
Game semantics for an object-oriented

language

Nicholas Wolverson

Doctor of Philosophy

Laboratory for Foundations of Computer Science

School of Informatics

University of Edinburgh

2008

Abstract

This thesis investigates the relationship between object-oriented programming

languages and game models of computation. These are intuitively well matched:

an object encapsulates some internal state and presents some behaviour to the

world via its publicly visible methods, while a strategy for some game represents

the possible interactions of a program with its environment.

We work with a simple and well-understood game model. Rather than tai-

loring our model to match some existing programming language, we view the

simplicity of our semantic setting as a virtue, and try to find the appropriate

language corresponding to the model.

We define a class-based, stateful object-oriented language, and give a heap-

based operational semantics and an interpretation in our game model. At the

heart of this interpretation lies a novel semantic treatment of the phenomenon

of data abstraction. The model closely guides the design of our language, which

enjoys an intermediate level of expressivity between that of first-order and general

higher-order store.

The agreement between the operational and game interpretations is verified

by a soundness proof. This involves the development of specialised techniques

and a detailed analysis of the relationship between the concrete and abstract

views. We also show that definability and full abstraction hold at certain types

of arbitrary rank, but are problematic at other types.

We conclude by briefly discussing an extended language with a control oper-

ator, along with other extensions leading to a possible core for a more realistic

programming language.

Table of Contents

1 Introduction and Motivation 10

1.1 Objects and strategies . 12

1.2 The language . 13

1.3 Characterisation of language . 15

1.4 Style of semantics . 18

1.5 OO semantics survey . 20

1.5.1 Object encodings . 20

1.5.2 Object calculi . 21

1.5.3 Trace semantics . 21

1.6 Game semantics . 23

1.6.1 Logic . 23

1.6.2 Sequential Algorithms . 24

1.6.3 PCF . 25

1.6.4 Control and state . 26

1.6.5 Names . 26

1.6.6 Choice of game model . 27

1.7 Content and structure of thesis 29

1.7.1 Overview . 30

2 Definition of categories of games 32

2.1 Simple games . 32

2.1.1 Defining strategies . 34

2.1.2 The category SG . 35

2.1.3 Copycat strategies . 35

2.1.4 Symmetric monoidal closed structure 37

2.1.5 Additive product . 38

2.1.6 Coproducts . 39

3

2.1.7 Skewed products . 40

2.1.8 Recursive types . 42

2.2 The linear exponential . 42

2.2.1 Requirements of an exponential 43

2.2.2 Linear exponential . 44

2.2.3 Dynamic copycat strategies 46

2.2.4 Exponential structure . 48

2.2.5 CPO structure and fixpoints 49

2.2.6 Universal object . 50

2.3 Well-bracketed games . 51

2.3.1 The category BG . 52

2.3.2 Structure of BG . 55

2.4 Call by value games . 56

2.4.1 Symmetric monoidal closed structure 57

2.4.2 Lift monad . 58

2.4.3 Linear exponential . 60

2.4.4 Fixpoint Operator . 61

2.4.5 Natural numbers and conditional 61

2.5 Memoisation . 62

2.5.1 Memoisation in BG . 67

2.6 Notation . 67

3 A strategy for data abstraction 69

3.1 Modelling stateful behaviour . 69

3.2 A state-threading operator . 70

3.2.1 Partial projection . 72

3.2.2 Partial application . 74

3.2.3 Pseudopromotion . 75

3.2.4 The linear “thread” operation 77

3.3 Dealing with nesting . 77

3.3.1 Branch . 79

3.3.2 The non-linear “thread” operation 80

3.4 Properties of thread . 83

3.4.1 Disciplined strategies . 83

3.4.2 Branch Property . 85

3.4.3 Thread Properties . 86

3.4.4 Pair-like methods . 92

3.5 Thread and bracketing . 94

4 An object-oriented language 96

4.1 Introducing the language . 96

4.1.1 Base Calculus . 99

4.2 Syntax and typing rules . 102

4.2.1 Typing constr . 104

4.2.2 Values . 108

4.2.3 Derived constructs . 109

4.3 Operational semantics . 109

4.4 Denotational Semantics . 119

4.4.1 Coherence . 123

4.4.2 Properties of method implementations 125

4.4.3 Heaps . 126

5 Proof of soundness 131

5.1 Choice of induction claim . 132

5.2 Various lemmas . 142

5.3 Main induction . 151

5.4 Further issues . 168

5.5 Adequacy . 169

6 Definability and full abstraction 170

6.1 Notation . 171

6.2 Coding . 172

6.3 The “interpret” programs . 173

6.3.1 Definable types . 181

6.3.2 Issues at more complex types 181

6.4 Full abstraction . 189

6.4.1 Identifying indistinguishable strategies 189

6.4.2 Definability to full abstraction 190

6.4.3 Restricted full abstraction 191

7 Possible extensions and further work 192

7.1 Applications of argument safety 192

7.2 Classes and approximation operators 194

7.3 Unfinished business . 196

7.3.1 Soundness of Larg . 196

7.3.2 Adequacy . 196

7.3.3 Intermediate state update 197

7.3.4 Linear classes . 197

7.4 Useful extensions . 198

7.4.1 Polymorphism . 198

7.4.2 Recursive types . 199

7.5 Control . 200

7.5.1 A language extension . 200

7.5.2 Interpretation in SG . 201

8 Conclusion 203

Bibliography 205

List of Figures

1.1 An example strategy . 13

1.2 A point class . 14

1.3 Class extension . 17

1.4 Extension with virtual methods 18

2.1 Memoisation . 63

3.1 Linear thread definition . 76

3.2 Behaviour of nested methods . 77

3.3 Categorisation of method calls . 79

3.4 Thread definition . 81

4.1 Core Language . 110

4.2 Common Larg and Lpair CObj and CMeth rules 111

4.3 Larg CMeth rule . 111

4.4 Lpair CMeth rule . 111

4.5 Lret CObj and CMeth rules . 112

4.6 Subtyping . 113

4.7 Derived Constructs . 114

4.8 Translation of Derived Forms . 115

4.9 Operational Semantics . 116

4.10 Denotation of Types . 129

4.11 Denotation of Subtyping . 129

4.12 Denotation of Terms . 130

5.1 Merging heap cells . 167

6.1 Language features required for interpret τ at various types τ . . . 174

6.2 Extended interpret program. 183

7

7.1 Non-well-bracketed method calls 202

Acknowledgements

Firstly I would like to thank my supervisor, John Longley, for his patience, sup-

port and guidance, and particularly his great enthusiasm towards my work. With-

out his conviction this thesis could not have come to be.

I am grateful to Gordon Plotkin and Ian Stark for serving on my progress

review panels, and for their useful comments and discussion. I would like to

thank everyone at the Laboratory for the Foundations of Computer Science for

providing a pleasant, knowledgeable and friendly environment to work in, and

in particular my occasional office-mates and badminton partners Ben Kavanagh

and Laura Korte.

I would also like to thank my parents for their support. In particular I thank

my mother for giving me some opportunities to truly unwind, and to my father

I look forward to answering the question “so what will that let him do?”. Many

thanks are due to Andrew Irish for putting up with me for the last few years,

particularly in stressful times, and for believing in me. I would also like to thank

Liz Ashton, and various friends for forcing me to relax and have some fun.

Declaration

I declare that this thesis was composed by myself, that the work contained herein

is my own except where explicitly stated otherwise in the text, and that this work

has not been submitted for any other degree or professional qualification except

as specified.

(Nicholas Wolverson)

Chapter 1

Introduction and Motivation

A high-level programming language provides an abstraction from the realities of

machine code running on some particular hardware. Of course, a programmer

needs to know how a given program will behave, and the behaviour of a reference

implementation on some particular hardware is less than useful. Traditionally a

programming language is defined by describing in natural language the intended

behaviour of the various constructs; as the language grows more powerful a lan-

guage definition often becomes a tome specifying the language in a kind of legalese

English—and even compiler writers may not interpret the definition correctly or

consistently.

An operational semantics precisely specifies program behaviour, whether as

a reference implementation on an abstract machine or more directly by struc-

tural syntactic manipulation of programs. This removes the imprecision while

retaining a clear link to practical implementations, but does not provide a con-

vincing account of what a program means. A denotational semantics defines the

meaning of programs more directly by interpreting them in some mathematical

structure. As well as a better understanding of a language one is then able to

bring mathematical tools to bear on it, for example to develop program logics

and verify their correctness. Those programmers not interested in formal program

correctness proofs can benefit from type systems and other tools arising from the

semantic analysis, and gain some confidence that their programs are correct or

at least well-behaved in some sense.

A mathematical study of semantics can also suggest new avenues in pro-

gramming language design, or areas in which better choices can be made. A

programmer will appreciate the addition of powerful or well-chosen language fea-

10

Chapter 1. Introduction and Motivation 11

tures, while the theory benefits from the elimination of undesirable “rough edges”

and general cleanliness of design. Standard ML, for example, grew out of work

in denotational semantics, although the language is defined operationally [65],

and many popular languages have taken inspiration from the field. The Eriskay

project aims to design a language inspired by recent ideas in game semantics [59],

and this thesis forms part of that work.

To be useful a model must be both easy to reason about and a good match

for the operational semantics of the language in question. At the very least

one wants the model to be computationally adequate, meaning that when the

model equates two programs, they are operationally indistinguishable. Ideally

the converse property of full abstraction also holds, so that the model does not

draw undue distinctions between programs.

Much of the early work in this area focused on the prototypical, typed func-

tional language PCF. Plotkin showed in [69] that the continuous model of PCF

is not fully abstract, but is instead fully abstract for PCF extended with a “par-

allel or” operator. Later work aimed at PCF produced the sequential algorithms

model [18], which is instead fully abstract for PCF extended with the control

operator catch [27, 28]. In a similar spirit, game models succeeded in giving

a fully abstract semantics for PCF [11, 43], retaining the notion of sequential

computation but imposing restrictions to exclude the control features.

Two approaches to achieving a fully abstract semantics are described in [33]:

• Vary the language to fit the desired model, or

• Vary the model to fit the desired language

The common situation is to have an over-precise model, in which case these

options are to add distinguishing operations to the language, or remove distinc-

tions from the model. Abramsky and Ong investigate both approaches in the

context of the lazy lambda calculus [14]—there they describe these as expansive

and restrictive respectively.

Game semantics has enjoyed success in giving full abstraction results largely

because it gives a rather precise model of sequential computation which is amenable

to the imposition of various restrictions. As well as the result for PCF, fully ab-

stract game semantics have been given for languages with continuations [52],

Idealised Algol [7], and a language with ML-style references [10]. However, the

definitions of the appropriate game models are frequently quite technical.

Chapter 1. Introduction and Motivation 12

In this thesis we take a rather more model-driven approach. Given a simple

model of games, we look for a suitable language. We feel our game model is very

natural and carries a persuasive intuition. We do start out with a general idea

of the kind of language we want—namely “object-oriented”—but the particular

language we are led to is perhaps not an obvious choice. However, programs of

our language can be quite expressive, while obeying certain desirable semantic

properties. We view this as a virtue of a semantically driven approach, and of its

ability to guide and inform language design.

1.1 Objects and strategies

In this thesis we study a small object-oriented calculus. Object-oriented program-

ming has a surprisingly long history: techniques first used in the early 1960’s [50]

were incorporated into the programming language Simula 67 [35], and further

developed in Smalltalk [38, 50]. The popularity of C++[71] brought OOP to

an even wider audience, and this trend has continued more recently with lan-

guages such as Java[41]. Aside from the practical popularity or methodological

merits of the OO paradigm, there is considerable intrinsic theoretic interest in

various aspects of OOP—not least, the challenge of giving a suitable account of

the semantics.

An object is an entity which accepts and responds to a number of messages

from its environment. These messages are drawn from a fixed set (as according

to the object’s type) and may include various data in query or response, either

primitive values (such as natural numbers) or other objects (again constrained

by the object’s type). Crucially an object need not maintain a fixed behaviour

over time, but may vary its response to repeated messages as according to some

internal state. This state is not externally visible, but instead only manifests itself

in the object’s behaviour—two objects with identical external behaviour can be

considered to be equivalent, regardless of implementation details. We refer to

this idea as data abstraction.

Figure 1.1 represents the behaviour of an object with a single int ⇒ int

method. Labelled edges represent messages received by the object from its en-

vironment (incoming method calls), while nodes represent the response (return

value). Clearly any object with this external interface can be represented by such

a tree, with no reference to how its behaviour was generated.

Chapter 1. Introduction and Motivation 13

��
��
3 ��

��
4 ��

��
5

��
��
7 ��

��
8 ��

��
9

�
�

�
�

�	

3

?

4
@

@
@

@
@R

5

�
�

�
�

�	

3

?

4
@

@
@

@
@R

5

..........

.....

.....

.....

.....

� @ � @ � @

� @ � @

Figure 1.1: Interaction with an object with int ⇒ int method

This decision tree can also be regarded as a strategy for a game. This “number

swapping game” is lacking in rules, other than that the moves are integers—in

particular there is no notion of winning or losing. However, it is clear that a

strategy for this game can represent an object, while the game itself represents

the type of that object. More complicated types correspond to more complicated

games, where a method call and response are no longer simply represented by

two successive moves but instead involve a longer sequence of interaction. The

essential property remains, however, that a strategy for this game represents the

externally observable behaviour of some object, abstracting from any implemen-

tation details. The interaction with this strategy represents a reactive notion of

computation as a process which, rather than being a mathematical object fixed in

time, evolves according to input received, and varies its output accordingly. This

is a good fit for the object-oriented way of thinking, where objects are similarly

viewed as reactive entities.

1.2 The language

In this thesis we present an object-oriented language inspired by this correspon-

dence with games and strategies. We start with a particularly simple game model,

which has been known of for some time. With this model in mind, we define a

small language drawing on the functional programming and class-based object-

oriented programming traditions. We include simple functions in the style of the

λ-calculus, and objects which are viewed simply as a collection of functions; we

allow both functions and objects to be defined recursively. We do not include

Chapter 1. Introduction and Motivation 14

class { set = λ〈s, p〉 : (ι⊗ ι) ⊗ (ι⊗ ι). 〈p, p〉,

getx = λ〈s, z〉 : (ι⊗ ι) ⊗ ι. let 〈x, y〉 be s in 〈s, x〉,

gety = λ〈s, z〉 : (ι⊗ ι) ⊗ ι. let 〈x, y〉 be s in 〈s, y〉

} : Class 〈ι⊗ ι; set : (ι⊗ ι) → (ι⊗ ι), getx : ι→ ι, gety : ι → ι〉

Figure 1.2: Sample class definition—a point class

a notion of classes and associated operations in our core language, but find it

more convenient to present these as derived constructs. Instead, at the core of

our language is an operation embodying the idea of data abstraction as discussed

above. The constr operation constructs a stateful object from a functional im-

plementation plus an initial state—in the case of an object with a single method

of type τ ⇒ τ ′, and a state of type σ, constr has a type of the following form:

constr : (σ × τ ⇒ σ × τ ′) × σ ⇒ (τ ⇒ τ ′)

Figure 1.2 presents a small example of our language, making use of the derived

constructs. The displayed expression defines a class representing a 2-dimensional

point, and is annotated with its type—note that ι is the type of integers (we

also use ι as a dummy type in place of a true unit type). Methods accept their

initial state as an additional parameter s, and return the updated state as the

first component of their result.

As well as the interpretation in our game model, we give an operational se-

mantics. Here we make explicit the notion of the heap. Proving our game model

sound with respect to this operational interpretation requires some considerable

work, the difficulty essentially being to reconcile the representation of objects as

reactive strategies with that of a graph-structured heap with objects explicitly

represented as their implementation and state. Once we identify the property

relating these two views, the soundness of our semantics comes down to the cor-

rectness of the data abstraction operation.

We show that strategies at a certain class of types are definable in our lan-

guage, also giving a limited full abstraction result. Unusually, the types in ques-

tion are not limited in rank, but by their structure. We also explain why it does

not seem to be the case that definability holds for all types in our language. Fi-

nally, we introduce a control operator, the addition of which we suggest would

Chapter 1. Introduction and Motivation 15

extend our definability result to the more permissive (unbracketed) setting.

In the rest of this chapter, we discuss our interpretation of object-oriented

programming, some approaches to semantics and existing work on semantics for

OO languages. We cover related work in game semantics before concluding with

an overview of the rest of the thesis.

1.3 Characterisation of language

To give a general idea of the relation of our language to other work we shall state

our response to certain stylistic choices (these points are discussed in greater detail

by Bruce [23], with some similar conclusions). We characterise our language as:

• Class-based rather than object-based. As in C++, Java and C# we con-

sider objects to be created from classes and do not include features such

as method update from object-based languages in the style of Abadi and

Cardelli [2]. Partly this is guided by our intended semantics, but largely we

feel that class-based languages are of wider interest. The class-based na-

ture of the language presented in this thesis is slightly blurred by the fact

that for (our) convenience we do not include classes as primitive. However,

a more powerful and practically oriented language building on these ideas

would include native class constructs (as in Eriskay [59]).

• Stateful rather than functional. Objects in our language are stateful entities

as in most Object-Oriented languages, in contrast to pure functional lan-

guages. This stateful behaviour is pervasive in nature, and can be thought

of in terms of a global heap, although our game semantics gives a different

interpretation.

• Functional or type-theoretic style rather than procedural. Our language

promotes a higher-order style of programming as enjoyed in the functional

programming community. While we draw a distinction between classes

and object, we give classes a first-class status, allowing them to appear

in arbitrary expressions rather than as a list of definitions (of course the

latter style is possible too). The syntax class {. . .} in Figure 1.2 denotes

an expression representing the defined class, which can then be passed to

functions etc. as well as simply instantiated to create an object of that class.

Chapter 1. Introduction and Motivation 16

Particularly once a more fully featured type system is added, this supports

a highly expressive factorised style of programming.

• Static rather than dynamic typing. We will work in a setting of strong

static typing. For the purposes of this thesis we are not generally interested

in questions of type inference—formally we will use a simple explicit type

system, but we will often be more lax where types are not relevant.

• Interface types rather than classes as types. We consider the type of an

object as specifying its external interface, rather than the class of its origin.

For example an object of the class defined in Figure 1.2 would have type

Obj {set : (ι⊗ ι) → ι, getx : ι→ ι, gety : ι→ ι}

This decouples the notions of inheritance and subtyping (cf. [30]): while in

our setting a subclass is always a subtype, the converse need not be true. It

is also more in keeping with a behavioural view (and thus abstraction). If

two objects constructed in different ways should exhibit the same behaviour,

then we should not distinguish between them, and in particular they should

have the same type. However, this does preclude the inclusion of strong

binary methods [24], where methods are granted privileged access to the

internals of arguments of the same class.

• Structural rather than nominal types. This rather goes hand in hand with

the above. Regarding types as giving the public interface for an object

(rather than a named type describing it, as interface types do in Java) means

that there is no artificial type distinction between any two objects which

support the same means of interaction, and thus have the same potential

behaviour. In any case the implicit existence of types for all interfaces allows

for the proper operation of subtyping (since the intersection and union of

two object types exist).

There are some other concerns more particular to our language than object

oriented languages in general.

Firstly, we use a linear type system. In particular our function types are

linear, while we consider ground types and object types to be reusable. This

presentation is to some extent a matter of convenience, but it is useful when we

consider the extension of the language with a continuation operator, where it is

important that the continuation is linearly used.

Chapter 1. Introduction and Motivation 17

extend c with (ς) {

add = λ〈s, p〉.

let 〈s, x〉 be ς · getx 〈s, 0〉

in let 〈s, y〉 be ς · gety〈s, 0〉

in 〈〈x+ p · getx 0, y + p · gety 0〉, 0〉 }

Figure 1.3: Extending the class c of Figure 1.2

The interpretation of the constr operation as a strategy in our game model

dictates a type system which restricts the possible object implementations to

certain well-behaved ones. Acceptable method implementations are those which

behave in an argument safe fashion. Roughly speaking, this means they do not

store a pointer to an object received as an argument in the object’s state, although

they are free to interact with such objects before returning a value, and store

ground-type values in the state.

An immediate consequence of this restriction is that the heap implicitly cre-

ated during program execution never contains cycles. A more interesting conse-

quence is that our language permits the definition of ground-type reference cells,

but not reference cells of any higher type. In fact the level of expressive power

comes strictly between these two, since certain local uses of higher-type state are

supported.

Lastly, with respect to control features we take something of a mixed stance.

We introduce games suited to both languages with and without such features,

but for the majority of this thesis we work in the more restricted setting lacking

such operations. However, we conclude by introducing the continuation operator

mentioned above, and discussing the extension of our work to that setting.

Finally, we give a brief overview of some features supported by our language.

The language supports inheritance using an extend expression (a derived form).

An example of this is shown in Figure 1.3, where the metavariable c should be

replaced by the class of Figure 1.2. This class extends c by adding an add method

to add another object of the same type (thought of as a vector).1 Here we omit

required type annotations for brevity; also note that 0 is used as a dummy value

as our language omits a unit type.

1Of course the type is not precisely the same—the supplied argument need not have a set

method, and indeed may not be derived from the same class.

Chapter 1. Introduction and Motivation 18

extend c′ with (ς) {

gety = λ〈s, z〉 : (ι⊗ ι) ⊗ ι. 〈s, 0〉

}

Figure 1.4: Extending the class c′ of Figure 1.3, overriding two methods.

As mentioned above inheritance creates subtypes, but is not the only way to

do so. It should be noted that the language of this thesis does not support the

addition of fields in subclasses, but as described in Chapter 7 the addition of this

feature is unproblematic.

The language also enables (mutual) recursion via a self parameter (ς in Fig-

ure 1.3). As in the example above, such recursive calls are made via the internal

functional interface of the class, while normal calls from the environment are not,

as in the case of the method call p · getx 0 on the argument object.

Finally, the language supports virtual methods. In fact all methods are taken

to be virtual methods, unlike C++ where functions must be explicity declared to

be virtual or Java where methods are by default virtual but may be declared to

be final. A (somewhat artificial) example is given in Figure 1.4, where we extend

the getx and gety methods to effectively make the y coordinate constant. The

important thing to note here is that the add method uses getx and gety rather

than inspecting the state directly, and so when we override the gety method add

uses the old rather than the new version, and consequently the y coordinate is

simply set to that of its argument (in the case that the argument is of the new

class, this will mean set to 0). This example is terribly contrived, but virtual

methods are in fact a key component of object-oriented programming.

1.4 Style of semantics

For a given language one can take a variety of approaches in order to build a

semantic model. We shall characterise our approach by discussing a number

of properties a model may have before discussing the relation to other work.

These properties are somewhat interdependent, in that a random selection would

probably make little sense, but they represent qualities we consider important

about the work presented here.

• Imperative rather than functional. We do not attempt a functional coding

Chapter 1. Introduction and Motivation 19

of object update (as in e.g. [68]), instead modelling imperative updates

directly. This allows us to stay within a simple typing framework without

too much restriction on behaviour. There is a little complication in that

the stateful behaviour of our objects is specified in a functional manner, but

the external view is of imperative update.

• Semantic rather than syntactic. We give our semantics directly rather than

by translation into some other language or type theory. There is a con-

ceptual benefit to this directness: the interpretation of a term can be more

readily understood to give it meaning, and our model provides a more sat-

isfying explanation of our language. There are benefits to translation into

some well-understood theory, but in our case the direct analysis proves in-

teresting. In any case one would wish to give a fully abstract translation

into a language with a fully abstract semantics, and we are not aware of a

suitable target for the language described here.

• Compositional/structural rather than whole-program. Our semantics is

given in a compositional way according to program structure, rather than

for a whole program at once. This allows for the use of familiar “mathe-

matical” reasoning principles, such as substitutivity.

• External rather than internal view of object behaviour. As discussed above

we shall model objects according to their external behaviour. Any state

owned by the object (i.e. updateable fields) gives rise to a certain behaviour

of the object; the denotation of the object will reflect this behaviour, but

will not expose the object’s internal state (or even the type or existence of

such).

• Intensional rather than extensional. Rather than attempting to give a direct

account of the extensional behaviour of programs, perhaps at some compli-

cated functional type as in the monadic approach [67], we give a slightly

more intensional semantics. As is well known the intensional nature of game

semantics paves the way to full abstraction results.

Chapter 1. Introduction and Motivation 20

1.5 OO semantics survey

There has been much work already on the theoretical foundations for object-

oriented languages. Some has concentrated on type systems and their safety

(for example Featherweight Java [46], Middleweight Java [19], Classic Java [36]),

while other work gives semantics to various object and class-based calculi, either

directly (and often operationally) or by translation. Bruce gives a good summary

in [23]; here we concentrate on some work which seems especially relevant to our

own.

1.5.1 Object encodings

Various encodings of objects have been proposed—a good summary is given in

[25]. In that paper four existing encodings are described in the context of Sys-

tem F ω
<: with existential types, recursively defined types, recursive functions and

records. The first and simplest, as introduced by Cardelli [26] and widely studied

[66, 49, 70, 29], represents objects by recursive records—an object is simply a

record with an identifier (usually called self) bound recursively within it. The

second simple encoding uses existential types to hide an object’s internal state

[68], while the other two encodings combine recursion and (bounded) existentials.

While these encodings are informative, and the first is relevant to this work, much

work goes into understanding functional encodings, and in any case we prefer a

more direct approach (based on recursive records).

The recursive record approach can be split into two camps, early self binding

where a fixed point is taken at the point of object creation, and late self binding

where a fixed point is taken at the point of method invocation. Abadi and

Cardelli show that either approach fails to correctly implement method update

as found in object calculi [1], where an existing object is extended with a new

method implementation; recursive records are thus more often used in class-based

systems. Here a class is modelled by a term λself . {. . .}, from which objects are

created by taking the fixed point. Open recursion is implemented by taking

advantage of the indirection via the self parameter. If when extending a class

one replaces a method m1, any method m2 which refers to self ·m1 will refer to

the new version of m1 when the fix-point is taken.

A class-based calculus is presented in [22], from which we take some inspira-

tion. This language has functions, ML-style references and classes (as first class

Chapter 1. Introduction and Motivation 21

expressions); objects are recursive records with early self binding. The authors

suggest that objects with imperative update together with a simple type system

“achieve a reasonable trade-off between expressivity and simplicity”. The seman-

tics given is essentially via a translation into a fragment of ML with references

(Reference ML), which has an operational semantics based on heaps. Work on

game semantics for references as discussed below is somewhat relevant, in that

one could compose an encoding of classes and objects with the game semantics

of the calculus of references. However, as we have discussed we are interested in

a more direct approach.

1.5.2 Object calculi

In their book [2], Abadi and Cardelli introduced their influential object calculus.

They give a small and elegant object calculus, intended to be to object-based com-

putation what the λ-calculus is to functional computation; the calculus is given

in immutable and imperative untyped forms, and to these increasingly complex

and powerful type systems are added. In brief, the calculus allows the definition

of objects as a collection of methods with self-binding, with the operations of

method update (fields being considered a special form of methods) and appli-

cation. They give their calculus a primitive semantics based on self-application,

where a method call is expanded to the method body with the object substituted

for the method parameter.

In [39] Gordon and Rees investigate full abstraction via bisimilarity for the

first-order stateless object calculus from the above. They derive a labelled tran-

sition system (LTS) from the reduction rules of the calculus, and show that

bisimilarity according to this LTS coincides with contextual equivalence.

Gordon and Hankin introduce in [40] a concurrent extension of the mutable

object calculus, with concurrency operators derived from the π-calculus, and

mutex-based synchronisation. They give a structural congruence based reduction

semantics in the style of those for the π-calculus, and show this is equivalent to a

structural operational semantics defined using stores, threads and configurations.

1.5.3 Trace semantics

A variant of the concurrent object calculus is further studied by Jeffrey and

Rathke in [47]. They give a trace semantics which they show is fully abstract

Chapter 1. Introduction and Motivation 22

with respect to contextual equivalence (in this concurrent setting the notion of

may testing is used). Figure 1.1 can be interpreted as showing the set of traces

of the program depicted there. Here a trace is the interaction observed at the

boundary between a program (or component) and its environment (essentially a

“game play”). Given the basic set of reduction rules for the calculus, an LTS is

constructed containing named reductions for the observable actions of incoming

and outgoing method calls and returns; the denotation of a component is the

set of traces it admits. While in the case of the simple object above this is very

similar to the strategy given by the game approach, at more complex types the

two views diverge. This work is extended to a core Java language in [48].

Moving away from object-based languages, in [4, 3, 5] this concurrent calculus

is modified to include the notion of classes, and again a fully abstract trace

semantics is given. Here classes are named entities regarded as the generators

for objects, and method update is removed. A large part of this work relates to

the notion of observation in the class-based setting. A program’s environment

may include both objects and classes; observable behaviour now includes the

creation of objects by the program from environment classes (and dually by the

environment from program classes). The environment can observe all interaction

with an object created from an environment class, but if these objects are created

from different classes, they will initially have no way of referring to each other.

For this reason the potential connectivity of these objects must be tracked, since

there are certain observations which the environment cannot legitimately make

(e.g. the order of events observed by two disconnected objects).

The notion of connectivity here might suggest a deficiency of our approach,

that perhaps we do not take classes seriously enough. However, in a sense our

setting corresponds to the reality of languages such as Java, where classes are not

just object-generators but can contain their own (non-instance) state, meaning

that objects created from classes in the program environment are always poten-

tially interconnected. In this aspect our language is perhaps more expressive

(and consequently harder to reason about than that of [4]); on the other hand,

we cannot model true concurrency.

Unfortunately, the trace semantics is not a compositional one—the denotation

of a composition of two program fragments is not a function of their individual

denotations. This is problematic for reasoning about programs, as well as under-

standing them. On the other hand, our game semantics is compositional, but as

Chapter 1. Introduction and Motivation 23

yet we cannot handle the languages presented in [4, 3, 5].

