

Simulation management

Some of the common features of simulation management are listed
below.

Event scheduler

Simulation clock and time management

System state variables

Event routines

Random number/random variate generator

Report generator

Trace routines

Dynamic memory management



Introduction to Simulation 56/ 143

Event scheduler

An event scheduler keeps track of the events which are waiting to
happen, usually as a linked list, and allows them to be manipulated
in various ways. For example,

schedule event E at time T ;

hold event E for a time interval ∂t;

cancel a previously scheduled event E ;

hold event E indefinitely (until it is scheduled by another
event);

schedule an indefinitely held event.

Event scheduler must be efficient

The event scheduler is called before every event, and it may be
called several times during one event to schedule other new events.



Introduction to Simulation 57/ 143

Event scheduler

An event scheduler keeps track of the events which are waiting to
happen, usually as a linked list, and allows them to be manipulated
in various ways. For example,

schedule event E at time T ;

hold event E for a time interval ∂t;

cancel a previously scheduled event E ;

hold event E indefinitely (until it is scheduled by another
event);

schedule an indefinitely held event.

Event scheduler must be efficient

The event scheduler is called before every event, and it may be
called several times during one event to schedule other new events.



Introduction to Simulation 58/ 143

Simulation clock and time management

Every simulation model must have a global variable
representing the simulated time.

The event scheduler is usually responsible for advancing this
time, either one unit at a time or, more commonly, directly to
the time of the next scheduled event.

This latter approach is called event-driven time management.



Introduction to Simulation 59/ 143

Event routines

Each event in the system brings about a state change.

In the simulation model the effect of each event must be
represented in a way which updates the system state variables,
and in some cases, schedules other events.

How the event routines are generated will depend on the
simulation modelling paradigm used to construct the model.



Introduction to Simulation 60/ 143

Random number/random variate generator

Random numbers play a crucial role in most discrete event
simulations.

A random number generator is used to generate a sequence of
random values between 0 and 1.

These values are then transformed to produce a sequence of
random values which satisfy the desired distribution. This
second step is sometimes called random variate generation.

Example

The impact of the environment on the system, e.g. inter-arrival
times, is usually represented by random variables of some specified
distribution.



Introduction to Simulation 61/ 143

Random number/random variate generator

Random numbers play a crucial role in most discrete event
simulations.

A random number generator is used to generate a sequence of
random values between 0 and 1.

These values are then transformed to produce a sequence of
random values which satisfy the desired distribution. This
second step is sometimes called random variate generation.

Example

The impact of the environment on the system, e.g. inter-arrival
times, is usually represented by random variables of some specified
distribution.



Introduction to Simulation 62/ 143

Simulation output analysis

In performance modelling our objective in constructing a
simulation model of a system is to generate one or more
performance measures for the system.

In the Markov models such measures were derived from the
steady state probability distribution, after the model solution.

In contrast, in a simulation model measures are observed or
evaluated directly during the execution of the model.

It is part of model construction to make sure that all the
necessary counters and updates are in place to allow the
measures to be collected as the model runs.



Introduction to Simulation 63/ 143

Simulation output analysis

In performance modelling our objective in constructing a
simulation model of a system is to generate one or more
performance measures for the system.

In the Markov models such measures were derived from the
steady state probability distribution, after the model solution.

In contrast, in a simulation model measures are observed or
evaluated directly during the execution of the model.

It is part of model construction to make sure that all the
necessary counters and updates are in place to allow the
measures to be collected as the model runs.



Introduction to Simulation 64/ 143

Simulation output analysis

In performance modelling our objective in constructing a
simulation model of a system is to generate one or more
performance measures for the system.

In the Markov models such measures were derived from the
steady state probability distribution, after the model solution.

In contrast, in a simulation model measures are observed or
evaluated directly during the execution of the model.

It is part of model construction to make sure that all the
necessary counters and updates are in place to allow the
measures to be collected as the model runs.



Introduction to Simulation 65/ 143

Simulation output analysis

In performance modelling our objective in constructing a
simulation model of a system is to generate one or more
performance measures for the system.

In the Markov models such measures were derived from the
steady state probability distribution, after the model solution.

In contrast, in a simulation model measures are observed or
evaluated directly during the execution of the model.

It is part of model construction to make sure that all the
necessary counters and updates are in place to allow the
measures to be collected as the model runs.



