
1/ 172

SPAs for performance modelling:
Lecture 8 — Stochastic Probes

Jane Hillston (+ Allan Clark)

LFCS, School of Informatics
The University of Edinburgh

Scotland

17th April 2013

2/ 172

Outline

1 Stochastic probes

2 Passage Time and Passage End Analysis

3 Models with a Spatial Aspect
Spatial Challenge: Capturing physical space

Stochastic probes 3/ 172

Outline

1 Stochastic probes

2 Passage Time and Passage End Analysis

3 Models with a Spatial Aspect
Spatial Challenge: Capturing physical space

Stochastic probes 4/ 172

Introduction: Stochastic probes

Last week we saw that it was possible to query models using CSL
formulae and the stochastic model checker PRISM.

This is a very powerful technique but it takes quite a lot of skill to
write CSL formulae that capture just what you want to ask.

In this lecture we will look at the alternative approach of using
stochastic probes (and extended stochastic probes XSP).

Stochastic probes 5/ 172

Introduction: Stochastic probes

Last week we saw that it was possible to query models using CSL
formulae and the stochastic model checker PRISM.

This is a very powerful technique but it takes quite a lot of skill to
write CSL formulae that capture just what you want to ask.

In this lecture we will look at the alternative approach of using
stochastic probes (and extended stochastic probes XSP).

Stochastic probes 6/ 172

Introduction: Stochastic probes

Last week we saw that it was possible to query models using CSL
formulae and the stochastic model checker PRISM.

This is a very powerful technique but it takes quite a lot of skill to
write CSL formulae that capture just what you want to ask.

In this lecture we will look at the alternative approach of using
stochastic probes (and extended stochastic probes XSP).

Stochastic probes 7/ 172

Performance Measure Probes

A performance measurement probe is a separate PEPA
component which may be attached to the model to be
measured.

The probe component observes the actions of the measured
model and changes its state accordingly

To measure the model the probe can then be interrogated for
its state.

Sometimes the probes are created implicitly by the tool in
order to carry out a calculation.

Stochastic probes 8/ 172

Performance Measure Probes

A performance measurement probe is a separate PEPA
component which may be attached to the model to be
measured.

The probe component observes the actions of the measured
model and changes its state accordingly

To measure the model the probe can then be interrogated for
its state.

Sometimes the probes are created implicitly by the tool in
order to carry out a calculation.

Stochastic probes 9/ 172

Performance Measure Probes

A performance measurement probe is a separate PEPA
component which may be attached to the model to be
measured.

The probe component observes the actions of the measured
model and changes its state accordingly

To measure the model the probe can then be interrogated for
its state.

Sometimes the probes are created implicitly by the tool in
order to carry out a calculation.

Stochastic probes 10/ 172

Performance Measure Probes

A performance measurement probe is a separate PEPA
component which may be attached to the model to be
measured.

The probe component observes the actions of the measured
model and changes its state accordingly

To measure the model the probe can then be interrogated for
its state.

Sometimes the probes are created implicitly by the tool in
order to carry out a calculation.

Stochastic probes 11/ 172

Simple passage model: making tea

Idle = (begin , beginRate) . Water ;

Water = (fillKettle , fillRate) . TurnOn ;

TurnOn = (turnOnKettle, onRate) . Wait ;

Wait = (boil , boilRate) . Pour ;

Pour = (pour , pourRate) . Milk ;

AddMilk = (milk , milkRate) . Stir ;

Stir = (stir , stirRate) . Drink ;

Drink = (drink , drinkRate) . Idle ;

Idle

Stochastic probes 12/ 172

A Simple Measurement

Suppose we wish to find out what the probability that the
person in the model is currently making a cup of tea.

One possibility is to simply add up the probabilities of the
states in which the person is making their tea.

However this approach is not very robust because if the model
is revised this measurement must also be revised.

Stochastic probes 13/ 172

A Simple Measurement

Suppose we wish to find out what the probability that the
person in the model is currently making a cup of tea.

One possibility is to simply add up the probabilities of the
states in which the person is making their tea.

However this approach is not very robust because if the model
is revised this measurement must also be revised.

Stochastic probes 14/ 172

A Simple Measurement

Suppose we wish to find out what the probability that the
person in the model is currently making a cup of tea.

One possibility is to simply add up the probabilities of the
states in which the person is making their tea.

However this approach is not very robust because if the model
is revised this measurement must also be revised.

Stochastic probes 15/ 172

Simple passage probe

ProbeIdle = (begin, >) . ProbeRunning ;

ProbeRunning = (stir , >) . ProbeIdle ;

Idle ��
{begin,stir}

ProbeIdle

Stochastic probes 16/ 172

Simple passage probe

ProbeIdle = (begin, >) . ProbeRunning

+ (stir , >) . ProbeIdle ;

ProbeRunning = (stir , >) . ProbeIdle

+ (begin, >) . ProbeRunning ;

Idle ��
{begin,stir}

ProbeIdle

Stochastic probes 17/ 172

Generic probe graph

Stochastic probes 18/ 172

A Simple Measurement

Now we need only measure the probability that the probe is in
the state ProbeRunning .

If the model is revised the probe need not necessarily be
revised (unless it directly affects the measurement in
question).

Stochastic probes 19/ 172

A Simple Measurement

Now we need only measure the probability that the probe is in
the state ProbeRunning .

If the model is revised the probe need not necessarily be
revised (unless it directly affects the measurement in
question).

Stochastic probes 20/ 172

A probe graph

a c

xx

s
t l

m

a,b,c s,t

Model Probe

b

y

a,b,c

s,t

Stochastic probes 21/ 172

A probe graph

Stochastic probes 22/ 172

The boiler definitions

Boiler = (cool , coolRate) . Boiling

+ (pour , >) . Refilling

;

Boiling = (boil , boilRate) . Boiler ;

Refilling = (refill, refillRate) . Boiling ;

Idle = (begin , teaRate) . Water ;

Pour = (pour , pourRate) . Milk ;

AddMilk = (milk , milkRate) . Stir ;

Stir = (stir , stirRate) . Drink ;

Drink = (drink , drinkRate) . Idle ;

Idle[30] ��
{pour}

Boiler

Stochastic probes 23/ 172

A more complex probe

Suppose we wish to ask the probability of being in a state which
has seen the boiler re-boil three or more times without a tea
drinker taking some water.

Stochastic probes 24/ 172

The corresponding probe graph

pour

pour

pour

boil boil

boil

boil
pour

Stochastic probes 25/ 172

The boiler probe definitions

Probe0 = (boil, >) . Probe1 ;

Probe1 = (boil, >) . Probe2 ;

Probe2 = (boil, >) . Probe3 ;

Probe3 = (pour, >) . Probe0 ;

Probe0 ��
{boil,pour}

(Idle ��
{pour}

Boiler)

Stochastic probes 26/ 172

The boiler probe definitions

Probe0 = (boil, >) . Probe1 ;

Probe1 = (boil, >) . Probe2 ;

+ (pour, >) . Probe0 ;

Probe2 = (boil, >) . Probe3 ;

+ (pour, >) . Probe0 ;

Probe3 = (pour, >) . Probe0 ;

Probe0 ��
{boil,pour}

(Idle ��
{pour}

Boiler)

Stochastic probes 27/ 172

The boiler probe definitions

Probe0 = (boil, >) . Probe1 ;

+ (pour, >) . Probe0 ;

Probe1 = (boil, >) . Probe2 ;

+ (pour, >) . Probe0 ;

Probe2 = (boil, >) . Probe3 ;

+ (pour, >) . Probe0 ;

Probe3 = (pour, >) . Probe0

+ (boil, >) . Probe3 ;

Probe0 ��
{boil,pour}

(Idle ��
{pour}

Boiler)

Stochastic probes 28/ 172

Writing probes as regular expressions

Writing a set of probe definitions as PEPA definitions is error
prone. In particular it is hard to get the self-loops correct.

Instead we allow a regular expression-like language for defining
probes in the ipc tool (Imperial PEPA compiler).

The previous probe would be written as:
((boil , boil , boil)/pour) : start, pour : stop)

The ’start’ and ’stop’ labels indicate that we are entering or
exiting the state of the probe/model in which we are
interested.