1.6 Game semantics

The use of games in programming language semantics have arisen from work in

logic and from other work in semantics. We give an incomplete summary and

brief introduction here—for more detail the reader should consult [31].

1.6.1 Logic

The connection between games or debates and logic has in a way been implicit

since logic has been studied, but became formalised in the study of constructive

mathematics. Lorenzen [62] gave a semantics for the intuitionistic predicate cal-

culus in terms of dialogue games. The proponent (or player) (P) wishes to verify

a formula he has proposed as valid, while the opponent (O) wishes to refute it.

Propositions are interpreted as games, and connectives as operations on games;

a given dialogue consists of a sequence of moves (moves being e.g. to attack or

defend a chosen sub-formula), and a dialogue is won by one player if they play a

move to which the other cannot respond. A strategy is a function determining

the next move to be made, and then a formula is said to be valid if there exists

a winning strategy for proponent.

While there is a good match between intuitionistic logic and computation, a

key influence on game semantics has been Girard’s linear logic [37]. Linear logic

introduces explicit structural rules controlling reuse, so that propositions can be

thought of as resources which cannot in general be copied or discarded. Then a

distinction is drawn e.g. between two products A⊗B and A&B, the first of which

representing both A and B, and the second representing a choice of A or B (“I

have both, but I’m only going to give you one”). The exponential !A indicates

a reusable version of A, that is a proposition which can be used multiple times.

Therefore the contraction rule applies to !A, allowing it to be copied. It is then

possible to translate intuitionistic logic into linear logic, where we replace A⇒ B

with !A⊸ B, with⊸ being the linear logic implication.

Blass gave a game semantics for linear logic [21], opening up a correspondence

between games and linear logic which appears often in later work. Abramsky and

Jagadeesan gave a game semantics for linear logic with the “mix” rule [6] which

Chapter 1. Introduction and Motivation 24

improved on Blass’s games, making them form a category. Here the notion of

games are a little different; a game A is defined to include plays in which either

Opponent or Player start, and A⊤ negates A by switching the O/P labelling.

The tensor A ⊗ B then imposes the condition that only Opponent may switch

between A and B, unlike our games in which this condition arises automatically

out of the interleaving of play in A and B. Then the multiplicative disjunction (or

par) operation AOB (which is less easy to understand intuitively, but introduces

a kind of dependency between A and B) is defined as (A⊤ ⊗ B⊤)⊤, A ⊸ B is

defined as A⊤OB, and history-free strategies are defined to be as in Section 2.1.1.

The category of such games and history-free strategies gives full completeness2

for the interpretation of multiplicative linear logic with the “mix” rule (Hyland

and Ong subsequently gave a fully complete semantics without this rule [44]).

1.6.2 Sequential Algorithms

A second area of work influential in the development of game semantics was that

of sequential algorithms on concrete data structures [18]. Lamarche reformulated

the sequential algorithm model of PCF in terms of games [55] (as described in

[64, 32]). The fundamental idea here, and in all later work in game semantics, is to

model a program by a strategy describing its interaction with the environment,

as described in Section 1.1. This model is fully abstract for PCF+catch (or

SPCF) rather than plain PCF [27, 28], but in many ways is closer to our simple

game model than the later ones described below. Games are played “on trees”—

there is a set of moves partitioned into Player and Opponent moves, with plays

consisting of alternated sequences of moves starting with Opponent, and this can

be viewed as a forest with layers alternately consisting of Player and Opponent

nodes. A strategy gives the Player response for any Opponent move, or in other

words consists of a sub-tree of the game tree branching when it is opponent’s turn

to move. This model also possesses products and function spaces as we describe

in Chapter 2; these simple games are also described by Abramsky [8] and Hyland

[45]. The significant difference occurs regarding reuse; the exponential described

by Lamarche is a backtracking, non-repetitive one. When playing in !A it is always

possible to “back up” to an earlier position in the game tree of A, and explore a

different branch, but there is no sense in which a question can be asked twice, as

2Full completeness is to logics as definability is to programming languages.

Chapter 1. Introduction and Motivation 25

an answer is given once and for all.

In contrast, the exponential introduced by Hyland [45] was a repetitive one,

so that !A represents essentially as many copies of the game A as required. Fur-

thermore, it is non-uniform in the sense that a strategy for !A need not behave

the same in each copy of A. We introduce this exponential in Chapter 2, and

use it throughout this thesis. The idea that the same category of games could be

endowed with more than one reasonable exponential was to become significant

in later work: Melliès gives a detailed comparison of the various choices possible

[63].

1.6.3 PCF

One of the most celebrated early successes of game semantics was to give fully

abstract models of PCF. Abramsky, Jagadeesan and Malacaria introduced a fully

abstract game model for PCF [11]. Their games are defined similarly to the above,

but tag each move as either Question or Answer, and impose the bracketing condi-

tion that each answer corresponds to the last unanswered question. Strategies are

history-free. In contrast to the exponential described above, a repetitive ! is used

so that a play of !A is an interleaving of plays of A—!A is essentially an infinite

tensor product of copies of A. An equivalence relation is defined over strategies to

make the exponential uniform, meaning a strategy for !A must behave the same

in each copy of A.

Independently of Abramsky et al., Hyland and Ong developed a fully abstract

game semantics for PCF [43]. This paper introduced the influential notion of

arena games, where games are no longer considered simply as trees. Instead, a

game defines an arena, a tree specifying which moves justify other moves (i.e.

enable them to be played), and the plays of the game are mechanically generated

from this relation. Moves are thought of as carrying a justification pointer—a

reference to the justifying move earlier in the play. The original presentation does

not make use of a linear decomposition of A ⇒ B as !A ⊸ B, but there is an

equivalent presentation in those terms [13]; the game !A then simply consists of

interleaved plays of A. The justification pointer structure allows different copies

of A to be distinguished as in the AJM exponential. Rather than history-freeness

and uniformity, the condition of innocence is imposed on strategies (as well as

well-bracketing); a strategy may only act on information contained in a certain

Chapter 1. Introduction and Motivation 26

view of the play so far as determined by the justification-structure of the play.

1.6.4 Control and state

A program of subsequent work investigated the effects of removing the various

constraints on this model, a task which the arena-based formulation seems partic-

ularly suited for. Laird investigated removal of the bracketing constraint, giving

fully abstract models of languages with control features (such as call/cc) [52, 53].

Abramsky and McCusker gave a fully abstract semantics for Idealised Algol [7] by

allowing strategies to be non-innocent (i.e. knowing). They introduce a knowing

strategy cellX to represent a store cell with read and write operations holding a

value of type X (where X is a basic datatype, i.e. a set). Its stateful behaviour

is permitted because there is no constraint forcing such strategies to behave in a

uniform way.

Abramsky, Honda and McCusker then gave a semantics for a language with

ML-style higher-order references [10], which seems particularly relevant to our

work. Their language is call-by-value, as ours is (but unlike Idealised Algol),

and involves the creation of state of general type, as one might expect objects to

have. The switch to a call-by-value setting used an existing technique [12] (and

we shall do the same). However, the treatment of general references require a

more liberal definition of games. We will discuss this in greater detail later, but

in short the construction is such that a play of a game A ⊗ B when projected

onto the component game A need not be a valid play of A. For the game A⊗B

the usual Opponent/Player alternation property holds, but viewed at A it does

not. To put it another way, type constructors are defined on arenas, and it does

not make sense to think of them as operating on the generated game tree, unlike

in the arena games described above. This relaxation of the rules is necessary to

implement the higher-type reference cell, but makes the intuition behind these

games a little less clear (and certainly adds complexity to the definition).

1.6.5 Names

Recent work has given game semantics for languages involving names, starting

with the ν-calculus [9]. This work builds games on top of Fraenkel-Mostowski set

theory, putting names into the heart of the construction. Laird gave a semantics

of “local names and good variables” [54], the idea being to use nominal set theory

Chapter 1. Introduction and Motivation 27

to eliminate bad variables. These represent a defect in the semantics of general

references in the previous section—there are strategies at reference type which

do not represent actual reference cells, so to obtain full abstraction the language

has to add some “junk” in the form of bad variables.

Some account of names must be made to interpret general object-oriented pro-

gramming, in order to support circular references and object equality. However,

we suggest that a direct behavioural interpretation of simple objects is interesting

in its own right, and can provide a stepping stone to the later investigation of

these more general features. We discuss this issue in Section 7.1.

1.6.6 Choice of game model

The game model of AHM [10] gives a good point of reference from which to discuss

our approach and the game model we have chosen. There are two important

differences to note, namely the approach to modelling stateful behaviour, and

the game model in which this modelling takes place.

Stateful behaviour appears in [10] in the form of ML-style reference cells,

implemented in the game model by a cell stratagy as also used in the earlier work

on Idealised Algol. A simple translation of objects is given: fields are interpreted

as reference cells, which are bound within a record of functions representing the

methods of the object.

This approach does offer a convenient way to represent object-oriented be-

haviour. However, the AHM approach lacks a compositional account of data ab-

straction, in contrast to our use of the constr operation, and the corresponding

thread morphism and characteristic properties. We contend that this process of

data abstraction is one crucial aspect of object-oriented programming (there are

of course other aspects which we do not other attempt to address), and deserves

to be studied in its own right. While our approach relates the implementation

of an object as state-transformer and the resulting stateful object, this is not

visible in the AHM approach, the stateful behaviour instead residing in the cell

strategy. Our approach can be carried out in the AHM model, and given this it

is perhaps more natural to take this data abstraction operation rather than the

store cells as primitive, being more closely tied to the object-oriented concepts

being modelled.

While our interpretation could be given in the model of [10], it is interesting

Chapter 1. Introduction and Motivation 28

to discover that the data abstraction approach works in the “weaker” setting of

our less powerful game model. Ultimately, one might wish for a more general

axiomatic treatment of data abstraction, but for now we explore a particular

weaker setting which gives “just enough” expressive power to investigate these

ideas—our model has the advantage of being fairly minimal, in the sense that we

could not present the interpretation of the constr operation in a less powerful

model, leading to a more general result.

We will now briefly outline the technical differences between the two models.

Some of the apparent differences have only minor significance or are presenta-

tional, for example the formulation in terms of Hyland-Ong style arena games

with justification pointers, and here we concentrate on those which are more rel-

evant. As mentioned above, the AHM games are “non-alternating”, in the sense

that a play of a compound game such as A ⊗ B need not be a valid play when

projected to one of the component games A or B, as the requirement for plays to

alternate between Opponent and Player is only imposed on the overall game and

not the constituent components. This is achieved in [10] by defining games using

an enabling relation which in turn generates valid game plays. We omit details

here, but the key point is that constructions such as ⊗ operate on the enabling

relation rather than the generated move-trees, and so for example plays in A⊗B

need not arise from an interleaving of valid plays of A and B. The overall result of

this is that a given game in the AHM model may admit more possible plays than

a game in our model. The particular additional behaviour permitted is somewhat

subtle, but it should be noted that the cell strategy mentioned above crucially

uses plays of this form to model general higher-order store.

We believe our model is natural and inherently rather appealing. It is a simple

and particularly intuitive model; while the AHM model is still relatively simple in

technical terms, the intuition is rather more subtle. The fact that the AHM games

are not just move trees does obscure the intuition behind the various construc-

tions somewhat. In a sense our Lamarche-style games are more “extensional”, in

that the various type constructors operate on the games themselves rather than

generators for these games.

While the category of Lamarche games is well known and the exponential we

use has been studied previously (by Hyland [45]), questions about the expressive

richness of this model have not been raised. In particular the stateful behaviour

which can be expressed is rather subtle and unusual, as is shown in the remainder

Chapter 1. Introduction and Motivation 29

of this thesis, and seems worthy of study in its own right, regardless of any

justification related to object-oriented programming.

In fact, although we have said that our setting is fairly minimal, we can

support a surprising expressive power without having to resort to the additional

power of the AHM model—many higher-order store phenomena arise even in our

weaker setting. In fact an even larger proportion of the expressive power of [10]

can be achieved in the world of Lamarche games with some more work, namely

the use of a more powerful exponential and the encapsulation techniques of [61].

Although our setting allows considerable expressive power, it is of course less

expressive than the AHM model. Not all stateful behaviour present in their

model can be expressed in ours, and in particular the store cells of arbitrary type

that form the basis of their language cannot in general be expressed in ours.3

There is in fact a trade-off here: more expressive power means that there is

more information in the denotation of an expression, and correspondingly the

notion of observational equivalence is finer, and reasoning becomes more subtle.

A strategy in our model should be easier to reason about than a strategy in the

AHM model, and for this reason it seems desirable to give an interpretation in

the simpler model where possible.

Finally, there is a retrospective justification for our approach in the interesting

applications of our argument safety type system. The argument safety restriction

itself is an interesting result deriving from our particular choice of model, and

not something which we would otherwise have investigated, and for that reason

alone the model seems worthy of consideration. Additionally, an application of

argument safety to type-safe exceptions is outlined in Chapter 7, where we suggest

that argument-safety captures the uses of higher-order store which allow for the

static control of exceptions

1.7 Content and structure of thesis

This thesis makes three main contributions:

• A semantic treatment of data abstraction, in the form of an operation which

takes an object implementation with explicit state and creates an object

representing the corresponding externally observable behaviour.

3Ground type store cells can be written in our language, and other objects with higher-type
state, but higher-type store cells can not.

Chapter 1. Introduction and Motivation 30

• The identification of an object-oriented language with a natural level of

computational power or expressivity, corresponding to a simple game model.

• The development of novel techniques required for a soundness proof relating

the views of objects as reactive entities and as explicitly structured heap.

1.7.1 Overview

The remainder of this thesis is structured as follows. In Chapter 2 we give

definitions of our category of simple games and the basic structure available there.

We construct call-by-value and well-bracketed variants, and finally introduce the

technique of memoisation which shall later prove useful.

In Chapter 3 we move on to the generation of interesting stateful behaviour

in the setting of the previous chapter. We introduce the “data abstraction”

operator thread, giving a definition and a series of properties for reasoning about

the operator.

In Chapter 4 we introduce our object-oriented language, and discuss the

rationale for the various design decisions involved. We give a definition and static

semantics, paying particular attention to the argument safety restriction we must

impose. We then give an operational semantics, and a denotational semantics

using the ideas from Chapters 2–3.

Chapter 5 concerns the proof of the soundness of the game semantics with

respect to the operational semantics. We begin by discussing the property to be

proved, taking the reader through a series of refinement steps, before presenting

some auxiliary definitions and lemmas. We then prove soundness by induction on

operational semantics derivations, a large part of which consists of the verification

of the method invocation rule, which involves the thread operator. We briefly

discuss further issues, and the other half of adequacy, which we do not prove.

In Chapter 6 we turn to the issues of definability and full abstraction. The

latter follows easily from the former, which forms the main part of the chapter.

We give a series of programs which “interpret” an encoded strategy as a program,

giving definability at a large class of (intuitionistic) types. However, we then

show that at certain other (also intuitionistic) types strategies may exhibit some

complex and problematic behaviour, and we conjecture that such strategies are

not definable in our language.

Chapter 7 concerns some areas for future work, and possible extensions to

Chapter 1. Introduction and Motivation 31

our language. We discuss potential benefits of (and alternatives to) our argument

safety restriction, then present a program which extracts the approximation op-

erator from a class implementation. We then discuss some natural extensions

of the adequacy and definability results presented in this thesis, followed by two

potential language extensions which support object-oriented programming. We

conclude by introducing the control operator catchcont, which we expect to lead

to a fully abstract semantics for the non-well-bracketed version of our category

of games, and we discuss the ramifications of adding this to our language.

We draw some conclusions in Chapter 8.

Chapter 2

Definition of categories of games

In this chapter we shall introduce and define our categories of games, and some

of the structure that is present there.

We start by defining simple games SG, and then extend these to SGV to give

a setting to interpret values. Lastly we define categories of well-bracketed games

BG (and BGV), and discuss their relationship to the unbracketed games.

2.1 Simple games

We shall start with the simplest notion of games we can get away with. As

defined by Lamarche [55] (and described in [64, 32]), a game is simply a set of

moves partitioned into opponent and player moves, together with the set of valid

plays of that game—the game tree. These games are also described in [45, 8].

At this point there is no need for a notion of question and answer, but we shall

introduce such a notion in Section 2.3.

The definition of a game as its collection of plays differs from the “arena

games” of [43], which generate this from an enabling relation, and use this to

associate moves via a “justification pointer” to the move which enables them.

The games presented here are somewhat simpler as a result; here we are only

interested in stateful computation, while the most obvious benefit of arena games

is the identification of innocent strategies for state-free computation.1

Our definitions lead to a “linear” category of games, on which we define a

linear exponential ‘!’, and then further enlarge to give a setting for call-by-value

computation.

1One other benefit concerns “non-alternating” game models as discussed in Section 1.6.4.

32

Chapter 2. Definition of categories of games 33

Define an arena A as a pair 〈MA, ℓ
OP
A 〉, where

• MA is a countable set of moves.

• ℓOPA : MA → {O,P} is a labelling function distinguishing player and oppo-

nent moves. ℓ
OP

A denotes the opposite labelling.

We write M∗
A for the set of sequences of zero or more moves from MA, ⊑ for

the prefix relation on M∗
A, and s ⊑even t for the prefix relation with s even. We

write si for the (i+ 1)th element of the sequence s.

We define the language of an arena LA ⊆ M∗
A to be the set of finite plays in

which moves alternate and opponent starts, i.e. LA is the set of s ∈M∗
A satisfying

s = s1mns2 → ℓOPA (m) 6= ℓOPA (n)

s = ms′ → ℓOPA (m) = O

A game A = 〈MA, ℓ
OP
A , PA〉 consists of an arena A plus a non-empty prefix-

closed set of valid positions PA ⊆ LA. The subsets of PA consisting of all even

and odd length plays in PA are denoted P even and P odd respectively.

For each game A we define the set of strategies for A as

RA = {σ | σ ⊆ P even
A , ε ∈ σ,

sab ∈ σ → s ∈ σ,

sab ∈ σ ∧ sac ∈ σ → b = c}

That is, RA consists of all non-empty, even-prefix-closed sets of even-length po-

sitions which are deterministic.

Given two sets of moves MA and MB, we write MA + MB for their disjoint

union. Given s ∈ (MA+MB)∗, the restriction of s to A, written s↿A, shall be the

subsequence of s consisting of moves from MA, so that s↿A ∈M∗
A. More generally

we write s ↿A,B to restrict from MA + MB + MC to MA + MB, and so on. For

strategies, σ ↿A shall be the strategy consisting of those plays in σ only containing

moves from MA (as opposed to the pointwise restriction of plays {s↿A | s ∈ σ}).

Chapter 2. Definition of categories of games 34

Given games A and B we define the games A⊗B, A⊸ B as follows:

MA⊗B = MA +MB

ℓOPA⊗B = [ℓOPA , ℓOPB]

PA⊗B = {s ∈ LA⊗B | s↿A ∈ PA, s↿B ∈ PB}

MA⊸B = MA +MB

ℓOPA⊸B = [ℓ
OP

A , ℓOPB]

PA⊸B = {s ∈ LA⊸B | s↿A ∈ PA, s↿B ∈ PB}

Proposition 2.1 (Switching conditions). A player move in A⊗B must be in the

same component as the previous (opponent) move. An opponent move in A⊸ B

must be in the same component as the previous (player) move. In other words,

only opponent may switch components in A ⊗ B, and only player may do so in

A⊸ B.

This is a standard result, given e.g. in [11], arising from the alternation con-

ditions in the two constituent games.

2.1.1 Defining strategies

As well as giving a strategy σ for a game A explicitly as a subset of P even
A as

above, we can also give a partial function f from odd-length plays in PA to the

answering move (if any)

f : P odd
A ⇀MA

We shall say such an f is a strategy if whenever f(s) = a then λ(a) = P and

whenever f(sab) = c then f(s) = a. We are justified in calling f a strategy:

we can construct σf as {ε} ∪ {sab | f(sa) = b}, which is clearly a strategy as it

contains ε, is even-prefix closed by the odd-prefix closure of f , and is deterministic

by the fact that f is a function. Conversely, given a strategy σ we can construct

a function fσ obeying the above conditions simply by setting fσ(sa) = b ⇐⇒

sab ∈ σ. Furthermore, σfσ = σ and fσf
= f . We shall henceforth consider both

set and function presentations as denoting strategies, and will use whichever is

most convenient in a given situation.

In defining certain history-free strategies (in the sense of [6]), one can simply

define a function f : MA ⇀MA; the intended strategy is that for g : P odd
A ⇀MA,

where g(sa) = f(a). We do not make any particular use of the history-freeness

Chapter 2. Definition of categories of games 35

property, but shall sometimes define certain strategies this way for convenience

and clarity.

2.1.2 The category SG

We define a category SG of simple games. Objects of SG are games, and mor-

phisms A → B are strategies σ for A ⊸ B. The identity morphisms are given

by the usual copycat strategy (A1 and A2 distinguishing the two copies of A)

idA = {s ∈ PA1⊸A2 | ∀t ⊑
even s. t↿A1 = t↿A2 }

Composition is the usual composition of strategies, a simple definition in the

absence of justification pointers. If σ : A⊸ B and τ : B⊸ C then we define the

set of their interaction sequences as

σ‖τ = {u ∈ (MA +MB +MC)∗ | u↿A,B ∈ σ, u↿B,C ∈ τ}

and their composition as

σ; τ = {u↿A,C | u ∈ σ‖τ}

It is then easy to show that σ; τ is a strategy for A ⊸ C, and composition is

associative. We will also use the composition ‘◦’ in the other order (σ; τ = τ ◦ σ)

where convenient.

2.1.3 Copycat strategies

We mentioned that idA is a copycat strategy. We will define many similar strate-

gies, so it is worth expanding on that idea somewhat. The strategy idA simply

connects up the two copies of A, copying a move on the right to the left, a re-

sponse on the left back to the right, and so on. No information is used about the

particular game A, it is sufficient to know that the rules of each game A are the

same.

Consider playing in the game

A⊗ B → B ⊗ A

Here we can “play the copycat” both in the game A and in the game B—when

a move is played in A one side we play that move in A on the other, and when a

Chapter 2. Definition of categories of games 36

move is played in B in one side we play that move in B in the other. It is easy to

see that such play is always valid—again so long as Opponent abides by the rules

of A and B, our moves will do too. A copycat strategy such as the one described

can be thought of as “wiring together” each pair of games being copied between,

matching a positive and negative copy.

Given a set of variables A1, . . . , An, define formal expressions F,G as obtained

from the following grammar:

E ::= (E ⊗ E) | 1 | A1 | . . . | An

Then write F̂ and Ĝ for the obvious functors SGn → SG corresponding to F and

G respectively. Each game Ai may occur zero, one or many times in F (~A), G(~A)

Write Occ(Ai) for the set of occurrences of Ai (Occ(~A) for occurrences of any Ai

in ~A), and Aji for an occurrence.

Take CR an injective map giving for each occurrence on the right Aji a match-

ing occurrence Aki on the left, and set C = CR ∪ C−1
R . C describes the list of

connections of a copycat strategy. Given suitable F , G and a choice of C (there

may be more than one option) define a collection of morphisms as follows:

f ~A = {s ∈ PF̂ (~A)⊸Ĝ(~A) | ∀t ⊑
even s.∀A ∈ Occ(~A). t↿A = t↿C(A) }

In other words, define the history-free strategy (being informal about relabelling):

f ~A(m : A ∈ Occ(~A)) = m : C(A)

These strategies constitute a natural transformation f : F̂ → Ĝ.

It is very often the case that for given F , G only one choice of C is possible,

and hence there is a unique copycat strategy. In this situation we do not need

to spell out the strategy in question. Also note that the composition of two

copycat strategies generated from C1 and C2 coincides with the copycat strategy

generated from the composition of C1 and C2 (assuming they are compatible).

It would be possible to extend the above ideas to types involving ⊸, and

other type constructors when we define them, connecting up positive and negative

occurrences of each Ai, but it becomes less easy to say when F , G and C are of

the correct form to generate a valid copycat strategy. We shall nevertheless use

the term “copycat” informally in those situations too.

Chapter 2. Definition of categories of games 37

2.1.4 Symmetric monoidal closed structure

We extend the operation ⊗ to a bifunctor. Define a construction on strategies

σ : A ⊸ C and τ : B ⊸ D which interleaves them to form a strategy for

A⊗ B⊸ C ⊗D as follows:

σ ⊗ τ = {s ∈ P even
A⊗B⊸C⊗D | s↿A⊸C ∈ σ, s↿B⊸D ∈ τ}

Note that there exists an object 1 which is the terminal object of SG, and the

unit for ⊗:

1 = 〈∅, , ∅〉

We take the natural transformations with components

αA,B,C : (A⊗ B) ⊗ C → A⊗ (B ⊗ C)

λA : A⊗ 1 → A

ρA : 1 ⊗ A→ A

γA,B : A⊗ B → B ⊗ A

to be the appropriate (and unique) copycat strategies as described above. Note

that in many contexts we will suppress the trivial morphisms λ, ρ and α as their

presence can be deduced from the types, but we shall always be explicit in writing

γ. These structural morphisms obey the following properties:

(αA,B,C ⊗ idD);αA,B⊗C,D; (idA ⊗ αB,C,D) = αA⊗B,C,D;αA,B,C⊗D

αA,B,C; γA⊗B,C ;αC,A,B = (idA ⊗ γB,C);αA,C,B; (γA,C ⊗ idB)

γA,B; γB,A = idA⊗B

γ1,A; ρA = ℓOPA

αA,1,C; ρA ⊗ idC = idA ⊗ λC

These properties hold simply from the copycat nature of the strategies, and can

be viewed as simply “untangling” the corresponding wiring diagrams.

Before proceeding, we note that strategies for products in our category behave

in an interfering fashion, in the sense that play in one component can affect future

behaviour of the other. In other words, a strategy σ for A ⊗ B need not be a

pair of strategies for A and B, and it is this which enables us to model stateful

behaviour in SG. If interaction with σ in A affects the outcome of some later

interaction in B (or vice versa), σ can be seen as representing a pair of objects

of types A and B which share some internal state.

Chapter 2. Definition of categories of games 38

In fact SG is affine, possessing morphisms

1A : A→ 1

= {ε}

and so we may define projections

ΠL : A⊗B → A ΠR : A⊗ B → B

= ρA ◦ (idA ⊗ 1B) = λA ◦ (1A ⊗ idB)

Now the closed structure. Observe that a bijection

SG(A⊗B,C) ∼= SG(A,B⊸ C)

is induced simply by the bijection on move sets

(MA +MB) +MC
∼= MA + (MB +MC)

In connection with this we use the notation

f : A⊗B → C

λB(f) : A→ (B⊸ C)

f : A→ (B⊸ C)

f ∗ : (A⊗ B) → C

and take eval : (A⊸ B) ⊗ A→ B to be (idA⊸B)∗.

We shall make use of the internal language of SG, writing morphisms as

(λxB. f) : A→ (B⊸ C) for λB(f) where f : A⊗B⊸ C, and fx : A1 ⊗A2 → C

for (f ⊗ x); eval where f : A1 → B⊸ C and x : A2 → B.

2.1.5 Additive product

For games A and B we can define the additive product A&B of linear logic. A

play in the product is a play in either A or B—a strategy for A&B specifies

Player’s response to interaction in either A or B, as chosen by the Opponent’s

first move.

MA&B = MA +MB

ℓOPA&B = [ℓOPA , ℓOPB]

PA&B = {s ∈ LA&B | (s↿A ∈ PA ∧ s↿B = ε) ∨ (s↿B ∈ PB ∧ s↿A = ε)}

This additive product is in fact the Cartesian product in SG. We extend the

operation & to morphisms by taking f&g as the strategy which behaves as either

f or as g according to the component selected by the first opponent move. Unlike

Chapter 2. Definition of categories of games 39

the tensor product ⊗, only one of f or g will be involved in a given play, so there

is no need for two copies of A to be provided to f&g.

f : A→ B g : A→ C

f&g : A→ B&C
f&g = f ∪ g

We abuse notation to label the projections ΠL and ΠR as for the product

−⊗−, which are the obvious copycat strategies:

ΠL : A&B → A ΠR : A&B → B

In fact we shall use a more general set-indexed version of the above product,

&i∈IAi defined as follows:

M&i∈IAi
=

⊎

i∈I Ai

ℓOP&i∈IAi
(ina(x)) = ℓOPAi

(x)

P&i∈IAi
= {s ∈ L&i∈IAi

| ∃i ∈ I. s↿Ai
∈ PAi

∧

∀j ∈ I. i 6= j ⇒ s↿Aj
= ε}

Again we define the action on morphisms

fi : Z → Ai
&i∈Ifi : Z → &i∈IAi

&i∈Ifi = ∪i∈Ifi

and the evident projections

Πj : &i∈IAi → Aj (j ∈ I)

There is also a distributivity morphism for ⊗ and &:

dist = (&i∈IAi) ⊗B
&i∈I(Πi⊗idB)- &i∈I(Ai ⊗ B)

2.1.6 Coproducts

Given a set I and family of games Ai in SG, we define a weak coproduct game

Σi∈IAi in SG which we shall use later in the construction of our call-by-value

category SGV as in [12]. We take a fresh initial move q (which we may regard as

a “question”), which can be followed by an “answer” i ∈ I, with play subsequently

as for the game Ai.

MΣi∈IAi
= {q} + I +

⊔

i∈IMAi

ℓOPΣi∈IAi
= ℓOP1 , where

ℓOP1 (q) = O

ℓOP1 (i) = P (i ∈ I)

ℓOP1 (m) = ℓOPAi
(m) (m ∈MAi

)

Chapter 2. Definition of categories of games 40

PΣi∈IAi
= {ǫ, q} ∪ {qis | i ∈ I, s ∈ PAi

}

For each i ∈ I there is an injection

ini : Ai → Σi∈IAi

which responds to the initial q with i, and thereafter acts as a copycat.