Introduction to Simulation 66/ 143

Simulation trajectories

It is important to remember that each run of a model constitutes a
single trajectory over the state space.

So, in general, any estimate for the value of a performance
measure generated from a single run constitutes a single
observation in the possible sample space.



Introduction to Simulation 67/ 143

Simulation trajectories

It is important to remember that each run of a model constitutes a
single trajectory over the state space.

So, in general, any estimate for the value of a performance
measure generated from a single run constitutes a single
observation in the possible sample space.



Introduction to Simulation 68/ 143

Simulation and long-term averages

To gain an accurate measure of the performance of the
system we should not base our results on a single observation.

For steady state analysis the averages we calculate from data
collected during execution will always be an approximation of
the unknown true long-term averages that characterise the
system performance.

Important issues are:

choosing the starting state of the simulation;
choosing the warm-up period that is allowed to elapse before
data collection begins;
choosing a run length that ensures that the calculated averages
are representative of the unknown true long term average.



Introduction to Simulation 69/ 143

Simulation and long-term averages

To gain an accurate measure of the performance of the
system we should not base our results on a single observation.

For steady state analysis the averages we calculate from data
collected during execution will always be an approximation of
the unknown true long-term averages that characterise the
system performance.

Important issues are:

choosing the starting state of the simulation;
choosing the warm-up period that is allowed to elapse before
data collection begins;
choosing a run length that ensures that the calculated averages
are representative of the unknown true long term average.



Introduction to Simulation 70/ 143

Simulation and long-term averages

To gain an accurate measure of the performance of the
system we should not base our results on a single observation.

For steady state analysis the averages we calculate from data
collected during execution will always be an approximation of
the unknown true long-term averages that characterise the
system performance.

Important issues are:

choosing the starting state of the simulation;
choosing the warm-up period that is allowed to elapse before
data collection begins;
choosing a run length that ensures that the calculated averages
are representative of the unknown true long term average.



Introduction to Simulation 71/ 143

Simulation and long-term averages

To gain an accurate measure of the performance of the
system we should not base our results on a single observation.

For steady state analysis the averages we calculate from data
collected during execution will always be an approximation of
the unknown true long-term averages that characterise the
system performance.

Important issues are:

choosing the starting state of the simulation;

choosing the warm-up period that is allowed to elapse before
data collection begins;
choosing a run length that ensures that the calculated averages
are representative of the unknown true long term average.



Introduction to Simulation 72/ 143

Simulation and long-term averages

To gain an accurate measure of the performance of the
system we should not base our results on a single observation.

For steady state analysis the averages we calculate from data
collected during execution will always be an approximation of
the unknown true long-term averages that characterise the
system performance.

Important issues are:

choosing the starting state of the simulation;
choosing the warm-up period that is allowed to elapse before
data collection begins;

choosing a run length that ensures that the calculated averages
are representative of the unknown true long term average.



Introduction to Simulation 73/ 143

Simulation and long-term averages

To gain an accurate measure of the performance of the
system we should not base our results on a single observation.

For steady state analysis the averages we calculate from data
collected during execution will always be an approximation of
the unknown true long-term averages that characterise the
system performance.

Important issues are:

choosing the starting state of the simulation;
choosing the warm-up period that is allowed to elapse before
data collection begins;
choosing a run length that ensures that the calculated averages
are representative of the unknown true long term average.



Introduction to Simulation 74/ 143

Statistical techniques

Statistical techniques can be used to assess how and when the
calculated averages approximate the true average, i.e. to
analyse the accuracy of our current estimate.

This is often done in terms of a confidence interval.

A confidence interval expresses probabilistic bounds on the
error of our current estimate.



Introduction to Simulation 75/ 143

Confidence intervals

A confidence interval (c1, c2) with confidence level X%, means
that with probability X/100 the real value v lies between the
values c1 and c2, i.e.

Pr(c1 ≤ v ≤ c2) = X/100

X/100 is usually written in the form 1− α, and α is called the
significance level, and (1− α) is called the confidence coefficient.



Introduction to Simulation 76/ 143

Confidence intervals

A confidence interval (c1, c2) with confidence level X%, means
that with probability X/100 the real value v lies between the
values c1 and c2, i.e.

Pr(c1 ≤ v ≤ c2) = X/100

X/100 is usually written in the form 1− α, and α is called the
significance level, and (1− α) is called the confidence coefficient.



