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Introduction

All approximation techniques introduce errors and as modellers we
should always be conscious of this.

Generally we are willing to trade some accuracy for efficiency or
even tractability.

But we should remain aware that there will be cases for which the
approach is inappropriate because too much error is introduced.
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Adequacy of fluid approximation

Recall that Kurtz's theorem only tells us that the behaviour of the
deterministic system (ODEs) and stochastic system (CTMC) will
be the same when the total population approaches infinity in a
scaled way.
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Adequacy of fluid approximation

Recall that Kurtz's theorem only tells us that the behaviour of the
deterministic system (ODEs) and stochastic system (CTMC) will
be the same when the total population approaches infinity in a
scaled way.

It does not tell us how large an N is big enough to count as infinity.
Moreover the existing error bounds by Darling and Norris are

extremely loose, and so do not help us to predict how big N should
be.
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Fluid approximation of moments

In previous lectures we have seen how a set of ODEs can be
derived from a PEPA model.

The ODEs approximate the expectation of the population counts
for each derivative, i.e. the first moment.

Bradley and Hayden from Imperial College have generalised this
approach to construct sets of ODEs to also approximate higher
moments.

This offers more information about the distribution of the
population count, rather than simply its expectation.



Example model

Cthinking — (th/nk rt) requesting
def
Crequesting = (feq’ rC) Cthmkmg
def
Sidle = (req, rs) Sloggmg
def
SIogging = (/Og 1 l) idle

s = Sidle[ns] B Cthinking[nC]
{req}



Example model

Cthinking — (thmk rt) requesting
def
Crequesting = (feq’ rC) Cthmkmg
def
Sidle = (req, rs) Sloggmg
def
Slogging = (/Og, I’/) idle

CS = Sielns) 2 Coninkinglne]
{req}

For some parametrizations of this model, the model's behaviour
can accurately be characterized by the fluid flow approximations of
its moments. However, for others, the moments are not sufficient
to capture the model’s behaviour, highlighting the danger of
relying only on the results of fluid flow analysis.
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Transitions into and out of a typical state

(S +1,5 —1,CG —1,C +1)
(requmin(rs X (Si[+ 1), re % (G + 1))
(Si,S, G +1,C6 —1) (Si,S, G —1,C +1)
(think,re x (Ct 4+ 1)) (think,re x (Ct))
(Si, S, Ce, Cr)

(log,rj x (S + 1)) (log,r; x (S))

3

(Si—1,5+1,C,C) (reg,min(rs X (5;), re X (Cr))) (Si+1,85 —1,C, )

Y
(§;—1,5+1,C +1,C — 1)
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Transitions into and out of a

typical state

(§;+1,5 —1,CG —1,C +1)

(req,min(rs X (S;
(5,8, G +1,G —1)

(think,re x (Ct 4+ 1))

+1), re X (G + 1))
(Sis S, G — 1, G+ 1)

(think,re X (Ct))

17/ 134

(Si, S15 Ct, Cr)

(log,rj x (S + 1)) (log,r; x (S))

3

(Si—1,5+1,C,C) (req,min(rs X (Si+1,85 -1,C, )

(i), re x (Cr)))

Y
(§;—1,5+1,C +1,C — 1)

This view of the system is the basis of generating the ODEs for the
moments of the system.



Chapman-Kolmogorov equations

d ps;.s,.c..c)(t) _
dt
+(Ce +1) X re X ps; s, co+1,6,—1)(t)
+ (S +1) x n X pis;—1.541,¢.,¢,) ()
+min( (S +1) x rs , (G +1) X re ) X prs41,5-1,6—1,6,+1) ()

—min( $; xrs , G X re ) X pis; 5.6 ()

=S xnxpgs,s,c.,c)(t)

— Ce X re X ps, s,.c..6) (1)

One variable/equation for every state of the system.



First moment approximation

d E[C/](1) ) Cr X ps;.s,.c..c)(t)

dt dt
(Si, S, Ce, C)eD

=+ Z Ce X re X ps; s,.¢.c) (t)
<Si75/7 Ct7 C/>€]D)

— Z min(5,- X rs, Cp X rC) X P(ShS,,Ct,C,)(t)
(Si, S, Ce, C)eD

= + re x E[G](t) — E[min(S; x 5, G, x ro)](2).