Call a game pointed if it starts with a unique initial move q. Given a pointed

game B and a collection {fi | i ∈ I} with fi : Ai → B we can define

[fi]i∈I : Σi∈IAi → B

as

[fi]i∈I = {ε} ∪
⋃

i∈I

{qqis | qs ∈ fi}

It is easy to see that for any j ∈ I, inj; [fi]i∈I = fj , and that [fi]i∈I is the

unique such strategy.

We will later use this construction with each Ai the same game A, and in that

situation write simply ΣIA for Σi∈IA.

2.1.7 Skewed products

SG also has what we will refer to as a skewed product, A ⊘ B. This is a game

in which the first move must be in A, but thereafter moves can be in A or B as

with A⊗ B. This is defined as follows:

MA⊘B = MA ⊎MB

ℓOPA⊘B = [ℓOPA , ℓOPB]

PA⊘B = {s ∈ LA⊘B | s↿A ∈ PA, s↿B ∈ PB, s = ε or s0 ∈MA}

Our skewed product A⊘B is in fact the sequoidal product B ⊘A of [51]: we

say “A then B” while he says “B after A”.

The skewed product A ⊘ B is clearly related to the normal product A ⊗ B,

in that one can always take a strategy for A⊗ B and restrict attention to plays

beginning in A, giving the following inclusion morphism:

skprojA,B : A⊗ B → A⊘ B

More interesting is the morphism we can define in the other direction, when the

paired types are identical:

skewA : A⊘ A⊸ A⊗ A

Chapter 2. Definition of categories of games 41

This is a dynamic copycat strategy which identifies the component of A⊗A which

happens to be accessed first with the first component of A⊘A. Refer to the four

games A using subscripts A00, A01, A10, A11 from left to right.

skewA = {t ∈ LA⊘A→A⊗A | ∀s ⊑even t.∀i ∈ {0, 1}. s↿A1i
= pick(i, s)}

where

pick(i, s) =

{

s↿A00 if s0 ∈ A1i

s↿A01 if s0 /∈ A1i

Thus we have a retraction

(skewA, skprojA) : A⊘ A ⊳ A⊗A

The key property of the morphism skewA, however, is that the apparent ordering

of the pair A⊗A is rendered irrelevant, that is

A⊘ A

A⊗ A

skewA

?

γA,A
- A⊗ A

skew
A

-

The skew product comes with a pseudo-associativity isomorphism

passocA,B,C : (A⊘ B) ⊘ C ∼= A⊘ (B ⊗ C)

since, on either side, the valid plays are simply those of A ⊗ B ⊗ C which start

with an A move.

− ⊘ − is not a bifunctor on SG, since f ⊘ g : A ⊘ B → C ⊘ D could

result in the first move on the left of the arrow being played in B. However, we

can consider the strict sub-category SGs of SG. Every object A in SG admits

a morphism ⊥A : 1 → A consisting of the trivial strategy {ǫ}, and we say a

morphism f : A → B is strict when f ◦ ⊥A = ⊥B. SGs has the same objects

as SG, and as morphisms the strict morphisms of SG. Thus we have a functor

⊘ : SGs × SG → SGs, whose action of ⊘ on morphisms is simply that of ⊗.

Strictness of f in f ⊘ g : A ⊘ B → C ⊘ D ensures that the first move on the

right in C is immediately followed by a move in A, satisfying the requirement on

A⊘ B.

Chapter 2. Definition of categories of games 42

One could also define a lift monad on SG to go with this notion of strictness.

Instead of doing so here, we will give a more useful one below when we introduce

our category for call-by-value computation.

Returning to the evaluation morphism from Section 2.1.4, we note that this

can be given a type involving ⊘:

eval : A⊸ B ⊘ A→ B

This is naturally the type of eval , since the first move on the left is always in B,

copied from the right.

2.1.8 Recursive types

We note that the allowable sets of positions which define a game are countable

sets of plays, and form a CPO under set inclusion. We define A ⊑ B if MA ⊆MB,

ℓOPA (m) = ℓOPB (m) when m ∈MA, and PA ⊆ PB. The least upper bound
∨

i∈I Ai

is the game 〈
⋃

i∈IMAi
,
⋃

i∈I λAi
,
⋃

i∈I PAi
〉, and the empty game 1SG is a least

element. So our games themselves form a big CPO.

For a continuous map F on games we define a fixed point operator µ

F : |SG| → |SG|

µX.F (X) ∈ |SG|

=
∨

k(F
k ◦ 1SG)

We now note that all the operators ⊗,⊸,&,Σ,⊘ introduced above are mono-

tone and continuous in all arguments, since they are defined in a point-wise fash-

ion in terms of positions, and those are finite. Hence µ gives least fixed points

when applied to them, or operators built up from them by composition. Note

that recursive types are not really used in this thesis, except rather informally in

Section 2.2.2

2.2 The linear exponential

In this section we shall define a linear exponential comonad ‘!’ which we use to

interpret reusable objects. This is a standard concept, and we first review the

requirements for such a thing, before giving the particular definition we use. We

define the same exponential as that found in [51] and [45], but being somewhat

more explicit. Our definition is notable for the general machinery we use to easily

Chapter 2. Definition of categories of games 43

yet rigorously define the required data (various structural morphisms). We also

indicate how this machinery can be used to verify many of the required properties

(without giving full details).

2.2.1 Requirements of an exponential

To give an interpretation of linear logic (and the linear/affine lambda calculus)

it is sufficient to have a symmetric monoidal closed category (SG,⊗, 1) with a

comonad ! with certain structure—such a ! is called a linear exponential comonad.

Here we follow the presentation of Bierman, Benton et al. [16, 17, 20].

We must give some categorical definitions, generally specifying what it is for

a comonad to be well behaved in an SMCC.

Let C ,D be symmetric monoidal categories. A functor F : C → D is symmet-

ric monoidal if there is a morphism mi : I → F (I) and a natural transformation

m : F (−) ⊗ F (−) → F (− ⊗ −) respecting the symmetric, associative and unit

structures as follows:

mA,B;F (γA,B) = γFA,FB;mA,B

αFA,FB,FC;mA,B ⊗ idFC ;mA⊗B,C = idFA ⊗mB,C ;mA,B⊗C ;F (αA,B,C)

mI,A;F (λA) = mi ⊗ idFA;λFA

Let (F,m,mi) and (G,m′,mi ′) be two symmetric monoidal functors C → D . A

natural transformation τ : F → G is monoidal if

mi ; τI = mi ′

mA,B; τA⊗B = τA ⊗ τB;m′
A,B

A comonad on C consists of a functor ! : C → C together with two natural

transformations, the counit ε : ! → IdC and comultiplication δ : ! →!!, such that

δA; ε!A = id !A = δA; !εA and δA; δ!A = δA; !δA

The comonad (!, ε, δ) is monoidal if ! is a monoidal functor and ε and δ are

monoidal natural transformations.

A linear exponential comonad is a monoidal comonad (!, ε, δ,m,mi) equipped

with monoidal natural transformations e : ! → I and d : !− → !−⊗ !− such that

each (!A, eA, dA) form a commutative comonoid:

dA; γ!A,!A = dA

dA; eA ⊗ id !A = λ!A

dA; d⊗ id !A;α!A,!A,!A = dA; id !A ⊗ dA

Chapter 2. Definition of categories of games 44

and eA, dA are coalgebra morphisms (on the free coalgebra (!A, δA)):

eA; mi = δA; !eA

δA; !dA = dA; δA ⊗ δA;m!A,!A

and finally each coalgebra morphism between the free coalgebras (!A, δA) and

(!B, δB), that is f : !A→!B such that

f ; δB = δA; !f

is a comonoid morphism:

eA = f ; eB

dA; f ⊗ f = f ; dB

These conditions are given diagrammatically and slightly more explicitly in

[20], along with a proof that an SMCC with linear exponential comonad provides

a model for the multiplicative, exponential fragment of intuitionistic linear logic.

2.2.2 Linear exponential

We now define the particular exponential ‘!’ that we shall use in this thesis. The

game !A should be thought of as a “reusable” version of A—the intention is that,

for example, with the type !(A⊸ B) we can model a function which can be called

more than once. We shall think of this as countably many copies of A, so that the

behaviour of a strategy for !A may vary from use to reuse. This non-uniformity

is an important feature of ‘!’: we can model a function which behaves differently

from one call to the next. Moreover, not only can the behaviour of a strategy

for !A be different in each copy of A, as with ⊗ and ⊘ different components of

!A may interfere, so that for example interaction in one function call can affect

interaction in another.

We construct !A as an infinitary version of the skew product A⊘ A:

!A = µB.A⊘ B

This definition in terms of ⊘ is also used by Laird [51], and the same ! operator

is also defined directly by Hyland [45]. We also find it convenient to use the

following direct definition. On objects, define:

M!A =
⊔

i∈N M
(i)
A

λ!A =
⊔

i∈N ℓ
OP
A

P!A = {t ∈ L!A | ∀i.t↿
M

(i)
A

∈ PA ∧

(∀i ≥ 0. t = sau ∧ a ∈M
(i+1)
A ⇒ s↿

M
(i)
A

6= ε)}

Chapter 2. Definition of categories of games 45

We note that

!A ∼= A ⊘ !A

witnessed by the following morphisms

unfoldA : !A→ A ⊘ !A

foldA : A ⊘ !A→!A

On morphisms we note that the “obvious” pointwise definition for σ : A→ B

!σ = {t ∈ P!A⊸!B | ∀i. t↿Ai⊸Bi
∈ σ}

is not correct—as one can see from the definition in terms of ⊘, this only defines a

functor in SGs. Instead we want to add to this the infinitary version of skewA, so

that components of A are dynamically associated with components ofB according

to when they are opened (we defer explanation until the next section). If σ is

strict, this will coincide with the näıve definition. The function comp(s, i) picks

the component of !B associated with the ith component of !A in s, or a fresh one

if there is none:

comp(s, i) =







j if s = tbiajt
′,

1 + max{j | ∃k. sk ∈MAj
} otherwise

Then define !σ as follows:

!σ = {ε}∪{t ∈ P!A⊸!B | ∀smm′ ⊑even t. ∀i. (j = comp(s, i)) ⇒ smm′ ↿Aj⊸Bi
∈ σ}

Verifying that !(σ ◦ τ) =!σ◦!τ involves a tedious “chasing” of moves through the

two instances of comp, and we omit the proof here.

It should be noted that it is possible to define various ‘!’ operators in SG

(such issues are discussed in depth by Melliès [63]). The AJM exponential [11]

is somewhat similar to that defined above—it is instead an infinitary version of

⊗. However, in that context uniformity is imposed so that each component must

behave the same, rendering ordering irrelevant. In the non-uniform situation the

ordering on components imposed by ⊘ cuts down on some redundancy in the

representation, ensuring that ! forms a comonad.

In contrast, the “backtracking exponential” of Lamarche [55] interprets !A as

the game whose plays “explore” the game tree of A. Here each move of such an

exploration represents a play in A, and an exploration can visit two plays st1,

st2 representing a “fork” in the game tree, but ask for a response to a given play

Chapter 2. Definition of categories of games 46

only once. This leads to a uniform behaviour, in the sense that the Opponent

must remember a Player answer instead of repeating the question (and perhaps

receiving a different answer), but unlike the AJM exponential this arises from the

definition rather than as an imposed constraint.

It seems that there is another exponential present in SG, which can be thought

of as a combination of the one we define above and Lamarche’s backtracking

exponential, where in !A we essentially permit repetition in the exploration of A,

but this additional “power” is not required for the purposes of this thesis.

2.2.3 Dynamic copycat strategies

In association with our exponential, we wish to define operations such as the

contraction dA : !A→ !A⊗ !A. Since the intended meaning of this operation is to

produce two “copies” of !A from one, we should expect that dA will be a strategy

translating (possibly interleaved) interaction in the two copies to interaction in

the original. We might consider defining a copycat strategy in the sense of Sec-

tion 2.1.3, where we think of each component of !A as a separate “occurrence” of

A, but this does not work: it is not possible to define such an operation which

ensures that the components of each !A are opened in order. Instead of a static

association between components of each !A, we must define a dynamic one as in

[45], where each new A component opened in !A⊗ !A is associated with the next

available component of !A. In fact, at this type it is not hard to see that we have

no choice in the matter.

We now generalise this idea. Define suitable formal expressions E over vari-

ables A1, . . . , An:

E ::= E ⊗E | !E | 1 | A1 | . . . | An

We identify an “occurrence” of some Ai in an expression E by the path in

({L,R} ∪ N)∗ which navigates E to Ai by choosing the left or right branch of

each ⊗ encountered and the given component of each ! encountered, and define

Occ(E) as the set of all such valid paths.

Given expressions F,G, and taking the evident functors F̂ , Ĝ : SGn → SG,

define a dynamic copycat play in F̂ (~A)⊸ Ĝ(~A) with respect to a injection

C : ({L,R} ∪ N)∗ → ({L,R} ∪ N)∗

Chapter 2. Definition of categories of games 47

as a play s such that

∀t ⊑even s. (∀p ∈ Occ(G). t↿p = t↿C(p))

where we write ↿p for the restriction to the moves of the game specified by a path

p. Then define a dynamic copycat strategy f : F̂ (~A) ⊸ Ĝ(~A) as a strategy in

which each play in f is a dynamic copycat play with respect to some C, and if

t ∈ f and t ↿p a ∈ LAi
where p designates an occurrence of Ai then f(tap) is

defined. We explicitly do not require that the choice of C coincides for each play.

Lemma 2.2 (Dynamic copycats). Any copycat strategy f is also a dynamic copy-

cat strategy, and for any dynamic copycats f and g, f ; g, f ⊗ g and !f are both

dynamic copycats.

Proof. A copycat strategy f : F̂ (~A) → Ĝ(~A) is simply a dynamic copycat strategy

F̂ (~A) → Ĝ(~A) which specifies the same map C for each play s. Assume f and

g are dynamic copycat strategies f : F̂ (~A) → Ĝ(~A) and g : Ĝ(~A) → Ĥ(~A). Each

play s in f ; g arises from plays t1 ∈ f , t2 ∈ g such that t1 ↿Ĝ(~A) = t2 ↿Ĝ(~A) . Where

t1 and t2 specify maps C1 and C2 respectively, defining the map C as C1;C2 makes

s a dynamic copycat play. Thus f ; g is a dynamic copycat F̂ (~A) → Ĥ(~A).

We omit the proof that !f is a dynamic copycat here.

Proposition 2.3 (Unique dynamic copycats). For any expressions F and G

with respect to variables A1, . . . , An where F = !A1 ⊗ . . . ⊗ !An, giving functors

F̂ , Ĝ : SGn → SG, for each choice of objects ~A there exists a unique dynamic

copycat strategy F̂ (~A) → Ĝ(~A). Furthermore, these morphisms form a natural

transformation F̂ → Ĝ.

Proof. Observe that for any dynamic copycat strategy f , for any plays s ⊑ t in

f , C̃s ⊆ C̃t where C̃u is the restriction of Cu such that p ∈ dom(C̃u) ⇒ u ↿p 6= ε.

ε is a play of any game, and is a dynamic copycat play.

Given a dynamic copycat play t with Ct, and a move ap in Ĝ(~A) (such that

tap is a valid play), there are two possibilities. Firstly, ap is a move in the already

opened game p, in which case aC(p) can and must be played. Secondly, ap may

be opening a new component p. Then we must choose a new p′ in F , and set

C(p) = p′. By the restricted format of F , there is only ever one component p′ of

a given Ai which may be opened in F̂ (~A), so we must take this component p′ as

C(p).

Chapter 2. Definition of categories of games 48

It is also fairly straightforward to verify that the strategies σA so constructed

are natural in ~A (again the only interesting part is with regards to non-strict

strategies), but we omit the proof here.

2.2.4 Exponential structure

We now consider the required operations and properties of !. Since in our case

I = 1 is the empty game, !I and mi : I →!I are trivial and we shall not discuss

them further. As I is also the terminal object 1, eA : !A → 1 comes from the

affine structure, eA = 1!A. We must also define:

δA : !A→!!A dA : !A→!A⊗!A

εA : !A→ A mA : !A⊗!B →!(A⊗B)

Here we are in the situation of Proposition 2.3, and so we take these morphisms

to be the unique dynamic copycats of those types (giving the required natural

transformations). Actually, the dereliction εA is not very dynamic, as it simply

selects the first component of !A. The other morphisms are genuinely dynamic,

and for illustration we give a more explicit definition in the case of δA:

δA : !A→!!A

= {t ∈ L!A⊸!!A | ∀n.∀s ⊑even t.s↿An = s↿component(s,n) }

component(s, n) is the nth right-side A-game opened up in the play s, i.e.

component(s, n) = Ap,q

where si ∈MAp,q , i = min{i | si /∈ {component(s, 0), . . . , component(s, n− 1)}}

It is easy to verify that all but the last of the required properties of Sec-

tion 2.2.1 are satisfied by application of Lemma 2.2 and Proposition 2.3. Observe

that each equation involves the dynamic copycats just defined, the static copy-

cats from the SMCC structure, use of the functors ! and ⊗, and composition By

Lemma 2.2 both sides of each equation are dynamic copycats, and since their

types all start in a game of the correct form Proposition 2.3 shows they must

therefore be equal. The last property does not follow for these general reasons,

but can be routinely verified.

We shall also make use of the Kleisli operator, which we define from the above

Chapter 2. Definition of categories of games 49

structure in the normal way:

f : !A→ B

f ‡ : !A→!B

= δA; !(f)

This gives rise to a co-Kleisli category SG! as usual, but we shall work directly in

SG—partly because we will define an operation !A→!B which is not a promoted

morphism f ‡.

2.2.5 CPO structure and fixpoints

We note that strategies for any given game are countable sets of plays, and thus

form a ωCPO under set inclusion, with the empty strategy as least element ⊥

and least upper bounds (lubs) of ω-chains being given by set-theoretic union.

Composition of strategies is monotone, from the pointwise definition of compo-

sition, and continuous, following from plays being finite and hence in some finite

element of the lub. Therefore we can view SG as a CPO-enriched category.

We then have a fixed point operator on SG, (writing ext to suggest this is

an external operator):

Y ext
A : SG(A,A) → SG(1, A)

Concretely, where fk = f ◦ f ◦ . . . ◦ f , and writing
∨

k fk to denote the lub of the

sequence {fk | k ∈ N}, define

Y ext
A (f) =

∨

k

(fk ◦ ⊥A)

We then have as usual that

f ◦ Y ext
A (f) = Y ext

A (f)

The external fixpoint operator is standard, but it is worth noting the type of

the internal version

YA : !(A⊸ A) → A

An exponential appears because the function has to be used repeatedly to obtain

the fixed point. The internal fixpoint operator may be defined from the external

one via a standard trick from domain theory: Define

YA = [Y ext
!(A⊸A)⊸A(λ!(A⊸A)((id ⊗ d); (eval ⊗ ε); eval))]∗

Chapter 2. Definition of categories of games 50

This is more readable in internal language notation. Write f • x to denote dere-

liction plus application, ((f ; ε)⊗ x); eval , and recall that the juxtaposition (f x)

denotes ordinary application. Then the above definition is simply:

YA = Y ext(λF.λf. f • (Ff))

The need for the exponential in the type of YA manifests in the double occurrence

of f in the above expression.

We can then verify that

YA f = Y ext(λF.λf. f • (Ff)) f

= [(λF.λf. f • (Ff)) YA] f

= (λf. f • (YA f)) f

= f • (YA f)

2.2.6 Universal object

SG has a universal object U , where play simply consists of the player and

opponent exchanging numbers n ∈ N. We could define the universal game

U = 〈MU , λU , PU〉 as follows:

MU = N + N

λ(inl(n)) = O

λ(inr(n)) = P

PU = LU

Plays of this game are just any sequence of natural numbers, with the correct

opponent/player alternation. However, it will be more convenient to use an equiv-

alent formulation where moves are labelled with their position in the play in order

to avoid the apparent repetition of moves:2

U =!&NΣN1

The moves of this game can be described as {qni , a
n
i }n,i∈N, where the subscript

represents the component of the exponential, and the superscript on q or a rep-

resents the choice of game for & and Σ respectively.3 The plays of this game

are then those which have the form qn0a
m
0 q

n′

1 a
m′

1 . . ., the order of these subscripts

being constrained by the definition of the exponential.

2This revised formulation will coincide exactly with the denotation of a type in our language
in Chapter 4.

3Strictly speaking we should also annotate each a with a &-index too, see Section 2.6.

Chapter 2. Definition of categories of games 51

We now show that U is a universal object. Take an object A = 〈MA, ℓ
OP
A , PA〉

of SG: we will define fA : A → U and gA : U → A such that gA ◦ fA = idA and

fA ◦ gA ⊑ idU .

Since MA is countable, we may choose an injection ι : MA → N+N, respecting

the P/O labelling. Now define a function t : (MA + MU) ⇀ (MA + MU) to be

the least partial function such that:

t(a) = ι(a) (a ∈MA)

t(ι(a)) = a

and the required morphisms:

fA = {s | ∀s′ab ⊑even s. b = t(a)}

gA = {s | (∀s′ab ⊑even s. b = t(a)) ∧ s↿MA
∈ PA}

It is easy to see that (thanks to the restriction s ↿MA
∈ PA) these are indeed

strategies of the correct type, gA ◦ fA = idA and fA ◦ gA ⊑ idU .

Note that when we impose a notion of bracketing on strategies in Section 2.3,

the retraction defined above may violate well-bracketing. Thus, U will no longer

be a universal object in the category of well-bracketed strategies.

By the nature of the universal object, an alternative construction of SG is

possible. There is a linear λ-algebra corresponding to U which can be defined

relatively simply [60], giving rise via the Karoubi envelope construction to a

category of projections equivalent to SG. This adds support to our belief that

SG is mathematically a rather natural category of games to consider.

2.3 Well-bracketed games

We now define a subcategory of SG in which the strategies obey some bracketing

discipline. This category BG will be the setting in which we shall work for the

majority of this thesis—we shall return briefly to the non-well-bracketed setting in

Chapter 7. We will essentially be excluding the possibility of methods terminating

prematurely or out of order, or in other words we will rule out any kind of

continuation or catch operator. This will help to ensure a close match with the

language we shall introduce in Chapter 4, which lacks such control features.

Consider the following two plays of type (1⊥ ⊸ 1⊥) ⊸ 1⊥, where 1⊥ is

the game consisting soley of a unique move q and response a.4 The first rep-

4The −⊥ construction is formally introduced in Section 2.4.

Chapter 2. Definition of categories of games 52

resents a “normal” interaction of this type, while the second represents inter-

action with a strategy which “terminates early”—the characteristic play of the

Cartwright/Felleisen catch strategy [27] at this type.

(1⊥ ⊸ 1⊥) ⊸ 1⊥

q

q

q

a

a

a

(1⊥ ⊸ 1⊥) ⊸ 1⊥

q

q

q

a

The second strategy above is the prototypical strategy which we want to disallow.

It violates the well-bracketing principle that questions should be answered in the

correct order, and not early or otherwise out of turn (a kind of stack discipline).

The following play violates this principle in a slightly different way:

((1⊥ ⊸ 1⊥)⊸ 1⊥) ⊸ 1⊥

q

q

q

q

a

a

This would arise as an interaction with an opponent playing as in the second

case above. We also exclude this behaviour in BG, but when working in SG

it is worth bearing in mind the difference between strategies which commit a

bracketing violation and those such as the last strategy above which merely carry

on in the face of opponent violation.

2.3.1 The category BG

Consider a game A in SG. A is equipped with a number of moves which are not

the same as positions (or plays) of A, so that a move m may be present in two

distinct plays sm and tm. By the rules of SG, m may occur multiple times in

a single play s1ms2m, but none of the definitions we have given introduce such

a possibility. In particular, the definition of ‘!A’ explicitly distinguishes between

each instance of a given move in A.

Chapter 2. Definition of categories of games 53

We can therefore partition the moves of each game into questions and answers,

with each answer move justified by a question move, and with this justification

being built into the moves of the game, rather than being data associated with

each play as in some models. We do not consider any justification of questions,

since this is not required for the definition of well-bracketing.

We shall equip a game A of SG with a Q/A labelling ℓQAA : MA → {Q,A}, and

a justification function JA : MA →MA satisfying

ℓQAA (J(a)) 6= ℓQAA (a)

ℓOPA (J(a)) 6= ℓOPA (a)

So for example, for the game N⊥ we would choose to set ℓQAN⊥
(q) = Q, and for each

n ∈ N, ℓQAN⊥
(n) = A and JN⊥

(n) = q. The justification function serves only to

associate questions and their corresponding answers, so that we can ensure that

questions are answered in the correct order according to a bracketing discipline

(the relation to control features is discussed in [53]).

We now define the notion of a well-bracketed play in A. Firstly, a play s is

fully bracketed if it has no unanswered questions. Define FB as the least relation

such that

FB(ε) FB(s) ∧ FB(t) ⇒ FB(J(a)sat)

A play s is well-bracketed if it contains no prematurely answered questions. Define

WB(s) ⇐⇒
s = s1as2 ∧ ℓ

QA(a) = A ⇒ J(a) ∈ s1

and s = s1J(a)s2as3 ⇒ FB(s2)

We define the category of well-bracketed games BG as follows. For each arena

A = 〈MA, ℓ
OP
A 〉 of SG, Q/A labelling ℓQAA and a suitable justification function JA,

an arena of BG is a tuple 〈MA, ℓ
OP
A , ℓQAA , JA〉. The language LA of an arena is

that of SG with the additional restriction that for each play s in LA, WB(s).

Given this new definition of LA, a game is specified by the addition of a set of

plays PA as in SG. The resulting set of strategies RA for A are then defined as

in SG, and as before a morphism A→ B is a strategy for A⊸ B.

Given games A and B, we revisit the definitions of ⊗ and ⊸: define the

Chapter 2. Definition of categories of games 54

following games

MA⊗B = MA +MB

ℓOPA⊗B = [ℓOPA , ℓOPB]

ℓQAA⊗B = [ℓQAA , ℓQAB]

JA⊗B = [JA, JB]

PA⊗B = {s ∈ LA⊗B | s↿A ∈ PA, s↿B ∈ PB}

MA⊸B = MA +MB

ℓOPA⊸B = [ℓ
OP

A , ℓOPB]

ℓQAA⊗B = [ℓQAA , ℓQAB]

JA⊗B = [JA, JB]

PA⊸B = {s ∈ LA⊸B | s↿A ∈ PA, s↿B ∈ PB}

Notice that the only changes we have made are the addition of the Q/A labelling

and the justification function J—the definition of the set of plays remains the

same, because now the constraint s ∈ LA⊗B etc. restricts to well-bracketed plays.

Proposition 2.4. BG is a category.

The definition of the identity strategy carries over and can be seen to be the

identity (see the discussion below regarding copycat strategies), so the content

of this proposition is that composition respects the bracketing condition. Firstly,

observe that restriction of a fully bracketed sequence s on A ⊸ B to A or B

must be a fully bracketed sequence. Since questions and answers in A and B are

unrelated, if a question was closed early in A in s ↿A the pending question at

that time could not be closed in s by a question in B, so the question was closed

early in s too.

Here we show that WB is preserved by composition (a similar proof is given

by Laird [53]). Assume for σ : A → B and τ : B → C that WB(σ) and WB(τ)

yet it is not the case that WB(σ; τ). Then there is some sa ∈ σ‖τ such that a

answers a question q while there is some later question q′ remaining unanswered,

i.e. s = s1qs2a with q′ ∈ s2.

Note by the switching condition on ⊸, an odd number of moves have to be

played in B between playing a move in A and being able to play a move in C

(and vice versa). Consequently, an even number of moves in B have to be played

between two successive moves in A (or in C).

This means s2 ↿B must be of even length, and by well-bracketing of σ must

be fully bracketed. So s2 is of the form q1t1a1q2t2a2 . . . qntnan with qi,ai in B

Chapter 2. Definition of categories of games 55

(note that tn can still contain moves in B, i.e. nested brackets). For any qitai,

since qiti ↿B,C ai is in τ then ti must be fully bracketed, and hence leave no

pending questions. Since there are no pending questions from C, q cannot have

been answered prematurely.

The same reasoning holds when q is in C, so it must be the case that WB(σ; τ)

after all.

2.3.2 Structure of BG

We now show that the structure defined for SG in Sections 2.1–2.2 can also be

understood in the context of BG.

Proposition 2.5 (BG is nice). The object 1, functors ⊗,⊸,⊘, !,&,ΣX, and

all the relevant morphisms defined earlier in SG restrict to BG, making BG a

SMCC with linear exponential comonad. The Y operator also restricts to BG,

while U is not a universal object in BG.

As for the definition of A⊸ B above, we endow each of our type constructors

with a Q/A labelling and a justification function, and reinterpret the definition

given earlier in BG:

• For 1BG we must take the empty labelling and justification function.

• For !A take ℓOP!A =
⊔

i∈N
ℓOPA and J!A =

⊔

i∈N
JA.

• For &x∈XAx take ℓOP&x∈XAx
=
⊔

x∈X ℓ
OP
Ax

and J&x∈XAx =
⊔

x∈X JAx.

• For ΣXA take ℓOPΣXA
(q) = Q where q is the unique initial move, and for each

x ∈ X take ℓOPΣXA
(x) = A and JΣXA(x) = q. Furthermore, for any move

z ∈MA, take ℓOPΣXA
(z) = ℓOPA (z) and JΣXA(z) = JA(z) (where defined).