Introduction to Simulation 77/ 143

Confidence intervals and variance

Usually performance modellers will run their simulation models
until their observations give them confidence levels of 90% or 95%
and a confidence interval which is acceptably tight.

Calculation of the confidence interval is based on the variance
within the observations which have been gathered.

The greater the variance, the wider the confidence interval; the
smaller the variance, the tighter the bounds.



Introduction to Simulation 78/ 143

Confidence intervals and variance

Usually performance modellers will run their simulation models
until their observations give them confidence levels of 90% or 95%
and a confidence interval which is acceptably tight.

Calculation of the confidence interval is based on the variance
within the observations which have been gathered.

The greater the variance, the wider the confidence interval; the
smaller the variance, the tighter the bounds.



Introduction to Simulation 79/ 143

Confidence intervals and variance

Usually performance modellers will run their simulation models
until their observations give them confidence levels of 90% or 95%
and a confidence interval which is acceptably tight.

Calculation of the confidence interval is based on the variance
within the observations which have been gathered.

The greater the variance, the wider the confidence interval; the
smaller the variance, the tighter the bounds.



Introduction to Simulation 80/ 143

Confidence intervals with PEPA

In the PEPA Eclipse Plug-in it is possible to set the desired
confidence interval as a stopping criterion for a simulation run.

Clearly, the tighter the confidence intervals the more runs are likely
to be needed to achieve it.

But note that the larger the populations that you are simulating
the easier it will be to get a tighter confidence interval.

However, one way or the other it is computationally expensive to
get tight confidence intervals.



Introduction to Simulation 81/ 143

Confidence intervals with PEPA

In the PEPA Eclipse Plug-in it is possible to set the desired
confidence interval as a stopping criterion for a simulation run.

Clearly, the tighter the confidence intervals the more runs are likely
to be needed to achieve it.

But note that the larger the populations that you are simulating
the easier it will be to get a tighter confidence interval.

However, one way or the other it is computationally expensive to
get tight confidence intervals.



Introduction to Simulation 82/ 143

Confidence intervals with PEPA

In the PEPA Eclipse Plug-in it is possible to set the desired
confidence interval as a stopping criterion for a simulation run.

Clearly, the tighter the confidence intervals the more runs are likely
to be needed to achieve it.

But note that the larger the populations that you are simulating
the easier it will be to get a tighter confidence interval.

However, one way or the other it is computationally expensive to
get tight confidence intervals.



Introduction to Simulation 83/ 143

Confidence intervals with PEPA

In the PEPA Eclipse Plug-in it is possible to set the desired
confidence interval as a stopping criterion for a simulation run.

Clearly, the tighter the confidence intervals the more runs are likely
to be needed to achieve it.

But note that the larger the populations that you are simulating
the easier it will be to get a tighter confidence interval.

However, one way or the other it is computationally expensive to
get tight confidence intervals.



Introduction to Simulation 84/ 143

Initial conditions, bias

The initial conditions of the model, its starting state, influence the
sequence of states through which the simulation will pass,
especially near the start of a run.

In a steady state distribution the output values should be
independent of the starting state.

Thus the modeller must make some effort to remove the effect of
the starting state, sometimes termed bias, from the sample data
used for estimating the performance measure of interest.

Unfortunately it is not possible to define exactly when the model
has moved from transient behaviour to steady state behaviour.
This initial period before steady state is reached is sometimes
called the warm-up period.



Introduction to Simulation 85/ 143

Initial conditions, bias

The initial conditions of the model, its starting state, influence the
sequence of states through which the simulation will pass,
especially near the start of a run.

In a steady state distribution the output values should be
independent of the starting state.

Thus the modeller must make some effort to remove the effect of
the starting state, sometimes termed bias, from the sample data
used for estimating the performance measure of interest.

Unfortunately it is not possible to define exactly when the model
has moved from transient behaviour to steady state behaviour.
This initial period before steady state is reached is sometimes
called the warm-up period.



Introduction to Simulation 86/ 143

Initial conditions, bias

The initial conditions of the model, its starting state, influence the
sequence of states through which the simulation will pass,
especially near the start of a run.

In a steady state distribution the output values should be
independent of the starting state.

Thus the modeller must make some effort to remove the effect of
the starting state, sometimes termed bias, from the sample data
used for estimating the performance measure of interest.

Unfortunately it is not possible to define exactly when the model
has moved from transient behaviour to steady state behaviour.
This initial period before steady state is reached is sometimes
called the warm-up period.