One variable/equation for each component of the state vector.



First moment approximation

d E[C/](1) ) Cr X ps;.s,.c..c)(t)

dt dt
(Si, S, Ce, C)eD

=+ Z Ce X re X ps; s,.¢.c) (t)
<Si75/7 Ct7 C/>€]D)

— Z min(5,- X rs, Cp X rC) X P(ShS,,Ct,C,)(t)
(Si, S, Ce, C)eD

= + rn X E[C](t) — E[min(S; x rs, Cr X rc)](2).
One variable/equation for each component of the state vector.

Note E[min(S; x rs, G, X rc)].



First moment approximation

Approximating E[min(S; x rs, C, X rc)| with
min(E[S; x rs], E[C, % rc]) = min(rs x E[Si], re x E[C/]).

% = —r x E'C(t) + min(re x E'C(t), rs x E'Si(t))
% = —min(re x E'C(t), rs x E'Si(t)) + re x E'Cy(2)
% = —min(re x E'C(t), rs x E'S;(t)) + r x E'S(t)
% =+ min(re x E'C,(t), rs x E'Si(t)) — n x E'S/(t)

One variable/equation for each component of the state vector.



Parameterisation 1

Cthinking & (thmk rt) requesting
Crequesting d:ef (reqa rc) Cthmkmg
Sidle & (req7 rs) Sloggmg
Slogging & (/Og, rl) idle

CS d:ef S,-d,e[ns] =3} Cthinking[nc]
{req}



Parameterisation 1

def
Cthinking = (thmk rt) Crequesting
def
Crequesting = (req7 rc) Cthmkmg
def
Side = (req, rs) Sloggmg
del
5logging - (/Og, I’/) idle
def
CS = Sigelns] 5 Ceninking[ne]
{req}
Parameter Value Description
rs 500 On average, it takes 1/500th of an hour for a server to initiate
a communication link with a client.
r 120 On average, it takes 1/120th of an hour for a server to process a request.
cr 2 On average, it takes 1/2 of an hour for a client to initiate a
communication link with a server.
ct 0.06 On average, it takes 1/0.06th of a hours for a client to think.
[ ns [ 10 [ Total population of servers. |

[ ne [ 10000 [ Total population of clients. ]
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Distribution of C, found by SSA
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Mean and std deviation found via fluid approximation
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Some numerical results

L o [ 3 [ 4[5 [ 6 [ 7 | 8 ]9 |10
FFA | 5645 | 4103 | 2741 | 12003 | 322 | 322 | 322 | 322
'C. | 5644 | 4192 | 2740 | 1290 | 490 | 384 | 349 | 335
Err(%) | 0.01 | 0.01 | 0.03 | 004 | 34 | 16 | 7.7 | 38
FFA | 6062 70 | 78.26 | 8573 | 17.66 | 17.66 | 17.66 | 17.66
'C. 6045 | 6945 | 78.79 | 865 | 36.00 | 23.49 | 19.84 | 18.72
Err(%) | 0.26 | 0.5 | 067 | 00 | 523 | 2520 | 1144 | 56

E[C]
<
O
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<
e




Some numerical results

L o [ 3 [ 4[5 [ 6 [ 7 | 8 ]9 |10
FFA | 5645 | 4103 | 2741 | 12003 | 322 | 322 | 322 | 322
'C. | 5644 | 4192 | 2740 | 1290 | 490 | 384 | 349 | 335
Err(%) | 0.01 | 0.01 | 0.03 | 004 | 34 | 16 | 7.7 | 38
FFA | 6062 70 | 78.26 | 8573 | 17.66 | 17.66 | 17.66 | 17.66
'C. 6045 | 6945 | 78.79 | 865 | 36.00 | 23.49 | 19.84 | 18.72
Err(%) | 0.26 | 0.25 | 067 | 00 | 523 | 2520 | 1144 | 56
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Modified model

Cthinking — (th’nk rt) requesting
Crequesting d:ef (feq, rC) Cth/nk/ng
Sidle dZEf (req, rs) Sloggmg + (brk rb) Sbroken
Slogging d:ef (/Oga rl) Sldle
Sbroken & (f’X ff) idle

cs & Sidle[ns] B2 Cthinking[”C]
{req}
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More numerical results

