
1/ 134

SPAs for performance modelling:
Lecture 9 — Hybrid Approximation

Jane Hillston

LFCS, School of Informatics
The University of Edinburgh

Scotland

18th April 2013

2/ 134

Outline

1 Adequacy of Fluid Approximation

2 Hybrid approximation
Example
Illustrations of the different transitions

Adequacy of Fluid Approximation 3/ 134

Outline

1 Adequacy of Fluid Approximation

2 Hybrid approximation
Example
Illustrations of the different transitions

Adequacy of Fluid Approximation 4/ 134

Introduction

All approximation techniques introduce errors and as modellers we
should always be conscious of this.

Generally we are willing to trade some accuracy for efficiency or
even tractability.

But we should remain aware that there will be cases for which the
approach is inappropriate because too much error is introduced.

Adequacy of Fluid Approximation 5/ 134

Introduction

All approximation techniques introduce errors and as modellers we
should always be conscious of this.

Generally we are willing to trade some accuracy for efficiency or
even tractability.

But we should remain aware that there will be cases for which the
approach is inappropriate because too much error is introduced.

Adequacy of Fluid Approximation 6/ 134

Introduction

All approximation techniques introduce errors and as modellers we
should always be conscious of this.

Generally we are willing to trade some accuracy for efficiency or
even tractability.

But we should remain aware that there will be cases for which the
approach is inappropriate because too much error is introduced.

Adequacy of Fluid Approximation 7/ 134

Adequacy of fluid approximation

Recall that Kurtz’s theorem only tells us that the behaviour of the
deterministic system (ODEs) and stochastic system (CTMC) will
be the same when the total population approaches infinity in a
scaled way.

It does not tell us how large an N is big enough to count as infinity.

Moreover the existing error bounds by Darling and Norris are
extremely loose, and so do not help us to predict how big N should
be.

Adequacy of Fluid Approximation 8/ 134

Adequacy of fluid approximation

Recall that Kurtz’s theorem only tells us that the behaviour of the
deterministic system (ODEs) and stochastic system (CTMC) will
be the same when the total population approaches infinity in a
scaled way.

It does not tell us how large an N is big enough to count as infinity.

Moreover the existing error bounds by Darling and Norris are
extremely loose, and so do not help us to predict how big N should
be.

Adequacy of Fluid Approximation 9/ 134

Adequacy of fluid approximation

Recall that Kurtz’s theorem only tells us that the behaviour of the
deterministic system (ODEs) and stochastic system (CTMC) will
be the same when the total population approaches infinity in a
scaled way.

It does not tell us how large an N is big enough to count as infinity.

Moreover the existing error bounds by Darling and Norris are
extremely loose, and so do not help us to predict how big N should
be.

Adequacy of Fluid Approximation 10/ 134

Fluid approximation of moments

In previous lectures we have seen how a set of ODEs can be
derived from a PEPA model.

The ODEs approximate the expectation of the population counts
for each derivative, i.e. the first moment.

Bradley and Hayden from Imperial College have generalised this
approach to construct sets of ODEs to also approximate higher
moments.

This offers more information about the distribution of the
population count, rather than simply its expectation.

Adequacy of Fluid Approximation 11/ 134

Fluid approximation of moments

In previous lectures we have seen how a set of ODEs can be
derived from a PEPA model.

The ODEs approximate the expectation of the population counts
for each derivative, i.e. the first moment.

Bradley and Hayden from Imperial College have generalised this
approach to construct sets of ODEs to also approximate higher
moments.

This offers more information about the distribution of the
population count, rather than simply its expectation.

Adequacy of Fluid Approximation 12/ 134

Fluid approximation of moments

In previous lectures we have seen how a set of ODEs can be
derived from a PEPA model.

The ODEs approximate the expectation of the population counts
for each derivative, i.e. the first moment.

Bradley and Hayden from Imperial College have generalised this
approach to construct sets of ODEs to also approximate higher
moments.

This offers more information about the distribution of the
population count, rather than simply its expectation.

Adequacy of Fluid Approximation 13/ 134

Fluid approximation of moments

In previous lectures we have seen how a set of ODEs can be
derived from a PEPA model.

The ODEs approximate the expectation of the population counts
for each derivative, i.e. the first moment.

Bradley and Hayden from Imperial College have generalised this
approach to construct sets of ODEs to also approximate higher
moments.

This offers more information about the distribution of the
population count, rather than simply its expectation.

Adequacy of Fluid Approximation 14/ 134

Example model

Cthinking
def
= (think, rt).Crequesting

Crequesting
def
= (req, rc).Cthinking

Sidle
def
= (req, rs).Slogging

Slogging
def
= (log , rl).Sidle

CS
def
= Sidle [ns] ��

{req}
Cthinking [nc]

For some parametrizations of this model, the model’s behaviour
can accurately be characterized by the fluid flow approximations of
its moments. However, for others, the moments are not sufficient
to capture the model’s behaviour, highlighting the danger of
relying only on the results of fluid flow analysis.

Adequacy of Fluid Approximation 15/ 134

Example model

Cthinking
def
= (think, rt).Crequesting

Crequesting
def
= (req, rc).Cthinking

Sidle
def
= (req, rs).Slogging

Slogging
def
= (log , rl).Sidle

CS
def
= Sidle [ns] ��

{req}
Cthinking [nc]

For some parametrizations of this model, the model’s behaviour
can accurately be characterized by the fluid flow approximations of
its moments. However, for others, the moments are not sufficient
to capture the model’s behaviour, highlighting the danger of
relying only on the results of fluid flow analysis.

Adequacy of Fluid Approximation 16/ 134

Transitions into and out of a typical state

〈Si + 1, Sl − 1, Ct − 1, Cr + 1〉

〈Si , Sl , Ct , Cr 〉

〈Si , Sl , Ct + 1, Cr − 1〉

〈Si − 1, Sl + 1, Ct , Cr 〉

〈Si , Sl , Ct − 1, Cr + 1〉

〈Si + 1, Sl − 1, Ct , Cr 〉

〈Si − 1, Sl + 1, Ct + 1, Cr − 1〉

?
HH

HHj ��
��*

��
��* H

HHHj

?

(req,min(rs × (Si + 1), rc × (Cr + 1)))

(think,rt × (Ct + 1)) (think,rt × (Ct))

(log ,rl × (Sl + 1)) (log ,rl × (Sl))

(req,min(rs × (Si), rc × (Cr)))

This view of the system is the basis of generating the ODEs for the
moments of the system.

Adequacy of Fluid Approximation 17/ 134

Transitions into and out of a typical state

〈Si + 1, Sl − 1, Ct − 1, Cr + 1〉

〈Si , Sl , Ct , Cr 〉

〈Si , Sl , Ct + 1, Cr − 1〉

〈Si − 1, Sl + 1, Ct , Cr 〉

〈Si , Sl , Ct − 1, Cr + 1〉

〈Si + 1, Sl − 1, Ct , Cr 〉

〈Si − 1, Sl + 1, Ct + 1, Cr − 1〉

?
HH

HHj ��
��*

��
��* H

HHHj

?