Introduction to Simulation 87/ 143

Initial conditions, bias

The initial conditions of the model, its starting state, influence the
sequence of states through which the simulation will pass,
especially near the start of a run.

In a steady state distribution the output values should be
independent of the starting state.

Thus the modeller must make some effort to remove the effect of
the starting state, sometimes termed bias, from the sample data
used for estimating the performance measure of interest.

Unfortunately it is not possible to define exactly when the model
has moved from transient behaviour to steady state behaviour.
This initial period before steady state is reached is sometimes
called the warm-up period.



Introduction to Simulation 88/ 143

100 processors and 80 resources (simulation run A)



Introduction to Simulation 89/ 143

100 processors and 80 resources (simulation run B)



Introduction to Simulation 90/ 143

100 processors and 80 resources (simulation run C)



Introduction to Simulation 91/ 143

100 processors and 80 resources (simulation run D)



Introduction to Simulation 92/ 143

100 processors and 80 resources (average of 10 runs)



Introduction to Simulation 93/ 143

Heuristics for reducing bias

The common techniques are

1 Long runs.
2 Proper initialisation.
3 Truncation.
4 Initial data deletion.
5 Moving average of independent replications.
6 Batch means.

The last four techniques are all based on the assumption that
variability is less during steady state behaviour than during
transient behaviour.



Introduction to Simulation 94/ 143

Heuristics for reducing bias

The common techniques are

1 Long runs.
2 Proper initialisation.
3 Truncation.
4 Initial data deletion.
5 Moving average of independent replications.
6 Batch means.

The last four techniques are all based on the assumption that
variability is less during steady state behaviour than during
transient behaviour.



Introduction to Simulation 95/ 143

Variance reduction techniques

Assume that we are running a simulation model in order to
estimate some performance measure M.

During the ith execution of the model we make observations
of M, oij and at the end of the run we calculate the mean
value of the observations Oi .

Note that the observations oij in most simulations are not
independent. Successive observations are often correlated.



Introduction to Simulation 96/ 143

Example of correlation

If we are interested in the delay of messages in a
packet-switching network, if the delay of one message is long
because the network is heavily congested, the next message is
likely to be similarly delayed.

Thus the two observations are not independent.

Note

This is why, in general, a simulation model must be run several
times.



Introduction to Simulation 97/ 143

Example of correlation

If we are interested in the delay of messages in a
packet-switching network, if the delay of one message is long
because the network is heavily congested, the next message is
likely to be similarly delayed.

Thus the two observations are not independent.

Note

This is why, in general, a simulation model must be run several
times.



Introduction to Simulation 98/ 143

Example of correlation

If we are interested in the delay of messages in a
packet-switching network, if the delay of one message is long
because the network is heavily congested, the next message is
likely to be similarly delayed.

Thus the two observations are not independent.

Note

This is why, in general, a simulation model must be run several
times.



Introduction to Simulation 99/ 143

Independent replications

If independent replications are used the model is run m times
in order to generate m independent observations.

For the runs to be independent, the random number generator
seeds must be carefully chosen to ensure that they are
independent.

If steady state or long term behaviour is being investigated
the data relating to the warm-up period must be discarded.

Let O denote the mean value of the retained observations, Oi ,
after m runs.

The variance over all observations is calculated as shown
below:

V =
1

m − 1

m∑
i=1

(Oi − O)2



Introduction to Simulation 100/ 143

Independent replications

If independent replications are used the model is run m times
in order to generate m independent observations.

For the runs to be independent, the random number generator
seeds must be carefully chosen to ensure that they are
independent.

If steady state or long term behaviour is being investigated
the data relating to the warm-up period must be discarded.

Let O denote the mean value of the retained observations, Oi ,
after m runs.

The variance over all observations is calculated as shown
below:

V =
1

m − 1

m∑
i=1

(Oi − O)2



Introduction to Simulation 101/ 143

Independent replications

If independent replications are used the model is run m times
in order to generate m independent observations.

For the runs to be independent, the random number generator
seeds must be carefully chosen to ensure that they are
independent.

If steady state or long term behaviour is being investigated
the data relating to the warm-up period must be discarded.

Let O denote the mean value of the retained observations, Oi ,
after m runs.