[ T__ns 3 4 5 6 7 8 9 10 %) 14 16 18
— |[_F.FA_ | 7119 | 6159 | 5199 | 4239 | 3279 | 2319 | 1350 | 309 | 243 243 243 243
g M. C. | 7156 | 6177 | 5236 | 4205 | 3387 | 2599 | 1075 | 1460 | 843 533 378 309
= |[Em(%) | 06 02 07 T3 | 308 | 1077 | 311 | 726 | 701 | 544 | 357 21
— [[_FFA._ | 1240 | 1432 | 1601 | 1753 | 1894 | 2025 | 2148 | 0950 | 1542 | 1542 | 1542 | 154
S M.C__| 1245 | 1420 | 1600 | 1756 | 1808 | 1792 | 1656 | 1456 | 1048 | 713 470 314

® |[Em(%) | 042 | 079 | 052 | 025 | 47 3 29 | 341 9% 97 96 9%
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More numerical results

[ T__ns 3 4 5 6 7 8 9 10 %) 14 16 18
— |[_F.FA_ | 7119 | 6159 | 5199 | 4239 | 3279 | 2319 | 1350 | 309 | 243 243 243 243
g M. C. | 7156 | 6177 | 5236 | 4205 | 3387 | 2599 | 1075 | 1460 | 843 533 378 309
= |[Em(%) | 06 02 07 T3 | 308 | 1077 | 311 | 726 | 701 | 544 | 357 21
— [[_FFA._ | 1240 | 1432 | 1601 | 1753 | 1894 | 2025 | 2148 | 0950 | 1542 | 1542 | 1542 | 154
S M.C__| 1245 | 1420 | 1600 | 1756 | 1808 | 1792 | 1656 | 1456 | 1048 | 713 470 314

® |[Em(%) | 042 | 079 | 052 | 025 | 47 3 29 | 341 9% 97 96 9%




Distribution of C, found by SSA
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Mean and std deviation found via fluid approximation
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Motivation

We have seen that the fluid approximation can be an accurate way
to estimate the population counts and some performance measures
for some systems in which we have large populations interacting.
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Motivation

We have seen that the fluid approximation can be an accurate way
to estimate the population counts and some performance measures
for some systems in which we have large populations interacting.

However, we have also seen that there are cases where this
technique should not be used because it will lead to inaccurate
estimates of the performance of the system, and then simulation
becomes the best way to tackle the system.
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Motivation: combining the approaches

m The ODE-based solution is much more computationally
efficient than stochastic simulation (even when using
Gillespie's efficient SSA).

m Typically problems arise when there is a mix of some large
populations and some small, or some fast actions and some
slow.

m So it is natural to consider if there might be a way to combine
the approaches.

m In particular we aim to resort to the less efficient discrete
approach for those parts of the model where it is strictly
necessary.
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Motivation: Alternative Representations

ODEs population view

Large
PEPA model

Stochastic
Simulation
CTMC

individual view



Motivation: Alternative Representations

ODEs

Large
PEPA model

TDHSA hybrid view

Stochastic
Simulation
CTMC
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Making a hybrid approximation

Hybrid is a term which is used to refer to models in which some
state variables are discrete and some state variables are continuous.

Of course in a PEPA model all state variable are discrete — they
are the population counts which tell us in each state how many of
each derivative type we have.

In the fluid approximation we choose to approximate all of these
discrete variables by continuous ones to obtain a set of ODEs.

In the hybrid approximation we choose to approximate some
populations as continuous whilst keeping the others discrete.

The result is a set of discrete states each of which has an
associated set of ODEs.
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PDMPs and TDHSA

There are many different formalisms that may be used to specify
this type of hybrid system (discrete states with sets of ODEs).

Formally we will work in terms of stochastic processes termed
Piecewise Deterministic Markov Processes (PDMP).

But these are little difficult to work with directly, so we will use a

form of automata, called Transition Driven Stochastic Hybrid
Automata (TDSHASs) as an intermediary.