(req,min(rs × (Si + 1), rc × (Cr + 1)))

(think,rt × (Ct + 1)) (think,rt × (Ct))

(log ,rl × (Sl + 1)) (log ,rl × (Sl))

(req,min(rs × (Si), rc × (Cr)))

This view of the system is the basis of generating the ODEs for the
moments of the system.

Adequacy of Fluid Approximation 18/ 134

Chapman-Kolmogorov equations

d p〈Si ,Sl ,Ct ,Cr 〉(t)

dt
=

+ (Ct + 1)× rt × p〈Si ,Sl ,Ct +1,Cr−1〉(t)

+ (Sl + 1)× rl × p〈Si−1,Sl +1,Ct ,Cr 〉(t)

+ min((Si + 1)× rs , (Cr + 1)× rc)× p〈Si +1,Sl−1,Ct−1,Cr +1〉(t)

−min(Si × rs ,Cr × rc)× p〈Si ,Sl ,Ct ,Cr 〉(t)

− Sl × rl × p〈Si ,Sl ,Ct ,Cr 〉(t)

− Ct × rt × p〈Si ,Sl ,Ct ,Cr 〉(t).

One variable/equation for every state of the system.

Adequacy of Fluid Approximation 19/ 134

First moment approximation

d E[Cr](t)

dt
=

∑
〈Si , Sl ,Ct ,Cl 〉∈D

Cr × p〈Si ,Sl ,Ct ,Cr 〉(t)

d t

= +
∑

〈Si , Sl ,Ct ,Cl 〉∈D

Ct × rt × p〈Si ,Sl ,Ct ,Cr 〉(t)

−
∑

〈Si , Sl ,Ct ,Cl 〉∈D

min(Si × rs ,Cr × rc)× p〈Si ,Sl ,Ct ,Cr 〉(t)

= + rt × E[Ct](t)− E[min(Si × rs ,Cr × rc)](t).

One variable/equation for each component of the state vector.

Note E[min(Si × rs ,Cr × rc)].

Adequacy of Fluid Approximation 20/ 134

First moment approximation

d E[Cr](t)

dt
=

∑
〈Si , Sl ,Ct ,Cl 〉∈D

Cr × p〈Si ,Sl ,Ct ,Cr 〉(t)

d t

= +
∑

〈Si , Sl ,Ct ,Cl 〉∈D

Ct × rt × p〈Si ,Sl ,Ct ,Cr 〉(t)

−
∑

〈Si , Sl ,Ct ,Cl 〉∈D

min(Si × rs ,Cr × rc)× p〈Si ,Sl ,Ct ,Cr 〉(t)

= + rt × E[Ct](t)− E[min(Si × rs ,Cr × rc)](t).

One variable/equation for each component of the state vector.

Note E[min(Si × rs ,Cr × rc)].

Adequacy of Fluid Approximation 21/ 134

First moment approximation

Approximating E[min(Si × rs ,Cr × rc)] with
min(E[Si × rs],E[Cr × rc]) = min(rs × E[Si], rc × E[Cr]).

d E′Ct(t)

dt
= −rt × E′Ct(t) + min(rc × E′Cr (t), rs × E′Si (t))

d E′Cr (t)

dt
= −min(rc × E′Cr (t), rs × E′Si (t)) + rt × E′Ct(t)

d E′Si (t)

dt
= −min(rc × E′Cr (t), rs × E′Si (t)) + rl × E′Sl (t)

d E′Sl (t)

dt
= + min(rc × E′Cr (t), rs × E′Si (t))− rl × E′Sl (t)

One variable/equation for each component of the state vector.

Adequacy of Fluid Approximation 22/ 134

Parameterisation 1

Cthinking
def
= (think , rt).Crequesting

Crequesting
def
= (req, rc).Cthinking

Sidle
def
= (req, rs).Slogging

Slogging
def
= (log , rl).Sidle

CS
def
= Sidle [ns] ��

{req}
Cthinking [nc]

Parameter Value Description
rs 500 On average, it takes 1/500th of an hour for a server to initiate

a communication link with a client.
rl 120 On average, it takes 1/120th of an hour for a server to process a request.
cr 2 On average, it takes 1/2 of an hour for a client to initiate a

communication link with a server.
ct 0.06 On average, it takes 1/0.06th of a hours for a client to think.

ns 10 Total population of servers.
nc 10000 Total population of clients.

Adequacy of Fluid Approximation 23/ 134

Parameterisation 1

Cthinking
def
= (think , rt).Crequesting

Crequesting
def
= (req, rc).Cthinking

Sidle
def
= (req, rs).Slogging

Slogging
def
= (log , rl).Sidle

CS
def
= Sidle [ns] ��

{req}
Cthinking [nc]

Parameter Value Description
rs 500 On average, it takes 1/500th of an hour for a server to initiate

a communication link with a client.
rl 120 On average, it takes 1/120th of an hour for a server to process a request.
cr 2 On average, it takes 1/2 of an hour for a client to initiate a

communication link with a server.
ct 0.06 On average, it takes 1/0.06th of a hours for a client to think.

ns 10 Total population of servers.
nc 10000 Total population of clients.

Adequacy of Fluid Approximation 24/ 134

Distribution of Cr found by SSA

0
100
200
300
400
500
600
700
800

250 290330 370410 450

F
re

q
u

en
cy

Cr ’s bins

Adequacy of Fluid Approximation 25/ 134

Mean and std deviation found via fluid approximation

0

100

200

300

400

500

0 4000 80001200016000

m
ea

n
f

C
r

time(s)

Adequacy of Fluid Approximation 26/ 134

Some numerical results

ns 3 4 5 6 7 8 9 10 12 14 16 18

E[
C

r
] F.F.A. 5645 4193 2741 1290.3 322 322 322 322 322 322 322 322

M.C. 5644 4192 2740 1290 490 384 349 335 325 323 322.6 322.3
Err.(%) 0.01 0.01 0.03 0.04 34 16 7.7 3.8 0.9 0.3 0.18 0.12

σ
[C

r
] F.F.A. 60.62 70 78.26 85.73 17.66 17.66 17.66 17.66 17.66 17.66 17.66 17.66

M.C. 60.45 69.45 78.79 86.5 36.90 23.49 19.84 18.72 17.99 17.72 17.76 17.74
Err.(%) 0.26 0.25 0.67 0.9 52.3 25.20 11.44 5.6 1.8 0.3 0.5 0.4

Adequacy of Fluid Approximation 27/ 134

Some numerical results

ns 3 4 5 6 7 8 9 10 12 14 16 18

E[
C

r
] F.F.A. 5645 4193 2741 1290.3 322 322 322 322 322 322 322 322

M.C. 5644 4192 2740 1290 490 384 349 335 325 323 322.6 322.3
Err.(%) 0.01 0.01 0.03 0.04 34 16 7.7 3.8 0.9 0.3 0.18 0.12

σ
[C

r
] F.F.A. 60.62 70 78.26 85.73 17.66 17.66 17.66 17.66 17.66 17.66 17.66 17.66

M.C. 60.45 69.45 78.79 86.5 36.90 23.49 19.84 18.72 17.99 17.72 17.76 17.74
Err.(%) 0.26 0.25 0.67 0.9 52.3 25.20 11.44 5.6 1.8 0.3 0.5 0.4