The variance over all observations is calculated as shown
below:

V =
1

m − 1

m∑
i=1

(Oi − O)2



Introduction to Simulation 102/ 143

Independent replications

If independent replications are used the model is run m times
in order to generate m independent observations.

For the runs to be independent, the random number generator
seeds must be carefully chosen to ensure that they are
independent.

If steady state or long term behaviour is being investigated
the data relating to the warm-up period must be discarded.

Let O denote the mean value of the retained observations, Oi ,
after m runs.

The variance over all observations is calculated as shown
below:

V =
1

m − 1

m∑
i=1

(Oi − O)2



Introduction to Simulation 103/ 143

Independent replications

If independent replications are used the model is run m times
in order to generate m independent observations.

For the runs to be independent, the random number generator
seeds must be carefully chosen to ensure that they are
independent.

If steady state or long term behaviour is being investigated
the data relating to the warm-up period must be discarded.

Let O denote the mean value of the retained observations, Oi ,
after m runs.

The variance over all observations is calculated as shown
below:

V =
1

m − 1

m∑
i=1

(Oi − O)2



Introduction to Simulation 104/ 143

Independent replications and steady-state

For steady-state analysis independent replication is an inefficient
way to generate samples, since for each sample point, Oi , k
observations, {oi1, . . . , oik}, must be discarded.



Introduction to Simulation 105/ 143

Batch means

In the method of batch means the model is run only once but
for a very long period.

The run is divided into a series of sub-periods of length `, and
measures are collected over each sub-run to form a single
point estimate.

If the observations made during the run form a set {oi}, the
set is partitioned into subsets

Si = {oj | oj observed between (i − 1)× ` and i × `}

Now each sample point Oi is the mean generated from a
subset of observations Si , and O is the mean generated from
the Oi .

Variance is calculated as above.



Introduction to Simulation 106/ 143

Batch means

In the method of batch means the model is run only once but
for a very long period.

The run is divided into a series of sub-periods of length `, and
measures are collected over each sub-run to form a single
point estimate.

If the observations made during the run form a set {oi}, the
set is partitioned into subsets

Si = {oj | oj observed between (i − 1)× ` and i × `}

Now each sample point Oi is the mean generated from a
subset of observations Si , and O is the mean generated from
the Oi .

Variance is calculated as above.



Introduction to Simulation 107/ 143

Batch means

In the method of batch means the model is run only once but
for a very long period.

The run is divided into a series of sub-periods of length `, and
measures are collected over each sub-run to form a single
point estimate.

If the observations made during the run form a set {oi}, the
set is partitioned into subsets

Si = {oj | oj observed between (i − 1)× ` and i × `}

Now each sample point Oi is the mean generated from a
subset of observations Si , and O is the mean generated from
the Oi .

Variance is calculated as above.



Introduction to Simulation 108/ 143

Batch means

In the method of batch means the model is run only once but
for a very long period.

The run is divided into a series of sub-periods of length `, and
measures are collected over each sub-run to form a single
point estimate.

If the observations made during the run form a set {oi}, the
set is partitioned into subsets

Si = {oj | oj observed between (i − 1)× ` and i × `}

Now each sample point Oi is the mean generated from a
subset of observations Si , and O is the mean generated from
the Oi .

Variance is calculated as above.



Introduction to Simulation 109/ 143

Batch means

In the method of batch means the model is run only once but
for a very long period.

The run is divided into a series of sub-periods of length `, and
measures are collected over each sub-run to form a single
point estimate.

If the observations made during the run form a set {oi}, the
set is partitioned into subsets

Si = {oj | oj observed between (i − 1)× ` and i × `}

Now each sample point Oi is the mean generated from a
subset of observations Si , and O is the mean generated from
the Oi .

Variance is calculated as above.



Introduction to Simulation 110/ 143

Batch means and independence

This method is unreliable since the sub-periods are clearly not
independent.

However it has the advantage that only one set of observations
{oi . . . ok} needs to be discarded to overcome the warm-up effects
in steady state analysis.



Introduction to Simulation 111/ 143

Batch means and independence

This method is unreliable since the sub-periods are clearly not
independent.

However it has the advantage that only one set of observations
{oi . . . ok} needs to be discarded to overcome the warm-up effects
in steady state analysis.



Simulation in PEPA 112/ 143

Outline

1 Fluid Rewards

2 Introduction to Simulation

3 Simulation in PEPA



Simulation in PEPA 113/ 143

Simulation in PEPA

When we simulate PEPA models we are simulating the underlying
Markov process, avoiding the construction of the whole state space
at once, instead finding the states step-by-step as the simulation
progresses.