PEPA — TDSHA — PDMP
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Piecewise deterministic Markov processes

m class of stochastic processes
m continuous trajectories over subsets of RIX|
® instantaneous jumps at boundaries of regions

m stochastic jumps when guards are true

ode trajectories
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Piecewise deterministic Markov processes

m class of stochastic processes
m continuous trajectories over subsets of RIX|
® instantaneous jumps at boundaries of regions

m stochastic jumps when guards are true

ode trajectories

® jumps to boundaries are prohibited
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Transition-driven stochastic hybrid automata (TDSHA)

m subset of piecewise deterministic Markov processes (PDMPs)
m set of (control) modes: Q = {q1,...,qm}

m set of variables: X = {Xi,..., X}

m set of events/actions: A = {a1,as,...}

m initial state: (g, (x1,...,%n))
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Transition-driven stochastic hybrid automata (TDSHA)

® instantaneous transitions

m source mode, target mode, event name

m guard: activation condition over variables

m reset: function determining new values of variables
m priority/weight: to resolve non-determinism

m stochastic transitions

m source mode, target mode, event name

m rate: function defining speed of transition

m guard: activation condition over variables

m reset: function determining new values of variables

m continuous transitions (flows)
m source mode
m vector specifying variables involved
m Lipschitz continuous function
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Transition-driven stochastic hybrid automata (TDSHA)

m continuous behaviour in a mode
m consider all continuous transitions in that mode
m trajectory is given by solution of dX/dt =3 s- f(X)

m instantaneous behaviour: fire when guard becomes true

m stochastic behaviour: fire according to rate

m product of TDSHAs
m pairs of modes and union of variables
m combining transitions
(with conditions on resets and initial values)
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BT7T=T1® T2 has Q= Q1 x @ and X = X; UX,
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TDSHA synchronised product

BT7T=T1® T2 has Q= Q1 x @ and X = X; UX,

m continuous transitions: extend vector to cover X
m a¢ L (qg1,q2) has every transition from g; and from g,
m a < L: (g1, g2) has every transition from g; and g» with a and
new function is PEPA cooperation rate (i.e. bounded capacity)

m stochastic transitions:

m a¢ L: (q1,q2) has every transition from ¢; and from g

m a € L: (g1, g2) has every transition that both g; and g, have
with a, new rate is PEPA cooperation rate and conjunction of
resets is taken
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Overview of the mapping

m PEPA has two-level syntax

m sequential components: S = (a,r).S| S+ S
m parallel components: P P DF | S

: NG (5 )
m assume sequential components: S =} 7 ,(aj, rj).S

B mapping

p s, M s M ... o> g

T = Ti O T D - O, Tn
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Mapping sequential components

A decision must be made with respect to each derivative of each
component about whether its count is to be treated as a discrete
or a continuous variable.

The decision will be based on a decision about each action type.

We rely on the modeller to decide for each action type whether it
represents a continuous action or a discrete action.

Any derivative that enables a continuous action will be treated as a
continuous variable in the state vector.
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A client/server system with breakdowns and repairs

S, ¥ (request, rrepiy).Si + (break, rpreak)-Sb
s (log, riog)-Sw

def .
Sp = (repair, rrepair)-Sw

u (request, ryeq). Ut
U = (think,rth,-,,k).U,

Sys = S

w {request} r[ ]
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A client/server system with breakdowns and repairs

Sw = (request, rrepy).Si + (break, rpreak).Sp
s < (log, rog)-Sw

Sh & (repair, rrepair)-Sw

U, & (request, rreq). Ut

U, ¥ (thmk Fenink)- U
Sys s, U, [N]

{request}

State Representation

w = (ws,,,ws,, Ws,, Wy, , Wy,)

Initial state is (1, 0,0, N, 0)
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In the discrete case

Sw = (request, rrepiy).Si + (break, rpreak )-Sb
S, zf (log, riog)-Sw
Sp & (repair, rrepair)-Sw
U, o (request, rreq). Ut
U & (think, renink)-Uy
Sys & S = U, [N]

Request action

request,min(1X rreppy ;N X rreq)

(1,0,0, N, 0) »(0,1,0,N — 1,1)
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In the discrete case

Sw £ (request, rrepi,).Si + (break, rireat)-Sb

5, = (/og, rlog)
So = (repair, rrepair)-Sw
U, &t (request, rreq). Ut
U, oef ( hmk fthmk) Ur
def
SyS = S {request } U,[N]

break,l X I'break

(1,0,0, N, 0) » (0,0,1, N,0)
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In the continuous case