The action of the functors ⊗,⊘, ! on morphisms was defined in terms of re-

striction of valid plays, and this carries over to BG, as the set of valid plays

already imposes the bracketing restriction. For example for products, the follow-

ing definition stands:

σ ⊗ τ = {s ∈ P even
A⊗B⊸C⊗D | s↿A⊸C ∈ σ, s↿B⊸D ∈ τ}

In the case of &, the morphism &i∈Ifi is simply the union of the fi which is

clearly still correct, while for coproducts [fi]i∈I the more explicit definition

[fi]i∈I = {ε} ∪
⋃

i∈I

{qqis | qs ∈ fi}

Chapter 2. Definition of categories of games 56

can be seen to obey the bracketing condition for Σi∈IAi → B as defined above.

Recall that we defined the bijection SG(A⊗B,C) ∼= SG(A,B⊸ C) simply

from the bijection on move sets, and this extends to BG(A⊗B,C) ∼= BG(A,B⊸

C) as it agrees with the above definition ofQ/A labelling and justification function

as disjoint unions, giving the eval morphism and λ(f) construction.

Informally, the morphisms defined in SG are well-behaved in BG because

they never introduce a bracketing violation. Here we show that dynamic copycat

strategies (and hence also static copycats5) are well-behaved. Consider a pro-

posed dynamic copycat f : F̂ (~A) → Ĝ(~A), and a play s ∈ f . Consider an even

subsequence qta of s, where q = J(a): if a is a P-move, J(a) must be an O-move,

and the sequence must have the form qq′t′a′a where q′ and a′ are relabellings of q

and a′ via Cs. Since F̂ and Ĝ are constructed from ⊗ and !, from the definition

above each occurrence of an Ai in F and G inherits the same labelling and jus-

tification function as Ai. Therefore q′ = J(a′), and by assumption there are no

unanswered questions in t′.

Finally, note that the universal object in SG U = !&NΣN1 has every move

either an opponent question or the player answer to the immediately preceding

opponent question, flattening the justification structure. The retractions A⊳ U

do not respect bracketing, so U is not a universal object in the BG.

2.4 Call by value games

We construct from SG a category SGV to model call-by-value computation by a

simplification of the Fam(−) construction of [12], essentially considering just the

subcategory of Fam(SG) where games are “constant families” of one repeated

object {A | i ∈ I}. Our category thus lacks general coproducts (having only

coproducts of a repeated object), and for these we should move to the richer

setting of [12], but for our purposes this simpler construction suffices.6

Objects of SGV are pairs (A,X) of a countable set A and an object X of SG,

and morphisms f = 〈f̄ , f̂〉 : (A,X) → (B, Y) are pairs of functions f̄ : A → B

and f̂ : A → SG(X, Y). The identity id (A,X) is 〈idA,Λa.idX〉, and composition

5And those morphisms such as skew , skproj , passoc which are essentially copycats but which
do not fit in our formal definition.

6An alternative choice would have been the technique of [42].

Chapter 2. Definition of categories of games 57

is defined by

〈ḡ, ĝ〉 ◦ 〈f̄ , f̂〉 = 〈 ḡ ◦ f̄ , Λa. ĝ(f̄(a)) ◦ f̂(a) 〉

We can define a full inclusion SG → SGV by X 7→ ({∗}, X), f : X → Y 7→

〈id , f̂〉 where f̂(∗) = f , and a full inclusion Set → SGV by A 7→ (A, 1SG),

f : A→ B 7→ 〈f,Λa.id1〉. Subsequently we will notationally confuse SG with the

corresponding full subcategory of SGV.

Similarly, we construct BGV from BG by the same process. Much of the

structure available in SG lifts straightforwardly to SGV, and that of BG to BGV .

We shall now review this and other important structure. We shall explicitly

discuss SG, but the following holds in BG also.

2.4.1 Symmetric monoidal closed structure

We define products

(A,X) ⊗ (B, Y) = (A×B,X ⊗ Y)

(A,X)&(B, Y) = (A×B,X&Y)

The tensor product has unit 1 = ({∗}, 1SG), and both products lift to bifunctors

by taking

f ⊗ g = 〈h̄, ĥ1〉 f&g = 〈h̄, ĥ2〉

where
h̄(a, b) = (f̄(a), ḡ(b))

ĥ1(a, b) = f̂(a) ⊗ ĝ(b)

ĥ2(a, b) = f̂(a)&ĝ(b)

Now we shall define⊸: (SGV)op×SG → SG—we do not give the full version

of ⊸ which strictly speaking is required to give the symmetric closed structure.

While it is possible to do so, we give the following restricted definition for sim-

plicity, since we are only interested in objects of the form (A,X)⊸ (B, Y)⊥ as

used to interpret our call-by-value language.

Writing &a∈AZa for the (countable) additive product over A in SG, simply

take

(A,X)⊸ (1, Y) = (1, X ⊸ &AY)

and note that

X ⊸ &AY ∼= &A(X ⊸ Y)

Chapter 2. Definition of categories of games 58

Now given a morphism

f = 〈f̄ , f̂〉 : (A,X) ⊗ (B, Y) → (1, Z)

we define
f̃ : A→ C (X,&B(Y ⊸ Z))

= Λa. &b∈B λ(f̂(a, b))

λ(f) : (A,X) → (B, Y)⊸ (1, Z)

= 〈λ(f̄), f̃〉

Also define

eval (A,X),(1,Y) : (A,X)⊸ (1, Y) ⊗ (A,X) → (1, Y)

: (A,&A(X ⊸ Y) ⊗X) → (1, Y)

= 〈Λa.∗, Λa. (Πa ⊗ idX); evalX,Y 〉

It is easy to verify that eval ◦ λ(f) ⊗ id = f (cf. [12]).

We can lift the skew product, taking

(A,X) ⊘ (B, Y) = (A× B,X ⊘ Y)

and corresponding definitions of skprojA,B and passocA,B,C. However, there is no

sensible definition of

skewA,X : (A,X) ⊘ (A,X) → (A,X) ⊗ (A,X)

since the A-part must be given “up front”, while skew must delay the choice

whether to behave like γ or id until the first move is played.

2.4.2 Lift monad

We shall now define a lifting functor ⊥ : SGV → SG. Simply take

⊥(A,X) = ΣAX

⊥(〈f̄ , f̂〉 : (A,X) → (B, Y)) : ΣAX → ΣBY

= {ε} ∪ {qBqA} ∪ {qBqAabs | f̄(a) = b ∧ s ∈ f̂(a)}

where qA, qB are the initial moves of ΣAX,ΣBY as in Section 2.1.6. Note that

⊥ is an endofunctor on SGV, as we can view SG as a subcategory of SGV. We

can easily define monoidal natural transformations µ : ⊥⊥ → ⊥, η : Id → ⊥,

ψ : ⊥(−) ⊗⊥(−) → ⊥(−⊗−) to make ⊥ a (non-symmetric) monoidal monad.

Chapter 2. Definition of categories of games 59

µ(A,X) : Σ1ΣAX → ΣAX

= {ε, qrAq1, q
r
Aq1a1q

l
A, q

r
Aq1a1q

l
Aa

l
Aa

r
A, . . .}

η(A,X) : (A,X) → ΣAX

= Λa.{ε, qAa, . . .}

ψ(A,X),(B,Y) : ΣAX ⊘ ΣBY → ΣA×B(X ⊗ Y)

= {ε, qABqA, qABqAaqB, qABqAaqBb(a, b), . . .}

Notice the type we have given ψ of A⊥ ⊘B⊥ → (A⊗B)⊥;7 this reflects the fact

that the left component is always accessed first by ψ. We can get the usual type

A⊥⊗B⊥ → (A⊗B)⊥ by pre-composing with skprojA⊥,B⊥
: A⊥⊗B⊥ → A⊥⊘B⊥,

and we can also get an “all skewed” version ψ : A⊥ ⊘ B⊥ → (A ⊘ B)⊥ by post-

composing with ⊥(skprojA,B). We shall not distinguish these notationally since

the meaning is clear from the types.

We shall also make use of the Kleisli operator, which we define from the above

structure in the normal way:

f : A→ B⊥

f † : A⊥ → B⊥

= ⊥(f);µB

Together with the skew product we introduced the notion of strictness. This

is particularly relevant for types A⊥ → B⊥. Note that µ is strict, and for any

f , !f is strict, and consequently f † is strict. Lastly, ψ is strict in both of its

arguments. On the other hand, g; η is not strict for any g.

There is also another connection with the skew product:

ΣAX ∼= ΣA1 ⊘X

(A,X)⊥ ∼= (A, 1)⊥ ⊘ (1, X)

and hence note that

(A,X)⊥ ⊘ (1, Y) ∼= (A, 1)⊥ ⊘ (1, X ⊗ Y)

i.e.

(A,X)⊥ ⊘ Y ∼= A⊥ ⊘ (X ⊗ Y)

Finally, there is a morphism

µ⊸ : (X ⊸ Y⊥)⊥ → (X ⊸ Y⊥)

7We shall write −⊥ for ⊥(−) on objects (but not morphisms).

Chapter 2. Definition of categories of games 60

which responds to the initial question qx on the right-hand Y⊥ by the initial

question q on the left, and to the unique response a to that question by playing qx

on the left, and behaving as a copycat thereafter. Trivially for any f : (X ⊸ Y⊥)

it is the case that

µ⊸ ◦ η ◦ f = f

justifying the notation µ⊸ by analogy to µ.

2.4.3 Linear exponential

We extend the ! operator of SG to SGV. Since the set-part in SGV is intuitively

copyable, we define

!(A,X) = (A, !X)

!〈f̄ , f̂〉 = 〈f̄ ,Λa.!f̂(a)〉

and lift δ, ε, d and m accordingly.

We note that it is no longer the case in general that !A ∼= A⊘!A, because the

morphism foldA : A ⊘ !A →!A has no sensible action to take on the set part of

A—but where the set part is trivial, as in the game A ⊸ B⊥, the morphism is

still defined.

Since ! has a meaningful action on SG, we cannot expect to have

!(X⊥) = (!X)⊥

since considering the case of the object (1,N), the second game is the usual game

N⊥ in SG, whereas the first is !(N⊥). Clearly there is more information in a

strategy for !(X⊥) than (!X)⊥, since any given component can go undefined or

not independently of another. However, we can define a natural transformation

dist !⊥ : !⊥ → ⊥!

which simply discards this additional information; this is still strong enough to

be a distributive law for ! over ⊥.

Being more explicit, we define a morphism

f : !ΣAX → ΣA!X

where f responds to the initial q on the right with q in the first component on the

left, and then plays copycat on the first components; when another component is

opened on the right, f asks the initial q on that component on the left, ignores

Chapter 2. Definition of categories of games 61

the answer and plays copycat thereafter. Note that this definition makes use of

the fact that components of the exponential are opened in order.

We can also define a morphism

g : ΣA!X →!ΣAX

which responds to the first opening q on the right by asking the opening q on the

left and playing copycat thereafter, excepting that the opening q in subsequent

components on the right receive the same response. We call the resulting natural

transformation

dist⊥! : ⊥! →!⊥

In summary, we have that ⊥! ⊳ !⊥.

We shall later use dist !⊥ with the co-Kleisli operator to go from !X → Y⊥

to !X → (!Y)⊥, so we define f ♯ = dist !⊥ ◦ f ‡. Note that dist !⊥◦!ηX = η!X and

dist⊥! ◦ η!X =!ηX , and consequently for f : !X → Y , (ηY ◦ f)♯ = η!Y ◦ f ‡

2.4.4 Fixpoint Operator

Rather than defining a fixpoint operator on SGV we shall be able to use the

operator from SG

YX : !(X ⊸ X) → X

Where X = Y ⊸ Z⊥ there is a morphism µ⊸ : X⊥ → X, giving

!(idX ⊸ µ⊸);YX : !(X ⊸ X⊥) → X

2.4.5 Natural numbers and conditional

To model natural numbers, we take N = (N, 1SG), and then for a function

ϕ : Nk ⇀ N take ϕ̄ : ⊗1,...,k N → N⊥ the obvious morphism.

We define a conditional

ifzA : N⊥ ⊗ (A⊥&A⊥) → A⊥

In fact the essence of this is

ifz vA : N → (A⊥&A⊥)⊸ A⊥

Chapter 2. Definition of categories of games 62

where ifz vA = 〈Λn.∗, f〉 with

f = Λn.







ΠL if n = 0,

ΠR otherwise.

We then define

ifzA = (⊥(ifz vA);µ⊸)∗

and note that ifzA ◦ (0̄ ⊗ (f&g)) = f and ifzA ◦ (n̄⊗ (f&g)) = g for n 6= 0.

Note that we could have chosen a conditional of type

ifzA : N⊥ ⊗ (A⊥ ⊗A⊥) → A⊥

but this is a restriction of that defined above, requiring us to be able to supply

two A⊥ arguments even though it only ever evaluates one. Worse, we could define

a conditional of the above type which evaluates both arguments, while it is clear

from the type of our ifz that only one A⊥ argument is ever evaluated.

2.5 Memoisation

Here we introduce an operation on strategies designed to isolate certain portions

of interest. This will be of use later to “memoise” a computation, in order to

construct from a strategy σ and play s a strategy which behaves as σ would had

it already undergone the interaction s. In Chapter 5 we will use this operation

to extract the behaviour of a strategy after a certain heap interaction, in the

course of our soundness proof. The name memoisation refers to the fact that the

resulting strategy in this case starts with the same initial question as the original

strategy, but has no need to repeat the heap interaction, and can instead return

an answer immediately. The definitions and results in this section appear to be

new.

Firstly we define a method of extracting the portion of a strategy starting

after a given play. Informally, for a strategy σ, and an even-length play s ∈ σ, we

construct the strategy σs by stripping out everything apart from play following

s, as depicted in Figure 2.1. Observe that σs is generally not a substrategy of σ,

since the prefix s has been removed from all plays. Indeed, σs may be a strategy

for a different game entirely, namely the one which allows play to start at the

correct point. To that end, our first definition is an operation on types. Given

Chapter 2. Definition of categories of games 63

a game X = 〈MX , λX , PX〉 and a play s ∈ PX we give a new game Xs which

“starts after s” as follows

Xs = 〈MX , λX , PXs〉

PXs = {t | st ∈ PX}

Now we can define the operation on strategies as follows. For σ a strategy of

type X, define a strategy of type Xs as σs = {t | st ∈ σ}. It is easy to see this is

a legitimate strategy of that type, since prefix-closure is maintained.

Now we note that when s ∈ σ : X ⊸ Y has first and last moves in Y , then

(X ⊸ Y)s = (Xs↿X
⊸ Ys↿Y

)

since the only additional constraint on the right hand side is that play must

start in Y . For σ : X → Y we then have σs : Xs↿X
→ Ys↿Y

. There is a unique

interleaving of s ↿X and s ↿Y in σ (namely s), since by the switching condition

(Proposition 2.1) only Player may switch between X and Y in X ⊸ Y , and the

positions at which to switch are specified by σ. Therefore we use the convenient

notation σtt′ for σs such that s↿X = t and s↿Y = t′ (notice that σεs = σs).

Now given strategies X
σ- Y

τ- Z and s ∈ σ‖τ we have

(σ; τ)s↿X⊸Z
= Xs↿X

σs↿X⊸Y- Ys↿Y

τs↿Y ⊸Z- Zs↿Z

This equality is easily seen from the definition of composition.

We shall now discuss the application of the above definition in the situation in

which it will be most useful, namely with a pair of strategies 1
σ- Y

τ- Z⊥.

In this case, we shall be interested in the situation after the initial play qa in Z⊥.

Suppose qsa is a play in σ‖τ (see Section 2.1.2) with q and a in Z⊥ and s in Y .

s

σ σs

Figure 2.1: Memoisation

Chapter 2. Definition of categories of games 64

We note that σqsa↿1→Y
= σs. For τ , we wish to retain the qa, while still removing

s, leaving us a strategy consisting of qa followed by τ s. We shall denote this τ s,

defined simply as τ s = {qat | t ∈ τqsa}. We note that this can be defined directly

as τ s = {qat | qsat ∈ τ}. The benefit of this construction is that the result type

of τ s is of the same type as that of τ :

τ : Y → Z⊥

τ s : Ys → Z⊥

Then we have the following as (a trivial consequence of) a special case of the

above, that given strategies 1
σ- Y

τ- Z⊥ and qsa ∈ σ‖τ we have

σ; τ = 1
σs- Ys

τs

- Z⊥

We shall in fact require an apparently stronger fact that, given play in some

composition σ; τ ; υ, we can equivalently memoise at the interaction between (σ; τ)

and υ, or σ and (τ ; υ), or indeed at the interaction between each of σ, τ , and υ.

Lemma 2.6 (Resplitting). For any strategies σ, τ and υ of the appropriate

types, and for some interaction sequence qsa ∈ σ‖τ‖υ, the following diagram

commutes:

X
τ - Y

1
σs↿X -

σ

-

Xs↿X

(τ ; υ)s↿X

- Z⊥

υ

-

Ys↿Y

τs

?
υ
s↿Y

-

(σ; τ)
s↿

Y
-

Again this is from the definition of memoisation and composition (and its

associativity).

Lemma 2.7 (Notation). The following equalities hold for types and plays such

that the memoisations involved are defined:

(Xs1)s2 = Xs1s2 Xε = X

(σs1)s2 = σs1s2 σε = σ = σε

τ εs = τs (τ s)qa = τ sqa = τqsa

Chapter 2. Definition of categories of games 65

Lemma 2.8 (Memoisation of the identity). For any s, t, and any type X, if

(idX)st is well defined then s = t and

(idX)st = idXt

Proof. If (idX)st : Xs → Xt is indeed well-defined, it must be the case that s = t,

since the interleaving of s and t is in idX . Removing this initial portion of the

identity strategy, one is clearly left with the identity on the remaining game

Xt.

Lemma 2.9 (Memoisation preserves isomorphism). If X ∼= Y then for a play t

in X there is a play t̃ in Y such that Xt
∼= Yt̃.

Since there is a play t in X, there is a morphism (idX)tt : Xt → Xt. If the

isomorphism comprises f : X → Y and g : Y → X, then (idX)tt = (f ; g)tt, and by

Lemma 2.6 there is t̃ to split this as (f ; g)tt = f t
t̃
; g t̃t. By Lemma 2.8 (idX)tt = idXt ,

so f t
t̃
; g t̃t = idXt . Similarly g t̃t; f

t
t̃

= idYt̃
, hence Xt

∼= Yt̃.

Lemma 2.10 (Memoisation of pairs). For any game X ⊗ X ′ and even play t

admitted by that game, there exist plays t1, t2 along with a canonical isomorphism

(X ⊗X ′)t ∼= Xt1 ⊗X ′
t2

Furthermore, for any morphisms f , g and plays t, u with (f ⊗ g)tu : (X ⊗X ′)t →

(Y ⊗ Y ′)u, and t1, t2, u1, u2 as given above, the following diagram commutes

(X ⊗X ′)t
(f ⊗ g)tu- (Y ⊗ Y ′)u

∼= ∼=

Xt1 ⊗X ′
t2

f t1u1
⊗ gt2u2- Yu1 ⊗ Y ′

u2

Proof. From the definition of pairing, t is an interleaving of moves in X and

X ′, so the restriction to each of X,X ′ is a play in that game. Thus take t1 =

t ↿X and t2 = t ↿X′ . Then note that continued play tt′ ∈ X ⊗ X ′ arises from

interleaving of some t1t
′
1 ∈ X, t2t

′
2 ∈ X ′, so the above memoisations coincide.

In the case of morphisms, again pairing is simply interleaving, and the same

reasoning applies.

Lemma 2.11 (Memoisation of skewed products). For any skewed product X⊘X ′

and even play t 6= ε admitted by that game, there exist plays t1, t2 along with a

canonical isomorphism as above

(X ⊘X ′)t ∼= Xt1 ⊗X ′
t2

Chapter 2. Definition of categories of games 66

Furthermore, for any pair of morphisms f , g and plays t 6= ε, u 6= ε such that

(f ⊘ g)tu : (X ⊘X ′)t → (Y ⊘ Y ′)u, and t1, t2, u1, u2 as given above, the following

diagram commutes

(X ⊘X ′)t
(f ⊘ g)tu- (Y ⊘ Y ′)u

∼= ∼=

Xt1 ⊗X ′
t2

f t1u1
⊗ gt2u2- Yu1 ⊗ Y ′

u2

This is a trivial consequence of Lemma 2.10, since (X⊘Y)t = (X⊗Y)t where

t 6= ε, the first move in t having satisfied the “left first” requirement of ⊘.

The memoisation of a reusable object has one rather useful characteristic: the

result can be viewed as an object of the same type for future use, plus a (non-

reusable) “everything else” game for continued interaction with those components

which have already been opened. In the case of an object with methods, this will

correspond to the updated object and continued interaction with the argument

or results of any earlier method invocation.

Lemma 2.12 (Memoisation residue). For any even play t in any reusable object

!X, there exists an object Zt along with a canonical isomorphism

(!X)t ∼= Zt⊗!X

where Zt consists of any continuing play in components of !X occurring in t, and

the right-hand !X consists of all untouched components. For some n, Zt has the

following form

Zt =
⊗

0≤i<n

(X)ti

where ti = t↿Xi

Proof. The play t must open some number n of components of !X (possibly 0),

i.e. t will contain moves in each of components 1, . . . , n. By repeated unfolding

!X ∼= X ⊘ · · · ⊘X ⊘ !X

and then if ti = t↿Xi
, by Lemma 2.11 we have

(!X)t ∼= (X ⊘ · · · ⊘X ⊘ !X)t = (X)t1 ⊗ · · · ⊗ (X)tn ⊗ !X

In fact we can lift the above lemma to products.

Chapter 2. Definition of categories of games 67

Lemma 2.13 (Product-memoisation residue). For any even play t in any prod-

uct of reusable objects
⊗

i∈I !Xi, there exists an object Zt along with a canonical

isomorphism (
⊗

i∈I

!Xi

)

t

∼= Zt ⊗
⊗

i∈I

!Xi

and

Zt =
⊗

i∈I
0≤j<ni

(Xi)ti,j

where ti,j = t↿(Xi)j

Proof. For each component i there is a play ti = t ↿!(Xi) to which the above

reasoning holds. Now apply Lemma 2.10.

2.5.1 Memoisation in BG

We observe that a restricted version of the memoisation operation carries over

to BG. Define Xs as above, but only where s is fully bracketed (FB(s)). This

ensures that plays of Xs are well-bracketed. Similarly for σ : X → Y we can

define σs : Xs↿X
→ Ys↿Y

as before since for a fully bracketed s, s ↿X and s ↿Y

are fully bracketed. For σ : X → Y⊥ we define σs as before for FB(s) since of

course FB(qsa). The above Lemmas can then be seen to hold in BG where the

requirement “even play” is replaced by “fully-bracketed play” throughout.

2.6 Notation

We shall fix some helpful notation for use in later chapters.

We write zn for the move z in the nth Z component of an exponential !Z. We

write qz for the initial question move q in the z-component of a game

(X,A)⊥ = &ZΣXA

where z ∈ Z (thinking of this as the question supplying the value z). If X = 1

we simply write q for q∗. We take all moves after qz to implicitly be in the z-

component without further indication (by the definition of the game there is no

other possibility, but formally every later move is labelled with the same z). For

x ∈ X we write ax for the corresponding answer in &ZΣXA.

Chapter 2. Definition of categories of games 68

Definition 2.14 (Termination). Call a play qsax of X ⊸ Z⊥ terminating if qax

is an initial play in Z⊥. Say the morphism f : X → Z⊥ terminates if it admits

such a terminating play.

Note that the terminating plays of f are just the minimal non-ε fully-bracketed

ones. If a morphism f : 1 → Z⊥ terminates then it admits a unique terminating

play qax. Lastly, f ; η terminates for any f .

Chapter 3

A strategy for data abstraction

In this chapter we shall explore the issue of modelling stateful behaviour in the

category BGV of well-bracketed games defined in the previous chapter.

We define an operation which creates a stateful object from a “functional”

implementation of that object, giving a semantic treatment of data abstraction.

We identify an important restriction on the notion of “implementation”, then

prove some characteristic properties of the operation.

3.1 Modelling stateful behaviour

We intend to model expressions with state, and in particular our language will

include stateful objects. Consider for instance the type

!(X ⊸ Y⊥)

This is the type of a function which can be used multiple times, but the nature

of our ! means that the different uses need not behave in the same manner, and

indeed may alter their behaviour based on the history of the other uses, and so

the function can behave as if it has some internal state.

One can also consider this behaviour to be a property of our product ⊗,

in that it allows interfering behaviour between its two components. Since play

in one component can affect future behaviour of the other component, the two

components of the product can be seen to share some internal state, as in the

contraction map !X →!X⊗!X.

How does one construct a strategy of the above type which exploits this be-

haviour? There are no interesting such strategies given in the previous chapter,

69

Chapter 3. A strategy for data abstraction 70

and the structure described there is not sufficient to construct one.1

One approach would be to choose some strategy (or family of strategies) which

have stateful behaviour, and introduce these as constants when we define our cal-

culus. For example, one could imagine defining a strategy which implements some

kind of ML-style reference cell, and then consider a language with references—this

is the approach taken in [10]. Such a strategy might have the following type:

cellX : 1 →!(!X ⊸ 1⊥ & 1⊸ (!X)⊥)

We could only hope to construct reference cells for types of the form !X, since

a value may be read many times before it is replaced. In fact we cannot even do

that—with our notion of games, it is only possible to define such a strategy for

ground type reference cells (such as natural numbers). We will discuss this issue

later, as it is still relevant in the context of our eventual solution.

Rather than contenting ourselves with ground-type reference cells, we choose

instead to define an operation on strategies, which will internalise some specified

stateful behaviour. Consider a strategy

σ : !(S ⊗X ⊸ (S ⊗ Y)⊥)

where σ is a reusable operation which given an initial state along with an argu-

ment returns an updated state together with a result. Given some initial state

s : S we shall construct a new strategy

σ̂ : !(X ⊸ Y⊥)

The state-transforming behaviour of σ will be hidden within σ̂, so that σ̂ exhibits

stateful behaviour as defined by σ.

This operation will in fact allow us to construct ground type reference cells as

described above, as well as other interesting strategies (but not general reference

cells) at higher types.

3.2 A state-threading operator

We implement the operation discussed above as a family of morphisms

thread : S ⊗ !(S ⊗X ⊸ (S ⊗ Y)⊥) →!(X ⊸ Y⊥)

1The fold morphism goes some way towards this by allowing construction of non-uniform
strategies, but cannot be used to establish the interdependence between components which
would be required to model a stateful object.

Chapter 3. A strategy for data abstraction 71

The name thread comes from the desired behaviour, which is that the state is

threaded through successive invocations of a method implementation (we post-

pone for now discussion of objects with multiple methods). The initial state is

passed as an argument to the first method invocation, and the state returned is

then passed as argument to the second, and so on.

The notion of a method implementation described here is subtly different from

the programmer’s usual notion, as we are really talking about the behaviour of a

single invocation on the object’s external interface. Any recursive calls (including

mutually recursive calls) will be “compiled in” by the time we wish to perform

the above threading procedure, with state being passed around internally in a

functional manner.2 Therefore for the remainder of this chapter we shall not

have to refer to these recursive calls again, but it should be understood that the

interpretation of Chapter 4 handles these as one would expect.

On the other hand, the issue of re-entrant methods is more subtle. In this

case a second method invocation may genuinely occur at the point of performing

the threading operation. In particular, what happens if the second invocation

starts before the first finishes? In the case of such nested invocations there will

be no result state available to supply to the second invocation. There are two

possible responses to this: either the original state is duplicated (requiring that

S be a reusable object of the form !S ′) or thread simply makes no response. We

shall deal with the former possibility in the next section and for the remainder of

the chapter, but first we discuss the latter “avoidance” strategy.

In order to avoid dealing with nested method calls, one would need either

to establish that they would not occur simply from context—we are after all

dealing with a sequential language—or to impose some restriction to ensure this.

Unfortunately, nesting can indeed occur. Consider possible play in the game

!(X ⊸ Y⊥). After the initial question in the first component X ⊸ Y⊥ is asked

by Opponent in Y⊥, there is some play in the argument X ending in a Player

move there. Opponent may then opt to ask the initial question in the second

component—not only is this a valid move in the game, but this strategy is a per-

fectly sensible one. Such a strategy corresponds to a dependence of the supplied

2More precisely by “compiled in” we are referring to the process of taking the fixed point
of the approximation operator corresponding to the class implementation, as discussed in Sec-
tion 4.1.

Chapter 3. A strategy for data abstraction 72

argument in X on the object in question, such as in an expression of the form

o ·m(λx. o ·m(. . .))

We hope the reader will understand this syntax informally, but a concrete example

of the above scheme will be discussed in Section 4.2.1, in the context of our

language.

Fortunately, the above discussion suggests a restriction which shall suffice to

prohibit nesting. If X contains no interesting computational behaviour (i.e. is of

ground type, being simply a set of values together with the empty game) then the

above scenario cannot occur. A little thought will reveal that such an indirect

interaction via the method argument is in fact the only circumstance in which

which nesting can occur. This restriction also appears in the language context in

Section 4.2.1.

Given this restriction, we now show how to implement this linear thread op-

eration. By linear, we mean that there is only ever one invocation in progress

at a time, with no nesting permitted. Consequently, the state S need never be

duplicated by thread itself, and so is permitted to be of linear type rather than

of the form !S.

Rather than giving a direct definition in terms of game plays, we define the

operation recursively as a composition of simpler morphisms, including a special

morphism pproj not definable from the structure defined in Chapter 2, which

we define here for this purpose. This structured definition is both easier to un-

derstand and to reason about than one given directly on game plays. The more

general non-linear thread operation to be introduced in Section 3.3 will build

upon this definition, including that of pproj , so this is a useful stepping-stone

and should help to explain the more complex definition later.