Because we are working in the Markovian context we can take
advantage of the memoryless property.

This means that we do not need to maintain an event list.

In this case the simulation algorithm is particularly simple and
relatively efficient.



Simulation in PEPA 114/ 143

Simulation in PEPA

When we simulate PEPA models we are simulating the underlying
Markov process, avoiding the construction of the whole state space
at once, instead finding the states step-by-step as the simulation
progresses.

Because we are working in the Markovian context we can take
advantage of the memoryless property.

This means that we do not need to maintain an event list.

In this case the simulation algorithm is particularly simple and
relatively efficient.



Simulation in PEPA 115/ 143

Simulation in PEPA

When we simulate PEPA models we are simulating the underlying
Markov process, avoiding the construction of the whole state space
at once, instead finding the states step-by-step as the simulation
progresses.

Because we are working in the Markovian context we can take
advantage of the memoryless property.

This means that we do not need to maintain an event list.

In this case the simulation algorithm is particularly simple and
relatively efficient.



Simulation in PEPA 116/ 143

Simulation in PEPA

When we simulate PEPA models we are simulating the underlying
Markov process, avoiding the construction of the whole state space
at once, instead finding the states step-by-step as the simulation
progresses.

Because we are working in the Markovian context we can take
advantage of the memoryless property.

This means that we do not need to maintain an event list.

In this case the simulation algorithm is particularly simple and
relatively efficient.



Simulation in PEPA 117/ 143

The Gillespie Stochastic Simulation Algorithm

Instead of an event list the simulation engine keeps the state of the
system and so knows for each component what activity or
activities it currently enables (for shared activities it will check that
all participating components are able to undertake the actions).

From this list of possible activities it will select one to execute
according to the race policy and then update the state accordingly,
modifying the list of current activities as necessary.



Simulation in PEPA 118/ 143

The Gillespie Stochastic Simulation Algorithm

Instead of an event list the simulation engine keeps the state of the
system and so knows for each component what activity or
activities it currently enables (for shared activities it will check that
all participating components are able to undertake the actions).

From this list of possible activities it will select one to execute
according to the race policy and then update the state accordingly,
modifying the list of current activities as necessary.



Simulation in PEPA 119/ 143

Two Observations

If we have a number of possible activities
(α1, r1), (α2, r2), . . . , (αn, rn) enabled in the current state,
then we know from the superposition principle for the exponential
distribution that the time until something happens is governed by
an exponential distribution with rate r1 + r2 + · · ·+ rn.

We also know that the probability that the activity of type αi is
the one which will wine the rate is

ri
r1 + r2 + · · ·+ rn

.



Simulation in PEPA 120/ 143

Two Observations

If we have a number of possible activities
(α1, r1), (α2, r2), . . . , (αn, rn) enabled in the current state,
then we know from the superposition principle for the exponential
distribution that the time until something happens is governed by
an exponential distribution with rate r1 + r2 + · · ·+ rn.

We also know that the probability that the activity of type αi is
the one which will wine the rate is

ri
r1 + r2 + · · ·+ rn

.



Simulation in PEPA 121/ 143

The Gillespie Stochastic Simulation Algorithm

Thus we need only draw two random numbers for each step of the
simulation algorithm:

the first determines the delay until the next activity completes,

the second determines which activity that will be.



Simulation in PEPA 122/ 143

The Gillespie Stochastic Simulation Algorithm

Thus we need only draw two random numbers for each step of the
simulation algorithm:

the first determines the delay until the next activity completes,

the second determines which activity that will be.



Simulation in PEPA 123/ 143

The Gillespie Stochastic Simulation Algorithm

Thus we need only draw two random numbers for each step of the
simulation algorithm:

the first determines the delay until the next activity completes,

the second determines which activity that will be.



Simulation in PEPA 124/ 143

100 processors and 80 resources (simulation run A)



Simulation in PEPA 125/ 143

100 processors and 80 resources (simulation run B)



Simulation in PEPA 126/ 143

100 processors and 80 resources (simulation run C)



Simulation in PEPA 127/ 143

100 processors and 80 resources (simulation run D)



Simulation in PEPA 128/ 143

100 processors and 80 resources (average of 10 runs)



Simulation in PEPA 129/ 143

100 Processors and 80 resources (average of 100 runs)



Simulation in PEPA 130/ 143

100 processors and 80 resources (average of 1000 runs)



Simulation in PEPA 131/ 143

Differential Analysis View

Extracting generating functions from a PEPA model presents
little computational challenge because it does not require the
exploration of the whole state space of the CTMC.