Sw = (request, rrepiy).Si + (break, rpreak )-Sb
S, zf (log, riog)-Sw
Sp & (repair, rrepair)-Sw
U, o (request, rreq). Ut
U & (think, renink)-Uy
Sys & S = U, [N]

Request action

request,min(1X rreppy ,N X rreq)

x(t) x(t) +(-1,+1,0,—-1,+1)
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In the continuous case

Sw £ (request, rrepi,).Si + (break, rireat)-Sb

5, = (/og, rlog)
So = (repair, rrepair)-Sw
U, &t (request, rreq). Ut
U, oef ( hmk fthmk) Ur
def
SyS = S {request } U,[N]

break,l X I'break

x(t) > x(t) +(—1,0,+1,0,0)
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In the continuous case

Sw = (request, rrepiy).S) + (break, rivesk)-Sh
S < (log, riog)-Sw

Sy L (repair, Trepair)-Sw

U Z (request, req).Us

U, ot (think, renink)- Uy
Sys & s, Ur[N]

{request}

ODE for S,

dXsW (t)

dr = _min(XSW(t)rreplya XUr(t)rreq_SSW(t)rbreak+XS,(t)rlog+X5r(t)rn
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Hybrid interpretation

Sw & (request, rrepiy).Si + (break, roreak)-Sp

S; = (log, log)-Sw

Sy = (repair, rrepair)-Sw
U % (request, freq)- Ut
U & (think, renink)-Uy
Sys s, U, [N]

{ request }

We may assume that the activities break and repair occur at a
much lower frequency and a much lower rate than the other
activities in the model.
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Hybrid interpretation

So for our hybrid approximation we treat these activities as discrete
and the other activities as continuous.
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Hybrid interpretation

So for our hybrid approximation we treat these activities as discrete
and the other activities as continuous.

m A, = {request, log, think}
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Hybrid interpretation

So for our hybrid approximation we treat these activities as discrete
and the other activities as continuous.

m A, = {request, log, think}

m Ay = {break, repair}
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Hybrid interpretation

So for our hybrid approximation we treat these activities as discrete
and the other activities as continuous.

m A, = {request, log, think}

m Ay = {break, repair}

m X =(Xs,,Xs,, Xu,, Xu,) (continuous variables)
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Hybrid interpretation

So for our hybrid approximation we treat these activities as discrete
and the other activities as continuous.

m A, = {request, log, think}

m Ay = {break, repair}

m X =(Xs,,Xs,, Xu,, Xu,) (continuous variables)

mgo=(0,2,N)
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Hybrid interpretation

So for our hybrid approximation we treat these activities as discrete
and the other activities as continuous.
m A, = {request, log, think}
m Ay = {break, repair}
m X =(Xs,,Xs,, Xu,, Xu,) (continuous variables)
mgo=(0,2,N)
mgo=(1,1,N)
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Hybrid interpretation

So for our hybrid approximation we treat these activities as discrete
and the other activities as continuous.

m A, = {request, log, think}

m Ay = {break, repair}

m X =(Xs,,Xs,, Xu,, Xu,) (continuous variables)

mgo=(0,2,N)
u QO:(lalaN)
® qo = (2,0,N)
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Fluid Dynamics: Working servers vs. time
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Stochastic Dynamics: Working servers vs. time

0s E

0.6 E

1} 20 40 60 an 100 120
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Hybrid Dynamics: Working servers vs. time

04| 1

0z E
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Numerical Evaluation: set up

(request, scale x 1000).S; + (break, rpreak)-Sp
(log, scale x 2000).S,,
S, ¥ (repair,0.05).5,,
(request, scale x 100).U;
(think, scale x 10).U,
Sys & Su[Ns] DI U [N]

{ request}
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Numerical Evaluation: set up

(request, scale x 1000).S; + (break, rpreak)-Sp
(log, scale x 2000).S,,
S, ¥ (repair,0.05).5,,
(request, scale x 100).U;
(think, scale x 10).U,
Sys & Su[Ns] DI U [N]

{ request}

m scale € {0.1,10.0,100.0}
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Numerical Evaluation: set up