Adequacy of Fluid Approximation 28/ 134

Modified model

Cthinking
def
= (think, rt).Crequesting

Crequesting
def
= (req, rc).Cthinking

Sidle
def
= (req, rs).Slogging + (brk , rb).Sbroken

Slogging
def
= (log , rl).Sidle

Sbroken
def
= (fix , rf).Sidle

CS
def
= Sidle [ns] ��

{req}
Cthinking [nc]

Adequacy of Fluid Approximation 29/ 134

More numerical results

ns 3 4 5 6 7 8 9 10 12 14 16 18 24 32

E[
C

r
] F.F.A. 7119 6159 5199 4239 3279 2319 1359 399 243 243 243 243 243 243

M. C. 7156 6177 5236 4295 3387 2599 1975 1460 843 533 378 309 251 244
Err.(%) 0.6 0.2 0.7 1.3 3.18 10.77 31.1 72.6 71.1 54.4 35.7 21 3 0.1

σ
[C

r
] F.F.A. 1240 1432 1601 1753 1894 2025 2148 959 15.42 15.42 15.42 15.42 15.42 15.42

M.C. 1245 1420 1609 1758 1808 1792 1656 1456 1048 713 470 314 76 17.80
Err.(%) 0.42 0.79 0.52 0.25 4.7 13 29 34.1 98 97 96 95 79 13

Adequacy of Fluid Approximation 30/ 134

More numerical results

ns 3 4 5 6 7 8 9 10 12 14 16 18 24 32

E[
C

r
] F.F.A. 7119 6159 5199 4239 3279 2319 1359 399 243 243 243 243 243 243

M. C. 7156 6177 5236 4295 3387 2599 1975 1460 843 533 378 309 251 244
Err.(%) 0.6 0.2 0.7 1.3 3.18 10.77 31.1 72.6 71.1 54.4 35.7 21 3 0.1

σ
[C

r
] F.F.A. 1240 1432 1601 1753 1894 2025 2148 959 15.42 15.42 15.42 15.42 15.42 15.42

M.C. 1245 1420 1609 1758 1808 1792 1656 1456 1048 713 470 314 76 17.80
Err.(%) 0.42 0.79 0.52 0.25 4.7 13 29 34.1 98 97 96 95 79 13

Adequacy of Fluid Approximation 31/ 134

Distribution of Cr found by SSA

0

2000

4000

6000

8000

10000

0 200040006000800010000

F
re

q
u

en
cy

(C
r
)

Cr ’s bins

Adequacy of Fluid Approximation 32/ 134

Mean and std deviation found via fluid approximation

0

500

1000

1500

2000

0 4000 80001200016000

E F
.F

.[
C

r
]

time(hours)

Hybrid approximation 33/ 134

Outline

1 Adequacy of Fluid Approximation

2 Hybrid approximation
Example
Illustrations of the different transitions

Hybrid approximation 34/ 134

Motivation

We have seen that the fluid approximation can be an accurate way
to estimate the population counts and some performance measures
for some systems in which we have large populations interacting.

However, we have also seen that there are cases where this
technique should not be used because it will lead to inaccurate
estimates of the performance of the system, and then simulation
becomes the best way to tackle the system.

Hybrid approximation 35/ 134

Motivation

We have seen that the fluid approximation can be an accurate way
to estimate the population counts and some performance measures
for some systems in which we have large populations interacting.

However, we have also seen that there are cases where this
technique should not be used because it will lead to inaccurate
estimates of the performance of the system, and then simulation
becomes the best way to tackle the system.

Hybrid approximation 36/ 134

Motivation: combining the approaches

The ODE-based solution is much more computationally
efficient than stochastic simulation (even when using
Gillespie’s efficient SSA).

Typically problems arise when there is a mix of some large
populations and some small, or some fast actions and some
slow.

So it is natural to consider if there might be a way to combine
the approaches.

In particular we aim to resort to the less efficient discrete
approach for those parts of the model where it is strictly
necessary.

Hybrid approximation 37/ 134

Motivation: combining the approaches

The ODE-based solution is much more computationally
efficient than stochastic simulation (even when using
Gillespie’s efficient SSA).

Typically problems arise when there is a mix of some large
populations and some small, or some fast actions and some
slow.

So it is natural to consider if there might be a way to combine
the approaches.

In particular we aim to resort to the less efficient discrete
approach for those parts of the model where it is strictly
necessary.

Hybrid approximation 38/ 134

Motivation: combining the approaches

The ODE-based solution is much more computationally
efficient than stochastic simulation (even when using
Gillespie’s efficient SSA).

Typically problems arise when there is a mix of some large
populations and some small, or some fast actions and some
slow.

So it is natural to consider if there might be a way to combine
the approaches.

In particular we aim to resort to the less efficient discrete
approach for those parts of the model where it is strictly
necessary.

Hybrid approximation 39/ 134

Motivation: combining the approaches

The ODE-based solution is much more computationally
efficient than stochastic simulation (even when using
Gillespie’s efficient SSA).

Typically problems arise when there is a mix of some large
populations and some small, or some fast actions and some
slow.

So it is natural to consider if there might be a way to combine
the approaches.

In particular we aim to resort to the less efficient discrete
approach for those parts of the model where it is strictly
necessary.

Hybrid approximation 40/ 134

Motivation: Alternative Representations

ODEs

population view

TDHSA hybrid view

Stochastic
Simulation

CTMC

individual view

Large
PEPA model

-

��
��

�
��

�
��

�
��

��*

H
HHH

HHH
HHH

HHH
HHj

Hybrid approximation 41/ 134

Motivation: Alternative Representations

ODEs population view

TDHSA hybrid view

Stochastic
Simulation

CTMC

individual view

Large
PEPA model

-

��
��

�
��

�
��

�
��

��*

H
HHH

HHH
HHH

HHH
HHj

Hybrid approximation 42/ 134

Motivation: Alternative Representations

ODEs

population view

TDHSA hybrid view

Stochastic
Simulation

CTMC

individual view

Large
PEPA model

-��
��

�
��

�
��

�
��

��*

H
HHH

HHH
HHH

HHH
HHj

Hybrid approximation 43/ 134

Making a hybrid approximation

Hybrid is a term which is used to refer to models in which some
state variables are discrete and some state variables are continuous.

Of course in a PEPA model all state variable are discrete — they
are the population counts which tell us in each state how many of
each derivative type we have.

In the fluid approximation we choose to approximate all of these
discrete variables by continuous ones to obtain a set of ODEs.

In the hybrid approximation we choose to approximate some
populations as continuous whilst keeping the others discrete.

The result is a set of discrete states each of which has an
associated set of ODEs.

Hybrid approximation 44/ 134

Making a hybrid approximation

Hybrid is a term which is used to refer to models in which some
state variables are discrete and some state variables are continuous.

Of course in a PEPA model all state variable are discrete — they
are the population counts which tell us in each state how many of
each derivative type we have.

In the fluid approximation we choose to approximate all of these
discrete variables by continuous ones to obtain a set of ODEs.

In the hybrid approximation we choose to approximate some
populations as continuous whilst keeping the others discrete.

The result is a set of discrete states each of which has an
associated set of ODEs.

Hybrid approximation 45/ 134

Making a hybrid approximation

Hybrid is a term which is used to refer to models in which some
state variables are discrete and some state variables are continuous.