This is then automatically translated into the PEPA
component that is the probe and attached to the model.

In addition this allows us to separate probes from the model
and attach several probes to a single model, either separately
or simultaneously.

Stochastic probes 29/ 172

Writing probes as regular expressions

Writing a set of probe definitions as PEPA definitions is error
prone. In particular it is hard to get the self-loops correct.

Instead we allow a regular expression-like language for defining
probes in the ipc tool (Imperial PEPA compiler).

The previous probe would be written as:
((boil , boil , boil)/pour) : start, pour : stop)

The ’start’ and ’stop’ labels indicate that we are entering or
exiting the state of the probe/model in which we are
interested.

This is then automatically translated into the PEPA
component that is the probe and attached to the model.

In addition this allows us to separate probes from the model
and attach several probes to a single model, either separately
or simultaneously.

Stochastic probes 30/ 172

Writing probes as regular expressions

Writing a set of probe definitions as PEPA definitions is error
prone. In particular it is hard to get the self-loops correct.

Instead we allow a regular expression-like language for defining
probes in the ipc tool (Imperial PEPA compiler).

The previous probe would be written as:
((boil , boil , boil)/pour) : start, pour : stop)

The ’start’ and ’stop’ labels indicate that we are entering or
exiting the state of the probe/model in which we are
interested.

This is then automatically translated into the PEPA
component that is the probe and attached to the model.

In addition this allows us to separate probes from the model
and attach several probes to a single model, either separately
or simultaneously.

Stochastic probes 31/ 172

Writing probes as regular expressions

Writing a set of probe definitions as PEPA definitions is error
prone. In particular it is hard to get the self-loops correct.

Instead we allow a regular expression-like language for defining
probes in the ipc tool (Imperial PEPA compiler).

The previous probe would be written as:
((boil , boil , boil)/pour) : start, pour : stop)

The ’start’ and ’stop’ labels indicate that we are entering or
exiting the state of the probe/model in which we are
interested.

This is then automatically translated into the PEPA
component that is the probe and attached to the model.

In addition this allows us to separate probes from the model
and attach several probes to a single model, either separately
or simultaneously.

Stochastic probes 32/ 172

Writing probes as regular expressions

Writing a set of probe definitions as PEPA definitions is error
prone. In particular it is hard to get the self-loops correct.

Instead we allow a regular expression-like language for defining
probes in the ipc tool (Imperial PEPA compiler).

The previous probe would be written as:
((boil , boil , boil)/pour) : start, pour : stop)

The ’start’ and ’stop’ labels indicate that we are entering or
exiting the state of the probe/model in which we are
interested.

This is then automatically translated into the PEPA
component that is the probe and attached to the model.

In addition this allows us to separate probes from the model
and attach several probes to a single model, either separately
or simultaneously.

Stochastic probes 33/ 172

The corresponding probe graph

pour

pour

pour

boil boil

boil

boil
pour

Stochastic probes 34/ 172

A regular-expression-like syntax for probes”

R := activity Observe action
| R1,R2 sequence
| R1 | R2 choice
| R : label labelled
| R n iterate n times
| R{m, n} iterate between m and n times
| R+ one or more
| R∗ zero or more
| R? zero or one
| R/activity observe R without the activity

Stochastic probes 35/ 172

Probe Implementation

Probe -1 NFA -

2

DFA -

3

mDFA -

4

mDFA -

5

PEPA

1 Translate probe expression into Nondeterministic Finite
Automaton (NFA)

2 Construct the Deterministic Finite Automaton (DFA)
corresponding to the NFA

3 Minimise the DFA

4 Add necessary self-loops to the DFA

5 Pretty print as a PEPA component

Stochastic probes 36/ 172

Probe Implementation

Probe -1 NFA -2 DFA -

3

mDFA -

4

mDFA -

5

PEPA

1 Translate probe expression into Nondeterministic Finite
Automaton (NFA)

2 Construct the Deterministic Finite Automaton (DFA)
corresponding to the NFA

3 Minimise the DFA

4 Add necessary self-loops to the DFA

5 Pretty print as a PEPA component

Stochastic probes 37/ 172

Probe Implementation

Probe -1 NFA -2 DFA -3 mDFA -

4

mDFA -

5

PEPA

1 Translate probe expression into Nondeterministic Finite
Automaton (NFA)

2 Construct the Deterministic Finite Automaton (DFA)
corresponding to the NFA

3 Minimise the DFA

4 Add necessary self-loops to the DFA

5 Pretty print as a PEPA component

Stochastic probes 38/ 172

Probe Implementation

Probe -1 NFA -2 DFA -3 mDFA -4 mDFA -

5

PEPA

1 Translate probe expression into Nondeterministic Finite
Automaton (NFA)

2 Construct the Deterministic Finite Automaton (DFA)
corresponding to the NFA

3 Minimise the DFA

4 Add necessary self-loops to the DFA

5 Pretty print as a PEPA component

Stochastic probes 39/ 172

Probe Implementation

Probe -1 NFA -2 DFA -3 mDFA -4 mDFA -5 PEPA

1 Translate probe expression into Nondeterministic Finite
Automaton (NFA)

2 Construct the Deterministic Finite Automaton (DFA)
corresponding to the NFA

3 Minimise the DFA

4 Add necessary self-loops to the DFA

5 Pretty print as a PEPA component

Stochastic probes 40/ 172

Constructing probes

Now, rather than a probe constructed as an additional PEPA
component by hand, we think of the probe specification in
terms of a regular expression of action types.

Consider the following probe:
a : start, (b, c, d), e : stop

This asks the question, what is the expected time from first
observing an a activity, to observing a (possibly interrupted)
sequence of activities b, c , d , e?

The ’middle’ part b, c , d may be some arbitrarily complex
probe.

Stochastic probes 41/ 172

Constructing probes

Now, rather than a probe constructed as an additional PEPA
component by hand, we think of the probe specification in
terms of a regular expression of action types.

Consider the following probe:
a : start, (b, c, d), e : stop

This asks the question, what is the expected time from first
observing an a activity, to observing a (possibly interrupted)
sequence of activities b, c , d , e?

The ’middle’ part b, c , d may be some arbitrarily complex
probe.

Stochastic probes 42/ 172

Constructing probes

Now, rather than a probe constructed as an additional PEPA
component by hand, we think of the probe specification in
terms of a regular expression of action types.

Consider the following probe:
a : start, (b, c, d), e : stop

This asks the question, what is the expected time from first
observing an a activity, to observing a (possibly interrupted)
sequence of activities b, c , d , e?

The ’middle’ part b, c , d may be some arbitrarily complex
probe.

Stochastic probes 43/ 172

Constructing probes

Now, rather than a probe constructed as an additional PEPA
component by hand, we think of the probe specification in
terms of a regular expression of action types.

Consider the following probe:
a : start, (b, c, d), e : stop

This asks the question, what is the expected time from first
observing an a activity, to observing a (possibly interrupted)
sequence of activities b, c , d , e?

The ’middle’ part b, c , d may be some arbitrarily complex
probe.

Stochastic probes 44/ 172

The probe graph

Stochastic probes 45/ 172

A probe on the probe

We can attach a master probe to an inner probe to retain the
property of having only one running state.

Stochastic probes 46/ 172

Non-unique start and stop actions

What if the probe may perform any of the start actions
without wishing to move to the running state?
Consider the following probe:
a, a, a : start, b : stop

Or equivalently any of the stop actions without moving to the
stopped state. Consider the following probe:
a : start, b, b, b : stop

Or both:
a : start, (a, a), a : stop

This asks the very simple question: How long can we expect
the model to take to perform four a actions?

Stochastic probes 47/ 172

Non-unique start and stop actions

What if the probe may perform any of the start actions
without wishing to move to the running state?
Consider the following probe:
a, a, a : start, b : stop

Or equivalently any of the stop actions without moving to the
stopped state. Consider the following probe:
a : start, b, b, b : stop

Or both:
a : start, (a, a), a : stop

This asks the very simple question: How long can we expect
the model to take to perform four a actions?