(request, scale x 1000).S; + (break, rpreak)-Sp
(log, scale x 2000).S,,
Sy = (repair,0.05).5,,
(request, scale x 100).U;
U: £ (think, scale x 10).U,
Sys £ SwlNs] 21 Ur[NC]

{ request}

m scale € {0.1,10.0,100.0}
m Ns e {2,6}



Hybrid approximation Example

Numerical Evaluation: set up

(request, scale x 1000).S; + (break, rpreak)-Sp
(log, scale x 2000).S,,
Sy = (repair,0.05).5,,
(request, scale x 100).U;
U: £ (think, scale x 10).U,
Sys £ SwlNs] 21 Ur[NC]

{ request}

m scale € {0.1,10.0,100.0}
m Ns e {2,6}
= Nc € {10,100, 300}

103/ 134
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Numerical Evaluation: set up

For each model configuration we calculated the steady-state
probability of having 0 or 1 broken servers.

Errors were computed with respect to the numerical solution of the
Markov chain.



Hybrid approximation

Example

Numerical Evaluation: results

Ne
10
100
300
10
100
300
10
100
300
10
100
300
10
100
300
10
100
300

Ns

oo NN NN

scale
0.1
0.1
0.1
0.1
0.1
0.1
10.0
10.0
10.0
10.0
10.0
10.0
100.0
100.0
100.0
100.0
100.0
100.0

X =0 X*=1

1.82%
0.67%
0.70%
6.44%
2.35%
2.82%
0.54%
0.08%
0.80%
2.49%
3.86%
1.30%
0.13%
0.35%
0.01%
2.19%
2.14%
0.09%

3.58%
1.35%
3.42%
0.52%
0.89%
1.53%
0.96%
0.21%
3.20%
2.64%
1.39%
1.14%
0.35%
1.24%
0.06%
0.96%
1.81%
3.98%

H
267
1099
529
352
566
317
547
827
252
485
623
876
204
589
438
217
301
592

S

38
69

18

25
253
2618
5092
154
1298
5112
3186
20344
51682
1100
13207
39956

S/H
1.2E-2
3.5E-2
1.3E-1
7.0E-3
3.1E-2
8.0E-2
4.6E-1
3.2E+0
2.0E+1

3.1E-1
21E+0
5.8E+0
1.6E+1
3.4E+1
1.2E+2
5.1E+0
4.4E+1
6.7E+1
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Ongoing issues

m We currently assume that the modeller is responsible for
partition action types and derivatives.
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Ongoing issues

m We currently assume that the modeller is responsible for
partition action types and derivatives.

m There is an issue of how to make transitions from continuous
state to discrete states in the general case: we have a solution
but it may not be the best one.
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lllustrative example

Since both activities and components can be classified as discrete
or continuous there are several different cases that can arise in the
evolution of a model.



Hybrid approximation lllustrations of the different transitions 109/ 134

lllustrative example

Since both activities and components can be classified as discrete
or continuous there are several different cases that can arise in the
evolution of a model.

The example presented in the following slides is constructed to
illustrate each of the different cases.
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lllustrative example

Since both activities and components can be classified as discrete
or continuous there are several different cases that can arise in the
evolution of a model.

The example presented in the following slides is constructed to
illustrate each of the different cases.

It illustrates some of the problems that can occur and our current
solution to these problems.
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Clients and servers example

m clients

Cr = (request, r,q).Ct

ct ¥ (think, rep).Cr
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lllustrations of the different transitions

Clients and servers example

m clients

cr & (request, ryq).Ct
Ct £ (think, ry).Cr

W Servers

Sr £ (request, rrp).Sl + (break, rpx).Sb
SI = (log, rig).Sr + (remove, ryy).Sm
Sm £ (maint, rmp).Sr + (replace, r,c).Sr
Sp & (fix, re).St