Of course in a PEPA model all state variable are discrete — they
are the population counts which tell us in each state how many of
each derivative type we have.

In the fluid approximation we choose to approximate all of these
discrete variables by continuous ones to obtain a set of ODEs.

In the hybrid approximation we choose to approximate some
populations as continuous whilst keeping the others discrete.

The result is a set of discrete states each of which has an
associated set of ODEs.

Hybrid approximation 46/ 134

Making a hybrid approximation

Hybrid is a term which is used to refer to models in which some
state variables are discrete and some state variables are continuous.

Of course in a PEPA model all state variable are discrete — they
are the population counts which tell us in each state how many of
each derivative type we have.

In the fluid approximation we choose to approximate all of these
discrete variables by continuous ones to obtain a set of ODEs.

In the hybrid approximation we choose to approximate some
populations as continuous whilst keeping the others discrete.

The result is a set of discrete states each of which has an
associated set of ODEs.

Hybrid approximation 47/ 134

Making a hybrid approximation

Hybrid is a term which is used to refer to models in which some
state variables are discrete and some state variables are continuous.

Of course in a PEPA model all state variable are discrete — they
are the population counts which tell us in each state how many of
each derivative type we have.

In the fluid approximation we choose to approximate all of these
discrete variables by continuous ones to obtain a set of ODEs.

In the hybrid approximation we choose to approximate some
populations as continuous whilst keeping the others discrete.

The result is a set of discrete states each of which has an
associated set of ODEs.

Hybrid approximation 48/ 134

PDMPs and TDHSA

There are many different formalisms that may be used to specify
this type of hybrid system (discrete states with sets of ODEs).

Formally we will work in terms of stochastic processes termed
Piecewise Deterministic Markov Processes (PDMP).

But these are little difficult to work with directly, so we will use a
form of automata, called Transition Driven Stochastic Hybrid
Automata (TDSHAs) as an intermediary.

PEPA −→ TDSHA −→ PDMP

Hybrid approximation 49/ 134

PDMPs and TDHSA

There are many different formalisms that may be used to specify
this type of hybrid system (discrete states with sets of ODEs).

Formally we will work in terms of stochastic processes termed
Piecewise Deterministic Markov Processes (PDMP).

But these are little difficult to work with directly, so we will use a
form of automata, called Transition Driven Stochastic Hybrid
Automata (TDSHAs) as an intermediary.

PEPA −→ TDSHA −→ PDMP

Hybrid approximation 50/ 134

PDMPs and TDHSA

There are many different formalisms that may be used to specify
this type of hybrid system (discrete states with sets of ODEs).

Formally we will work in terms of stochastic processes termed
Piecewise Deterministic Markov Processes (PDMP).

But these are little difficult to work with directly, so we will use a
form of automata, called Transition Driven Stochastic Hybrid
Automata (TDSHAs) as an intermediary.

PEPA −→ TDSHA −→ PDMP

Hybrid approximation 51/ 134

PDMPs and TDHSA

There are many different formalisms that may be used to specify
this type of hybrid system (discrete states with sets of ODEs).

Formally we will work in terms of stochastic processes termed
Piecewise Deterministic Markov Processes (PDMP).

But these are little difficult to work with directly, so we will use a
form of automata, called Transition Driven Stochastic Hybrid
Automata (TDSHAs) as an intermediary.

PEPA −→ TDSHA −→ PDMP

Hybrid approximation 52/ 134

Piecewise deterministic Markov processes

class of stochastic processes

continuous trajectories over subsets of R|X|

instantaneous jumps at boundaries of regions

stochastic jumps when guards are true

jumps to boundaries are prohibited

Hybrid approximation 53/ 134

Piecewise deterministic Markov processes

class of stochastic processes

continuous trajectories over subsets of R|X|

instantaneous jumps at boundaries of regions

stochastic jumps when guards are true

jumps to boundaries are prohibited

Hybrid approximation 54/ 134

Transition-driven stochastic hybrid automata (TDSHA)

subset of piecewise deterministic Markov processes (PDMPs)

set of (control) modes: Q = {q1, . . . , qm}

set of variables: X = {X1, . . . ,Xn}

set of events/actions: A = {a1, a2, . . .}

initial state: (q, (x1, . . . , xn))

Hybrid approximation 55/ 134

Transition-driven stochastic hybrid automata (TDSHA)

subset of piecewise deterministic Markov processes (PDMPs)

set of (control) modes: Q = {q1, . . . , qm}

set of variables: X = {X1, . . . ,Xn}

set of events/actions: A = {a1, a2, . . .}

initial state: (q, (x1, . . . , xn))

Hybrid approximation 56/ 134

Transition-driven stochastic hybrid automata (TDSHA)

subset of piecewise deterministic Markov processes (PDMPs)

set of (control) modes: Q = {q1, . . . , qm}

set of variables: X = {X1, . . . ,Xn}

set of events/actions: A = {a1, a2, . . .}

initial state: (q, (x1, . . . , xn))

Hybrid approximation 57/ 134

Transition-driven stochastic hybrid automata (TDSHA)

subset of piecewise deterministic Markov processes (PDMPs)

set of (control) modes: Q = {q1, . . . , qm}

set of variables: X = {X1, . . . ,Xn}

set of events/actions: A = {a1, a2, . . .}

initial state: (q, (x1, . . . , xn))

Hybrid approximation 58/ 134

Transition-driven stochastic hybrid automata (TDSHA)

subset of piecewise deterministic Markov processes (PDMPs)

set of (control) modes: Q = {q1, . . . , qm}

set of variables: X = {X1, . . . ,Xn}

set of events/actions: A = {a1, a2, . . .}

initial state: (q, (x1, . . . , xn))

Hybrid approximation 59/ 134

Transition-driven stochastic hybrid automata (TDSHA)

instantaneous transitions

source mode, target mode, event name
guard: activation condition over variables
reset: function determining new values of variables
priority/weight: to resolve non-determinism

stochastic transitions

source mode, target mode, event name
rate: function defining speed of transition
guard: activation condition over variables
reset: function determining new values of variables

continuous transitions (flows)

source mode

vector specifying variables involved

Lipschitz continuous function

Hybrid approximation 60/ 134

Transition-driven stochastic hybrid automata (TDSHA)

instantaneous transitions

source mode, target mode, event name
guard: activation condition over variables
reset: function determining new values of variables
priority/weight: to resolve non-determinism

stochastic transitions

source mode, target mode, event name
rate: function defining speed of transition
guard: activation condition over variables
reset: function determining new values of variables

continuous transitions (flows)

source mode

vector specifying variables involved

Lipschitz continuous function

Hybrid approximation 61/ 134

Transition-driven stochastic hybrid automata (TDSHA)

instantaneous transitions

source mode, target mode, event name
guard: activation condition over variables
reset: function determining new values of variables
priority/weight: to resolve non-determinism

stochastic transitions

source mode, target mode, event name
rate: function defining speed of transition
guard: activation condition over variables
reset: function determining new values of variables

continuous transitions (flows)

source mode

vector specifying variables involved

Lipschitz continuous function

Hybrid approximation 62/ 134

Transition-driven stochastic hybrid automata (TDSHA)

continuous behaviour in a mode

consider all continuous transitions in that mode

trajectory is given by solution of dX/dt =
∑

s · f (X)

instantaneous behaviour: fire when guard becomes true

stochastic behaviour: fire according to rate

product of TDSHAs

pairs of modes and union of variables
combining transitions
(with conditions on resets and initial values)