Stochastic probes 48/ 172

Non-unique start and stop actions

What if the probe may perform any of the start actions
without wishing to move to the running state?
Consider the following probe:
a, a, a : start, b : stop

Or equivalently any of the stop actions without moving to the
stopped state. Consider the following probe:
a : start, b, b, b : stop

Or both:
a : start, (a, a), a : stop

This asks the very simple question: How long can we expect
the model to take to perform four a actions?

Stochastic probes 49/ 172

Non-unique start and stop actions

What if the probe may perform any of the start actions
without wishing to move to the running state?
Consider the following probe:
a, a, a : start, b : stop

Or equivalently any of the stop actions without moving to the
stopped state. Consider the following probe:
a : start, b, b, b : stop

Or both:
a : start, (a, a), a : stop

This asks the very simple question: How long can we expect
the model to take to perform four a actions?

Stochastic probes 50/ 172

Introducting immediate actions

The solution to this problem is to introduce immediate actions not
to the general language of PEPA but only within the definition of
probes.

A start or stop label can then be implemented as an
immediate action.

The probe a : start becomes the prefix component:
(a,>).(start, 1 : immediate).R where R is the probe’s running
state.

For the remainder we’ll abbreviate (start, 1 : immediate).R as
start.R

Stochastic probes 51/ 172

Introducting immediate actions

The solution to this problem is to introduce immediate actions not
to the general language of PEPA but only within the definition of
probes.

A start or stop label can then be implemented as an
immediate action.

The probe a : start becomes the prefix component:
(a,>).(start, 1 : immediate).R where R is the probe’s running
state.

For the remainder we’ll abbreviate (start, 1 : immediate).R as
start.R

Stochastic probes 52/ 172

Introducting immediate actions

The solution to this problem is to introduce immediate actions not
to the general language of PEPA but only within the definition of
probes.

A start or stop label can then be implemented as an
immediate action.

The probe a : start becomes the prefix component:
(a,>).(start, 1 : immediate).R where R is the probe’s running
state.

For the remainder we’ll abbreviate (start, 1 : immediate).R as
start.R

Stochastic probes 53/ 172

Introducting immediate actions

The solution to this problem is to introduce immediate actions not
to the general language of PEPA but only within the definition of
probes.

A start or stop label can then be implemented as an
immediate action.

The probe a : start becomes the prefix component:
(a,>).(start, 1 : immediate).R where R is the probe’s running
state.

For the remainder we’ll abbreviate (start, 1 : immediate).R as
start.R

Stochastic probes 54/ 172

Standard master probe

ProbeStopped = start . ProbeRunning

+ stop . ProbeStopped ;

ProbeRunning = stop . ProbeStopped

+ start . ProbeRunning ;

Stochastic probes 55/ 172

Global probes vs. Local probes

So far we have only considered global probes, i.e. probes which are
attached, externally to the PEPA model, observing all the
behaviour.

Sometimes there are problems with global probes because they
”see too much”.

This is illustrated by the following example based on a
Client-Server system

Stochastic probes 56/ 172

Global probes vs. Local probes

So far we have only considered global probes, i.e. probes which are
attached, externally to the PEPA model, observing all the
behaviour.

Sometimes there are problems with global probes because they
”see too much”.

This is illustrated by the following example based on a
Client-Server system

Stochastic probes 57/ 172

Global probes vs. Local probes

So far we have only considered global probes, i.e. probes which are
attached, externally to the PEPA model, observing all the
behaviour.

Sometimes there are problems with global probes because they
”see too much”.

This is illustrated by the following example based on a
Client-Server system

Stochastic probes 58/ 172

Client-Server System

Client = (work , workRate) . ClientReq ;

ClientReq = (request , requestRate) . ClientWait ;

ClientWait = (response, >) . Client ;

ServerIdle = (request , >) . ServerComp ;

ServerComp = (compute , computeServer) . ServerResp ;

ServerResp = (response, responseServer) . ServerIdle ;

Client[4] ��
{request,response}

ServerIdle[2]

Stochastic probes 59/ 172

Probing the Client-Server System

We may wish to ask: What is the expected response time?

This is a passage-time query which we might expect to be
answered with the following probe specification.

request : start, response : stop

Stochastic probes 60/ 172

Client-Server System with Probe

Client = (work , workRate) . ClientReq ;

ClientReq = (request , requestRate) . ClientWait ;

ClientWait = (response, >) . Client ;

ServerIdle = (request , >) . ServerComp ;

ServerComp = (compute , computeServer) . ServerResp ;

ServerResp = (response, responseServer) . ServerIdle ;

Probe0 = (request, >) . Probe1

+ (response, >) . Probe0 ;

Probe1 = (response, >). Probe0

+ (request, >). Probe1 ;

(Client[4] ��
{request,response}

ServerIdle[2]) ��
{request,response}

Probe0

Stochastic probes 61/ 172

The problem with global probes

-

-

�

-

�

Probe
Client[1]Client[2] Client[3] Server [1]Server [2] running stopped

request

request

response

request

response

Stochastic probes 62/ 172

Using local probes

This problem can be fixed by placing the probe local to just one of
the clients:

((Client ��
{request,response}

Probe0) ��
request

Client[3])

��
{request,response}

ServerIdle[2]

The probe specification language for ipc allows the user to place a
probe using the :: notation, the model shown was generated with
the following probe.

Client :: (request : start, response : stop)

Stochastic probes 63/ 172

Using local probes

This problem can be fixed by placing the probe local to just one of
the clients:

((Client ��
{request,response}

Probe0) ��
request

Client[3])

��
{request,response}

ServerIdle[2]

The probe specification language for ipc allows the user to place a
probe using the :: notation, the model shown was generated with
the following probe.

Client :: (request : start, response : stop)

Stochastic probes 64/ 172

Using local probes

This problem can be fixed by placing the probe local to just one of
the clients:

((Client ��
{request,response}

Probe0) ��
request

Client[3])

��
{request,response}

ServerIdle[2]

The probe specification language for ipc allows the user to place a
probe using the :: notation, the model shown was generated with
the following probe.

Client :: (request : start, response : stop)

Stochastic probes 65/ 172

Generalising the start and stop labels

Probes previously relied on the start and stop labels as being
special such that the compiler could recognise them.

Since probes may now ’send’ start and stop communication signals
using immediate actions we can generalise these labels to enable
the sending of arbitrary signals.

In addition since we have the ability to localise a probe we may use
such communication labels to communicate important events from
a local probe to a master probe.

Stochastic probes 66/ 172

Generalising the start and stop labels

Probes previously relied on the start and stop labels as being
special such that the compiler could recognise them.

Since probes may now ’send’ start and stop communication signals
using immediate actions we can generalise these labels to enable
the sending of arbitrary signals.

In addition since we have the ability to localise a probe we may use
such communication labels to communicate important events from
a local probe to a master probe.

Stochastic probes 67/ 172

Generalising the start and stop labels

Probes previously relied on the start and stop labels as being
special such that the compiler could recognise them.

Since probes may now ’send’ start and stop communication signals
using immediate actions we can generalise these labels to enable
the sending of arbitrary signals.

In addition since we have the ability to localise a probe we may use
such communication labels to communicate important events from
a local probe to a master probe.

Stochastic probes 68/ 172

Local and master probes

We may now have several local probes which communicate with a
control probe.