St = (test, rs).St + (compl, rem).Sr
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Clients and servers example

m clients

H Servers

replace/ /maint remove
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Clients and servers example

m clients

H Servers

replace/ /maint remove
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Clients and servers example

m clients

H Servers

replace/ /maint remove
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Clients and servers example

m clients

H Servers

replace/ /maint remove

@ test
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Clients and servers example

m clients

H Servers

replace//maint remove

@ test
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Clients and servers example

m clients

H Servers

replace//maint remove

@ test
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Clients and servers example

m clients

H Servers

replace//maint remove

@ test
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Clients and servers example

m clients

Cr £ (request, Irg).Ct
Ct ¥ (think, re).Cr

m servers
Sr £ (request, rrp).S1+ (break, rp).Sb
Sl = (log, ng).Sr + (remove, rym).Sm
Sm % (maint, rmn).St + (replace, ryc).Sr
Sp & (fix, re). St
St = (test, ris).St + (compl, rem).St
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Mapping to TDSHA

m continuous sequential components: Cr, Ct, Sr, S, Sm

m integral sequential components: Sb, St
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Mapping to TDSHA

m continuous sequential components: Cr, Ct, Sr, S, Sm
m integral sequential components: Sb, St

m population vector: (#Cr, #Ct, #Sr, #S1, #Sm, #Sb, # St)
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lllustrations of the different transitions

Mapping to TDSHA

m continuous sequential components: Cr, Ct, Sr, S, Sm

m integral sequential components: Sb, St

m population vector: (#Cr, #Ct, #Sr, #S1, #Sm, #Sb, # St)

m PEPA is conservative: both N¢ = #Cr + #Ct and
Ns = #Sr + #S1 + #Sm + #5b + #St are invariant

m TDSHA

modes: (#5Sb, #5t) € {0,...,Ns} x {0,..., Ns}
variables: (XCI'7 XCta XSI'7 XSlv XSIn)
initial state: ((#Sb, #St), (#Cr, #Ct, #Sr, #S1, #St))

continuous and stochastic transitions

123/ 134
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Continuous transitions between continuous components

(request, rrp-#Sr)
_—

» ol

m continuous transition: flow is determined by ODEs
# — -

m Sr

Sb St Sr Sl Sm

m ((#Sb,#5t),(0,0,—1,1,0), ryp - #Sr, request)
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Continuous transition at a discrete component

(test, res-#St)
_—

m St « St

m continuous transition: no flow because single component
# — -
4

Sb St Sr S1 Sm

m ((#Sb,#5t),(0,0,0,0,0), rts - #St, request)

125/ 134
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Discrete transitions between discrete components

u Sp s #Sh) o,

m stochastic transition: unit quantity is shifted
# - -

Sb St Sr S1 Sm

m ((#Sb, #5St), (#Sb — 1, #St + 1), true, true, rs. - #5b, fix)

126/ 134
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Discrete transition from discrete to continuous component

(compl,rem-#St)
_—

m St « Sr

m stochastic transition: unit quantity is shifted
# - -

Sb St Sr Sl Sm

m ((#Sb, #St), (#Sb, #St — 1), true, R, rey - #St, compl) with
R = (Xér =X + 1)



Hybrid approximation

Discrete transition from continuous to discrete component

(break, rpy-#Sr) . Sh

m Sr

m stochastic transition: unit quantity is shifted proportionally

lllustrations of the different transitions

Sb St

m ((#Sb, #St), (#Sb + 1, #5t), true, R, rpy - #Sr, break) with
R = (X&{ = Xsr — z:) A (XY = Xs1 — 2) A(X§,, = Xsm — Zm)

and z, + zj+ z,, =1

1l

Sr

Sl

Sm
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Discrete transition between continuous components

(maint,rmn-#Sm)
_—

» St

m stochastic transition: unit quantity is shifted proportionally
# - -

m Sm
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Discrete transition between continuous components

m ((#Sb, #St), (#Sb, #5St), true, R, rmp - #5m, maint) where
R = (Xér = XSr—Zr+1)/\(Xé1 = XSl_ZI)/\(Xém = Xsm—zm)
and z, + z7+ z,, =1
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Continuous determinstic simulation
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Time
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Hybrid simulation

30
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20

20 30 40 50
Time
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Conclusions

m The hybrid semantics for PEPA is a bridge between the fully
discrete approach and the deterministic approach of fluid
approximation.
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Conclusions

m The hybrid semantics for PEPA is a bridge between the fully
discrete approach and the deterministic approach of fluid
approximation.

m The numerical results suggest that hybrid simulation may
yield accurate results faster than full stochastic simulation



	Adequacy of Fluid Approximation
	Hybrid approximation
	Example
	Illustrations of the different transitions