3.2.1 Partial projection

We define a “partial projection” morphism

pproj : X ⊸ (Y ⊗ Z)⊥ → (X ⊸ Y⊥) ⊘ Z⊥

We shall use this to access the state resulting from a method invocation.

The X ⊸ Y⊥ part of pproj is essentially a projection, with

ΠX⊸Y⊥ ◦ pproj = idX ⊸ (ΠY)⊥

Chapter 3. A strategy for data abstraction 73

However, the other part (Z⊥) is not a genuine projection, not always being very

well behaved; nevertheless if the following two conditions hold, the Z component

can be thought of as a projection:

• The result is accessed in a fashion one could deem “sequential” (that is

when the second component is only accessed after a value is returned in

Y⊥).

• The Z component of the argument does not depend on (or otherwise cause

a move in) the X argument after the initial answer is given.

If the two conditions do not hold, at some point pproj will go undefined. One

could imagine replacing Z⊥ with (1+Z)⊥ so that pproj could explicitly give a “no

result” answer if the first of these conditions does not hold, but for our purposes

the simple solution suffices.

The requirements are automatically satisfied when X is a “basic game” of the

form (A, 1)⊥, since in that case there is no play between question and response

in X (notice that the ⊘ in the type is important). When X is a computationally

interesting game the situation is more complex—in the next section we shall

ensure that the requirements are satisfied when we use pproj .

The definition of pproj is given as a function on odd-length plays as follows.

The set part of both X ⊸ (Y ⊗ Z)⊥ and (X ⊸ Y⊥) ⊘ Z⊥ is trivial, so pproj

is really just a strategy in BG, and we give it directly as such here. We label a

move z in the instances of Z on the left and right as zL and zR respectively (and

write z1, z2 for two arbitrary Z-moves); on the other hand, we confuse the two

instances of the games X and Y , where we simply define a copycat behaviour.

Recall that we write qx for an initial question inX ⊸ W⊥ carrying the ground-

type datum x (where x is in the set part of X, and W is either Y ⊗ Z or Y).

Similarly we write aw for the corresponding answer in W⊥ carrying ground-type

Chapter 3. A strategy for data abstraction 74

datum w ∈W .
pproj (qx) = qx

pproj (say,z) = ay

pproj (qxqxsay,ztq) = az

pproj (sx) = x

pproj (sy) = y

pproj (szR) = zL

pproj (szR1 z
L
1 z

L
2) = zR2

pproj (qxqxsq) = ⊥ (6 ∃ay,z ∈ s)

pproj (szR1 z
L
1 x) = ⊥ (x ∈ X)

The two non-response (⊥) cases correspond to the two requirements above, in the

same order. The first case represents a request for the result in Z “too early”,

i.e. before an answer has been given. The second is less obvious; this represents

a dependency of Z on X. It might seem that we could simply copy the X-move

on the left back over to the right, but this is not a valid move of the game

X ⊸ Y⊥. It is a violation of the switching condition—the game X ⊸ Y⊥ does

not allow Opponent to switch play into X. Such a move would represent a kind

of spontaneous interaction in a function argument not initiated by the function.

This is the fundamental reason why a strategy for a higher-order state cell

cannot be defined in SG. As we discussed in Section 1.6.4, there are more liberal

game models which allow such behaviour. This does come at the cost of added

complexity; here instead we stay with our more restricted notion of games, and

explore how much can be done without making such “bad” moves.

We define the the abbreviation pproj γ as (id ⊸ γ); pproj , since pproj projects

the wrong component for use in our definitions.

3.2.2 Partial application

We shall give another auxiliary definition for use in the definition of linthread

itself. Define the “left partial application” morphism

evalLX,Y,Z = (X ⊗ Y ⊸ Z) ⊗X
λY (evalX⊗Y,Z)- Y ⊸ Z

And note that

[f ⊗ (x⊗ y)]; eval = [(f ⊗ x) ⊗ y]; [evalL ⊗ id]; eval

Which is to say that the following diagram commutes:

Chapter 3. A strategy for data abstraction 75

[(X ⊗ Y)⊸ Z] ⊗X ⊗ Y

[Y ⊸ Z] ⊗ Y

evalLX,Y,Z ⊗ idY

? evalY,Z- Z

evalX⊗Y,Z

-

As for eval , we can give evalL a skewed type

evalLX,Y,Z : (X ⊗ Y ⊸ Z) ⊘X → Y ⊸ Z

since the first move on the left must always be in Z, copied from the Z on the

right side. Or in terms of the skew-typed eval :

evalLX,Y,Z = λY (skproj ; passoc−1; evalX⊗Y,Z)

3.2.3 Pseudopromotion

Before giving the definition of linthread , we deal with one final technical detail.

Given

linthread : S ⊗ !(S ⊗X ⊸ (S ⊗ Y)⊥) →!(X ⊸ Y⊥)

and a state s : S, we can construct an object of type !(X ⊸ Y⊥). Given a state

s′ : S⊥ (as would arise from a use of pproj), one could promote thread to get an

object of type [!(X ⊸ Y⊥)]⊥. However, it will be convenient to have a non-⊥

result object, giving the following type:

linthread : S⊥ ⊗ !(S ⊗X ⊸ (S ⊗ Y)⊥) →!(X ⊸ Y⊥)

In general, we can refrain from evaluating the state until the first method is

called on the result object, and we produce a definition which does so below. In

the cases we are interested in, the state will always be defined.

We give the definition more generally. For f : X ⊗ Y →!(Z ⊸ Z ′
⊥) we define

f ⋆ : X⊥ ⊗ Y →!(Z ⊸ Z ′
⊥) as:

f ⋆ = (id ⊗ η);ψ;⊥(f);λ−1; !(µ⊸)

Note that

([g; η] ⊗ h); f ⋆ = (g ⊗ h); f

since (η ⊗ η);ψ = η, η;⊥(f) = f ; η, η;λ−1 = η and η;µ⊸ = id .

Chapter 3. A strategy for data abstraction 76

linthread : !S ⊗ !(S ⊗X ⊸ (S ⊗ Y)⊥) → !(X ⊸ Y⊥)

S ⊗ !(S ⊗X ⊸ (S ⊗ Y)⊥)

S ⊗ [(S ⊗X ⊸ (S ⊗ Y)⊥) ⊘ !(S ⊗X ⊸ (S ⊗ Y)⊥)]

id ⊗ unfold
?

(X ⊸ (S ⊗ Y)⊥) ⊘ !(S ⊗X ⊸ (S ⊗ Y)⊥)

reassoc; passoc−1; (evalL ⊘ id)
?

((X ⊸ Y⊥) ⊘ S⊥) ⊘ !(S ⊗X ⊸ (S ⊗ Y)⊥)

pproj γ ⊘ id
?

(X ⊸ Y⊥) ⊘ [S⊥ ⊗ !(S ⊗X ⊸ (S ⊗ Y)⊥)]

passoc
?

(X ⊸ Y⊥) ⊘ !(X ⊸ Y⊥)

id ⊘ linthread⋆
?

!(X ⊸ Y⊥)

fold
?

Figure 3.1: Linear thread definition

Chapter 3. A strategy for data abstraction 77

(
(

() ()
)

) (
(

0

1

2 3

4

5

)
)

Figure 3.2: Behaviour of nested methods

3.2.4 The linear “thread” operation

We may now define linthread recursively as the least fixed-point of the circular

definition given by Figure 3.1, as per Section 2.2.5.

The general structure of linthread is to peel off the first component of the

source exponential, which will give rise to the first component of the destination

exponential, and recursively handle the other components. The first component

is used for the first invocation of the function in question; the state resulting from

this is then (recursively) supplied as the initial state to subsequent invocations.

The first component is extracted with unfold , and the initial state is supplied

via the appropriate (partial) evaluation map. The result of this partial evaluation

is then split by pproj ; the function part becomes the first component of the

destination exponential, while the state becomes the initial state for the recursive

use of linthread .

We make use of the following reassociation morphism:

reassoc : A⊗ (B ⊘ C)
γ;skproj ;passoc ;(id⊘γ)- B ⊘ (A⊗ C)

and note that since the morphisms involved are strict, the morphisms pproj⊘ id

and γ; evalL ⊘ id are well-defined. Then Figure 3.1 defines linthread .

3.3 Dealing with nesting

As suggested above, nested method calls are perfectly reasonable behaviour,

which we shall handle correctly, but there is some subtlety and we must be careful

in our definitions. Figure 3.2 shows the required behaviour of thread in the pres-

ence of a particular sequence of nested invocations. Pairs of opening and closing

parentheses “()” on the same line represent the initial question/answer pair

of a method, i.e. its call and return, and the calls are numbered chronologically.

Chapter 3. A strategy for data abstraction 78

Consider first the calls 0 and 4; the arrow going into the start of 0 represents the

initial state, and the arrow exiting 0 and entering 4 represents the returned state

from call 0 being fed into call 4. However, at the point of call 1 the previous call

has not returned, and so no updated state is available; the only choice allowing

progress to be made is to duplicate the initial state and feed that into call 1 also.

Again, call 2 occurs before 1 returns, and the initial state is again duplicated and

fed into call 2, however this returns before call 3 occurs, and so the updated state

from call 2 is given to call 3.

As mentioned earlier, this duplication of state is the reason we must restrict

thread to states with types of the form !S. In particular, the game N which

we will use to interpret natural numbers is of this form, as it may be useful to

think of states as simply natural numbers in order to understand the behaviour

of thread .3

Figure 3.2 illustrates another important aspect of nested calls, which is that

state updates from nested method calls do not propagate to their containing

calls. This occurs with the state returned from calls 1, 3, and 5 in this diagram.

Consider the most deeply nested, call 3—there is no way for this call to return

its result state to call 1, since 1 has already received its input state. There is no

other useful thing to do with this result state, since it is going to be overwritten

by the parent invocation (in this case, by call 0). We are left with no other choice

but to discard the state.

The fact that the state updates from nested calls are discarded is an unfor-

tunate consequence of the decision to model the concrete implementation of a

method as a state-transforming operation of the form !S⊗X → (!S⊗ Y)⊥. This

contrasts with conventional OO languages such as Java, where a method may

read or update the instance variables of its object at any time. The restriction

described here corresponds to only permitting methods which copy the instance

variables into a local variable at the start of a method, and copy the modified

version back at the end. Coping with more general behaviour would entail a

more fine-grained modelling of method implementations, which in turn would

complicate reasoning about program behaviour. Note that for ground types, it

is possible to define a reference cell via thread , with which one can achieve the

effect of Java-style state updates—it is only at higher types that this is a genuine

3In most cases one would wish the state to be copyable, in order to both retain the state and
perform some computation based upon it, but one could imagine that there might be exceptions
to this general usage.

Chapter 3. A strategy for data abstraction 79

(
() ()

)
1

2 3
(
5

)

()
0

...(
4

)

Figure 3.3: Categorisation of method calls

restriction.

On the other hand, the view of methods as explicitly state-transforming func-

tions is shared by encodings of objects using existential types. Here the type of

an object (∃S. S × (S → F (S)) in the simplest encoding) explicitly includes a

state, encapsulated by an existential type, and method implementations are state

transformers for this hidden internal state. This suffers the issues with regards

to nesting we have just described. However, in contrast to the existentially quan-

tified state type in these encodings, the objects that we construct do not even

reveal that their implementation uses some (unspecified) internal state. Not only

do the types not mention such a thing, a strategy for the game !(X ⊸ Y⊥) con-

tains no inherent state—we may make use of a state to construct such a strategy,

but this is not apparent in the behaviour of the resulting object.

In Chapter 6 we shall discuss a language extension which permits the definition

of more expressive method implementations. In brief, we can relax the restriction

that methods may only read the state at the start, allowing instead for this to

happen at any point. This means that there the result states which were discarded

in Figure 3.2 may instead be read by the enclosing method.

3.3.1 Branch

We give one more specialised morphism branch not definable using the structure

from the previous chapter. Our new definition of thread will involve two recursive

calls: one to handle the nested methods corresponding to 1–3 in Figure 3.3, and

one to handle the remaining methods corresponding to 4–5 and beyond. The

allocation of a given method to one of these recursive calls will be performed by

branch .

Given the pair of recursively defined objects !Z⊗ !Z, branch will construct an

Chapter 3. A strategy for data abstraction 80

object !Z by associating Z components on the right with Z components on the

left, and behaving in a dynamic copycat fashion. For a newly opened component

of !Z, there are always two choices in !Z⊗!Z; branch will allocate each component

of !Z to the left side of !Z⊗!Z until the main method call has returned an answer,

and then switch to allocating each component to the right side.

We give branch the following type. The branching will be solely on whether

the first argument (of typeX ⊸ Y⊥) has answered the initial question in Y⊥. This

first argument is only present so branch can spy on it watching for termination—

branch will be a copycat there.

branch : (X ⊸ Y⊥) ⊘ (!Z ⊗ !Z) → (X ⊸ Y⊥) ⊘ !Z

We label a move m in the left or right-side X ⊸ Y⊥ as mL, mR respectively,

and a move z in the nth component of one of the three !Z instances as as zLLn ,

zLRn , or zRn in turn. We assume that Z has a trivial set-part, and again give a

definition in SG:

branch(smR) = mL

branch(smL)) = mR

branch(szRn) = zLLn ((ay)R /∈ s) ∨ ∃z′.z′LLn ∈ s

branch(szLLn) = zRn ∃z′.z′LLn ∈ s

branch(s(ay)RtzRn) = zLRn−k k = B(s), n ≥ k

branch(s(ay)RtzLRn−k) = zRn k = B(s), n ≥ k

where

B(s) = max ({m+ 1 | ∃z.zLLm ∈ s} ∪ {0})

In the definition of thread we shall in fact only make use of branch with

Z = (X ⊸ Y⊥).

3.3.2 The non-linear “thread” operation

We implement the behaviour of thread as described above by a family of mor-

phisms

thread :!S ⊗ !(!S ⊗X ⊸ (!S ⊗ Y)⊥) → !(X ⊸ Y⊥)

The language defined in Chapter 4 will include objects with multiple methods,

to be interpreted using thread . For this reason, we extend thread to an operation

Chapter 3. A strategy for data abstraction 81

Z = &m∈M(!S ⊗Xm⊸ (!S ⊗ Ym)⊥)

W = &m∈MXm⊸ (Ym)⊥

thread : !S⊗!Z →!W

!S⊗!Z

!S⊗!S ⊗ [&m∈M(!S ⊗Xm⊸ (!S ⊗ Ym)⊥)⊘!Z]

dS ⊗ unfold
?

!S ⊗ (&m∈M [(!S ⊗Xm⊸ (!S ⊗ Ym)⊥)⊘!S]⊘!Z)

id !S ⊗ [reassoc; passoc−1; (dist ⊘ id)]
?

!S ⊗ [&m∈M (Xm⊸ (!S ⊗ Ym)⊥)⊘!Z]

id !S ⊗ (&m∈M (evalL ◦ Πm) ⊘ id)
?

!S ⊗ ([&m∈M(Xm⊸ (!S ⊗ Ym)⊥)] ⊘ [!Z⊗!Z])

id ⊗ (id ⊘ d)
?

&m∈M (Xm⊸ (!S ⊗ Ym)⊥) ⊘ [!S⊗!Z⊗!Z]

reassoc
?

&m∈M(Xm⊸ (!S ⊗ Ym)⊥) ⊘ [!W⊗!Z]

id ⊘ (thread ⊗ id)
?

[&m∈M(Xm⊸ (Ym)⊥) ⊘ (!S)⊥] ⊘ [!W⊗!Z]

(&m∈M(idXm ⊸ γ!S,Ym); pproj γ) ⊘ id
?

&m∈M(Xm⊸ (Ym)⊥) ⊘ [!W ⊗ (!S)⊥⊗!Z]

passoc ; [id ⊘ (γ ⊗ id)]
?

W ⊘ [!W⊗!W]

id ⊘ (id ⊗ thread⋆)
?

W⊘!W

branch
?

!W

fold
?

Figure 3.4: Thread definition

Chapter 3. A strategy for data abstraction 82

on records, interpreted with the additive product &, with the following type:

thread : !S ⊗ !&m∈X(!S ⊗Xm⊸ (!S ⊗ Ym)⊥) → !&m∈X(Xm⊸ (Ym)⊥)

No new techniques are required to handle multiple methods, but we must extend

the operations defined earlier. We enrich the type of pproj to include a labelling:

pproj : &m∈M(Xm⊸ (Ym ⊗ Z)⊥) → &m∈M(Xm⊸ (Ym)⊥) ⊘ Z⊥

There is in fact no modification required to the above definition in this case, other

than the new type; as well as containing the value-part of the Xm component,

the initial question qxm now selects the record component m required, but this is

just copied across as before.

We enrich the type of branch records as follows:

branch : &m∈M(Xm⊸ (Ym)⊥) ⊘ (!Z⊗!Z) → &m∈M(Xm⊸ (Ym)⊥)⊘!Z

As with pproj no modification is required other than the type. We also need

skew-typed distributivity morphisms:4

dist = (&m∈MXm) ⊘ Y
&m∈M (Πm⊘idY)- &m∈M(Xm ⊘ Y)

and we understand the abbreviation

f ⋆ = (id ⊗ η);ψ;⊥(f);λ−1; !(µ⊸)

as involving

µ⊸ : [&m∈M(X ⊸ Y⊥)]⊥ → &m∈M(X ⊸ Y⊥)

since &m∈M(X ⊸ Y⊥) ∼= X ⊸ (&m∈MY)⊥.

Now we can define thread . The following definition contains a large number

of structural morphisms which can be mostly be ignored, and should be apparent

from the types at each stage. The general structure is as follows, and corresponds

to the three-fold categorisation of method calls discussed earlier and depicted in

Figure 3.3. Using unfold , a copy of the method body is peeled off, and a copy

of the start state is supplied to this via eval (corresponding to call 0). The

remaining copies of the method body are split into two, and these two sets are

selected between by the branch near the bottom of the diagram. For the left

4This distributivity is not particular to ⊘ or the ordering of &m∈MXm and Y , it is just a
property of the Cartesian product &.

Chapter 3. A strategy for data abstraction 83

set (corresponding to the nested calls 1–3), we simply supply the other copy of

the start state to a recursive use of thread . For the right (corresponding to calls

4–5 and more), we use pproj to feed the resulting state from the main method

invocation to a second recursive use of thread as in linthread . Here, rather than

by a property of the types as in Section 3.2.4, the requirements ensuring that

pproj never goes undefined are enforced by the use of branch .

3.4 Properties of thread

Here we shall prove some general properties of the thread morphism which shall

be used later in our soundness proof (see Chapter 5). We simplify to the single-

method case for simplicity and clarity; multiple methods do not add any essential

difficulty.

We first introduce the restriction to disciplined strategies which insures that

the use of pproj in the definition of thread satisfies the two conditions identified

earlier, ensuring that pproj is well-behaved. We then show that for strategies

obeying this restriction, certain characteristic properties hold of thread . Further-

more, we show that for strategies obeying a more restrictive property of being

pair-like, two stronger properties hold of thread .

3.4.1 Disciplined strategies

In the case of the linear thread operator, we mentioned that the two requirements

of pproj (from Section 3.2.1) are satisfied simply by virtue of the types involved.

In the non-linear case things are not so simple. Here we give a property on

strategies (having more general types) of being disciplined which ensures that

they satisfy the pproj requirements.

The restriction to disciplined strategies is one of the key ingredients of this

thesis. It will appear again in a more syntactic form in the next chapter; in

Section 4.2.1 we justify the restriction with some operational intuitions. This

idea may at first appear rather ad hoc, but it will emerge later that this is just

what is required to obtain the language matching our model.

A disciplined strategy for the type S1 ⊗X ⊸ (S2 ⊗ Y)⊥ is one which makes

no move in X in response to a S2 move after answering the initial question of

(S2 ⊗ Y)⊥.

Chapter 3. A strategy for data abstraction 84

Definition 3.1 (Disciplined strategies). For any types S1, S2, X and Y and any

morphism k : 1 → (S1 ⊗X ⊸ (S2 ⊗ Y)⊥), k is disciplined if

• There is no play qsatbc ∈ k, where a answers q, b is an O-move in S2 and c

is a P-move in X.

A morphism k : ∆ → (S1⊗X ⊸ (S2⊗Y)⊥) is disciplined if for every e : 1 → ∆,

k ◦ e is disciplined.

Here and below, we think of k as modelling some method implementation, and

of the object ∆ as corresponding to a ‘context’ consisting of any free variables by

which this method implementation might be parametrised.

The condition above ensures that k does not cause pproj to go undefined

in order to avoid making an illegal move in X. Any information about the X

component required by the computation must therefore be extracted before the

point of returning from the function call, and we can consider the state at this

point as being solely a function of the previous state and information already

gleaned from X. This is what excludes the behaviour of a higher-order reference

cell as mentioned earlier.

Certain types only permit disciplined strategies. If !S is of ground type, no b

exists, while if X is of ground type, no c exists, so in either case every k of the

relevant type is disciplined.

It is easy to see that for a disciplined k : ∆ → (S1 ⊗X ⊸ (S2 ⊗Y)⊥) and any

s : ∆ → S1, the morphism (k ⊗ s); evalL is disciplined when considered at type

∆ → (1 ⊗X ⊸ (S2 ⊗ Y)⊥).

We now introduce a technical property that characterises pproj . The property

is stated using the memoization machinery of Section 2.5, allowing us to examine

the behaviour of pproj from the point of method return. Given a disciplined

k, and a terminating play qu′a of the application of k to an s and v, there is

a certain induced interaction u′′ with k and s. The property states (in terms

of memoization) that further interaction with this application in S2 after qu′a

coincides with interaction with pproj in S2 after u′′. It is important to note that

there is no v on the bottom line of the diagram below—because k is disciplined,

all the relevant information is contained in the play u′′ involving any initial pre-

return interaction with v.

Lemma 3.2 (pproj property). Let K = (S1 ⊗ X ⊸ (S2 ⊗ Y)⊥), and suppose

k : ∆ → K is disciplined and there are s : ∆ → S1 and v : ∆ → X such that there

Chapter 3. A strategy for data abstraction 85

is a terminating play qu′a of (k ⊗ (s ⊗ v)); eval Then there are plays u′′, ū such

that

(S2 ⊗ Y)⊥

(∆3)u′
[(k ⊗ s; evalL) ⊗ id∆]u

′

u′′

-

[k ⊗
(s⊗

v); ev
al]u′′

-

[X ⊸ (S2 ⊗ Y)⊥ ⊗ ∆]u′′
[id

⊗
v;

eva
l]u

′′

-

S2⊥

⊥
(Π
S
2)

-

(X ⊸ Y⊥)ū ⊗ S2⊥

Π S
2⊥

-

(Π; pproj) u ′′
ū -

Proof. Note that

(k ⊗ (s⊗ v)); eval = [(k ⊗ s; evalL) ⊗ id∆]; [id ⊗ v; eval];⊥(ΠS)

and the memoized morphism splits at [X ⊸ (S2 ⊗ Y)⊥ ⊗ ∆] as

[(k ⊗ s; evalL) ⊗ id∆]u
′

u′′ ; [id ⊗ v; eval]u′′ ;⊥(ΠS)

Then ū is the relabelling of the moves of u′′ via pproj ; the diagram above com-

mutes since the morphism on the left is disciplined, u′′ is a terminating play in

X ⊸ (S2 ⊗ Y)⊥, and by examination of their definitions, both eval and pproj

therefore act as a copycat on S2.

3.4.2 Branch Property

Abbreviate E = X ⊸ Y⊥, giving

branch : E ⊘ (!E⊗!E) → E⊘!E

Lemma 3.3 (branch property). Suppose u is a terminating play in E⊘!E. Then

there is a terminating play ū in E ⊘ (!E⊗!E) such that (a) u ∈ f ; branch iff

u ∈ f ; (id ⊗ ΠL) and if u ∈ f ; branch then ū ∈ f and (b) the following diagram

commutes:

[E ⊘ (!E⊗!E)]ū
branch ūu - (E⊘!E)u

∼= ∼=

Eu0 ⊗ (!E)uL
⊗!E Eu0 ⊗ (!E)uL

∼= ∼=

Eu0 ⊗ (Zu2⊗!E)⊗!E
id ⊗ ΠZu2

⊗ id
- Eu0 ⊗ (Zu2⊗!E)

for the evident isomorphisms from Lemmas 2.10—2.12.

Chapter 3. A strategy for data abstraction 86

Proof. The above holds by examination of the definition of branch—since u is a

terminating play, branch selects the right-hand !E for components opened after u

(the third pair of clauses in the definition), but still copies further play in previ-

ously opened components appropriately (the second pair of clauses). Since branch

is always a copycat on the initial E (the first pair of clauses in the definition),

Eu0 is untouched.

3.4.3 Thread Properties

We show three main properties, corresponding to the three classes of method

calls depicted in Figure 3.2. We show (1) that a method invocation gives the

correct result, (2) that it leaves the correct object for future use, and (3) that

nested calls are handled properly. These correspond to calls 0, 4–5 and 1–3 in

that figure respectively.

Thread Property 1

Here we show that the abstract behaviour of a single method invocation given

by thread results in the same value as the concrete implementation specifies,

assuming we start with the correct state. More precisely, the result of invoking

a method m with argument v1 upon the results of thread ◦ (k† ⊗ s†1) agrees with

the non-state part of the result of invoking m on k† with argument 〈s†1, v1〉:

Lemma 3.4 (Thread Property 1). For any k, s and x the following diagram

commutes (in the sense that the first morphism equalises the two ways around the

square):

(!∆)3

!(!S ⊗X ⊸ (!S ⊗ Y)⊥) ⊗ !S ⊗X

k† ⊗ s† ⊗ x

? (γ; thread) ⊗ idX- !(X ⊸ Y⊥) ⊗X

(!S ⊗ Y)⊥

(ε⊗ id !S⊗X); eval

? ⊥(ΠY) - Y⊥

(ε⊗ idX); eval

?

Note that we do not claim that the bottom square on the above diagram

commutes—the property depends on the fact that k† and s† are promoted mor-

phisms.

Chapter 3. A strategy for data abstraction 87

Proof. Write ΠS̄ for idX ⊸ ⊥(ΠY). Since it is equivalent to supply a value at

X then project with ⊥(ΠY) or project with ΠS̄ then supply a value at X, and

we can split eval !S⊗X,!S⊗Y into evalL!S,X,!S⊗Y and evalX,!S⊗Y , it is enough to show

that the following diagram commutes:

(!∆)2

!(!S ⊗X ⊸ (!S ⊗ Y)⊥) ⊗ !S

k† ⊗ s†

? γ; thread- !(X ⊸ Y⊥)

X ⊸ (!S ⊗ Y)⊥

(ε⊗ id !S); eval
L

? ΠS̄ - X ⊸ Y⊥

ε

?

We proceed by simplifying the composition (k†⊗s†); γ; thread ; ε using the def-

inition in Figure 3.4. We split thread in two for convenience as (thread1; thread2),

where thread1 is the composition in the figure up to and including the pproj line

and thread2 is the rest. We simplify the first portion (omitting some dn!∆):

(k† ⊗ s†); γ; thread1

= (s† ⊗ k†); (d⊗ unfold); [id ⊗ reassoc; passoc−1; (evalL ⊘ d)];

reassoc; [id ⊘ (thread ⊗ id)]; (pproj γ ⊘ id)

= ((k ⊗ s†); evalL ⊘ [(s† ⊗ k†); thread ⊗ k†]); (pproj γ ⊘ id)

(Since k†; unfold = d!∆; (k ⊗ k†) and s†; d!S = d!∆; [s† ⊗ s†])

= (k ⊗ s†); evalL; pproj γ ⊘ [(s† ⊗ k†); thread ⊗ k†]

Now simplify the second portion of the composition:

thread 2; ε

= passoc ; (id ⊘ (γ ⊗ id)); [id ⊘ (id ⊗ thread⋆)]; branch ; fold ; ε

= passoc ; [(id ⊘ (γ ⊗ id)); [id ⊗ thread⋆)]; branch ; ΠL

(Since ε = unfold ; ΠL and fold ; unfold = id)

= passoc ; [(id ⊘ (γ ⊗ id)); [id ⊗ thread⋆)]; ΠL

(Since branch ; ΠL = ΠL)

= ΠL; ΠL

(Since (id ⊘ f); ΠL = ΠL and passoc ; ΠL = passoc ; ΠL; ΠL)

Chapter 3. A strategy for data abstraction 88

Putting these together:

(k† ⊗ s†); γ; thread ; ε

= [(k ⊗ s†); evalL; pproj γ ⊘ ((s† ⊗ k†); thread ⊗ k†)]; ΠL; ΠL

= (k ⊗ s†); evalL; pproj γ ; ΠL

= (k ⊗ s†); evalL; ΠS

(Since pproj γ; ΠL = ΠS)

= (k† ⊗ s†); (ε⊗ id); evalL; ΠS

Thus above diagram commutes, completing the proof of Thread Property 1.

Thread Property 2

Here we show that further interaction with the object after a method invocation

behaves like interaction with a fresh object created from the resulting state. More

precisely, if invoking m on k† as above would result in a state-part s2, then the

memoization of thread ◦ (k† ⊗ s†1) with respect to the above play is equivalent to

its residue paired with thread ◦ (k†⊗ s2), the result of rethreading with the result

state s2.

It should be noted that nowhere in the following does s2 represent some syn-

tactically obtained result state—it is merely an abbreviation for the state-part

result of an evaluation as defined below. However, in Chapter 5 s2 will indeed

be related to such a syntactically obtained state. It should also be noted that s2

contains mention of the argument v1, but the property below relates that to an

expression containing no mention of v1, since the permitted interaction with v1

has already occurred (see the earlier discussion of the pproj property).