(
((P ��

N
ProbeP) ��

K
Q) ��

L
(R ��

M
(S ��

O
ProbeS))

)
��
T
Control

Stochastic probes 69/ 172

Communicating Probes Example: big and small servers

Small = (request , >) . SmallComp

+ (break, r) . SmallBroken ;

SmallComp = (compute , compRate) . SmallResp ;

SmallResp = (response, responseRate) . Small ;

SmallBroken = (repair, repairRate) . Small ;

Big = (request , >) . BigComp

+ (break, r) . BigBroken ;

BigComp = (compute , 3 * compRate) . BigResp ;

BigResp = (response, responseRate) . Big ;

BigBroken = (repair, repairRate) . Big ;

Servers = (Small ‖ Big)

Client[4] ��
{request,response}

Servers

Stochastic probes 70/ 172

Communicating Probes

Suppose we wish to answer the question ”What is the
response time if the small server is broken when the request is
made”

We do this by adding three separate probes to the model:

Client :: (work : cwork, response : cresp)
Small :: (break : in, repair : out)
((in, cwork)/out) : start, cresp : stop)

Stochastic probes 71/ 172

Communicating Probes

Suppose we wish to answer the question ”What is the
response time if the small server is broken when the request is
made”

We do this by adding three separate probes to the model:

Client :: (work : cwork, response : cresp)
Small :: (break : in, repair : out)
((in, cwork)/out) : start, cresp : stop)

Stochastic probes 72/ 172

Communicating Probes

Suppose we wish to answer the question ”What is the
response time if the small server is broken when the request is
made”

We do this by adding three separate probes to the model:

Client :: (work : cwork, response : cresp)

Small :: (break : in, repair : out)
((in, cwork)/out) : start, cresp : stop)

Stochastic probes 73/ 172

Communicating Probes

Suppose we wish to answer the question ”What is the
response time if the small server is broken when the request is
made”

We do this by adding three separate probes to the model:

Client :: (work : cwork, response : cresp)
Small :: (break : in, repair : out)

((in, cwork)/out) : start, cresp : stop)

Stochastic probes 74/ 172

Communicating Probes

Suppose we wish to answer the question ”What is the
response time if the small server is broken when the request is
made”

We do this by adding three separate probes to the model:

Client :: (work : cwork, response : cresp)
Small :: (break : in, repair : out)
((in, cwork)/out) : start, cresp : stop)

Stochastic probes 75/ 172

Client Probe

ClientProbe0 = (work, >) . cwork . ClientProbe1

+ (response, >) . ClientProbe0 ;

ClientProbe1 = (response, >) . cresp . ClientProbe0

+ (work, >) . ClientProbe1 ;

Stochastic probes 76/ 172

Small Probe

SmallProbe0 = (break, >) . in . SmallProbe1

+ (repair, >) . SmallProbe0 ;

SmallProbe1 = (repair, >) . out . SmallProbe0

+ (break, >) . SmallProbe1 ;

Stochastic probes 77/ 172

Control Probe

Control0 = in . Control1

+ cwork . Control0

+ cresp . Control0

+ out . Control0 ;

Control1 = cwork . start . Control2

+ out . Control0

+ in . Control1

+ cresp . Control1 ;

Control2 = cresp . stop . Control0

+ cwork . Control2

+ in . Control2

+ in . Control2 ;

Stochastic probes 78/ 172

Placing the Local Probes

PClient = (Client ��
{work,response}

ClientProbe0)

PSmall = (Small ��
{break,repair}

SmallProbe0)

Clients = PClient �� Client[3]

Servers = PSmall ‖ Big

System = (Clients ��
{request,response}

Servers) ��
{cwork,cresp,in,out}

Control0

Stochastic probes 79/ 172

Refining the Probes

If we wish to change the question to: “What is the response
time if the Big server is broken when the request is made”

Small :: (break : in, repair : out)

Big :: (break : in, repair : out)

How about, if either of the two servers are broken:

Servers :: (break : in, (break , repair)∗, repair : out)

Stochastic probes 80/ 172

Refining the Probes

If we wish to change the question to: “What is the response
time if the Big server is broken when the request is made”

Small :: (break : in, repair : out)

Big :: (break : in, repair : out)

How about, if either of the two servers are broken:

Servers :: (break : in, (break , repair)∗, repair : out)

Stochastic probes 81/ 172

Refining the Probes

If we wish to change the question to: “What is the response
time if the Big server is broken when the request is made”

Small :: (break : in, repair : out)

Big :: (break : in, repair : out)

How about, if either of the two servers are broken:

Servers :: (break : in, (break , repair)∗, repair : out)

Stochastic probes 82/ 172

Refining the Probes

If we wish to change the question to: “What is the response
time if the Big server is broken when the request is made”

Small :: (break : in, repair : out)

Big :: (break : in, repair : out)

How about, if either of the two servers are broken:

Servers :: (break : in, (break , repair)∗, repair : out)

Stochastic probes 83/ 172

Refining the Probes

If we wish to change the question to: “What is the response
time if the Big server is broken when the request is made”

Small :: (break : in, repair : out)

Big :: (break : in, repair : out)

How about, if either of the two servers are broken:

Servers :: (break : in, (break , repair)∗, repair : out)

Passage Time and Passage End Analysis 84/ 172

Outline

1 Stochastic probes

2 Passage Time and Passage End Analysis

3 Models with a Spatial Aspect
Spatial Challenge: Capturing physical space

Passage Time and Passage End Analysis 85/ 172

PEPA

We write our models in the PEPA stochastic process algebra

Passage Time and Passage End Analysis 86/ 172

Introduction — Average Response Time

a b a

z z z z

Response Time = Probability we are within a passage
Throughput of actions which start the passage

Passage Time and Passage End Analysis 87/ 172

Introduction — Average Response Time

The above passage may be difficult to specify

We can describe a passage with a probe

(a | b) : start, z : stop

This is then translated into a PEPA component

Probe
def
= (a,>).Probe1
+ (b,>).Probe1

Probe1
def
= (z ,>).Probe

And attached to the main component of the system

System ��
L
Probe

where L = {a, b, z}

Passage Time and Passage End Analysis 88/ 172

Probes

Passage Time and Passage End Analysis 89/ 172

Probe Workflow

PEPA model

P1 = (a, r) . P1 ;
Probe = (a, T) .
..... Continuous-Time Markov Chain

PEPA compilation using IPC

CTMC analysis

Results =

PEPA model

P1 = (a, r) . P1 ;
.....

Probe (XSP)

Probe = (a, T) +translate and
probe placement
by IPC

Probability

Throughput

Passage Time and Passage End Analysis 90/ 172

Limitations of the average response time

Average response time is quite a crude measure of the performance
from a customers perspective.

Service Level Agreements are the way that the industry often likes
to specify performance requirements and these require a more
detailed analysis of responses.

In particular they require the full cumulative (probability)
distribution function (cdf) to be calculated for a response time
rather than just its average.

Passage Time and Passage End Analysis 91/ 172

Limitations of the average response time

Average response time is quite a crude measure of the performance
from a customers perspective.

Service Level Agreements are the way that the industry often likes
to specify performance requirements and these require a more
detailed analysis of responses.

In particular they require the full cumulative (probability)
distribution function (cdf) to be calculated for a response time
rather than just its average.

Passage Time and Passage End Analysis 92/ 172

Limitations of the average response time

Average response time is quite a crude measure of the performance
from a customers perspective.

Service Level Agreements are the way that the industry often likes
to specify performance requirements and these require a more
detailed analysis of responses.

In particular they require the full cumulative (probability)
distribution function (cdf) to be calculated for a response time
rather than just its average.

Passage Time and Passage End Analysis 93/ 172

Passage times and service level agreements

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

P
ro

ba
bi

lit
y

Time

Cdf comparison -- All have an average duration of 1.0

An SLA of 85% within 1.5 time units

An SLA of 25% within 0.6 time units

Avg Duration

lambda = 1.0, n = 1
lambda = 2.0, n = 2
lambda = 5.0, n = 5

lambda = 10.0, n = 10

Passage Time and Passage End Analysis 94/ 172

Passage times and service level agreements

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

P
ro

ba
bi

lit
y

Time

Cdf comparison -- All have an average duration of 1.0

An SLA of 85% within 1.5 time units

An SLA of 25% within 0.6 time units

lambda = 1.0, n = 1
lambda = 2.0, n = 2
lambda = 5.0, n = 5

lambda = 10.0, n = 10

Passage Time and Passage End Analysis 95/ 172

Uniformisation

We use a technique called “uniformisation” to calculate the
passage-time quantiles or response-time profiles from the CTMC
derived from the PEPA model with a suitable probe.

Continuous-Time Markov Chain

a b c
d e f
g h i

a b c
d e f
g h i

a b c
d e f
g h i

a b c
d e f
g h i

a b c
d e f
g h i

Lots of Matrix Multiplications

Results: Pr
o
b

Time

Passage Time and Passage End Analysis 96/ 172

Probe Workflow

PEPA model

P1 = (a, r) . P1 ;
Probe = (a, T) .
..... Continuous-Time Markov Chain

PEPA compilation using IPC

CTMC analysis

Results

PEPA model

P1 = (a, r) . P1 ;
.....

