
Eriskay: a programming language based on

game semantics

John Longley

Laboratory for Foundations of Computer Science

University of Edinburgh

Joint work with Nicholas Wolverson

An experiment in semantically motivated language design.

Idea: Take some simple and beautiful mathematical model of

computation, and design a programming language to fit it.

LCF, domain theory −→ SML, functional fragment
(Scott, 1969) (Milner et al.)

Simple game model −→ Eriskay
(Lamarche, 1992) (higher-order OO language)

Goal: Do better than SML, using more recent semantic ideas!

1

The semantic paradigm: Programs Are Strategies

(Compare SML, Haskell: Programs Are Functions.)

A strategy for a simple Java-style object:

����
3 ����

4 ����
5

����
7 ����

8 ����
9

�
�

�
�

�

3 4
@

@
@

@
@

5

�
�

�
�

�

3 4
@

@
@

@
@

5

..........

....

...

....

...

� @ � @ � @

� @

Object adder = new Object() {
private int total = 0;
public int add (int i) {
total += i; return total
}

}

More complex types ⇒ more complex games!

Game semantics fits naturally with OO thinking, in that it em-

bodies both data abstraction and a reactive view of computation.

2

Motivations

• Clean semantic basis aids reasoning about programs, e.g.

– traditional program correctness (input/output relations)

– temporal properties of objects

– observational equivalences (e.g. for class implementations).

• Improved safety properties. E.g. get better static control of

exceptions / continuations / name generation in the presence

of higher-order store.

• Powerful new programming constructs, e.g. primitives for

coroutining and backtracking; higher order class constructs.

3

‘Real’ or ‘toy’ language?

Eriskay is intended as

• a showcase for semantically inspired language innovations

• a vehicle for realistic programming experiments

• a platform for research in program verification.

‘Full feature’, but mathematical purity is not compromised!

We identify a sublanguage called Lingay, which:

• contains most of the innovative new features

• is suitable for metatheoretical study

• omits polymorphism, type inference, other mod cons.

4

Where we’ve got to . . .

• Formal definition of Lingay complete (41 pages), including

heap-based operational semantics.

• Working implementation of Lingay available online (a few

gaps just now).

• Denotational semantics based on games. (Implementation is

a direct animation of this: strategies ∼ lazy trees.)

• Proofs of adequacy, definability, full abstraction: substantial

ingredients now in place, more to come.

5

A simple game model (Lamarche, Curien)

Write Alt(X, Y) for the set of finite alternating sequences x0y0x1y1 · · ·

A game G consists of

• disjoint countable sets OG, PG of opponent and player moves,

• a non-empty prefix-closed set LG ⊆ Alt(OG, PG) of legal plays.

A strategy for G is a function f : Lodd
G ⇀ PG such that

• if f(s) = y then sy ∈ LG,

• if syx ∈ dom f then s ∈ dom f .

Roughly, types are modelled by games, and terms by strategies.

(Actually, for CBV, types are modelled by set-game pairs (A, G).)
6

Structure in the Lamarche model

It’s easy to interpret the Linear Logic connectives ⊗,−◦,& as
constructions on games.

For ! there are several choices. We work with a rather generous
‘!’ embodying repetitive backtracking. Weaker !’s correspond to
sublanguages of Lingay that admit simpler reasoning principles.

The key to modelling stateful behaviour is the contraction strat-
egy of type !G −◦ !G⊗!G.

We can also model much more, e.g.

• recursion at term and type levels,

• subtyping and polymorphism (a bit more than F<:).

7

Interpretation of objects

The type of a Lingay object is essentially its ‘interface’:

{m1 : ρ1 -> ρ′1, · · · mn : ρn -> ρ′n}
As proposed in Abramsky et al 1998, we model this by the game⊗

i

!([[ρi]]−◦[[ρ′i]]⊥)

Rather like trace semantics (Jeffrey/Rathke, Abrahám/Steffen),
but compositional.

At the heart of our approach is a semantic treatment of data
abstraction, whereby a strategy of the above type is constructed
from a representing strategy, e.g. of type

[[σ]] ⊗
⊗
i

!(([[ρi]]⊗ [[σ]]) −◦ ([[ρ′i]]⊗ [[σ]])⊥)

8

Types in (core) Lingay

τ ::= int | bool | τ1−o τ2 | !τ

| {k1 : τ1, . . . ,kn : τn}
| [|k1 : τ1, . . . ,kn : τn|]

| rectype t => τ

| classimpl τf,τm,τk end

We design the language so that, for all these types, every com-
putable strategy for the corresponding game are expressible in
Lingay. This requirement has led to the discovery of interesting
new language primitives, e.g. for coroutining and backtracking.

Proof uses the fact that every type is a computable retract of
the universal type !(int -o int).

9

Limitations of the game model

Our simple game setting can’t directly model:

• Name generation, e.g. references with equality

• Cyclic heap structures

• Unrestricted higher order store.

However, encapsulated uses of these features are fine, and are
provided for by the following construct:

reftype r for T in

... val x = ref r e ...

... x = x’ ...

... deref x ...

end

This ‘controlled’ use of higher-order store also leads to better
static regulation of exceptions (more flexible than Java, safer
than SML).

10

Implementation

Our game semantics is naturally executable: the compositional

definition of [[−]] directly yields an SML function

(Lingay syntax trees) −→ (strategies)

• Not fast, but good to have a reference implementation.

• Definition uses ‘high-level’ categorical combinators.

• Can get execution traces for object interactions for free.

• Can interactively play against the strategy for a program.

11

Further work . . .

• Write some programs! Experiment with programming idioms

made possible by new language features.

• Use game semantics for reasoning about programs.

– Conduct ad hoc proofs.

– Design program logics inspired by semantics.

• Consolidate metatheoretical results.

• Complete the definition of Eriskay.

12

Conclusion

Our results so far seem to support the view that . . .

A simple mathematical model

can lead to a

harmonious language design

with some unexpected good properties.

Project website: http://homepages.inf.ed.ac.uk/jrl/Eriskay

13