Hybrid approximation 63/ 134

Transition-driven stochastic hybrid automata (TDSHA)

continuous behaviour in a mode

consider all continuous transitions in that mode

trajectory is given by solution of dX/dt =
∑

s · f (X)

instantaneous behaviour: fire when guard becomes true

stochastic behaviour: fire according to rate

product of TDSHAs

pairs of modes and union of variables
combining transitions
(with conditions on resets and initial values)

Hybrid approximation 64/ 134

Transition-driven stochastic hybrid automata (TDSHA)

continuous behaviour in a mode

consider all continuous transitions in that mode

trajectory is given by solution of dX/dt =
∑

s · f (X)

instantaneous behaviour: fire when guard becomes true

stochastic behaviour: fire according to rate

product of TDSHAs

pairs of modes and union of variables
combining transitions
(with conditions on resets and initial values)

Hybrid approximation 65/ 134

Transition-driven stochastic hybrid automata (TDSHA)

continuous behaviour in a mode

consider all continuous transitions in that mode

trajectory is given by solution of dX/dt =
∑

s · f (X)

instantaneous behaviour: fire when guard becomes true

stochastic behaviour: fire according to rate

product of TDSHAs

pairs of modes and union of variables
combining transitions
(with conditions on resets and initial values)

Hybrid approximation 66/ 134

TDSHA synchronised product

T = T1 ⊕L T2 has Q = Q1 × Q2 and X = X1 ∪ X2

continuous transitions: extend vector to cover X
a /∈ L: (q1, q2) has every transition from q1 and from q2

a ∈ L: (q1, q2) has every transition from q1 and q2 with a and
new function is PEPA cooperation rate (i.e. bounded capacity)

stochastic transitions:

a /∈ L: (q1, q2) has every transition from q1 and from q2

a ∈ L: (q1, q2) has every transition that both q1 and q2 have
with a, new rate is PEPA cooperation rate and conjunction of
resets is taken

Hybrid approximation 67/ 134

TDSHA synchronised product

T = T1 ⊕L T2 has Q = Q1 × Q2 and X = X1 ∪ X2

continuous transitions: extend vector to cover X
a /∈ L: (q1, q2) has every transition from q1 and from q2

a ∈ L: (q1, q2) has every transition from q1 and q2 with a and
new function is PEPA cooperation rate (i.e. bounded capacity)

stochastic transitions:

a /∈ L: (q1, q2) has every transition from q1 and from q2

a ∈ L: (q1, q2) has every transition that both q1 and q2 have
with a, new rate is PEPA cooperation rate and conjunction of
resets is taken

Hybrid approximation 68/ 134

TDSHA synchronised product

T = T1 ⊕L T2 has Q = Q1 × Q2 and X = X1 ∪ X2

continuous transitions: extend vector to cover X
a /∈ L: (q1, q2) has every transition from q1 and from q2

a ∈ L: (q1, q2) has every transition from q1 and q2 with a and
new function is PEPA cooperation rate (i.e. bounded capacity)

stochastic transitions:

a /∈ L: (q1, q2) has every transition from q1 and from q2

a ∈ L: (q1, q2) has every transition that both q1 and q2 have
with a, new rate is PEPA cooperation rate and conjunction of
resets is taken

Hybrid approximation 69/ 134

Overview of the mapping

PEPA has two-level syntax

sequential components: S ::= (a, r).S | S + S
parallel components: P ::= P ��

L
P | S

assume sequential components: S =
∑q

j=1(aj , rj).S
′

mapping

P def
=

T =

S1 S2 · · · Sn
��
L2

��
L3

��
Ln

T1 T2 · · · Tn⊕L2 ⊕L3 ⊕Ln

Hybrid approximation 70/ 134

Overview of the mapping

PEPA has two-level syntax

sequential components: S ::= (a, r).S | S + S
parallel components: P ::= P ��

L
P | S

assume sequential components: S =
∑q

j=1(aj , rj).S
′

mapping

P def
=

T =

S1 S2 · · · Sn
��
L2

��
L3

��
Ln

T1 T2 · · · Tn⊕L2 ⊕L3 ⊕Ln

Hybrid approximation 71/ 134

Overview of the mapping

PEPA has two-level syntax

sequential components: S ::= (a, r).S | S + S
parallel components: P ::= P ��

L
P | S

assume sequential components: S =
∑q

j=1(aj , rj).S
′

mapping

P def
=

T =

S1 S2 · · · Sn
��
L2

��
L3

��
Ln

T1 T2 · · · Tn⊕L2 ⊕L3 ⊕Ln

Hybrid approximation 72/ 134

Overview of the mapping

PEPA has two-level syntax

sequential components: S ::= (a, r).S | S + S
parallel components: P ::= P ��

L
P | S

assume sequential components: S =
∑q

j=1(aj , rj).S
′

mapping

P def
=

T =

S1 S2 · · · Sn

��
L2

��
L3

��
Ln

T1 T2 · · · Tn⊕L2 ⊕L3 ⊕Ln

Hybrid approximation 73/ 134

Overview of the mapping

PEPA has two-level syntax

sequential components: S ::= (a, r).S | S + S
parallel components: P ::= P ��

L
P | S

assume sequential components: S =
∑q

j=1(aj , rj).S
′

mapping

P def
=

T =

S1 S2 · · · Sn

��
L2

��
L3

��
Ln

T1 T2 · · · Tn

⊕L2 ⊕L3 ⊕Ln

Hybrid approximation 74/ 134

Overview of the mapping

PEPA has two-level syntax

sequential components: S ::= (a, r).S | S + S
parallel components: P ::= P ��

L
P | S

assume sequential components: S =
∑q

j=1(aj , rj).S
′

mapping

P def
=

T =

S1 S2 · · · Sn
��
L2

��
L3

��
Ln

T1 T2 · · · Tn

⊕L2 ⊕L3 ⊕Ln

Hybrid approximation 75/ 134

Overview of the mapping

PEPA has two-level syntax

sequential components: S ::= (a, r).S | S + S
parallel components: P ::= P ��

L
P | S

assume sequential components: S =
∑q

j=1(aj , rj).S
′

mapping

P def
=

T =

S1 S2 · · · Sn
��
L2

��
L3

��
Ln

T1 T2 · · · Tn⊕L2 ⊕L3 ⊕Ln

Hybrid approximation 76/ 134

Overview of the mapping

PEPA has two-level syntax

sequential components: S ::= (a, r).S | S + S
parallel components: P ::= P ��

L
P | S

assume sequential components: S =
∑q

j=1(aj , rj).S
′

mapping

P def
=

T =

S1 S2 · · · Sn
��
L2

��
L3

��
Ln

T1 T2 · · · Tn⊕L2 ⊕L3 ⊕Ln

Hybrid approximation 77/ 134

Overview of the mapping

PEPA has two-level syntax

sequential components: S ::= (a, r).S | S + S
parallel components: P ::= P ��

L
P | S

assume sequential components: S =
∑q

j=1(aj , rj).S
′

mapping

P def
=

T =

S1 S2 · · · Sn
��
L2

��
L3

��
Ln

T1 T2 · · · Tn⊕L2 ⊕L3 ⊕Ln

Hybrid approximation 78/ 134

Mapping sequential components

A decision must be made with respect to each derivative of each
component about whether its count is to be treated as a discrete
or a continuous variable.