XSP spec

Probe = (a, T) +translate and
probe placement
by IPC

Passage Time and Passage End Analysis 97/ 172

Sensitivity Analysis

Passage Time and Passage End Analysis 98/ 172

Sensitivity Analysis

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0

 20

 40

 60

 80

 100

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

Prob

General Passage Sensitivity to timeout Rate

rate of timeout

Time

Prob

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

Passage Time and Passage End Analysis 99/ 172

Passage-end Analysis

However we found that passage-time/response-time analysis
was not always expressive enough

In particular when seeking to improve a system to satisfy a
particular service level agreement one method is to simply
respond negatively more often, or even to every single request

For example the näıvely analysed response-time for the
financial case study can be improved by simply responding
“Loan Application Rejected” to all applications

Predecide = (approve, p0).App + (decline, p1).Dec + (defer,
p2).Def

Predecide = (decline, p0 + p1 + p2).Dec

Passage Time and Passage End Analysis 100/ 172

Passage-end Analysis

However we found that passage-time/response-time analysis
was not always expressive enough

In particular when seeking to improve a system to satisfy a
particular service level agreement one method is to simply
respond negatively more often, or even to every single request

For example the näıvely analysed response-time for the
financial case study can be improved by simply responding
“Loan Application Rejected” to all applications

Predecide = (approve, p0).App + (decline, p1).Dec + (defer,
p2).Def

Predecide = (decline, p0 + p1 + p2).Dec

Passage Time and Passage End Analysis 101/ 172

Passage-end Analysis

However we found that passage-time/response-time analysis
was not always expressive enough

In particular when seeking to improve a system to satisfy a
particular service level agreement one method is to simply
respond negatively more often, or even to every single request

For example the näıvely analysed response-time for the
financial case study can be improved by simply responding
“Loan Application Rejected” to all applications

Predecide = (approve, p0).App + (decline, p1).Dec + (defer,
p2).Def

Predecide = (decline, p0 + p1 + p2).Dec

Passage Time and Passage End Analysis 102/ 172

Passage-end Analysis

However we found that passage-time/response-time analysis
was not always expressive enough

In particular when seeking to improve a system to satisfy a
particular service level agreement one method is to simply
respond negatively more often, or even to every single request

For example the näıvely analysed response-time for the
financial case study can be improved by simply responding
“Loan Application Rejected” to all applications

Predecide = (approve, p0).App + (decline, p1).Dec + (defer,
p2).Def

Predecide = (decline, p0 + p1 + p2).Dec

Passage Time and Passage End Analysis 103/ 172

Passage-end Analysis

However we found that passage-time/response-time analysis
was not always expressive enough

In particular when seeking to improve a system to satisfy a
particular service level agreement one method is to simply
respond negatively more often, or even to every single request

For example the näıvely analysed response-time for the
financial case study can be improved by simply responding
“Loan Application Rejected” to all applications

Predecide = (approve, p0).App + (decline, p1).Dec + (defer,
p2).Def

Predecide = (decline, p0 + p1 + p2).Dec

Passage Time and Passage End Analysis 104/ 172

Passage-end Analysis

Passage Time and Passage End Analysis 105/ 172

Passage-end Analysis

Passage Time and Passage End Analysis 106/ 172

Passage-end Analysis

In addition non-expert modellers reported difficulty in
constructing queries for response-times with multiple
conclusions of which only a subset are to be analysed.

Worse still a simplistic attempt to do so can give back
incorrect but not obviously incorrect results (the saving grace
being that such results would underestimate system
performance).

To address these two problems we developed passage-end
analysis.

Passage Time and Passage End Analysis 107/ 172

Passage-end Analysis

In addition non-expert modellers reported difficulty in
constructing queries for response-times with multiple
conclusions of which only a subset are to be analysed.

Worse still a simplistic attempt to do so can give back
incorrect but not obviously incorrect results (the saving grace
being that such results would underestimate system
performance).

To address these two problems we developed passage-end
analysis.

Passage Time and Passage End Analysis 108/ 172

Passage-end Analysis

In addition non-expert modellers reported difficulty in
constructing queries for response-times with multiple
conclusions of which only a subset are to be analysed.

Worse still a simplistic attempt to do so can give back
incorrect but not obviously incorrect results (the saving grace
being that such results would underestimate system
performance).

To address these two problems we developed passage-end
analysis.

Passage Time and Passage End Analysis 109/ 172

Airbag Example: Passage-end Analysis

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14
 0

 0.2

 0.4

 0.6

 0.8

 1

P
ro

ba
bi

lit
y

Time

answer
timeout

answer-normalised
timeout-normalised

answer-cdf
timeout-cdf

Passage Time and Passage End Analysis 110/ 172

Passage-end Analysis: example queries

Ninety percent of requests are responded to within ten seconds

Ninety percent of requests are responded to within ten seconds
and eighty percent of all requests are responded to positively

Ninety percent of requests are responded to within ten
seconds and of those eighty percent are positive responses

Passage Time and Passage End Analysis 111/ 172

Passage-end Analysis: example queries

Ninety percent of requests are responded to within ten seconds

Ninety percent of requests are responded to within ten seconds
and eighty percent of all requests are responded to positively

Ninety percent of requests are responded to within ten
seconds and of those eighty percent are positive responses

Passage Time and Passage End Analysis 112/ 172

Passage-end Analysis: example queries

Ninety percent of requests are responded to within ten seconds

Ninety percent of requests are responded to within ten seconds
and eighty percent of all requests are responded to positively

Ninety percent of requests are responded to within ten
seconds and of those eighty percent are positive responses

Passage Time and Passage End Analysis 113/ 172

ODE probes

However the (relevant) analyses possible were limited to
average response-time

During the course of the SENSORIA project we have used the
expressiveness of the language of XSP to develop a technique
to extract response-time profiles from models which are
translated into ODEs

Additionally because this uses XSP the workflow observed by
the user is the same as that when performing analysis via
CTMC

In particular this is due to XSP specifications being translated
into PEPA components which when added to the original
model result in what is still a PEPA model.

Passage Time and Passage End Analysis 114/ 172

Probe Workflow

PEPA model

P1 = (a, r) . P1 ;
Probe = (a, T) .
..... Continuous-Time Markov Chain

PEPA compilation using IPC

CTMC analysis

Results

PEPA model

P1 = (a, r) . P1 ;
.....

XSP spec

Probe = (a, T) +translate and
probe placement
by IPC

Passage Time and Passage End Analysis 115/ 172

Probe Workflow

PEPA model

P1 = (a, r) . P1 ;
Probe = (a, T) .
..... Ordinary Differential Equations

PEPA compilation using IPC

ODE analysis

Results

PEPA model

P1 = (a, r) . P1 ;
.....

XSP spec

Probe = (a, T) +translate and
probe placement
by IPC

dx/dt = .
dy/dt = .