Lemma 3.5 (Thread Property 2). Suppose k : (!S⊗X ⊸ (!S⊗Y)⊥ is disciplined

and for some s1 : ∆ →!S, v1 : ∆ → X we abbreviate s2 : ∆ →!S as

s2 = (k ⊗ (s†1 ⊗ v1)); eval ;⊥(ΠS)

Suppose furthermore there is a terminating play qu′a ∈ s2. Then there exists a

terminating play t ∈ (s†1 ⊗ k†); thread such that

∆u′
[(s†1 ⊗ k†); thread]u

′

u- [!(X ⊸ Y⊥)]u

∼=

!(X ⊸ Y⊥)

([s2]
u′ ⊗ k†); thread⋆

?
� ΠR

Zu⊗!(X ⊸ Y⊥)

Chapter 3. A strategy for data abstraction 89

where t ↿∆ = u′ and t ↿!(X⊸Y⊥) = u, and where the isomorphism is that given by

Lemma 2.12.

Proof.

qu′as ∈ (k ⊗ (s†1 ⊗ v1)); eval ;⊥(ΠS)

qu′as,y ∈ (k ⊗ (s†1 ⊗ v1)); eval

qxūay ∈ (k ⊗ s†1); eval
L; pproj

(By the pproj property. Where ū↿∆ = u′, ū↿X⊸Y⊥ = û).

qxūay ∈ (k ⊗ s†1); eval
L; pproj γ ⊘ [(s†1 ⊗ k†); thread ⊗ k†]

= (s†1 ⊗ k†); thread1

(As for Property 1)

qxūay ∈ (s†1 ⊗ k†); thread ; ε

(Ignoring trivial relabelling of plays. Recall thread2; ε = ΠL; ΠL.)

So we may take t to be a relabelling of ū via ε (and therefore u bears the same

relationship to û), giving the first desired property that there exists a terminating

play t ∈ (s†1 ⊗ k†); thread .

For the commutativity of the square,

([s2]
u′ ⊗ k†); thread⋆

= ([(k ⊗ s†1); eval
L; pproj]u

′

qxûay ; ΠS⊥
⊗ k†); thread⋆

(By the pproj property.)

= [(s†1 ⊗ k†); thread1]
u′

qxûay ; (ΠS⊥
⊗ ΠR); thread⋆

(Earlier simplification of thread1, Lemma 2.11)

= [(s†1 ⊗ k†); thread1; passoc ; id ⊘ γ ⊗ id]u
′

qxûay ; ΠR; ΠR; thread⋆

(Memoization of copycats)

= [(s†1 ⊗ k†); thread1; passoc ; (id ⊘ γ ⊗ id); (id ⊘ id ⊗ thread⋆); branch]u
′

qxûay ; ΠR

(Branch right after terminating play qxûay)

= [(s†1 ⊗ k†); thread1; passoc ; (id ⊗ γ ⊗ id); (id ⊘ id ⊗ thread⋆); branch ; fold]u
′

qxûay ; ΠE

(Lemma 2.12, where play is in component 0.)

= [(s†1 ⊗ k†); thread]u
′

qxûay ; ΠE

Here we write ΠE for

[!(X ⊸ Y⊥)]qua ∼= (Zqua⊗!(X ⊸ Y⊥))
ΠR- !(X ⊸ Y⊥)

This completes the proof of Property 2.

Chapter 3. A strategy for data abstraction 90

Thread Property 3

Here we show that nested method calls on an object o produce the same behaviour

as method calls on a duplicate o′ of o. The duplicate o′ starts with the same state

o at the start of the containing method call, but any updates to the state of o′

do not take effect on o.5 Similarly, the state resulting from nested method calls

on o is discarded when the containing call returns a value, leaving o in the same

condition in either situation. We must of course discard o′ at this point, or the

correspondence no longer holds.

We shall compare two copies 〈o, o〉 with two uses of one copy in the form o; d,

so that a play in one is literally a play in the other. The left side shall host the

containing method invocation, while the right side will have the nested invoca-

tions. It is important that the left side does not also have nested invocations.

Since it has the initial (enclosing) method invocation, the left side will be the

object we keep, while the right side is thrown away. The only lasting effect of

performing the nested invocations resides in their interaction with objects in ∆.

If we did not throw the right side away, we would notice that in the case of

〈o, o〉, the right side has been updated to the state of the last nested method

invocation, while in the case of o; d the result from this nested invocation has

been overwritten.

Lemma 3.6 (Thread Property 3). Suppose k is disciplined, o = 〈s†1, k
†〉; thread

with o : !∆ →!E, and u is a terminating play in !∆ → E⊘!E.

Then (a):

u ∈ d∆; ((o; ε) ⊗ o) ⇔ u ∈ o; dE; (ε⊗ id)

and (b) if u′ is the evident injection of u↿E⊘!E into !E⊗!E, and t = u↿∆ :

〈o, o〉tu′; Π = (o; d)tu′; Π

where Π = (!E⊗!E)u′ ∼= Zu′⊗!E⊗!E
idZ

u′⊗!E⊗!!E- Zu′⊗!E ∼= (!E)u′

Proof. We abbreviate

T = (s†1 ⊗ k†); thread

T1 = (s†1 ⊗ k†); thread1

T0 = (k ⊗ s†1); eval
L; pproj

5Note that any interaction with other objects in ∆ will be the same in either case, here we
are only discussing the explicit state of o.

Chapter 3. A strategy for data abstraction 91

Then the following reasoning gives the property for plays:

u ∈ T ; d; (ε⊗ id)

= T ; unfold

= T1; passoc ; (id ⊘ (γ ⊗ id)); (id ⊘ (id ⊗ thread⋆)); branch

u ∈ T1; (ΠL ⊗ ΠL)

(branch property (a).)

= (T0; ΠL) ⊘ T

(Simplification from Property 1)

u ∈ (T ; ε) ⊗ T

(T ; ε = T1; ΠL; ΠL from P1, and T1; ΠL; ΠL = T0)

This completes the proof of part (a). For part (b), we first obtain the required

plays. Since u ∈ T ; d; (ε ⊗ id), there is û ∈ T ; d such that û ↿!E⊗E! = u′ and

û↿!∆ = t. Then the following reasoning shows that 〈o, o〉tu′; Π = (o; d)tu′; Π.

(T ; d)tu′; Π

= [T1; passoc ; (id ⊘ (γ ⊗ id)); [id ⊘ (id ⊗ thread⋆)]; branch]tū; [fold ; d]ūu′; Π

(Where ū is the relabelling of u′ via fold ; d.)

∼= [T1; passoc ; (id ⊘ (γ ⊗ id)); [id ⊘ (id ⊗ thread⋆)]; branch]tū

(Definition of Π.)

∼= [T1; passoc ; (id ⊘ (γ ⊗ id)); [id ⊘ (id ⊗ thread⋆)]]tũ; Π
′

(Where Π′ is from branch property (b).)

∼= [(T0 ⊗ k†); (id ⊗ thread ⋆)]t0u0
⊗ T tLuL

; ΠZ

(Expanding T1 and simplifying)

∼= [T1; passoc ; (id ⊘ (γ ⊗ id)); [id ⊘ (id ⊗ thread⋆)]]t0u0
; Π′ ⊗ T tLuL

; ΠZ

(Adding an unused copy of T.)

∼= [T1; passoc ; (id ⊘ (γ ⊗ id)); [id ⊘ (id ⊗ thread⋆)]; branch]t0u0
⊗ T tLuL

; ΠZ

(Again by branch property (b).)

= T t0
u′0

⊗ T tLuL
; ΠZ)

(Composing with fold u0

u′0
.)

∼= (T ⊗ T)tu′; Π

(Definition of Π.)

This completes the proof of part (b).

Chapter 3. A strategy for data abstraction 92

3.4.4 Pair-like methods

In Chapter 5, we shall have to use a stronger property of strategies representing

method implementations than the above, namely that they are defined to “re-

turn a pair” in a certain sense. Here we shall set up some definitions and show

the required properties hold. It should be noted that the requirements here rep-

resent a genuine restriction, disallowing methods which create new objects and

both store them in their state and return them (but not methods which simply

return objects from their state). This section is therefore rather particular to the

property we prove in Chapter 5.

Definition 3.7 (Pair-like strategies). Suppose there are games !∆, X1, X2, Y1, Y2,

and a morphism

κ : !∆ → (X1 ⊗X2)⊸ (Y1 ⊗ Y2)⊥

κ is a pair-like morphism if for all plays in κ such that κuqv1 tav2 is defined there is

an isomorphism ı : (Z)u ∼= (Z)u1 ⊗ (Z)u2 (where Zu, Zu1, and Zu2 relate to (!∆)u,

(!∆)u1 and (!∆)u2 respectively via the notation of Lemma 2.12) and a play û so

that duû : (!∆)u → (!∆)u1 ⊗ (!∆)u2 , and there is a pair of morphisms

f : (!∆)u1 ⊗ (X1)t11 → (Y1)⊥

g : (!∆)u2 ⊗ (X1)t12 ⊗ (X2)t2 → (Y2)⊥

where (X1⊗X2)t = (X1)t1⊗(X2)t2 and (X1)t1
d

t1
t̂1- (X1⊗X1)t̂1 = (X1)t11⊗(X1)t12 ,

such that

(κuqv1tav2)
∗ =

(!∆)u ⊗ (X1)t1 ⊗ (X2)t2

((!∆)u1 ⊗ (X1)t11) ⊗ ((!∆)u2 ⊗ (X1)t12 ⊗ (X2)t2)

(d!∆⊗X1 ⊗ idX2)
...
...

?

(Y1 ⊗ Y2)⊥

(f ⊗ g);ψ

?

Note that every pair-like strategy is automatically disciplined. By simple

calculation, writing for the above construction f ∗ g,

[s⊗ (f ∗ g)]; evalL = λX2((λ(f)@s1) ⊗ ((s2 ⊗ λ(g)); evalL)∗)

Chapter 3. A strategy for data abstraction 93

where s : ∆u′ → (X1)t1 and s; dt1
t̂1

= du
′

û′; (s1 ⊗ s2).

As a consequence we have the following, writing f@g for (f ⊗ g); eval:

Lemma 3.8 (pproj). For any sequences qv1 t̄av2, u such that (pproj ◦evalL)uqv1 t̄av2

is defined and morphisms f, g, s with

f ∗ g ⊗ s : ∆u1 ⊗ ∆u2 ⊗ ∆u3 → κv1 ⊗ (!σ)v2

where s = (z†)u3
v2

, if u′3, u
′′
3, v

′
2, v

′′
2 are those plays such that, abbreviating s1 = (z†)

u′3
v′2

and s2 = (z†)
u′′3
v′′2

,

(z†)u3
v2

; dv2v̂2 = du3
û3

; (s1 ⊗ s2)

then
(pproj ◦ evalL)uqv1 t̄av2 ◦ (f ∗ g ⊗ s)

= λX2((λ(f)@s1) ⊗ ((s2 ⊗ λ(g)); evalL)∗) ◦ (id∆1,∆2 ⊗ du3
û3

)

Thread Property 4

We introduce a property which shows that, when given a state s and a pair-like

strategy k representing the method implementation, a terminating play t of thread

results in a pair of morphisms f ′ and g′, with f ′ giving the further behaviour of

the method call represented by t, and g′ giving the behaviour of future method

calls.

This property is of a rather different character to the previous 3 properties,

namely that if the strategies involved satisfy the property of being pair-like, thread

maintains this property. What this means is that if the method implementation

contains no essential post-return interdependency between state and return value,

then after a terminating play on the threaded object, there is no interdependency

between the updated object and the returned result.

Lemma 3.9 (Thread Property 4). For any s and pair-like k, and a terminating

play t ∈ (s† ⊗ k†); thread, there exist f ′, g′ such that

f ′ ⊗ g′ = ∆u′
[(s†⊗k†);thread]u

′

u- (!E)u ∼= Zu⊗!E

where u′ = t↿∆, u
′ = t↿!E, and the isomorphism is that induced by Lemma 2.12.

Thread Property 4 holds simply by the construction of thread—by the pproj

property, the function and result state given by pproj are a pair, which are then

simply manipulated as such.

Chapter 3. A strategy for data abstraction 94

Proof. As in Property 1, the first half of thread simplifies to

((k† ⊗ s†); evalL; pproj ⊘ [(s† ⊗ k†); thread ⊗ k†]

which for some u′′, ū memoizes as

((k† ⊗ s†)u
′

u′′ ; (eval
L; pproj)u

′′

ū ⊗ [(s† ⊗ k†); thread ⊗ k†]

= (f ∗ g ⊗ (s†)
u′R
u′′

R
; (evalL; pproj)u

′′

ū ⊗ [(s† ⊗ k†); thread ⊗ k†]

where the pair-like property of k† comes into play because u′ is a terminating

play there. By the above pproj property there are some f1, g2 making this

(f1 ⊗ g1) ⊗ [(s† ⊗ k†); thread ⊗ k†]

then adding the bottom half of thread :

threadu
′

u = (f1 ⊗ ((T1 ⊗ T2); branch)); fold

where T1 = (s†⊗k†); thread and T2 = g1⊗k
†;ψ; thread †. Thus taking f ′ = f1 and

g′ = ((T1 ⊗ T2); branch)); fold we have completed the proof of Thread Property

4.

3.5 Thread and bracketing

In defining thread here we have clearly assumed well-bracketed behaviour, as

can be seen for example in Figure 3.3. In support of this, thread is itself well-

bracketed.

This can be seen from the constituent morphisms in the definition of thread .

Note that both pproj and branch obey the bracketing condition: they are both

just somewhat context-dependent copycat strategies. In the case of pproj , we

note that in the intended usage questions and answer match up, and otherwise

pproj goes undefined (which is permitted), while for branch there is no difference

in terms of justification from a simple copycat with !Z replacing !Z⊗!Z. Since

the other morphisms and operators involved obey the bracketing condition, so

does thread .

In a non-well-bracketed setting, the thread defined here will only operate as

expected under well-bracketed behaviour. If methods are used in a less restricted

fashion, the decomposition into nested and non-nested methods, and thus the

use of branch , fails. It would appear that we can define a more general thread

Chapter 3. A strategy for data abstraction 95

operator which coincides with the one given here under well-bracketed play, but

also gives the expected result with unrestricted play. However, the generalisation

necessitates a more global and unstructured definition. We discuss these issues

again in Chapter 7.

Chapter 4

An object-oriented language

In this chapter we shall motivate and define our object-oriented calculus, and give

operational and denotational semantics.

We begin by describing our interpretation of object-oriented programming—

which is to say by defining the fragment of interest for the purpose of this thesis.

We then describe a base calculus suitable for study, which is sufficient to imple-

ment these ideas as derived forms, and give typing rules for this language.

Toy OO languages abound in the literature (e.g. [2, 22, 46, 23]), but in brief,

what is distinctive about our language is that it is designed to closely match what

it is possible to model in BGV . Several details of the language design have proved

rather subtle, and have in fact required multiple attempts to “get right”, in the

sense of matching the game models in expressivity. The precise definition of our

language is thus one of the main contributions of this thesis, and the insights

gained are significantly influencing the Eriskay project.

We follow our static semantics by giving a heap-based operational seman-

tics, and discuss some properties of this. We conclude by giving a denotational

semantics using the ideas from Chapters 2–3.

4.1 Introducing the language

We start by introducing informally some of the main ingredients of our language,

in preparation for the formal definition in Section 4.2.

We shall work with a linear (or rather affine) call-by-value lambda calculus,

where σ → τ is the type of functions which “consume their argument” of type

σ to produce a result of type τ . We make the contraction rule available only for

96

Chapter 4. An object-oriented language 97

certain reusable types (see the predicate re(−) defined below); semantically these

will be modelled by objects of !-type. The language presented here essentially

uses a linear type system for technical convenience, but an extended language

might make more essential use of non-reusable types, for example in connection

with continuations as discussed in Chapter 7.

We shall view an object as a collection of methods which may be invoked

repeatedly with some argument, approximately a reusable record of functions

which may behave in a stateful manner. The calculus will be class-based, so

we take objects to be created from classes via the new operator. We restrict

attention to classes with a single updateable field, since we can consider multiple

fields to be a single field of tuple type. On the other hand, we explicitly allow

multiple methods, partly because method names play a role in overriding.

In Java terminology, we consider all fields to be protected and all methods

public. Public fields can be simulated using accessor methods, while private

methods can be simulated using ordinary functions let-bound in any method in

which they occur. Private fields are more problematic, and we do not permit

these—we discuss this further in Chapter 7. We also disallow the addition of

fields during class extension; this is by nature of a simplification, and we suggest

some solutions in Section 7.4.1.1.

We shall not consider Java-style constructors, but instead take the expression

new e c to create an instance of class c by implicitly using the constructor which

initialises all fields to the provided values e. Handling the more general case

of user-defined constructors is not problematic, but just adds complexity to the

definition.

As in e.g. [22], we take classes to be first-class expressions rather than a top

level construct, both for simplicity and with a view to defining a language with a

higher-order flavour. We create a class via an expression of the form class {. . .},

or if c is an existing class we subclass it with an expression extend c with {. . .}.

In general, to define a class one must give a collection of named method imple-

mentations in a fashion allowing for recursion. A key principle of object-oriented

programming is that of open recursion, via method overriding; methods are de-

fined in a context with a self object, standing for an instance of the class presently

being defined. Recursive method invocations via self refer not to their currently

defined implementations, but to the potentially redefined implementations in a

Chapter 4. An object-oriented language 98

future subclass. We thus define a class with an expression

class (ς) {m1 = e1, . . . , mn = en}

or

extend c with (ς) {m1 = e1, . . . , mn = en}

as a collection of functions e1 . . . en labelled with method names m1 . . .mn, where

the variable ς is the self -binding which allows recursive reference to the methods

of the object under construction. We might use this class in an expression such

as

(new s (extend c with (ς) {m = em})) ·m e

where we are subclassing c, creating a new object with state s, and then invoking

method m with argument e. It will commonly be useful to bind such a class to a

name for creation of objects at a later point:

let c be class (ς) {m1 = e1, . . .} in e

Equally there are situations such as singleton classes or some higher-order ex-

pressions in which this will not be necessary.

As classes define stateful objects, a method implementation for a method m

of type τ → τ ′ for an object with state type σ must give a behaviour dependent

on the existing value of that state, and also give the resultant state. As discussed

in Section 3.1, we choose to take a method implementation to be an operation

which does this explicitly, having type:

m : σ ⊗ τ → σ ⊗ τ ′

This interpretation can be considered as a first step to a more general treat-

ment of objects. Viewing a method as a state-transforming function can be

thought of as allowing the state to be read at the start of a method’s execution

(taking a private copy) and written at the end. As mentioned in Section 3.3, we

might wish to extend this to allow the state to be read from or written to at

arbitrary points, since this affects the semantics of nested calls. We discuss this

issue further in Chapter 6 and Section 7.3.3, but here we simply note that for

ground-type state there is no loss of expressivity.

There are some further subtleties in our precise notion of method implemen-

tations, but we will come back to these shortly after a discussion of our base

calculus.

Chapter 4. An object-oriented language 99

4.1.1 Base Calculus

While the constructs presented above represent our conception of classes, we shall

regard these as derived constructs implemented in more basic operations on ob-

jects (see Figures 4.7 and 4.8). We could define a language with built-in classes

as primitive, but interpretation of these in our operational and denotational se-

mantics would involve a duplication of effort (and require longer proofs). For the

purpose of our operational semantics, we must split class instantiation into two

steps in any case,1 so we work in a simpler setting with objects, a fixed point

operator and a state-internalisation operation. Together these are sufficient to

implement classes as described above.

Firstly, we have “objects” which can be created directly, simply as records:

obj {m1 = e1, . . . , mn = en}

These are reusable in the sense that they may be copied and reused repeatedly.

Therefore they must be defined in a reusable context, that is any free variables

appearing in ei must themselves be reusable. We freely use a shorthand

obj {mi = ei}i∈X

for a set X of indices, treating the components as unordered (this is justified by

our subtyping relation). Here we give an example object of this kind:2

obj {inc = λn.n + 1, twice = λn.〈n, n〉} : Obj {inc : ι → ι, twice : ι→ ι⊗ ι}

It might seem here that we are confusing the two distinct concepts of records

and of “real” objects, and we should perhaps not give them both types of the

form Obj X. We do so with a view to defining as small a language as possible;

since we need both concepts, their types will receive the same semantics, and

they will admit the same operations, we choose to avoid the duplication of effort

which would otherwise ensue.

Secondly, objects may be created as instances of classes. We shall interpret

a class as an approximation operator, which takes an implementation of self and

returns a refined one:

Class X = Obj X → Obj X

1This is because it is neither a class nor the resulting object which will naturally live in the
heap, but rather a “pre-object” constructed as the fixed point of the approximation operator
defining the class.

2We freely use simple arithmetic in these examples, formally we have in mind the use of
suitable function constants cϕ (see below).

Chapter 4. An object-oriented language 100

We shall take the fixed point of this approximation operator when constructing

an object, but leave it “open” until then to facilitate inheritance. One can ex-

tend a class by constructing a new approximation operator from the old, adding

fields to the returned object to add new methods, or replacing fields to override

existing ones. Crucially, the fact that this extension operation acts upon the

approximation operator rather than the fixed point of this means that any over-

riding methods are correctly used by methods of the original class in place of the

overridden version.

This interpretation of classes and inheritance is as described by Wand in

[73], and frequently used elsewhere (including [22]). As discussed in [2], method

update3 is not permitted, and field update must be handled separately. However,

we are happy to consider objects as being created from classes, rather than using

method update, and wish to explicitly consider object state (i.e. fields) in any

case.

The following simple example defines a class which would generate a counter

object, with an “increment by m” method, and a “get current value” method.

λς. obj { inc = λ〈n,m〉.〈n+m,n+m〉, get = λ〈n, z〉.〈n, n〉 }

If κ = Obj {inc : ι⊗ ι→ ι⊗ ι, get : ι⊗ ι→ ι⊗ ι} then the above class has type

κ→ κ, and generates objects of type Obj {inc : ι → ι, get : ι→ ι}.

This class does not have any recursively defined methods, so ς does not appear

in any method body. The following class is more interesting:

Fib = λς. obj {init = λ〈 , p〉. 〈p, p〉,

op = λ〈s, p〉. let 〈x, y〉 be p in 〈s, x+ y〉,

fib = λ〈s, n〉. let 〈f0, f1〉 be s in

let fn be
(
ifz n then f0

else ifz n− 1 then f1

else ς · op〈s, 〈ς · fib〈s, n− 1〉, ς · fib〈s, n− 2〉〉〉
)

in 〈s, fn〉 }

This class computes the nth number in a generalised Fibonacci sequence starting

from the pair of numbers in the state, in the näıve recursive fashion. The init

method can be used to update the state to start from a new pair of numbers—

without this method, these could just be set at class creation, but then we would

have an unchanging state.

3That is, replacing the methods of an existing object.

Chapter 4. An object-oriented language 101

We can extend the above class as follows (where the above class Fib is in

scope):

C = λς. obj {init = (Fib ς) · init ,

fib = (Fib ς) · fib,

op = λ〈s, 〈x, y〉〉. 〈s, x ∗ y〉 }

This new class replaces op by a function which multiplies rather than adds; since

ς is supplied to Fib the inherited fib method refers to the self object in the same

way that a new method would. In the resulting object, fib will thus use the new

version of op rather than the one in Fib.

The last element required to implement classes internalises the stateful be-

haviour of an object. Given an explicitly state-transforming object obj (as arising

from the fixed point of an approximation operator), and an initial state s, the

expression

constr s obj

gives an object where the state is hidden, incorporated into the behaviour of

the object. The usual new operation is then just constr combined with the

fixed point operator. The order of the s and obj arguments here may seem

counter-intuitive at first, but we choose to give the state first to agree with the

semantics—this order will also prove more convenient for the programs defined

in later chapters.

To continue our example, we create an object representing the usual Fibonacci

sequence as

constr 〈0, 1〉 (YFib)

or equivalently new 〈0, 1〉 Fib, where Fib is bound to the above class definition.

We feel that the derived nature of our classes makes our language more mod-

ular, and will make it easier to study possible language extensions. For example,

one can easily extend the class syntax shown to provide a super facility, for invok-

ing overridden methods of the superclass, without modifying the core language

as presented.

Chapter 4. An object-oriented language 102

4.2 Syntax and typing rules

We now define the syntax for our core language, then give some derived syntactic

constructs. Define types:

τ, σ ::= ι | τ1 ⊗ τ2 | τ1 → τ2 | Obj {m1 : τ1, . . . , mn : τn}

CObj {m1 : τ1, . . . , mn : τn} | CMeth τ

Here ι is the type of natural numbers, τ1 ⊗ τ2 of pairs, and τ1 → τ2 is a linear

function from τ1 to τ2. Obj X4 is the type of objects as discussed above, while we

postpone discussion of CObj X and CMeth τ until Section 4.2.1. The notions

of basic and reusable types are defined inductively as follows:

basic(ι)

basic(σ) ∧ basic(τ) ⇒ basic(σ ⊗ τ)

re(Obj X)

re(CObj X)

basic(τ) ⇒ re(τ)

re(σ) ∧ re(τ) ⇒ re(σ ⊗ τ)

We extend re(−) to a predicate on contexts Γ = x1 : τ1, . . . , xn : τn via

re(x1 : τ1, . . . , xn : τn) ⇔ ∀i.re(τi)

Given for each k ∈ N some set Φk of k-ary functions φ : Nk → N, we take for

each φ ∈ Φk a constant cφ. In particular we shall use n,m to range over constants

0, 1, . . . ∈ Φ0. We define terms:

e ::= x | cφ | ifzτ e then e1 else e2 |

〈e1, e2〉 | let 〈x, y〉 : σ ⊗ τ be e1 in e2 | λx : τ. e | e1 e2 |

obj {m1 = e1, . . . , mn = en} | e ·m | Yτ (e) | constr e1 e2

Typing rules for our core language are given in Figures 4.1–4.6. Typing judge-

ments have the form Γ ⊢ e : τ , where Γ is of the form x1 : τ1, . . . xn : τn for distinct

xi. We define three languages of succesively greater expressive power: Lpair, Lret,

and Larg. Figures 4.1 and 4.6 contain the typing rules common to all three lan-

guages. The addition of Figure 4.2 plus either Figure 4.3 or Figure 4.4 generate

Larg or Lpair respectively; the addition of Figure 4.5 instead generates Lret. Note

that in Figure 4.1, where the subscript (Y) appears, this should be taken to be ε

in Larg and Lpair to match their respective typing rules, and the set Y should be

4We use the metavariable X to range over “chunks of syntax” which are not themselves
types, such as the list of methods here.

Chapter 4. An object-oriented language 103

taken to be empty, while in the case of Lret (Y) should simply read Y . The main

language of interest is Larg, but our soundness proof in the next chapter is with

respect to the more restrictive Lret.

We now briefly review the intended semantics of these types and terms, with

some discussion of the associated typing rules. Firstly for types, ι shall be the

type of natural numbers, τ1⊗τ2 shall be the multiplicative product (in the sense of

linear logic) of τ1 and τ2, and τ1 → τ2 shall be a linear function type, i.e. that of

a function which takes a value of type τ1 to be used linearly and (if it terminates)

produces a result of type τ2. Obj {m1 : τ1, . . . , mn : τn} is the type of reusable

records with components of types τ1, . . . , τn—we shall call these records objects

as that is their main intended use.

Moving on to the meaning of the terms defined above, cϕ ∈ Φk stands for the

function ϕ at an appropriate type (

k+1 copies
︷ ︸︸ ︷
ι→ ι→ . . .→ ι→ι). Call this type ιk → ι,

in particular where k = 0 this is just ι.

The term ifzτ e then e1 else e2 is our conditional, which shall evaluate e : ι,

and if zero behave as e1, otherwise as e2. This avoids the need for a Boolean type,

although it would not be problematic to add one. The typing rule is as follows:

Γ ⊢ e : ι ∆ ⊢ e1 : τ ∆ ⊢ e2 : τ

Γ,∆ ⊢ ifzτ e then e1 else e2 : τ

Notice that both e1 and e2 are typed in the same non-reusable context ∆, since

only one will ever be evaluated. Certain other typing rules demand a reusable

context, since they result in a reusable expression, while the remainder split the

context in two, with one portion going to one subexpression and the other portion

to another. Any reusable variables which are to be used in both subexpressions

must first be copied by an instance of the contraction rule:

Γ, x : σ, y : σ,∆ ⊢ e : τ

Γ, z : σ,∆ ⊢ e[z/x, z/y] : τ
re(σ)

This localises such copying, and permits us to avoid reasoning about it much

of the time. A system with a split reusable and non-reusable context along

the lines of DILL [15] could omit the contraction rule at the expense of having

“contraction everywhere”; this might be more convenient from some points of

view, particularly in relation to our operational semantics, but ultimately this is

a presentational issue.

The terms 〈e1, e2〉 and let 〈x, y〉 be e1 in e2 are pairing and unpairing

respectively—the latter uses a binding operation rather than supplying projection

Chapter 4. An object-oriented language 104

functions so that even in a linear setting we shall be allowed to use both halves

of a pair.

Function creation and application λx.e and e1 e2 have the usual meaning,

again bearing in mind the above remarks on linearity.

We now come to the object part of our calculus. The term

obj {m1 = e1, . . . , mn = en}

directly constructs a record with the given components. Here e1, . . . , en must be

copyable (i.e. of a reusable type), since the resultant object may be copied as

often as required, and thus a given mi may be selected multiple times. The term

e ·m selects the m component of the object defined by e.

Our fixed point operator takes the form Y(e), where e is a function of type

ρ→ ρ for ρ either an object or function type. We allow both options even though

one might suffice for the purpose of expressivity, because in practice one will want

recursive definitions for both function and object types. Recursive functions may

often be convenient, while the recursive construction of an object (in particular,

allowing for mutually recursive methods) is the basis for our class system, as we

have discussed.