The decision will be based on a decision about each action type.

We rely on the modeller to decide for each action type whether it
represents a continuous action or a discrete action.

Any derivative that enables a continuous action will be treated as a
continuous variable in the state vector.

Hybrid approximation 79/ 134

Mapping sequential components

A decision must be made with respect to each derivative of each
component about whether its count is to be treated as a discrete
or a continuous variable.

The decision will be based on a decision about each action type.

We rely on the modeller to decide for each action type whether it
represents a continuous action or a discrete action.

Any derivative that enables a continuous action will be treated as a
continuous variable in the state vector.

Hybrid approximation 80/ 134

Mapping sequential components

A decision must be made with respect to each derivative of each
component about whether its count is to be treated as a discrete
or a continuous variable.

The decision will be based on a decision about each action type.

We rely on the modeller to decide for each action type whether it
represents a continuous action or a discrete action.

Any derivative that enables a continuous action will be treated as a
continuous variable in the state vector.

Hybrid approximation 81/ 134

Mapping sequential components

A decision must be made with respect to each derivative of each
component about whether its count is to be treated as a discrete
or a continuous variable.

The decision will be based on a decision about each action type.

We rely on the modeller to decide for each action type whether it
represents a continuous action or a discrete action.

Any derivative that enables a continuous action will be treated as a
continuous variable in the state vector.

Hybrid approximation Example 82/ 134

A client/server system with breakdowns and repairs

Sw
def
= (request, rreply).Sl + (break , rbreak).Sb

Sl
def
= (log , rlog).Sw

Sb
def
= (repair , rrepair).Sw

Ur
def
= (request, rreq).Ut

Ut
def
= (think, rthink).Ur

Sys
def
= Sw ��

{request}
Ur [N]

Hybrid approximation Example 83/ 134

A client/server system with breakdowns and repairs

Sw
def
= (request, rreply).Sl + (break , rbreak).Sb

Sl
def
= (log , rlog).Sw

Sb
def
= (repair , rrepair).Sw

Ur
def
= (request, rreq).Ut

Ut
def
= (think , rthink).Ur

Sys
def
= Sw ��

{request}
Ur [N]

State Representation

ω = (ωSw , ωSl
, ωSb

, ωUr , ωUt)

Initial state is (1, 0, 0,N, 0)

Hybrid approximation Example 84/ 134

In the discrete case

Sw
def
= (request, rreply).Sl + (break , rbreak).Sb

Sl
def
= (log , rlog).Sw

Sb
def
= (repair , rrepair).Sw

Ur
def
= (request, rreq).Ut

Ut
def
= (think , rthink).Ur

Sys
def
= Sw ��

{request}
Ur [N]

Request action

(1, 0, 0,N, 0)
request,min(1×rreply ,N×rreq)

−−−−−−−−−−−−−−−→ (0, 1, 0,N − 1, 1)

Hybrid approximation Example 85/ 134

In the discrete case

Sw
def
= (request, rreply).Sl + (break , rbreak).Sb

Sl
def
= (log , rlog).Sw

Sb
def
= (repair , rrepair).Sw

Ur
def
= (request, rreq).Ut

Ut
def
= (think , rthink).Ur

Sys
def
= Sw ��

{request}
Ur [N]

Break action

(1, 0, 0,N, 0)
break,1×rbreak

−−−−−−−−−−−−−−−→ (0, 0, 1,N, 0)

Hybrid approximation Example 86/ 134

In the continuous case

Sw
def
= (request, rreply).Sl + (break , rbreak).Sb

Sl
def
= (log , rlog).Sw

Sb
def
= (repair , rrepair).Sw

Ur
def
= (request, rreq).Ut

Ut
def
= (think , rthink).Ur

Sys
def
= Sw ��

{request}
Ur [N]

Request action

x(t)
request,min(1×rreply ,N×rreq)

−−−−−−−−−−−−−−−→ x(t) + (−1,+1, 0,−1,+1)

Hybrid approximation Example 87/ 134

In the continuous case

Sw
def
= (request, rreply).Sl + (break , rbreak).Sb

Sl
def
= (log , rlog).Sw

Sb
def
= (repair , rrepair).Sw

Ur
def
= (request, rreq).Ut

Ut
def
= (think , rthink).Ur

Sys
def
= Sw ��

{request}
Ur [N]

Break action

x(t)
break,1×rbreak

−−−−−−−−−−−−−−−→ x(t) + (−1, 0,+1, 0, 0)

Hybrid approximation Example 88/ 134

In the continuous case

Sw
def
= (request, rreply).Sl + (break , rbreak).Sb

Sl
def
= (log , rlog).Sw

Sb
def
= (repair , rrepair).Sw

Ur
def
= (request, rreq).Ut

Ut
def
= (think , rthink).Ur

Sys
def
= Sw ��

{request}
Ur [N]

ODE for Sw

dxSw (t)

dt
= −min(xSw (t)rreply , xUr (t)rreq−sSw (t)rbreak +xSl

(t)rlog +xSr (t)rrepair

Hybrid approximation Example 89/ 134

Hybrid interpretation

Sw
def
= (request, rreply).Sl + (break , rbreak).Sb

Sl
def
= (log , rlog).Sw

Sb
def
= (repair , rrepair).Sw

Ur
def
= (request, rreq).Ut

Ut
def
= (think , rthink).Ur

Sys
def
= Sw ��

{request}
Ur [N]

We may assume that the activities break and repair occur at a
much lower frequency and a much lower rate than the other
activities in the model.

Hybrid approximation Example 90/ 134

Hybrid interpretation

So for our hybrid approximation we treat these activities as discrete
and the other activities as continuous.

Ac = {request, log , think}

Ad = {break , repair}

X = (XSw ,XSl
,XUr ,XUt) (continuous variables)

q0 = (0, 2,N)

q0 = (1, 1,N)

q0 = (2, 0,N)

Hybrid approximation Example 91/ 134

Hybrid interpretation

So for our hybrid approximation we treat these activities as discrete
and the other activities as continuous.

Ac = {request, log , think}

Ad = {break , repair}

X = (XSw ,XSl
,XUr ,XUt) (continuous variables)

q0 = (0, 2,N)

q0 = (1, 1,N)

q0 = (2, 0,N)

Hybrid approximation Example 92/ 134

Hybrid interpretation

So for our hybrid approximation we treat these activities as discrete
and the other activities as continuous.

Ac = {request, log , think}

Ad = {break , repair}

X = (XSw ,XSl
,XUr ,XUt) (continuous variables)

q0 = (0, 2,N)

q0 = (1, 1,N)

q0 = (2, 0,N)

Hybrid approximation Example 93/ 134

Hybrid interpretation

So for our hybrid approximation we treat these activities as discrete
and the other activities as continuous.