Passage Time and Passage End Analysis 116/ 172

Another Example — Processor/Resource Model

Processor1
def
= (think, rthink).Processor2

Processor2
def
= (use, ruse).Processor1

Resource1
def
= (use, ruse).Resource2

Resource2
def
= (reset, rreset).Resource1

(Processor1[200]) ��
{use}

(Resource1[120])

From the steady-state analysis:
RunningProcessor2 = 111.75
StoppedProcessor1 = 88.25

Passage Time and Passage End Analysis 117/ 172

Another Example — Processor/Resource Model

Processor1
def
= (think, rthink).Processor2

Processor2
def
= (use, ruse).Processor1

Resource1
def
= (use, ruse).Resource2

Resource2
def
= (reset, rreset).Resource1

(Processor1[200]) ��
{use}

(Resource1[120])

From the steady-state analysis:
RunningProcessor2 = 111.75
StoppedProcessor1 = 88.25

Passage Time and Passage End Analysis 118/ 172

Processor - Resource CTMC Response Times

Processor1
def
= (think, rthink).Processor2

Processor2
def
= (use, ruse).Processor1

Resource1
def
= (use, ruse).Resource2

Resource2
def
= (reset, rreset).Resource1

(Processor1[5]) ��
{use}

(Resource1[3])

Probe = Processor1 :: think : start, use : stop

Passage Time and Passage End Analysis 119/ 172

Processor - Resource Comparison

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16 18 20
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

P
ro

ba
bi

lit
y

Time

cdf comparison

ode-120-200-cdf
ctmc-3-5-cdf

Passage Time and Passage End Analysis 120/ 172

Processor - Resource Comparison

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16 18 20
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

P
ro

ba
bi

lit
y

Time

cdf comparison

ode-120-200-cdf
ctmc-3-5-cdf

ctmc-6-10-cdf
ctmc-9-15-cdf

Passage Time and Passage End Analysis 121/ 172

Processor - Resource Comparison

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0 2 4 6 8 10 12 14 16 18 20
 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

P
ro

ba
bi

lit
y

Time

cdf comparison - error

ctmc-3-5-cdf
ctmc-6-10-cdf
ctmc-9-15-cdf

ctmc-12-20-cdf
ctmc-30-50-cdf

Models with a Spatial Aspect 122/ 172

Outline

1 Stochastic probes

2 Passage Time and Passage End Analysis

3 Models with a Spatial Aspect
Spatial Challenge: Capturing physical space

Models with a Spatial Aspect 123/ 172

Spatial Challenge: capturing logical space

Whilst stochastic process algebras are well-suited to model
concurrent systems, there is an implicit assumption that all
components are co-located.

10-15 years ago we started modelling systems which broke this
assumption and demanded more careful thought about the location
of components, and how location influences the dynamic evolution
of the system.

Models with a Spatial Aspect 124/ 172

Spatial Challenge: capturing logical space

Whilst stochastic process algebras are well-suited to model
concurrent systems, there is an implicit assumption that all
components are co-located.

10-15 years ago we started modelling systems which broke this
assumption and demanded more careful thought about the location
of components, and how location influences the dynamic evolution
of the system.

Models with a Spatial Aspect 125/ 172

Spatial Challenge: capturing logical space

Whilst stochastic process algebras are well-suited to model
concurrent systems, there is an implicit assumption that all
components are co-located.

10-15 years ago we started modelling systems which broke this
assumption and demanded more careful thought about the location
of components, and how location influences the dynamic evolution
of the system.

Mobile devices and mobile computation
The location of components of a software system can have
dramatic effect on the performance, particularly as
communication is often slow compared with computation. Thus
capturing whether components are co-located or communicating
over a distance became important.

Models with a Spatial Aspect 126/ 172

Spatial Challenge: capturing logical space

Whilst stochastic process algebras are well-suited to model
concurrent systems, there is an implicit assumption that all
components are co-located.

10-15 years ago we started modelling systems which broke this
assumption and demanded more careful thought about the location
of components, and how location influences the dynamic evolution
of the system.

Biochemical signalling pathways
Far from being a well-mixed soup, the inside of a cell is highly
structured and divided into distinct compartments. This physical
organisation can have a strong impact on the dynamic behaviour.

Models with a Spatial Aspect 127/ 172

Mobile computation: PEPA nets

The PEPA nets formalism uses the stochastic process algebra
PEPA as the inscription language for coloured Petri nets.

The combination naturally represents applications with two
classes of change of state (global and local).

For example, in a mobile code system PEPA terms are used to
model the program code which moves between network hosts
(the places in the net).

Models with a Spatial Aspect 128/ 172

Mobile computation: PEPA nets

The PEPA nets formalism uses the stochastic process algebra
PEPA as the inscription language for coloured Petri nets.

The combination naturally represents applications with two
classes of change of state (global and local).

For example, in a mobile code system PEPA terms are used to
model the program code which moves between network hosts
(the places in the net).

Models with a Spatial Aspect 129/ 172

Mobile computation: PEPA nets

The PEPA nets formalism uses the stochastic process algebra
PEPA as the inscription language for coloured Petri nets.

The combination naturally represents applications with two
classes of change of state (global and local).

For example, in a mobile code system PEPA terms are used to
model the program code which moves between network hosts
(the places in the net).

Models with a Spatial Aspect 130/ 172

Petri nets

Petri nets provide a graphical presentation of a model which
has an easily accessible interpretation and like process algebras
they are supported by an unambiguous formal interpretation.

Models with a Spatial Aspect 131/ 172

Petri nets

Petri nets provide a graphical presentation of a model which
has an easily accessible interpretation and like process algebras
they are supported by an unambiguous formal interpretation.

��
��P1

• -
��
��P2

��
��
P3

T1

��
��*

HHHHj

When a transition fires tokens from input places are absorbed and
tokens are created on each of the output places.

Models with a Spatial Aspect 132/ 172

Petri nets

Petri nets provide a graphical presentation of a model which
has an easily accessible interpretation and like process algebras
they are supported by an unambiguous formal interpretation.

��
��P1

-
��
��P2

•

��
��
P3

•
T1

�
��
�*

HH
HHj

When a transition fires tokens from input places are absorbed and
tokens are created on each of the output places.

Models with a Spatial Aspect 133/ 172

Petri nets

Petri nets provide a graphical presentation of a model which
has an easily accessible interpretation and like process algebras
they are supported by an unambiguous formal interpretation.

Coloured Petri nets are a high-level form of classical Petri
nets. The plain (indistinguishable) tokens of a classical Petri
net are replaced by arbitrary terms which are distinguishable.

In stochastic Petri nets the transitions from one marking to
another are associated with a random variable drawn from an
exponential distribution.

PEPA nets are coloured stochastic Petri nets where the
colours used as the tokens of the net are PEPA components.

Models with a Spatial Aspect 134/ 172

Petri nets

Petri nets provide a graphical presentation of a model which
has an easily accessible interpretation and like process algebras
they are supported by an unambiguous formal interpretation.

Coloured Petri nets are a high-level form of classical Petri
nets. The plain (indistinguishable) tokens of a classical Petri
net are replaced by arbitrary terms which are distinguishable.

In stochastic Petri nets the transitions from one marking to
another are associated with a random variable drawn from an
exponential distribution.

PEPA nets are coloured stochastic Petri nets where the
colours used as the tokens of the net are PEPA components.

Models with a Spatial Aspect 135/ 172

Petri nets

Petri nets provide a graphical presentation of a model which
has an easily accessible interpretation and like process algebras
they are supported by an unambiguous formal interpretation.

Coloured Petri nets are a high-level form of classical Petri
nets. The plain (indistinguishable) tokens of a classical Petri
net are replaced by arbitrary terms which are distinguishable.

In stochastic Petri nets the transitions from one marking to
another are associated with a random variable drawn from an
exponential distribution.

PEPA nets are coloured stochastic Petri nets where the
colours used as the tokens of the net are PEPA components.

Models with a Spatial Aspect 136/ 172

Petri nets

Petri nets provide a graphical presentation of a model which
has an easily accessible interpretation and like process algebras
they are supported by an unambiguous formal interpretation.

Coloured Petri nets are a high-level form of classical Petri
nets. The plain (indistinguishable) tokens of a classical Petri
net are replaced by arbitrary terms which are distinguishable.

In stochastic Petri nets the transitions from one marking to
another are associated with a random variable drawn from an
exponential distribution.

PEPA nets are coloured stochastic Petri nets where the
colours used as the tokens of the net are PEPA components.

Models with a Spatial Aspect 137/ 172

Global and local state changes

Firings in a PEPA net (at the Petri net level) model
macro-step changes of state such as a mobile software agent
moving from one network host to another.

A token/PEPA component will move from one place/context
to another.

Firings have global effect because they involve components at
more than one place in the net.

A transition occurs whenever an action (individual or shared)
of a PEPA component can occur.

Since only co-located components can cooperate all
transitions have local effect because they involve only
components at one place in the net.

Models with a Spatial Aspect 138/ 172

Global and local state changes

Firings in a PEPA net (at the Petri net level) model
macro-step changes of state such as a mobile software agent
moving from one network host to another.

A token/PEPA component will move from one place/context
to another.

Firings have global effect because they involve components at
more than one place in the net.