We include a subtyping judgement τ <: τ ′, which includes the trivial subtype

τ <: τ and the standard rules for pair and function types. For object types, we

give a single rule incorporating both depth and width subtyping, and permitting

permutation. We also make CObj X a subtype of Obj X, and similarly CMeth

a subtype of the corresponding plain function type. On the other hand, we do

not allow subtyping on the structure of CObj or CMeth—this could perhaps

be added, but would only cause additional complication here. We do not include

a transitivity rule, so that a given subtyping judgement has a unique derivation,

but such a rule is admissible. Subtyping judgements then appear in a typing

derivation via the subsumption rule.

4.2.1 Typing constr

Before attempting to describe the typing rules for the object construction operator

constr e c, we must now come back to the subtle question referred to earlier—

of all possible method implementations, which ones are permissible? Are there

any we could write which are semantically unsound, or undefined? The potential

Chapter 4. An object-oriented language 105

issues here concern linearity, circular references and the disciplined restriction of

Chapter 3.

Most simply, one can certainly say that any class state of ground type (γ) is

acceptable. The typing rule here would be:

Γ ⊢ c : Obj {m : γ ⊗ τm → γ ⊗ τ ′m}m∈X ∆ ⊢ e : γ

Γ,∆ ⊢ constr e c : Obj {m : τm → τ ′m}m∈X
basic(γ)

This simple rule is sufficient to define a ground-type reference cell, but also gives

rise to other interesting behaviour. This may include interaction with other ob-

jects in Γ which are referenced in e—such objects can be considered to reside in

an implicit non-updateable (or final) field of the constructed object.

What happens when we lift the restriction to ground-type state? It is in fact

not possible to define a constr operation which works as one would expect for

the full range of types. We explicitly give the hypothetical typing rule, which we

could not add to the calculus:

Γ ⊢ c : Obj {m : σ ⊗ τm → σ ⊗ τ ′m}m∈X ∆ ⊢ e : σ

Γ,∆ ⊢ constr e c : Obj {m : τm → τ ′m}m∈X

The first issue is to do with reusability. Even if a method implementation

treats the state linearly,5 the possibility of nested method calls as discussed in

Chapter 3 means that the state may be reused. Consider the following program:

let o be constr (λx. x+ 1)

obj { m = λ〈f : ι→ ι, g : ι→ ι〉. 〈f, f(g 1)〉 }

in o ·m(λx. o ·m(λy. 0))

The nested call to m caused by the forcing of the supplied thunk which calls

m—the externally mediated recursive call of m, if you will—causes a non-linear

use of the state. One has to ask what value is supplied to the nested call at f?

In this case both the original and nested call should surely receive the original

value (λx. x+ 1), and yet this is not a copyable expression.

As an aside, the form of nested method call via the method argument as

illustrated above shall prove important, and we will often refer to this situation.

As discussed in Chapter 3, nested method calls can be avoided if method

arguments are restricted to ground type, since only a higher-type argument to

o ·m could conceal a reference to o. Corresponding to the linear thread operation,

5Note that this means that “reading” the state is a destructive operation.

Chapter 4. An object-oriented language 106

we can permit linear classes with the following rule:

Γ ⊢ c : Obj {m : σ ⊗ γm → σ ⊗ τ ′m}m∈X ∆ ⊢ e : σ

Γ,∆ ⊢ constr e c : Obj {m : γm → τ ′m}m∈X
basic(γm)

One might alternatively impose a restricted type system at the other end,

ensuring that a linear class cannot be supplied a self-reference in a method invo-

cation, but this seems to be complexity for little gain. We do not actually add

the above rule to our language, but we discuss the issue further in Chapter 7.

We now move on to the more exciting case of classes with reusable state (σ)

and arbitrary argument (τ) and result types (τ ′), giving the following typing rule:

Γ ⊢ c : Obj {m : σ ⊗ τm → σ ⊗ τ ′m}m∈X ∆ ⊢ e : σ

Γ,∆ ⊢ constr e c : Obj {m : τm → τ ′m}m∈X
re(σ)

In this situation nested method calls are unproblematic, as the state is reusable

and so can be supplied as input to each call, although it should be noted that

the result state of any nested calls6 are discarded and play no further part in the

computation (cf. Section 3.3).

It might seem that this version of constr is the most natural of those pre-

sented, and is just what is desired, but unfortunately it is semantically problem-

atic, being unsuitable for interpretation in our game model. The most obvious

problem is with regard to circularity. Consider the following program:

let o be constr (obj {}) obj {m = λ〈s, f〉. 〈f(), 1〉}

in o ·m(λx. o)

Here an object is created with a state initialised to a dummy object. The method

m is invoked with a function argument which when applied returns its parent

object, which m returns as the updated object state. The result, then, is an

object which points to itself. The operational semantics presented in the next

section does exactly this, but our behavioural game model cannot cope with

circular reference. We discuss this issue further in Section 7.1, but for now we

note that our type system must prevent such circularity.

There is another issue related to the storage of “pointers” from method ar-

guments.While our language has no such concept, it is helpful to think in terms

pointers or references. The interpretation of constr in our game model cannot

account for methods which retain or “capture” a pointer to their argument—more

precisely, methods which result in an updated state containing a reference to any

6More accurately, the result of the last method call nested within any given call.

Chapter 4. An object-oriented language 107

part of their argument. This issue was discussed in Section 3.4.1; the essence of

the problem is that a subsequent method invocation may make use of that stored

pointer, which would cause what appears to be spontaneous interaction in the

original method argument.

The solution to this problem (and happily also that of circularity) is to impose

a restriction on method implementations corresponding to the disciplined prop-

erty of Chapter 3. Rather than an arbitrary function σ ⊗ τ → σ ⊗ τ ′, we only

consider those argument safe functions which contain no post-return dependency

of the result state on the τ -argument. We still allow full interaction with the

argument before the function returns a value, but then only the τ ′-result may

interact with the τ -argument. Argument safety may at first look like an awk-

ward and unpleasant restriction, but it turns out to imply a surprising number

of pleasant properties, such as acyclicity (see below) and exception safety (as we

discuss in Section 7.1).

We implement this restriction by means of a ground-type funnelling operation.

After an initial interaction, some value of ground type must be produced, which

is then made available for separate computations resulting in the updated state

and method result. Since a ground-type value cannot contain any reference to

any objects which may be involved in its construction (or alternatively permits no

interaction), the result state has no further dependency on the method argument.

In the present calculus to ensure this ground-type funnelling occurs we require

method implementations to have a fixed syntactic form, but it is possible to give a

more flexible type system having the same property, at the expense of complexity.

The following rule assigns a CMeth (or “certified method”) type to functions

which make suitable method implementations:

Γ, s : σ, x : τ ⊢ e : γ
Γ, y : γ, s : σ, x : τ ⊢ e1 : σ

Γ, y : γ, x : τ ⊢ e2 : τ ′

Γ ⊢ λ〈s, x〉. let y : γ be e in 〈e1, e2〉 : CMeth (σ ⊗ τ → σ ⊗ τ ′)
re(Γ, σ), basic(γ)

While we are happy to impose a fixed form on method implementations for sim-

plicity, the above is rather restrictive, as it does not permit the (perfectly legiti-

mate) use of other CMeth methods in Γ, for example when giving a recursively

defined method. We modify the rule to end in a “tail call” e 〈e1, e2〉 for e of

CMeth type, and give the identity function CMeth type in order to recover the

above rule. Since the self parameter ς appearing in method implementations is

declared to have CObj type (see Figures 4.7, 4.8), tail calls to other methods

Chapter 4. An object-oriented language 108

are thereby admitted. With more complex typing machinery, the idea can be

extended to allow non tail calls (as we discuss in Chapter 7) but tail calls are in

fact enough for the programs we write in Chapter 6.

We give three versions of this rule, in Figures 4.3–4.5. The version for Larg is

more generous, while that for Lret is a restricted version for our proof in Chapter 5.

The more restricted version for Lpair is included for completeness, and to aid

understanding of the Lret rule. The Larg rule is the one we have just discussed,

while the Lpair rule not only restricts dependence of e1 on x, but symmetrically

restricts dependence of e2 on s. The Lret rule allows e2 to depend on s, but does

not allow this to occur in the body of any tail-call—allowing one initial “non-

pair-like” dependence on the initial state s, followed by any number of tail-calls

as in the Lpair typing discipline. The subscript which appears in CObj types

tracks the set of methods with a pair-like typing for this purpose.

Given our CMeth rule, we add a rule to construct a CObj - simply an Obj

consisting entirely of functions typed as CMeth. Another rule goes in the other

direction to give field selection for methods, and then we have our “final” typing

rule:
Γ ⊢ c : CObj {m : σ ⊗ τm → σ ⊗ τ ′m}m∈X ∆ ⊢ e : σ

Γ,∆ ⊢ constr e c : Obj {m : τm → τ ′m}m∈X
re(σ)

4.2.2 Values

We define a subset of terms which we consider to be values as follows

v ::= x | cϕ | λx.e | 〈v1, v2〉 | obj {m1 = v1, . . . , mn = vn}

Y(v) | Y(v) ·m

The concept of values will mostly be used in connection with our operational

semantics, but in fact it is also used in one of our typing rules—we restrict object

creation expressions to have the form obj {m1 = v1, . . . , mn = vn}. In practice

this is not much of a restriction, partly because objects will usually be constructed

with the form

obj {m1 = λx.e1, . . . , mn = λx.en}

but also because if required one can more explicitly write

let x1 be e1 in . . . let xn be en in obj {m1 = x1, . . . , mn = xn}

We impose this restriction to avoid a subtle difficulty in our soundness proof

which would give rise to significant duplication of effort.

Chapter 4. An object-oriented language 109

4.2.3 Derived constructs

For our full language, we extend the base calculus with constructs related to

classes as well as a collection of generally useful abbreviations.

Extend the grammar for types to include

class 〈σ; m1 : τ1 → τ ′1, . . . , mn : τn → τ ′n〉

and the grammar for terms to include

new e1 e2 | class {m1 = e1, . . . , mn = en} |

extend e1 with (ς) {m1 = e1, . . . , mn = en} |

let x be e1 in e2 | λ〈x1, x2〉. e | letrec f(x) = e1 in e2 | e ◦ e
′

where we use ς, ς ′ to range over variables of class type. We introduce class ,

extend and new to show how familiar OO concepts can be represented, while

the others are just convenient forms to facilitate the writing of programs.

Typing rules for the derived forms are given in Figure 4.7, and the translation

of derived types and terms into the core language is given in Figure 4.8.

4.3 Operational semantics

We define a big-step evaluation semantics for an augmented language with heaps,

where an expression in some heap evaluates to a value and an updated heap.

We take a set L of special variables to represent locations, take l and decorated

variants to range over these locations (l ∈ L), and consider open expressions with

FV(e) ⊂ L to be given in some heap containing entries at those locations. We

restrict locations from appearing as λ or let bindings, but permit them to appear

in the context as usual. Furthermore, we extend the set of values to include l and

l ·m (but not x ·m for a binding variable x). Locations play a crucial auxiliary

rôle in our operational semantics: they do not appear in complete programs, but

may appear at intermediate stages in the evaluation of such programs.

In Figure 4.9 we give an evaluation relation ⇓ ⊆ (H × E) × (H × V) from

expressions with heaps to values with heaps, writing h, e ⇓ h′, v. We interpret a

heap as an element of H = L ⇀ V × V , a partial function mapping locations

to heap cells, where a heap cell is the actual object state paired with its class

definition. So for l ∈ dom(h), h(l) = 〈s, c〉 with s and c values representing the

Chapter 4. An object-oriented language 110

Γ, x : τ,∆ ⊢ x : τ

Γ, x : σ, y : σ,∆ ⊢ e : τ

Γ, z : σ,∆ ⊢ e[z/x, z/y] : τ
re(σ)

Γ ⊢ cϕ : ιk → ι
ϕ ∈ Φk

Γ ⊢ e : τ

Γ ⊢ e : τ ′
τ <: τ ′

Γ ⊢ e : ι ∆ ⊢ e1 : τ ∆ ⊢ e2 : τ

Γ,∆ ⊢ ifzτ e then e1 else e2 : τ

Γ1 ⊢ e1 : τ1 Γ2 ⊢ e2 : τ2
Γ1,Γ2 ⊢ 〈e1, e2〉 : τ1 ⊗ τ2

Γ ⊢ e : τ1 ⊗ τ2 ∆, x : τ1, y : τ2 ⊢ e
′ : τ

Γ,∆ ⊢ let 〈x, y〉 : τ1 ⊗ τ2 be e in e′ : τ
x, y /∈ Γ,∆

Γ, x : τ ⊢ e : τ ′

Γ ⊢ λx : τ. e : τ → τ ′
x /∈ Γ

Γ ⊢ e : τ → τ ′ ∆ ⊢ e′ : τ

Γ,∆ ⊢ e e′ : τ ′

Γ ⊢ v1 : τ1 · · · Γ ⊢ vn : τn
Γ ⊢ obj {m1 = v1, . . . , mn = vn} : Obj {m1 : τ1, . . . , mn : τn}

re(Γ)

Γ ⊢ e : Obj {m : τ}

Γ ⊢ e ·m : τ

Γ ⊢ e : ρ→ ρ

Γ ⊢ Yρ(e) : ρ

re(Γ),

ρ = τ → τ ′ or ρ = Obj {m : τm → τ ′m}m∈X or

ρ = CObj(Y) {m : τm → τ ′m}m∈X∪Y

Γ ⊢ c : CObj(Y) {m : σ ⊗ τm → σ ⊗ τ ′m}m∈X∪Y ∆ ⊢ e : σ

Γ,∆ ⊢ constr e c : Obj {m : τm → τ ′m}m∈X∪Y
re(σ)

Figure 4.1: Core Language

Chapter 4. An object-oriented language 111

(
Γ ⊢ em : CMeth (σ ⊗ τm → σ ⊗ τ ′m)

)

m∈X

Γ ⊢ obj {m = em}m∈X : CObj {m : σ ⊗ τm → σ ⊗ τ ′m}m∈X
re(Γ)

Γ ⊢ e : CObj {m : σ ⊗ τm → σ ⊗ τ ′m}m∈X

Γ ⊢ e ·m : CMeth (σ ⊗ τm → σ ⊗ τ ′m)
m ∈ X

⊢ λ〈s, x〉. 〈s, x〉 : CMeth (σ ⊗ τ → σ ⊗ τ)

Figure 4.2: Common Larg and Lpair CObj and CMeth rules

Γ ⊢ em : CMeth (σ ⊗ τ1 → σ ⊗ τ ′)

Γ, s : σ, x : τ ⊢ e : γ
Γ, y : γ, s : σ ⊢ e1 : σ

Γ, y : γ, s : σ, x : τ ⊢ e2 : τ1

Γ ⊢ λ〈s, x〉. let y : γ be e in em 〈e1, e2〉 : CMeth (σ ⊗ τ → σ ⊗ τ ′)
re(Γ, σ), basic(γ)

Figure 4.3: Larg CMeth rule

Γ ⊢ em : CMeth (σ ⊗ τ1 → σ ⊗ τ ′)

Γ, s : σ, x : τ ⊢ e : γ
Γ, y : γ, s : σ ⊢ e1 : σ

Γ, y : γ, x : τ ⊢ e2 : τ1

Γ ⊢ λ〈s, x〉. let y : γ be e in em 〈e1, e2〉 : CMeth (σ ⊗ τ → σ ⊗ τ ′)
re(Γ, σ), basic(γ)

Figure 4.4: Lpair CMeth rule

Chapter 4. An object-oriented language 112

(
Γ ⊢ em : CMeth (σ ⊗ τm → σ ⊗ τ ′m)

)

m∈X
(

Γ ⊢ em : CMethp (σ ⊗ τm → σ ⊗ τ ′m)
)

m∈Y

Γ ⊢ obj {m = em}m∈X∪Y : CObjY {m : σ ⊗ τm → σ ⊗ τ ′m}m∈X∪Y
re(Γ)

Γ ⊢ e : CObjY {m : σ ⊗ τm → σ ⊗ τ ′m}m∈X∪Y

Γ ⊢ e ·m : CMeth (σ ⊗ τm → σ ⊗ τ ′m)
m ∈ X

Γ ⊢ e : CObjY {m : σ ⊗ τm → σ ⊗ τ ′m}m∈X∪Y

Γ ⊢ e ·m : CMethp (σ ⊗ τm → σ ⊗ τ ′m)
m ∈ Y

⊢ λ〈s, x〉. 〈s, x〉 : CMethp (σ ⊗ τ → σ ⊗ τ)

Γ ⊢ em : CMethp (σ ⊗ τ1 → σ ⊗ τ ′)

Γ, s : σ, x : τ ⊢ e : γ
Γ, y : γ, s : σ ⊢ e1 : σ

Γ, y : γ, x : τ ⊢ e2 : τ1

Γ ⊢ λ〈s, x〉. let y : γ be e in em 〈e1, e2〉 : CMethp (σ ⊗ τ → σ ⊗ τ ′)
re(Γ, σ), basic(γ)

Γ ⊢ em : CMethp (σ ⊗ τ1 → σ ⊗ τ ′)

Γ, s : σ, x : τ ⊢ e : γ
Γ, y : γ, s : σ ⊢ e1 : σ

Γ, y : γ, s : σ, x : τ ⊢ e2 : τ1

Γ ⊢ λ〈s, x〉. let y : γ be e in em 〈e1, e2〉 : CMeth (σ ⊗ τ → σ ⊗ τ ′)
re(Γ, σ), basic(γ)

Figure 4.5: Lret CObj and CMeth rules

state and class of the object l.7

It might seem that the heap should only be used to store the state of an object,

since that is all that may be updated,8 but there is good reason to consider the

class body as existing there. Locations present in the defining context of a class

body behave just like fields which are never updated, and so a similar treatment

makes sense as well as being convenient.

We use the state convention that a rule not mentioning heaps

e1 ⇓ v1 · · · en ⇓ vn
e ⇓ v

7We shall abuse notation to write 〈−,−〉 for this meta-level pairing as well as pairing in the
language itself.

8One might wish to allow method update, but this is not supported by our game model.

Chapter 4. An object-oriented language 113

τ <: τ

τ1 <: τ ′1 τ2 <: τ ′2
τ1 ⊗ τ2 <: τ ′1 ⊗ τ ′2

τ ′1 <: τ1 τ2 <: τ ′2
τ1 → τ2 <: τ ′1 → τ ′2

τ1 <: τ ′1 · · · τn <: τ ′n
Obj {mπ1 : τ ′π1, . . . , mπm : τ ′πm} <: Obj {m1 : τ1, . . . , mn : τn}

m ≤ n

π : {1, . . . , m}֌

{1, . . . , n}

CObjZ X <: Obj X

CMeth (σ ⊗ τ → σ ⊗ τ ′) <: σ ⊗ τ → σ ⊗ τ ′

CMethp (σ ⊗ τ → σ ⊗ τ ′) <: σ ⊗ τ → σ ⊗ τ ′

Figure 4.6: Subtyping

stands for the rule

h0, e1 ⇓ h1, v1 · · · hn−1, en ⇓ hn, vn
h0, e ⇓ hn, v

as only object construction and method invocation need to interact with the heap.

Note that our operational semantics is untyped—types are not required at

run time for our language. While the operational semantics would in principle

support a larger language including heaps containing circular references, this is

not supported by our game model. Instead, our type system prevents cycles from

appearing in the heap.9

More precisely, so long as every class body in the heap has the restricted

CObj type, ⇓ preserves heap acyclicity. Define Gh to be the directed graph

with vertices the locations of h, and an edge l → l′ when l′ ∈ FV(h(l)), and

DAG(G) the property that G contains no cycle l → . . . → l. Then the following

theorem expresses this property:

Theorem 4.1 (Heap acyclicity). If ∆ ⊢ e and for l1, . . . , ln there are ∆i, σi, Xi

such that ∆i ⊢ h(li) : σi⊗CObj X, and h, e ⇓ h′, v, then DAG(Gh) ⇒ DAG(Gh′).

In order to prove this theorem one needs to know that the class argument of

any constr has CObj type, which entails a type preservation property, and to

9We discuss the removal of this restriction in Section 7.1.

Chapter 4. An object-oriented language 114

Γ ⊢ e1 : σ ∆ ⊢ e2 : Class 〈σ;m : τm → τ ′m〉m∈X

Γ,∆ ⊢ new e1 e2 : Obj {m : τm → τ ′m}m∈X

(
Γ, ς : CObj {m : σ ⊗ τm → σ ⊗ τ ′m}m∈Y

⊢ em : σ ⊗ τm → σ ⊗ τ ′m
)

m∈Y

Γ ⊢ class (ς) {m = em}m∈Y

: Class {σ; m : τm → τ ′m}m∈Y

Γ ⊢ e : Class 〈σ; m : τm → τ ′m〉m∈X
(

Γ, ς : CObj {em : σ ⊗ τm → σ ⊗ τ ′m}m∈X∪Y

⊢ em : σ ⊗ τm → σ ⊗ τ ′m
)

m∈Y

Γ ⊢ extend e with (ς) {m = em}m∈Y

: Class {σ; m : τm → τ ′m}m∈X∪Y

Γ ⊢ e1 : τ1 ∆, x : τ1 ⊢ e2 : τ2
Γ,∆ ⊢ let x be e1 in e2 : τ2

Γ, x : τ1, y : τ2 ⊢ e : τ

Γ ⊢ λ〈x, y〉. e : (τ1 ⊗ τ2) → τ

Γ, f : τ → τ ′, x : τ ⊢ e : τ ′ ∆, f : τ → τ ′ ⊢ e2 : τ ′′

Γ,∆ ⊢ letrec f(x) = e1 in e2 : τ ′′
re(Γ)

Γ ⊢ e : τ ′ → τ ′′ ∆ ⊢ e′ : τ → τ ′

Γ,∆ ⊢ e ◦ e′ : τ → τ ′′

Γ ⊢ e : Obj {m : τ ′m → τ ′′m}m∈X ∆ ⊢ e′ : Obj {m : τm → τ ′m}m∈X

Γ,∆ ⊢ e ◦ e′ : Obj {m : τm → τ ′′m}m∈X

Figure 4.7: Derived Constructs

Chapter 4. An object-oriented language 115

Class 〈σ;m : τm → τ ′m〉m∈X

CObj {m : σ ⊗ τm → σ ⊗ τ ′m}m∈X →

CObj {m : σ ⊗ τm → σ ⊗ τ ′m}m∈X

extend c with (ς) {m = em}m∈Y

λς : CObj {em : σ ⊗ τm → σ ⊗ τ ′m}m∈X∪Y . obj

{

m = (c ς).m, m ∈ X\Y

m = em m ∈ Y

}

class (ς) X extend λx. {} with (ς) X

new e c constr e (Yc)

λ〈x, y〉. e λz. let 〈x, y〉 be z in e

let x be e1 in e2 (λx. e2) e1

letrec f(x) = e in e′ let f be Y (λf. λx. e) in e′

g ◦ f λx. g(f(x))

o2 ◦ o1 obj { m = o2 ·m ◦ o1 ·m }m∈X

Figure 4.8: Translation of Derived Forms

Chapter 4. An object-oriented language 116

v ⇓ v

e1 ⇓ n1 · · · en ⇓ nk
cϕ e1 · · · ek ⇓ m

ϕ(n1, . . . , nk) = m

e ⇓ 0 e1 ⇓ v

ifz e then e1 else e2 ⇓ v

e ⇓ n e2 ⇓ v

ifz e then e1 else e2 ⇓ v
n 6= 0

e1 ⇓ v1 e2 ⇓ v2

〈e1, e2〉 ⇓ 〈v1, v2〉

e ⇓ 〈v1, v2〉 e′[v1/x, v2/y] ⇓ v

let 〈x, y〉 be e in e′ ⇓ v

e1 ⇓ λx.e
′ e2 ⇓ v

′ e′[v′/x] ⇓ v

e1 e2 ⇓ v

e ⇓ obj {m1 = v1, . . . , mn = vn}

e ·mi ⇓ vi
1 ≤ i ≤ n

e ⇓ v

Y(e) ⇓ Y(v)

e ⇓ Y(v)

e ·m ⇓ Y(v) ·m

e1 ⇓ Y(v′) (v′ Y(v′)) e2 ⇓ v

e1 e2 ⇓ v

e1 ⇓ Y(v′) ·m (v′ Y(v′)) ·m e2 ⇓ v

e1 e2 ⇓ v

h, es ⇓ h
′, vs h′, ec ⇓ h

′′, vc
h, constr es ec ⇓ h′′[l 7→ 〈vs, vc〉], l

l fresh
e ⇓ l

e ·m ⇓ l ·m

h, e1 ⇓ h
′, l ·m h′, vc ·m 〈vs, e2〉 ⇓ h

′′, 〈v′s, v〉

h, e1 e2 ⇓ h′′[l 7→ 〈v′s, vc〉], v
h(l) = 〈vs, vc〉

Figure 4.9: Operational Semantics

Chapter 4. An object-oriented language 117

prove type preservation we shall need to extend our type system to expressions

in heaps. It shall be most convenient to give typing rules inductively for acyclic

heaps, for simplicity of presentation and for the purposes of our denotational

semantics, so in fact a type preservation argument will also give the heap acyclicity

result.

The typing we require for heaps is as follows. The heap cell (li 7→ 〈s, c〉)

can be created by an expression constr s c—even if it arose as some other use

of constr with some subsequent method invocations, it may as well have been

created directly with its current state. Given a heap h with locations l1, . . . , ln

and an expression e, the pair h, e is assigned the type τ in some context if the

expression

let l1 be constr h(l1) in . . . let ln be constr h(ln) in e

would be assigned type τ in the empty context.10 We define a function Φ on

types which relates the types of h(li) and constr h(li), so that if the pair of state

and object implementation has type τ , the object created from these would have

type Φ(τ).

Φ(σ ⊗CObj {m : σ ⊗ τm → σ ⊗ τ ′m}m∈X)

=

Obj {m : τ ⊸ τ ′}m∈X

Φ(l1 : τ1, . . . , ln : τn) = l1 : Φ(τ1), . . . , ln : Φ(τn)

We can now introduce a typing judgement for heaps ∆ ⊢ h, meaning that h is a

well-typed heap in context ∆. Our typing rules for heaps are as follows:

∅ ⊢ ∅

∆ ⊢ h Φ(∆) ⊢ v : τ

∆, l : τ ⊢ h, l 7→ v
τ = σ ⊗CObj {m : σ ⊗ τm → σ ⊗ τ ′m}m∈X

For expressions in heaps, we then define

∆ ⊢ h, e : τ ⇔ ∆ ⊢ h ∧ Φ(∆) ⊢ e : τ

∆ ⊢ h, e ⇔ ∃τ.∆ ⊢ h, e : τ

We are now in a position to give our type preservation result.

Theorem 4.2 (Type preservation). If ∆ ⊢ h, e : τ and h, e ⇓ h′, v then there

exists ∆′ ⊒ ∆ with ∆′ ⊢ h′, v : τ .

10Strictly speaking h(li) is a pair while constr is a curried function taking two arguments.

Chapter 4. An object-oriented language 118

The heap typing defined above actually imposes the condition that all pointers

in h (and in h′) point left with respect to the ordering given by ∆ (respectively

by ∆′). Note that as well as adding new locations to the end of ∆ which may

appear in v, ∆′ can add new locations in the middle, since the evaluation of a

method invocation on the object at l may construct an object at the new location

l′ and store this in the state.

We now sketch the proof of type preservation. We first give an alternate

formulation of the method invocation rule which indicates the intended ordering

on the resulting heap h′; clearly the set of derivations is essentially unchanged,

as none of the above rules is affected by the order of the heap. Define FV∗ as the

least relation such that

l ∈ FV(e) ⇒
(
l ∈ FV∗(e) ∧ FV(h(l)) ⊆ FV∗(e)

)

Let h↿X be h′ ⊑ h such that (l 7→ v) ∈ h′ ⇔ l ∈ X, and hR be the portion of h′′

between l and the last location in h′, in the following:

h, e1 ⇓ h
′, l ·m h′, vc ·m 〈vs, e2〉 ⇓ h

′′, 〈v′s, v〉

h, e1 e2 ⇓ hL, hs, (l 7→ 〈v′s, vc〉), hR, hv, v

h′′ = hL, h
′′(l), hR, he

hs = he ↿FV∗(v′s), hv = he ↿FV∗(v′s)

h(l) = 〈vs, vc〉

The proof is then by induction on operational derivations. The majority of cases

are uninteresting, and we concentrate on the two involving heap manipulation.

Firstly, if

h, constr es ec ⇓ h
′′[l 7→ (vs, vc)], l

then by the constr typing rule, ec : CObj {m : σ⊗ τm → σ⊗ τ ′m}m∈X and es : σ,

so 〈vs, vc〉 has the correct type for a location at the rightmost end of the heap

(agreeing with l).

For the method invocation rule, the concern is that v′s may contain a reference

which is not left-pointing. With reference to the alternate method invocation rule

above, this situation would mean that v′s contained a reference l′ in hR, or one

of the new locations pointed to by v′s does so. The type of vc ·m is a CMeth,

so by some tedious syntactic analysis of the possible forms of derivation trees for

the second premise, we see that there must be some em (a method body) such

that em 〈vs, en〉 ⇓ 〈v′s, v〉 and the typing derivation for em ends in either the Larg

rule or the identity rule. Then by inspection of these two rules, the result state

cannot contain a location from the argument (since a value of a ground type γ

Chapter 4. An object-oriented language 119

contains no free variables), but only from vc and vs (including a newly created

location only referring to such locations).