Ac = {request, log , think}

Ad = {break , repair}

X = (XSw ,XSl
,XUr ,XUt) (continuous variables)

q0 = (0, 2,N)

q0 = (1, 1,N)

q0 = (2, 0,N)

Hybrid approximation Example 94/ 134

Hybrid interpretation

So for our hybrid approximation we treat these activities as discrete
and the other activities as continuous.

Ac = {request, log , think}

Ad = {break , repair}

X = (XSw ,XSl
,XUr ,XUt) (continuous variables)

q0 = (0, 2,N)

q0 = (1, 1,N)

q0 = (2, 0,N)

Hybrid approximation Example 95/ 134

Hybrid interpretation

So for our hybrid approximation we treat these activities as discrete
and the other activities as continuous.

Ac = {request, log , think}

Ad = {break , repair}

X = (XSw ,XSl
,XUr ,XUt) (continuous variables)

q0 = (0, 2,N)

q0 = (1, 1,N)

q0 = (2, 0,N)

Hybrid approximation Example 96/ 134

Hybrid interpretation

So for our hybrid approximation we treat these activities as discrete
and the other activities as continuous.

Ac = {request, log , think}

Ad = {break , repair}

X = (XSw ,XSl
,XUr ,XUt) (continuous variables)

q0 = (0, 2,N)

q0 = (1, 1,N)

q0 = (2, 0,N)

Hybrid approximation Example 97/ 134

Fluid Dynamics: Working servers vs. time

Hybrid approximation Example 98/ 134

Stochastic Dynamics: Working servers vs. time

Hybrid approximation Example 99/ 134

Hybrid Dynamics: Working servers vs. time

Hybrid approximation Example 100/ 134

Numerical Evaluation: set up

Sw
def
= (request, scale × 1000).Sl + (break , rbreak).Sb

Sl
def
= (log , scale × 2000).Sw

Sb
def
= (repair , 0.05).Sw

Ur
def
= (request, scale × 100).Ut

Ut
def
= (think, scale × 10).Ur

Sys
def
= Sw [NS] ��

{request}
Ur [Nc]

scale ∈ {0.1, 10.0, 100.0}
NS ∈ {2, 6}
NC ∈ {10, 100, 300}

Hybrid approximation Example 101/ 134

Numerical Evaluation: set up

Sw
def
= (request, scale × 1000).Sl + (break , rbreak).Sb

Sl
def
= (log , scale × 2000).Sw

Sb
def
= (repair , 0.05).Sw

Ur
def
= (request, scale × 100).Ut

Ut
def
= (think, scale × 10).Ur

Sys
def
= Sw [NS] ��

{request}
Ur [Nc]

scale ∈ {0.1, 10.0, 100.0}

NS ∈ {2, 6}
NC ∈ {10, 100, 300}

Hybrid approximation Example 102/ 134

Numerical Evaluation: set up

Sw
def
= (request, scale × 1000).Sl + (break , rbreak).Sb

Sl
def
= (log , scale × 2000).Sw

Sb
def
= (repair , 0.05).Sw

Ur
def
= (request, scale × 100).Ut

Ut
def
= (think, scale × 10).Ur

Sys
def
= Sw [NS] ��

{request}
Ur [Nc]

scale ∈ {0.1, 10.0, 100.0}
NS ∈ {2, 6}

NC ∈ {10, 100, 300}

Hybrid approximation Example 103/ 134

Numerical Evaluation: set up

Sw
def
= (request, scale × 1000).Sl + (break , rbreak).Sb

Sl
def
= (log , scale × 2000).Sw

Sb
def
= (repair , 0.05).Sw

Ur
def
= (request, scale × 100).Ut

Ut
def
= (think, scale × 10).Ur

Sys
def
= Sw [NS] ��

{request}
Ur [Nc]

scale ∈ {0.1, 10.0, 100.0}
NS ∈ {2, 6}
NC ∈ {10, 100, 300}

Hybrid approximation Example 104/ 134

Numerical Evaluation: set up

For each model configuration we calculated the steady-state
probability of having 0 or 1 broken servers.

Errors were computed with respect to the numerical solution of the
Markov chain.

Hybrid approximation Example 105/ 134

Numerical Evaluation: results

Hybrid approximation Example 106/ 134

Ongoing issues

We currently assume that the modeller is responsible for
partition action types and derivatives.

There is an issue of how to make transitions from continuous
state to discrete states in the general case: we have a solution
but it may not be the best one.

Hybrid approximation Example 107/ 134

Ongoing issues

We currently assume that the modeller is responsible for
partition action types and derivatives.

There is an issue of how to make transitions from continuous
state to discrete states in the general case: we have a solution
but it may not be the best one.

Hybrid approximation Illustrations of the different transitions 108/ 134

Illustrative example

Since both activities and components can be classified as discrete
or continuous there are several different cases that can arise in the
evolution of a model.

The example presented in the following slides is constructed to
illustrate each of the different cases.

It illustrates some of the problems that can occur and our current
solution to these problems.

Hybrid approximation Illustrations of the different transitions 109/ 134

Illustrative example

Since both activities and components can be classified as discrete
or continuous there are several different cases that can arise in the
evolution of a model.

The example presented in the following slides is constructed to
illustrate each of the different cases.

It illustrates some of the problems that can occur and our current
solution to these problems.

Hybrid approximation Illustrations of the different transitions 110/ 134

Illustrative example

Since both activities and components can be classified as discrete
or continuous there are several different cases that can arise in the
evolution of a model.

The example presented in the following slides is constructed to
illustrate each of the different cases.

It illustrates some of the problems that can occur and our current
solution to these problems.