A transition occurs whenever an action (individual or shared)
of a PEPA component can occur.

Since only co-located components can cooperate all
transitions have local effect because they involve only
components at one place in the net.

Models with a Spatial Aspect 139/ 172

Global and local state changes

Firings in a PEPA net (at the Petri net level) model
macro-step changes of state such as a mobile software agent
moving from one network host to another.

A token/PEPA component will move from one place/context
to another.

Firings have global effect because they involve components at
more than one place in the net.

A transition occurs whenever an action (individual or shared)
of a PEPA component can occur.

Since only co-located components can cooperate all
transitions have local effect because they involve only
components at one place in the net.

Models with a Spatial Aspect 140/ 172

Global and local state changes

Firings in a PEPA net (at the Petri net level) model
macro-step changes of state such as a mobile software agent
moving from one network host to another.

A token/PEPA component will move from one place/context
to another.

Firings have global effect because they involve components at
more than one place in the net.

A transition occurs whenever an action (individual or shared)
of a PEPA component can occur.

Since only co-located components can cooperate all
transitions have local effect because they involve only
components at one place in the net.

Models with a Spatial Aspect 141/ 172

Global and local state changes

Firings in a PEPA net (at the Petri net level) model
macro-step changes of state such as a mobile software agent
moving from one network host to another.

A token/PEPA component will move from one place/context
to another.

Firings have global effect because they involve components at
more than one place in the net.

A transition occurs whenever an action (individual or shared)
of a PEPA component can occur.

Since only co-located components can cooperate all
transitions have local effect because they involve only
components at one place in the net.

Models with a Spatial Aspect 142/ 172

Example: a mobile agent system

A roving agent visits three sites. It interacts with static
software components at these sites and has two kinds of
interactions.

When visiting a site where a network probe is present it
interrogates the probe for the data which it has gathered on
recent patterns of network traffic.

When it returns to the central co-ordinating site it dumps the
data which it has harvested to the master probe. The master
probe performs a computationally expensive statistical analysis
of the data.

The structure of the system allows this computation to be
overlapped with the agent’s communication and data
gathering.

Models with a Spatial Aspect 143/ 172

Example: a mobile agent system

A roving agent visits three sites. It interacts with static
software components at these sites and has two kinds of
interactions.

When visiting a site where a network probe is present it
interrogates the probe for the data which it has gathered on
recent patterns of network traffic.

When it returns to the central co-ordinating site it dumps the
data which it has harvested to the master probe. The master
probe performs a computationally expensive statistical analysis
of the data.

The structure of the system allows this computation to be
overlapped with the agent’s communication and data
gathering.

Models with a Spatial Aspect 144/ 172

Example: a mobile agent system

A roving agent visits three sites. It interacts with static
software components at these sites and has two kinds of
interactions.

When visiting a site where a network probe is present it
interrogates the probe for the data which it has gathered on
recent patterns of network traffic.

When it returns to the central co-ordinating site it dumps the
data which it has harvested to the master probe. The master
probe performs a computationally expensive statistical analysis
of the data.

The structure of the system allows this computation to be
overlapped with the agent’s communication and data
gathering.

Models with a Spatial Aspect 145/ 172

Example: a mobile agent system

A roving agent visits three sites. It interacts with static
software components at these sites and has two kinds of
interactions.

When visiting a site where a network probe is present it
interrogates the probe for the data which it has gathered on
recent patterns of network traffic.

When it returns to the central co-ordinating site it dumps the
data which it has harvested to the master probe. The master
probe performs a computationally expensive statistical analysis
of the data.

The structure of the system allows this computation to be
overlapped with the agent’s communication and data
gathering.

Models with a Spatial Aspect 146/ 172

PEPA components

Agent
def
= (go, λ).Agent ′

Agent ′
def
= (interrogate, ri).Agent

′′

Agent ′′
def
= (return, µ).Agent ′′′

Agent ′′′
def
= (dump, rd).Agent

Master
def
= (dump,>).Master ′

Master ′
def
= (analyse, ra).Master

Probe
def
= (monitor , rm).Probe +

(interrogate,>).Probe

Models with a Spatial Aspect 147/ 172

PEPA net example

P1 ��
��

P2 ��
��
A

P3 ��
��

T2

(return, µl)

T1

(go, λl)

T4

(return, µr)

T3

(go, λr)

���
���� H

HH
H
HHY

HH
HHHHj ��

�
��
�*

�
��

�
��*

HH
H

HH
HY

HHH
HHHj

��
�����

In this model there is a Master component located in place P2,
and a Probe component located in each of the places P1 and P3.

Models with a Spatial Aspect 148/ 172

PEPA net example

P1 ��
��

P2 ��
��
A

P3 ��
��

T2

(return, µl)

T1

(go, λl)

T4

(return, µr)

T3

(go, λr)

���
���� H

HH
H
HHY

HH
HHHHj ��

�
��
�*

�
��

�
��*

HH
H

HH
HY

HHH
HHHj

��
�����

Agent
def
= (go, λ).Agent ′

Agent ′
def
= (interrogate, ri).Agent

′′

Agent ′′
def
= (return, µ).Agent ′′′

Agent ′′′
def
= (dump, rd).Agent

Models with a Spatial Aspect 149/ 172

PEPA net example

P1 ��
��

P2 ��
��

P3 ��
��
A′

T2

(return, µl)

T1

(go, λl)

T4

(return, µr)

T3

(go, λr)

���
���� H

HH
H
HHY

HH
HHHHj ��

�
��
�*

�
��

�
��*

HH
H

HH
HY

HHH
HHHj

��
�����

Agent
def
= (go, λ).Agent ′

Agent ′
def
= (interrogate, ri).Agent

′′

Agent ′′
def
= (return, µ).Agent ′′′

Agent ′′′
def
= (dump, rd).Agent

Models with a Spatial Aspect 150/ 172

PEPA net example

P1 ��
��

P2 ��
��

P3 ��
��
A′′

T2

(return, µl)

T1

(go, λl)

T4

(return, µr)

T3

(go, λr)

���
���� H

HH
H
HHY

HH
HHHHj ��

�
��
�*

�
��

�
��*

HH
H

HH
HY

HHH
HHHj

��
�����

Agent
def
= (go, λ).Agent ′

Agent ′
def
= (interrogate, ri).Agent

′′

Agent ′′
def
= (return, µ).Agent ′′′

Agent ′′′
def
= (dump, rd).Agent

Models with a Spatial Aspect 151/ 172

PEPA net example

P1 ��
��

P2 ��
��
A′′′ P3 ��

��
T2

(return, µl)

T1

(go, λl)

T4

(return, µr)

T3

(go, λr)

���
���� H

HH
H
HHY

HH
HHHHj ��

�
��
�*

�
��

�
��*

HH
H

HH
HY

HHH
HHHj

��
�����

Agent
def
= (go, λ).Agent ′

Agent ′
def
= (interrogate, ri).Agent

′′

Agent ′′
def
= (return, µ).Agent ′′′

Agent ′′′
def
= (dump, rd).Agent

Models with a Spatial Aspect 152/ 172

PEPA net example

P1 ��
��

P2 ��
��
A

P3 ��
��

T2

(return, µl)

T1

(go, λl)

T4

(return, µr)

T3

(go, λr)

���
���� H

HH
H
HHY

HH
HHHHj ��

�
��
�*

�
��

�
��*

HH
H

HH
HY

HHH
HHHj

��
�����

Agent
def
= (go, λ).Agent ′

Agent ′
def
= (interrogate, ri).Agent

′′

Agent ′′
def
= (return, µ).Agent ′′′

Agent ′′′
def
= (dump, rd).Agent

Models with a Spatial Aspect 153/ 172

PEPA net example

P1 ��
��
A′ P2 ��

��
P3 ��

��
T2

(return, µl)

T1

(go, λl)

T4

(return, µr)

T3

(go, λr)