In the plug-in, the Differential Analysis View updates the
generating functions of the currently active model whenever
its contents are saved.



Simulation in PEPA 132/ 143

Differential Analysis View

Extracting generating functions from a PEPA model presents
little computational challenge because it does not require the
exploration of the whole state space of the CTMC.
In the plug-in, the Differential Analysis View updates the
generating functions of the currently active model whenever
its contents are saved.



Simulation in PEPA 133/ 143

Differential Analysis View

Extracting generating functions from a PEPA model presents
little computational challenge because it does not require the
exploration of the whole state space of the CTMC.
In the plug-in, the Differential Analysis View updates the
generating functions of the currently active model whenever
its contents are saved.



Simulation in PEPA 134/ 143

Differential Analysis View

Extracting generating functions from a PEPA model presents
little computational challenge because it does not require the
exploration of the whole state space of the CTMC.
In the plug-in, the Differential Analysis View updates the
generating functions of the currently active model whenever
its contents are saved.



Simulation in PEPA 135/ 143

Differential Analysis View

Extracting generating functions from a PEPA model presents
little computational challenge because it does not require the
exploration of the whole state space of the CTMC.
In the plug-in, the Differential Analysis View updates the
generating functions of the currently active model whenever
its contents are saved.



Simulation in PEPA 136/ 143

Stochastic simulation

The generating functions contain all the necessary information
for model analysis and admit a straightforward stochastic
simulation algorithm.

Given a state ξ̂, the evaluation of each of the generating
functions fα(ξ̂, l) of the model gives the relative probabilities
with which each action may be performed.

Drawing a random number from the resulting probability
density function decides which action is to be taken, and thus
the corresponding target state ξ̂ + l .

This procedure may be repeated until conditions of
termination of the simulation algorithm are met.



Simulation in PEPA 137/ 143

Stochastic simulation

The generating functions contain all the necessary information
for model analysis and admit a straightforward stochastic
simulation algorithm.

Given a state ξ̂, the evaluation of each of the generating
functions fα(ξ̂, l) of the model gives the relative probabilities
with which each action may be performed.

Drawing a random number from the resulting probability
density function decides which action is to be taken, and thus
the corresponding target state ξ̂ + l .

This procedure may be repeated until conditions of
termination of the simulation algorithm are met.



Simulation in PEPA 138/ 143

Stochastic simulation

The generating functions contain all the necessary information
for model analysis and admit a straightforward stochastic
simulation algorithm.

Given a state ξ̂, the evaluation of each of the generating
functions fα(ξ̂, l) of the model gives the relative probabilities
with which each action may be performed.

Drawing a random number from the resulting probability
density function decides which action is to be taken, and thus
the corresponding target state ξ̂ + l .

This procedure may be repeated until conditions of
termination of the simulation algorithm are met.



Simulation in PEPA 139/ 143

Stochastic simulation

The generating functions contain all the necessary information
for model analysis and admit a straightforward stochastic
simulation algorithm.

Given a state ξ̂, the evaluation of each of the generating
functions fα(ξ̂, l) of the model gives the relative probabilities
with which each action may be performed.

Drawing a random number from the resulting probability
density function decides which action is to be taken, and thus
the corresponding target state ξ̂ + l .

This procedure may be repeated until conditions of
termination of the simulation algorithm are met.



Simulation in PEPA 140/ 143

Stochastic simulation dialogue



Simulation in PEPA 141/ 143

Results of a transient stochastic simulation



Simulation in PEPA 142/ 143

Simulation methods

Transient simulation is based on the method of independent
replications: steady-state simulation is performed with the
method of batch means.

At the end of a batch, the algorithm checks whether the
tracked population counts have reached the desired confidence
level.

If the maximum number of batches is reached, the algorithm
returns with a warning of potentially bad accuracy.

The lag-1 correlation is also computed as an indicator of
statistical independence between adjacent batches.



Simulation in PEPA 143/ 143

Steady-state results

Simulation results

ODE results


	Fluid Rewards
	Introduction to Simulation
	Simulation in PEPA