Hybrid approximation Illustrations of the different transitions 111/ 134

Clients and servers example

clients

Cr
def
= (request, rrq).Ct

Ct
def
= (think, rth).Cr

servers

Hybrid approximation Illustrations of the different transitions 112/ 134

Clients and servers example

clients

Cr
def
= (request, rrq).Ct

Ct
def
= (think, rth).Cr

servers

Sr
def
= (request, rrp).Sl + (break, rbk).Sb

Sl
def
= (log, rlg).Sr + (remove, rrm).Sm

Sm
def
= (maint, rmn).Sr + (replace, rrc).Sr

Sb
def
= (fix, rfx).St

St
def
= (test, rts).St + (compl, rcm).Sr

Hybrid approximation Illustrations of the different transitions 113/ 134

Clients and servers example

clients
Cr

request

think
Ct

servers

Sr
request

log

fix

break compl

test

maintreplace remove

Sl

Sm

Sb St

Hybrid approximation Illustrations of the different transitions 114/ 134

Clients and servers example

clients
Cr

request

think
Ct

servers

Sr
request

log

fix

break compl

test

maintreplace remove

Sl

Sm

Sb St

Hybrid approximation Illustrations of the different transitions 115/ 134

Clients and servers example

clients
Cr

request

think
Ct

servers

Sr
request

log

fix

break compl

test

maintreplace remove

Sl

Sm

Sb St

Hybrid approximation Illustrations of the different transitions 116/ 134

Clients and servers example

clients
Cr

request

think
Ct

servers

Sr
request

log

fix

break compl

test

maintreplace remove

Sl

Sm

Sb St

Hybrid approximation Illustrations of the different transitions 117/ 134

Clients and servers example

clients
Cr

request

think
Ct

servers

Sr
request

log

fix

break compl

test

maintreplace remove

Sl

Sm

Sb St

Hybrid approximation Illustrations of the different transitions 118/ 134

Clients and servers example

clients
Cr

request

think
Ct

servers

Sr
request

log

fix

break compl

test

maintreplace remove

Sl

Sm

Sb St

Hybrid approximation Illustrations of the different transitions 119/ 134

Clients and servers example

clients
Cr

request

think
Ct

servers

Sr
request

log

fix

break compl

test

maintreplace remove

Sl

Sm

Sb St

Hybrid approximation Illustrations of the different transitions 120/ 134

Clients and servers example

clients

Cr
def
= (request, rrq).Ct

Ct
def
= (think, rth).Cr

servers

Sr
def
= (request, rrp).Sl + (break , rbk).Sb

Sl
def
= (log, rlg).Sr + (remove, rrm).Sm

Sm
def
= (maint, rmn).Sr + (replace, rrc).Sr

Sb
def
= (fix , rfx).St

St
def
= (test, rts).St + (compl , rcm).Sr

Hybrid approximation Illustrations of the different transitions 121/ 134

Mapping to TDSHA

continuous sequential components: Cr,Ct,Sr,Sl,Sm

integral sequential components: Sb, St

population vector: (#Cr,#Ct,#Sr,#Sl,#Sm,#Sb,#St)

PEPA is conservative: both NC = #Cr + #Ct and
NS = #Sr + #Sl + #Sm + #Sb + #St are invariant

TDSHA

modes: (#Sb,#St) ∈ {0, . . . ,NS} × {0, . . . ,NS}
variables: (XCr,XCt,XSr,XSl,XSm)
initial state: ((#Sb,#St), (#Cr,#Ct,#Sr,#Sl,#St))
continuous and stochastic transitions

Hybrid approximation Illustrations of the different transitions 122/ 134

Mapping to TDSHA

continuous sequential components: Cr,Ct,Sr,Sl,Sm

integral sequential components: Sb, St

population vector: (#Cr,#Ct,#Sr,#Sl,#Sm,#Sb,#St)

PEPA is conservative: both NC = #Cr + #Ct and
NS = #Sr + #Sl + #Sm + #Sb + #St are invariant

TDSHA

modes: (#Sb,#St) ∈ {0, . . . ,NS} × {0, . . . ,NS}
variables: (XCr,XCt,XSr,XSl,XSm)
initial state: ((#Sb,#St), (#Cr,#Ct,#Sr,#Sl,#St))
continuous and stochastic transitions

Hybrid approximation Illustrations of the different transitions 123/ 134

Mapping to TDSHA

continuous sequential components: Cr,Ct,Sr,Sl,Sm

integral sequential components: Sb, St

population vector: (#Cr,#Ct,#Sr,#Sl,#Sm,#Sb,#St)

PEPA is conservative: both NC = #Cr + #Ct and
NS = #Sr + #Sl + #Sm + #Sb + #St are invariant

TDSHA

modes: (#Sb,#St) ∈ {0, . . . ,NS} × {0, . . . ,NS}
variables: (XCr,XCt,XSr,XSl,XSm)
initial state: ((#Sb,#St), (#Cr,#Ct,#Sr,#Sl,#St))
continuous and stochastic transitions

Hybrid approximation Illustrations of the different transitions 124/ 134

Continuous transitions between continuous components

Sr
(request,rrp ·#Sr)−−−−−−−−−−→? Sl

continuous transition: flow is determined by ODEs

0

1

2

3

4

#

Sb St Sr Sl Sm

((#Sb,#St), (0, 0,−1, 1, 0), rrp ·#Sr, request)

Hybrid approximation Illustrations of the different transitions 125/ 134

Continuous transition at a discrete component

St
(test,rts ·#St)−−−−−−−−→? St

continuous transition: no flow because single component

0

1

2

3

4

#

Sb St Sr Sl Sm

((#Sb,#St), (0, 0, 0, 0, 0), rts ·#St, request)

Hybrid approximation Illustrations of the different transitions 126/ 134

Discrete transitions between discrete components

Sb
(fix ,rfx ·#Sb)−−−−−−−→? St

stochastic transition: unit quantity is shifted

0

1

2

3

4

#

Sb St Sr Sl Sm

((#Sb,#St), (#Sb − 1,#St + 1), true, true, rfx ·#Sb, fix)

Hybrid approximation Illustrations of the different transitions 127/ 134

Discrete transition from discrete to continuous component

St
(compl ,rcm·#St)−−−−−−−−−−→? Sr

stochastic transition: unit quantity is shifted

0

1

2

3

4

#

Sb St Sr Sl Sm

((#Sb,#St), (#Sb,#St − 1), true,R, rcm ·#St, compl) with
R = (X ′Sr = XSr + 1)

Hybrid approximation Illustrations of the different transitions 128/ 134

Discrete transition from continuous to discrete component

Sr
(break,rbk ·#Sr)−−−−−−−−−→? Sb

stochastic transition: unit quantity is shifted proportionally

0

1

2

3

4

#

Sb St Sr Sl Sm

((#Sb,#St), (#Sb + 1,#St), true,R, rbk ·#Sr, break) with
R = (X ′Sr = XSr − zr) ∧ (X ′Sl = XSl − zl) ∧ (X ′Sm = XSm − zm)
and zr + zl + zm = 1

Hybrid approximation Illustrations of the different transitions 129/ 134

Discrete transition between continuous components

Sm
(maint,rmn·#Sm)−−−−−−−−−−→? Sr

stochastic transition: unit quantity is shifted proportionally

0

1

2

3

4

#

Sb St Sr Sl Sm

Hybrid approximation Illustrations of the different transitions 130/ 134

Discrete transition between continuous components

((#Sb,#St), (#Sb,#St), true,R, rmn ·#Sm,maint) where
R = (X ′Sr = XSr−zr +1)∧(X ′Sl = XSl−zl)∧(X ′Sm = XSm−zm)
and zr + zl + zm = 1

0

1

2

3

4

#

Sb St Sr Sl Sm

Hybrid approximation Illustrations of the different transitions 131/ 134

Continuous determinstic simulation

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50

Time

#Sr
#Sl

#Sm
#Sb
#St
#Ct

Hybrid approximation Illustrations of the different transitions 132/ 134

Hybrid simulation

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50

Time

#Sr
#Sl

#Sm
#Sb
#St
#Ct

Hybrid approximation Illustrations of the different transitions 133/ 134

Conclusions

The hybrid semantics for PEPA is a bridge between the fully
discrete approach and the deterministic approach of fluid
approximation.

The numerical results suggest that hybrid simulation may
yield accurate results faster than full stochastic simulation

Hybrid approximation Illustrations of the different transitions 134/ 134

Conclusions

The hybrid semantics for PEPA is a bridge between the fully
discrete approach and the deterministic approach of fluid
approximation.

The numerical results suggest that hybrid simulation may
yield accurate results faster than full stochastic simulation

	Adequacy of Fluid Approximation
	Hybrid approximation
	Example
	Illustrations of the different transitions