���
���� H

HH
H
HHY

HH
HHHHj ��

�
��
�*

�
��

�
��*

HH
H

HH
HY

HHH
HHHj

��
�����

Agent
def
= (go, λ).Agent ′

Agent ′
def
= (interrogate, ri).Agent

′′

Agent ′′
def
= (return, µ).Agent ′′′

Agent ′′′
def
= (dump, rd).Agent

Models with a Spatial Aspect 154/ 172

PEPA net example

P1 ��
��
A′′ P2 ��

��
P3 ��

��
T2

(return, µl)

T1

(go, λl)

T4

(return, µr)

T3

(go, λr)

���
���� H

HH
H
HHY

HH
HHHHj ��

�
��
�*

�
��

�
��*

HH
H

HH
HY

HHH
HHHj

��
�����

Agent
def
= (go, λ).Agent ′

Agent ′
def
= (interrogate, ri).Agent

′′

Agent ′′
def
= (return, µ).Agent ′′′

Agent ′′′
def
= (dump, rd).Agent

Models with a Spatial Aspect 155/ 172

PEPA net example

P1 ��
��

P2 ��
��
A′′′ P3 ��

��
T2

(return, µl)

T1

(go, λl)

T4

(return, µr)

T3

(go, λr)

���
���� H

HH
H
HHY

HH
HHHHj ��

�
��
�*

�
��

�
��*

HH
H

HH
HY

HHH
HHHj

��
�����

Agent
def
= (go, λ).Agent ′

Agent ′
def
= (interrogate, ri).Agent

′′

Agent ′′
def
= (return, µ).Agent ′′′

Agent ′′′
def
= (dump, rd).Agent

Models with a Spatial Aspect 156/ 172

Bio-PEPA

Bio-PEPA is a stochastic process algebra closely related to PEPA,
but specifically designed for capturing biochemical network and
systems with large interacting populations.

The language contains some constructs to model locations, and
particularly pathways involving multiple compartments.

Models with a Spatial Aspect 157/ 172

Bio-PEPA

Bio-PEPA is a stochastic process algebra closely related to PEPA,
but specifically designed for capturing biochemical network and
systems with large interacting populations.

The language contains some constructs to model locations, and
particularly pathways involving multiple compartments.

Models with a Spatial Aspect 158/ 172

Modelling biological locations

Bio-PEPA considers locations which can be either compartments
or membranes.

Reactions can then be considered to be

internal to one compartment or membrane

involving elements in one compartment and one membrane

transport between compartments.

A location tree is used to represent the hierarchy of locations.

Models with a Spatial Aspect 159/ 172

Modelling biological locations

Bio-PEPA considers locations which can be either compartments
or membranes.

Reactions can then be considered to be

internal to one compartment or membrane

involving elements in one compartment and one membrane

transport between compartments.

A location tree is used to represent the hierarchy of locations.

Models with a Spatial Aspect 160/ 172

Modelling biological locations

Bio-PEPA considers locations which can be either compartments
or membranes.

Reactions can then be considered to be

internal to one compartment or membrane

involving elements in one compartment and one membrane

transport between compartments.

A location tree is used to represent the hierarchy of locations.

Models with a Spatial Aspect 161/ 172

Locations in Bio-PEPA

Components in Bio-PEPA are known as species, and in essence, a
species in a different location is treated as a distinct species.

However to ease the representation of models, high-level syntax
allows some compact representations e.g.

S
def
= (γ[L1 → L2], κ)� S for transport from location L1 to location L2

S
def
= (α, κ)opS@L1 for reaction α at location L1

Models with a Spatial Aspect 162/ 172

Analysing models with logical locations

Both PEPA Nets and Bio-PEPA allow logical locations to be
captured within a process algebra model.

However, for analysis they currently rely on an expansion that
treats each component, at each location, as distinct.

This exacerbates the problem of state space explosion and can
limit the size of models that can be analysed.

In particular, fluid approximation techniques can only be used when
the population at each location is sufficiently large to justify the
continuous approximation.

Models with a Spatial Aspect 163/ 172

Analysing models with logical locations

Both PEPA Nets and Bio-PEPA allow logical locations to be
captured within a process algebra model.

However, for analysis they currently rely on an expansion that
treats each component, at each location, as distinct.

This exacerbates the problem of state space explosion and can
limit the size of models that can be analysed.

In particular, fluid approximation techniques can only be used when
the population at each location is sufficiently large to justify the
continuous approximation.

Models with a Spatial Aspect 164/ 172

Analysing models with logical locations

Both PEPA Nets and Bio-PEPA allow logical locations to be
captured within a process algebra model.

However, for analysis they currently rely on an expansion that
treats each component, at each location, as distinct.

This exacerbates the problem of state space explosion and can
limit the size of models that can be analysed.

In particular, fluid approximation techniques can only be used when
the population at each location is sufficiently large to justify the
continuous approximation.

Models with a Spatial Aspect 165/ 172

Analysing models with logical locations

Both PEPA Nets and Bio-PEPA allow logical locations to be
captured within a process algebra model.

However, for analysis they currently rely on an expansion that
treats each component, at each location, as distinct.

This exacerbates the problem of state space explosion and can
limit the size of models that can be analysed.

In particular, fluid approximation techniques can only be used when
the population at each location is sufficiently large to justify the
continuous approximation.

Models with a Spatial Aspect Spatial Challenge: Capturing physical space 166/ 172

Moving on to physical space

As we begin to witness informatic environments as Robin Milner
defined them, with computational capacity embedded in our
physical environment, it is going to become increasingly important
to be able to model them and predict their behaviour.

In many of these cases, logical location will not be enough and real
physical location will need to be incorporated into our modelling
techniques.

This poses significant challenges both of model expression and
model solution.

Models with a Spatial Aspect Spatial Challenge: Capturing physical space 167/ 172

Moving on to physical space

As we begin to witness informatic environments as Robin Milner
defined them, with computational capacity embedded in our
physical environment, it is going to become increasingly important
to be able to model them and predict their behaviour.

In many of these cases, logical location will not be enough and real
physical location will need to be incorporated into our modelling
techniques.

This poses significant challenges both of model expression and
model solution.

Models with a Spatial Aspect Spatial Challenge: Capturing physical space 168/ 172

Moving on to physical space

As we begin to witness informatic environments as Robin Milner
defined them, with computational capacity embedded in our
physical environment, it is going to become increasingly important
to be able to model them and predict their behaviour.

In many of these cases, logical location will not be enough and real
physical location will need to be incorporated into our modelling
techniques.

This poses significant challenges both of model expression and
model solution.

Models with a Spatial Aspect Spatial Challenge: Capturing physical space 169/ 172

QUANTICOL Examples

The most expensive aspect

of the Paris bike sharing

system is relocating bikes to

where they are needed.

In smart grids and sustain-
able energy production with
limited storage capacity the
location of production and
demand become important.

Models with a Spatial Aspect Spatial Challenge: Capturing physical space 170/ 172

Hybrid process algebra HYPE

The hybrid process algebra HYPE captures both continuously
varying values and discrete changes in behaviour.

Cartesian coordinates can be represented as continuous variables
with appropriate functions to capture movement.

Models with a Spatial Aspect Spatial Challenge: Capturing physical space 171/ 172

Hybrid process algebra HYPE

The hybrid process algebra HYPE captures both continuously
varying values and discrete changes in behaviour.

Cartesian coordinates can be represented as continuous variables
with appropriate functions to capture movement.

MSc student Cheng Feng used
this approach in HYPE to
model ZebraNET, a sensor net-
work in which RFID tags are at-
tached to zebras.

Unfortunately based on hybrid simulation only six zebras could be
simulated on a standard machine and fluid techniques are not
applicable.

Models with a Spatial Aspect Spatial Challenge: Capturing physical space 172/ 172

Hybrid process algebra HYPE

The hybrid process algebra HYPE captures both continuously
varying values and discrete changes in behaviour.

Cartesian coordinates can be represented as continuous variables
with appropriate functions to capture movement.

MSc student Cheng Feng used
this approach in HYPE to
model ZebraNET, a sensor net-
work in which RFID tags are at-
tached to zebras.

Unfortunately based on hybrid simulation only six zebras could be
simulated on a standard machine and fluid techniques are not
applicable.

	Stochastic probes
	Passage Time and Passage End Analysis
	Models with a Spatial Aspect
	Spatial Challenge: Capturing physical space