Lemma 4.3 (Pair-like typing). In Lpair, if ∆ ⊢ h, e : τ , and h, e ⇓ h′, v with

∆′ ⊢ h′, v, and

∆ = l1 : λ1, . . . , ln : λn

∆′ = Ξ1, l1 : λ1, . . . ,Ξn, ln : λn,Ξn+1

then for each l′i ∈ Ξi there is no l ∈ {lj} ∪ Dom(Ξj) for j > i such that l′i ∈

FV(h′(l)).

In other words, this lemma states that any location appearing after li can be

typed in the context without Ξi, i.e. Ξi is a portion of heap in a sense owned by

li.

The truth of this lemma can again be seen from the modified method invoca-

tion rule above. The lemma holds exactly when for any l ∈ hs, l
′ ∈ hv, it is the

case that l /∈ FV(hs) and l /∈ FV(v). This holds because of the CMeth rule of

Lpair. In both Larg and Lpair it is the case that newly created objects cannot be

directly shared between e1 and e2 because they are given as a pair; but in Larg

or Lret a location created in e1 can later become available to e2 via s, either after

having been stored in the state, or immediately via the application em 〈e1, e2〉. In

Lpair this is prohibited by the type of e2, meaning that the above property holds.

4.4 Denotational Semantics

We give a semantics in BGV of the form

JΓ ⊢ e : τK : JΓK → JτK⊥

according to typing derivation. We interpret contexts Γ = x1 : τ1, . . . , xn : τn as

products JΓK = Jτ1K⊗ . . .⊗ JτnK. Definitions of J−K for types and terms are given

in Figures 4.10–4.12; we explain and reproduce these in the text below. We shall

use the abbreviation JeKΓ for JΓ ⊢ e : τK when e is typeable in context Γ and it is

clear (or unimportant) what τ is assigned.

Note that unlike our operational semantics, we have no notion of a heap here,

just giving the denotation of a term in context. Stateful behaviour of objects

is instead modelled by the behaviour of strategies of ! type. The fact that no

explicit modelling of heaps is needed here is a crucial aspect of our approach, and

Chapter 4. An object-oriented language 120

is one measure of the degree to which our denotational semantics is more abstract

than the operational semantics.

We interpret types which we have designated reusable as objects !A1⊗. . .⊗!An.

The linear exponential provides this reusability for objects !A via the contraction

!A→!A⊗!A, but we extend this to products of such objects.

Definition 4.4 (Reusable objects). An object of BGV is reusable if it is of the

form !A, or B⊗C where B and C are themselves reusable. We extend contraction

to reusable objects as follows. Where B and C are reusable, define

d!A = dA : !A→!A⊗!A

dB⊗C = (dB ⊗ dC); (id ⊗ γ ⊗ id) : (B ⊗ C) → (B ⊗ C) ⊗ (B ⊗ C)

There is some notational confusion arising from the interpretation of d!A now

potentially referring to contraction for objects of !A or !!A type, but the meaning

will be clear from context. The intuition of the above definition is clear, but

further semantic justification comes from the fact that d!A⊗!B coincides with

!A⊗!B ∼=!(A&B)
dA&B- !(A&B)⊗!(A&B) ∼= (!A⊗!B) ⊗ (!A⊗!B)

Hence we give the following definition.

Definition 4.5. If A is a reusable object, for any morphism f : A→
⊗

j∈J Bj , if

A =
⊗

i∈I Ai there is a morphism f ‡ : A→
⊗

i∈I !Bi. Where

g =!&i∈IAi ∼=
⊗

i∈I

!Ai
f-

⊗

j∈J

Bj
∼= &j∈JBj

define

f ‡ = A ∼=!&i∈IAi
g‡- !&j∈JBj

∼=
⊗

j∈J

!Bj

For natural numbers we take JιK =!N = N where N is the object (N, 1BG),

justifying the earlier nomination of ι as a reusable type. The other basic type

constructors we take as standard using the computational monad ⊥, namely

Jτ → τ ′K = JτK⊸ Jτ ′K⊥
Jσ ⊗ τK = JσK ⊗ JτK

We then complete the interpretation of types by taking

JObj {m1 = τ1, . . . , mn = τn}K =!&m∈{1...n}JτmK ∼= ⊗m∈{1...n}!JτmK

Chapter 4. An object-oriented language 121

which correctly interprets an object type as a reusable record, and setting

JCObj XK = JObj XK

for all X such that the types in question are well formed. Similarly, we set

JCMeth τK = JτK

The subtyping relation is interpreted as a projection from the subtype to the

supertype, discarding any unnecessary components.

Jτ <: τK = id JτK

Jτ1 ⊗ τ2 <: τ ′1 ⊗ τ ′2K = Jτ1 <: τ ′1K ⊗ Jτ2 <: τ ′2K
JObj {mπ1 : τ ′π1, . . . , mπm : τ ′πm} <: = !&i∈1,...,m(Ππi; Jτπi <: τ ′πiK)

Obj {m1 : τ1, . . . , mn : τn}K
JCObj X <: Obj XK = id JObj XK

JCMethσ (τ ⊗ τ ′ → τ⊗ <) : (σ ⊗ τ → σ ⊗ τ ′)K = id Jσ⊗τ→σ⊗τ ′K

The exception to this general pattern is the subtyping rule for function types.

The contravariance in the argument type of the subtyping rule for function types

matches that of the⊸ functor:

Jτ1 → τ2 <: τ ′1 → τ ′2K = Jτ ′1 <: τ1K⊸ [⊥(Jτ2 <: τ ′2K)]

The core of our language, an affine λ-calculus, is again interpreted in the usual

way (noting that we have chosen to give explicit definitions in BGV rather than

make use of the Kleisli category BGV
⊥).

Interpret structural rules, and constructs for pairs and functions as follows.

Recall that ψ : X⊥⊗Y⊥ → (X⊗Y)⊥ is the double-strength morphism, the unit of

⊥ is η : X → X⊥, and −† is the promotion taking f : X → Y⊥ to f † : X⊥ → Y⊥.

JΓ, x : τ,∆ ⊢ x : τK = ηJτK ◦ ΠJτK

JΓ,∆ ⊢ 〈e, e′〉 : τ ⊗ τ ′K = ψ ◦ (JΓ ⊢ e : τK ⊗ J∆ ⊢ e′ : τ ′K)
JΓ,∆ ⊢ let 〈x, y〉 be e1 in e2 : τK = JΓ, x : τ1, y : τ2 ⊢ e2 : τK† ◦ ψ ◦

(ηJΓK ⊗ J∆ ⊢ e1 : τ1 ⊗ τ2K)
JΓ ⊢ λx.e : τ → τ ′K = η ◦ λτ (JΓ, x : τ ⊢ e : τ ′K)

JΓ,∆ ⊢ e1 e2 : τK = eval † ◦ ψ ◦

JΓ ⊢ e1 : σ → τK ⊗ J∆ ⊢ e2 : σK

Constants are trivially interpreted as discussed earlier:

JΓ ⊢ cϕ : ι⊗ . . .⊗ ι→ ιK = η ◦ λ(ϕ̄) ◦ 1Γ

Chapter 4. An object-oriented language 122

The conditional uses the ifz morphism we introduced earlier. Notice that there

is no use of the double strength ψ here; ifz evaluates the condition argument, and

then only one of e1 or e2 as required by the & connective.

JΓ,∆ ⊢ ifz e then e1 else e2 : τK =

JΓK ⊗ J∆K JeKΓ ⊗ (Je1K∆&Je2K∆)- JιK⊥ ⊗ (JτK⊥&JτK⊥)
ifz τ- JτK⊥

We now come to the expressions specific to reusable types. We write dτ for

the derived contraction map dJτK on the reusable object JτK as described above.

JΓ, z : τ,∆ ⊢ e[z/x, z/y] : τ ′K = JΓ, x : τ, y,∆: τ ⊢ e : τ ′K ◦ (id JΓK ⊗ dτ ⊗ id J∆K)

It should be emphasised that this correctly manages interfering (stateful) be-

haviour in its two components, or in other words this is the place in our semantics

where interesting stateful behaviour is propagated.

The obj constructor involves promoting all the constituent terms. Recall that

for f : !X → Y⊥, the morphism f ♯ : !X → (!Y)⊥ is defined via the !-promotion

and distributivity !X
f‡- !(Y⊥)

dist !⊥- (!Y)⊥, and ppn :
⊗

1≤i≤n!Xi
∼=!&1≤i≤nXi.

JΓ ⊢ obj {m1 = e1, . . . , mn = en} = ⊥(ppn) ◦ ψn ◦

: Obj {m1 : τ1, . . . , mn : τn}K (
⊗

1≤i≤n JΓ ⊢ ei : τiK♯ ◦ dn)

while field selection is simply projection combined with dereliction:

JΓ ⊢ e ·m : τmK = JΓK JeKΓ- (!&m∈XJτmK)⊥
⊥(ε)- (&m∈XJτmK)⊥

⊥(Πm)- JτmK⊥

The obj syntax is also used to construct terms of CObj type. The deno-

tation of such a term shall be the same regardless of which of these types it is

assigned, the difference being that a term of the latter type shall obey an ad-

ditional semantic property not apparent in the type. We thus use the following

definition, with the understanding that a derivation of the typing judgement on

the left yields a derivation of the judgement on the right.

JΓ ⊢ obj X : CObjT K = JΓ ⊢ obj X : Obj T K

Now consider the fixpoint operator Y. For each of the possible cases for ρ,

there is a morphism µρ : JρK⊥ → JρK. In the case of ρ = τ → τ ′, this is

µ⊸ : (JτK⊸ Jτ ′K⊥)⊥ → JτK⊸ Jτ ′K⊥

Chapter 4. An object-oriented language 123

While in the case of ρ = Obj {σm → τm}m∈X , this is

dist !⊥; !&m∈X(Πm;µ⊸) : (!&m∈X(JτK⊸ Jτ ′K⊥))
⊥
→!&m∈X(JτK⊸ Jτ ′K⊥)

where dist⊥! : (!X)⊥ →!(X⊥) is the other part of the distributivity used above.

Then define:

JΓ ⊢ Y(e) : ρK = JΓK JeK♯
Γ- (!Jρ→ ρK)⊥

⊥(!(idJρK⊸µρ);YJρK)- JρK⊥

Finally, and perhaps most importantly, to implement constr we use the thread

operation as follows:

JΓ,∆ ⊢ constr es ec : τK =

JΓK ⊗ J∆K JesKΓ⊗JecK∆- Jτ1K⊥ ⊗ Jτ2K⊥
ψ- (Jτ1K ⊗ Jτ2K)⊥

⊥(thread)- JτK⊥

On a point of notation, we will write [e]∆ for the morphism such that [e]∆ ; η =

JeK∆ when it exists (i.e. when e is a value or of the form constr v1 v2 for values

v1 and v2).

4.4.1 Coherence

Given that some of our typing rules have no corresponding syntax, there is a

potential worry about coherence. For any two derivations of the judgement Γ ⊢

e : τ , the associated denotations JΓ ⊢ e : τK must agree if we are to think of

the denotation of a typing judgement. The potentially problematic areas are

subtyping (when to apply the subsumption rule) and the structural rules (when

to apply weakening and contraction). Since the proof of these various coherence

properties proceeds along standard lines, we shall simply sketch the arguments

here.

Subtyping is generally unproblematic due to the language’s explicit typing

discipline. As in [34], it is possible to define a type- and semantics-preserving

rewriting system transforming typing derivations (or explicitly annotated terms)

into a normal form—we will briefly sketch this here, but omit the formal details.

The general idea is to push the use of subsumption as far down the derivation

as possible, at which point the normal form will have been reached (this will

possibly involve the insertion of the identity τ <: τ). Call an instance of a

typing judgement within a derivation coerced if it appears as the conclusion of

the subsumption rule. Then our normal forms are characterised as follows. In the

Chapter 4. An object-oriented language 124

instance of the ifz rule, the premises corresponding to e1 and e2 are coerced;11

in the case of let 〈x, y〉 be e in e′, the premise e is coerced; in the case of an

application e e′, the premise e′ is coerced; in the case of e ·m, e is coerced (by

width subtyping only, and not depth subtyping); in an instance of Yρ(e), e is

coerced; and in an instance of constr e c, the state e is coerced. Finally, the

conclusion of the whole derivation is coerced, and no other judgement appearing

in the derivation is coerced.

Given a derivation with premises in normal form, it is then straightforward

to place the whole derivation in normal form, and verify that the denotations

agree. For example, in the case of application, this involves taking some use

of subsumption on the first premise τ2 → τ ′1 <: τ1 → τ ′2, and replacing this

with subsumption in the second premise τ1 <: τ2 and the conclusion τ ′1 <: τ ′2,

and furthermore collapsing the two successive uses of subsumption on the second

premise. Some calculation from the denotation of subtyping and application then

shows that these two derivations agree.

The coherence of the structural rules can be established similarly. Consider

the possible derivations for an application Γ ⊢ e1 e2. There may be multiple ways

to split Γ into ∆1,∆2 such that ∆1 ⊢ e1 and ∆2 ⊢ e2. However, any such choice

can only differ in which of ∆1 or ∆2 an unused (i.e. weakened) variable is placed.

It is then easy to show by induction on typing derivations that given a derivation

of Γ, x : τ,∆ ⊢ e, if x 6= FV(e) then JΓ, x : τ,∆ ⊢ eK = JΓ,∆ ⊢ eK◦ idΓ⊗1JτK⊗id∆,

where one can obtain the second derivation by erasing x from every context of

the first. Therefore for every rule with multiple premises, unused variables can

be rearranged as desired (e.g. we could say they are canonically discarded by the

leftmost premise).

Finally, the coherence of contraction is a little more interesting. Here we again

transform to a normal form where contraction happens towards the conclusion

of the derivation. A derivation is in normal form if after every instance of a rule

with multiple premises (except contraction itself and obj), the contraction rule

occurs once for every reusable variable in the context of the conclusion, and the

contraction rule does not occur anywhere else. The rules split into a number of

groups: of course there is nothing to be done for the axioms, while the denotations

of the two simple one-premise rules e · m and subsumption take the form of a

postcomposition with the denotation of their premises, while contraction takes

11Without the τ annotation on ifz , we would have to consider an intersection here.

Chapter 4. An object-oriented language 125

the form of a precomposition, so the composition rule can be pushed down just

by associativity of composition. Three two-premise rules constr e1 e2, 〈e1, e2〉,

and e1 e2, all have the form f ◦ (Je1K⊗ Je2K): an instance of contraction in one of

their premises can moved to the conclusion because contraction commutes with

weakening (and the previous paragraph allows us to introduce weakening). The

ifz rule works out similarly. In the case of Y(e) and obj, we use the fact that

since f ‡◦d = f ◦d‡, f ♯◦d = f ◦d♯. Finally, we can ignore the order of contractions

because (!X, d) form a comonoid, and the interpretation of the contraction rule

is the identity on unaffected parts of the context.

4.4.2 Properties of method implementations

We now show how our CMeth and CObj types are related to the semantic

properties of strategies introduced in Section 3.4.

Lemma 4.6 (Argument-safe methods). In Larg, if

∆ ⊢ e : CMeth (σ ⊗ τ → σ ⊗ τ ′)

then JeK∆ is a disciplined strategy as per Definition 3.1. If

∆ ⊢ e : CObj {σ ⊗ τm → σ ⊗ τ ′m}m∈X

then for each m ∈ X, JeK∆; Πm is a disciplined strategy.

The two clauses are proved by a simultaneous induction on the size of typing

derivations. The only non-trivial rules are the Larg CMeth rule and the rule for

Y.

Recall that a disciplined strategy JeK : J∆K → JσK ⊗ JτK ⊸ (JσK ⊗ Jτ ′K)⊥ is

one in which after the initial question has been answered (i.e. e has returned a

value) no move in the right-hand JσK triggers a move in JτK. This property is

satisfied by the “ground type funnelling” in our CMeth rule. Since γ is a ground

type, JΓ, s : σ, x : τ ⊢ e : γK contains no move after the initial question has been

answered, so cannot cause a move in JτK.
Consider the post-return interaction with JeK. A move in JσK in Jem 〈e1, e2〉K

causes a move in JσK in JemK via the evaluation morphism. Now em is also of

CMeth type, so we can assume JemK is disciplined, and so the only possible

resulting move in its argument is in JσK of its argument, and not Jτ1K. Thus there

Chapter 4. An object-oriented language 126

is no interaction with Je2K, only with Je1K. By the type of e1, JΓ, y : γ, s : σ ⊢ e1K
cannot make a move in JτK.

In the case of the Y rule, we note that ⊥ is of course disciplined, and semanti-

cally the disciplined property is closed under limits, so JY(e)K; Πm is disciplined.

Lemma 4.7 (Pair-like methods). In Lpair and Lret, if

∆ ⊢ e : CMeth (σ ⊗ τ → σ ⊗ τ ′)

then JeK∆ is a pair-like strategy as per Definition 3.7.

Similar reasoning holds for this stronger property.

4.4.3 Heaps

As we have explained, the denotational semantics given above makes no refer-

ence to heaps. However, for the purposes of proving soundness with respect to the

operational semantics, we need to extend the denotational semantics to the aug-

mented language where an expression is interpreted in the context of some heap.

No modification is required to our existing semantics of expressions—instead, we

consider locations to be variables in an appropriate context. We then complete

the interpretation by defining the semantics of a heap.

As noted previously, a single heap cell (l 7→ 〈s, c〉) could be constructed with

the expression (constr s c), and thus the denotation of this heap cell may just

be taken to be Jconstr s cK. This can then be supplied as the denotation of l in

any expression e involving l:

Jl : σ ⊢ l 7→ 〈s, c〉, e : τK = J∅ ⊢ constr s c : Φ(σ)K; Jl : Φ(σ) ⊢ e : τK
= J∅ ⊢ let l : Φ(σ) be (constr s c) in e : τK

We define the denotation of a heap inductively according to this scheme, where

J∆ ⊢ hK : 1 → J∆K, following the typing rules for heaps given in Section 4.3:

J∅ ⊢ ∅K = id1

J∆, l : τ ⊢ h, l 7→ 〈s, c〉K = J∆ ⊢ hK; d;
(
id JΦ(∆)K ⊗ [constr s c]Φ(∆)

)

Note that we use [constr s c]Φ(∆) in place of Jconstr s cKΦ(∆) so that it is clear

from the types that a heap cell is never undefined. The denotation of an expression

in heap is then as follows:

J∆ ⊢ h, e : τK = J∆ ⊢ hK; JΦ(∆) ⊢ e : τK

Chapter 4. An object-oriented language 127

Just as we write JeK∆ for J∆ ⊢ e : τK, we shall write JhK∆ for J∆ ⊢ hK.
In the case of flat heaps, where there are no references to the heap contained

in any heap cell, we could define

J∆ ⊢ l0 7→ 〈s0, c0〉, . . . , ln 7→ 〈sn, cn〉 = [constr s0 c0]∅ ⊗ · · · ⊗ [constr s0 c0]∅

The general definition agrees with this where it is defined. When a heap is flat, it

can easily be split into two parts in any way we desire, using simple projections.

We shall need to split the heap in two in the next chapter, as after evaluating an

expression the updated pre-existing heap and the newly created heap are treated

differently in our proof. Unfortunately, this is not possible for general heaps with

the above definition, since the new heap may depend upon the old. We therefore

introduce the following relativised denotation of heaps:

JhK∆
∆′ : J∆K → J∆,∆′K

JhK∆
∅ = id JΦ(∆)K

Jh, l 7→ 〈s, c〉K∆
∆′,l : τ = JhK∆

∆′ ; dJΦ(∆,∆′)K;

(id JΦ(∆,∆′)K ⊗ [constr s c]Φ(∆,∆′))

Here we think of JhK∆
∆′ as being the denotation of in the context of some

∆-type heap. If heap we then supply is h↿∆, the expected property holds:

JhK∅∆,∆′ = JhK∆
∆′ ◦ Jh↿∆K∅∆

We shall in fact make use of the following more general property:

Lemma 4.8 (Relativised heaps). For any heap h such that ∆1,∆2,∆3 ⊢ h

JhK∆1

∆2,∆3
= Jh↿∆1,∆2K∆1

∆2
; JhK∆1,∆2

∆3

Proof. Trivial by induction on the structure of ∆.

Note also that JhK∆ = JhK∅∆.

We now have a result specific to Lpair, showing that semantically “new loca-

tions don’t escape”, corresponding to the syntactic property of Lemma 4.3.

Lemma 4.9 (Lpair heap semantics). Suppose for ∆ ⊢ h, e and ∆′ ⊢ h′, v we have

in Lpair

h, e ⇓ h′, v

Chapter 4. An object-oriented language 128

where (ordering by the left-pointing typing of Theorem 4.2)

∆ = l1 : λ1, . . . , ln : λn

∆′ = Ξ1, l1 : λ1, . . . ,Ξn, ln : λn,Ξn+1

Then for each li, lj if Ξ = Ξi+1, li+1 : λi+1 . . .Ξj, λj : lj there exists a morphism

Jh′iK
∆j

Ξ such that there is a factorisation

q
∆′
j

y Jh′iK
∆′

j

Ξ- J∆′
iK

J∆jK

Π

? Jh
′
i
K∆

j

Ξ

-

We note that the new notation Jh′iK
∆j

Ξ does not conflict with the existing

notation due to the specification of ∆j—the only ambiguity might be if ∆j = ∆′
j ,

and then Π = id J∆jK anyway.

Proof. By induction on the length of Ξ. If Ξ = l : λ then by Lemma 4.3, for

each l′ ∈ ∆′
j\∆j , l

′ /∈ FV(h′(l)). Jh′iK
∆j

l : λ = Jh′(l)K∆j
;⊥(thread), and by weakening

Jh′(l)K∆′
j
= Π∆j

; Jh′(l)K∆j
.

Chapter 4. An object-oriented language 129

JιK = !N = N

Jτ → τ ′K = JτK⊸ Jτ ′K⊥
Jσ ⊗ τK = JσK ⊗ JτK

JObj {m1 = τ1, . . . , mn = τn}K = !&m∈{1...n}JτmK
JCObjX K = JObj XK

Figure 4.10: Denotation of Types

Jτ <: τK = id JτK

Jτ1 ⊗ τ2 <: τ ′1 ⊗ τ ′2K = Jτ1 <: τ ′1K ⊗ Jτ2 <: τ ′2K
JObj {mπ1 : τ ′π1, . . . , mπm : τ ′πm} <: = !&i∈1,...,m(Ππi; Jτπi <: τ ′πiK)

Obj {m1 : τ1, . . . , mn : τn}K
JCObjX <: Obj XK = id JObj XK

JCMethσ (τ ⊗ τ ′ → τ⊗ <) : (σ ⊗ τ → σ ⊗ τ ′)K = id Jσ⊗τ→σ⊗τ ′K

Figure 4.11: Denotation of Subtyping

Chapter 4. An object-oriented language 130

JΓ, x : τ,∆ ⊢ x : τK = ηJτK ◦ ΠJτK

JΓ ⊢ cϕ : ι⊗ . . .⊗ ι→ ιK = η ◦ λ(ϕ̄) ◦ 1JΓK

JΓ,∆ ⊢ ifz e then e1 else e2 : τK = ifz τ ◦ (JΓ ⊢ e : ιK ⊗
J∆ ⊢ e1 : τK&J∆ ⊢ e2 : τK)

JΓ,∆ ⊢ 〈e, e′〉 : τ ⊗ τ ′K = ψ ◦ (JΓ ⊢ e : τK ⊗ J∆ ⊢ e′ : τ ′K)
JΓ,∆ ⊢ let 〈x, y〉 be e1 in e2 : τK = JΓ, x : τ1, y : τ2 ⊢ e2 : τK† ◦ ψ ◦

(ηJΓK ⊗ J∆ ⊢ e1 : τ1 ⊗ τ2K)
JΓ ⊢ obj {m1 = e1, . . . , mn = en} = ⊥(ppn) ◦ ψn ◦

: Obj {m1 : τ1, . . . , mn : τn}K (
⊗

1≤i≤n JΓ ⊢ ei : τiK♯ ◦ dn)
JΓ ⊢ obj X : CObjT K = JΓ ⊢ obj X : Obj T K

JΓ, z : τ,∆ ⊢ e[z/x, z/y] : τ ′K = JΓ, x : τ, y, : τ,∆ ⊢ e : τ ′K ◦
(id JΓK ⊗ dτ ⊗ id J∆K)

JΓ ⊢ e ·m : τK = ⊥(Πm ◦ ε) ◦ JΓ ⊢ e : Obj {m : τ}K
JΓ ⊢ λx.e : τ → τ ′K = η ◦ λτ (JΓ, x : τ ⊢ e : τ ′K)

JΓ,∆ ⊢ e1 e2 : τK = eval† ◦ ψ ◦

JΓ ⊢ e1 : σ → τK ⊗ J∆ ⊢ e2 : σK
JΓ ⊢ Y(e) : ρK = ⊥(YJρK◦!(id JρK ⊸ µρ)) ◦ JeK♯Γ

JΓ,∆ ⊢ constr es ec : τK = ⊥(thread) ◦ ψ ◦

(JΓ ⊢ es : τ1K ⊗ J∆ ⊢ ec : τ2K)
JΓ ⊢ e : τ ′K = Jτ <: τ ′K ◦ JΓ ⊢ e : τK

Figure 4.12: Denotation of Terms

Chapter 5

Proof of soundness

Having given a language with a denotational semantics, and an operational se-

mantics matching our intuitive understanding of the language, we naturally wish

to show that these agree, or in the usual terminology that our denotational seman-

tics is adequate with respect to our operational semantics. We break adequacy

into two directions, that any result predicted by the operational semantics is also

given by the denotational semantics (soundness), and the converse.

In this chapter we shall give a soundness proof. Typically a soundness proof

is a straightforward induction on derivations, however in our setting it turns out

to be highly non-trivial, requiring a surprisingly strong induction claim and the

introduction of some seemingly new ideas. The necessary techniques are one of

the main contributions of the thesis. There is considerable distance between our

denotational and operational semantics, and the proof requires an analysis of the

relationship between the abstract and concrete views of the behaviour of objects

in particular. Even so, we have so far succeeded in completing the proof only for

Lpair, whereas we believe the result to hold for the whole of Larg.

As it is not at all clear from the statement of our soundness claim why our

formulation is the right one, we shall guide the reader through a series of successive

refinements to a proposed soundness property. We then spend some time giving

necessary lemmas, before giving a proof by induction on operational semantics

derivations. We conclude the chapter by discussing the prospects for the extension

of our proof to Larg, and also proof of the remaining direction of adequacy.

131

Chapter 5. Proof of soundness 132

5.1 Choice of induction claim

The essence of soundness is that the observations which one can make opera-

tionally on the behaviour of an expression correspond to properties of its de-

notation (in our case a strategy). The most basic property one can observe is

termination:

e ⇓ ⇒ JeK 6= ⊥

This property1 simply says that if an expression terminates in our operational

semantics, the corresponding strategy is non-empty, i.e. makes some response to

the initial question. Alternatively, one might thus consider allowing arbitrary

observations at ground type:

e ⇓ v : γ ⇒ JeK = JvK

This statement is equivalent to the previous one, in the sense that any ground-

type observation can be expressed as an observation on termination through the

use of conditional statements, but is perhaps more amenable to proof. Explicitly,

if e ⇓ v : γ then we are requiring that JeK is in fact the same strategy as JvK, which

responds to the initial question with the move corresponding to the ground-type

value v.

To prove the above property for ground types inductively on operational se-

mantics derivations one naturally needs to consider expressions of higher type, as

these may appear in the evaluation of ground-type terms:

e ⇓ v : τ ⇒ JeK = JvK

Here even at higher types we are simply requiring the equality of JeK and JvK,
although now this means asserting that two strategies potentially consisting of

infinitely deep trees are identical. However, the equation JeK = JvK is not even

well-typed in general, since v may include heap locations even when e does not.

We should therefore consider the following:

∅, e ⇓ h′, v : τ ⇒ JeK = JvK ◦ Jh′K

Here the expression v may contain locations from h′; if l ∈ FV (v) the correspond-

ing component l of Jh′K provides the behaviour of the object h(l), whereas on the

1In this section we implicitly assume all terms are well-typed, as our untyped operational
semantics can only be asked to coincide with the semantics given to typed terms on terms which
can actually be assigned a type.

Chapter 5. Proof of soundness 133

left hand side the corresponding behaviour is incorporated into the behaviour of

JeK itself. Most simply, consider the following evaluation for values c, s:

∅, constr s c ⇓ (l 7→ 〈s, c〉), l

Here J∅ ⊢ constr s cK = Jl ⊢ lK ◦ Jconstr s cK, and in fact the value l contributes

no interesting behaviour. Again, to prove the above one must take a stronger

induction claim since evaluation of an expression in an empty heap may involve

evaluating some other expression in a non-empty heap. This property is particu-

larly natural, matching the form of our operational semantics, so we choose this

formulation as our main soundness property:

Theorem 5.1 (Soundness).

h, e ⇓ h′, v ⇒ JeK ◦ JhK = JvK ◦ Jh′K

So far we have discussed a series of induction claims which are clearly far

too weak, but we have now entered the realm of apparent possibility. However,

we will in fact need a much stronger claim. The problem here is that there

is not enough information exposed regarding the interaction between heap and

expression in JeK ◦ JhK and JvK ◦ Jh′K—the expression and heap are too tightly

coupled. Consider the evaluation of h, e1; e2 (or of h, 〈e1, e2〉), where e1 is of unit

type. In this case if h, e1 ⇓ h′, v1, clearly JvK ◦ Jh′K does not say anything about

Jh′K, while Je2K ◦ Jh′K requires information about Jh′K.
In essence, we need to know that the denotation of the resulting heap Jh′K

behaves correctly not only under interaction with JvK, but more generally under

all possible interactions that might arise from other parts of a larger program.

Assuming for now the existence of some operation s taking a heap to that heap

after the interaction s, the following might appear to express this idea:

h, e ⇓ h′, v ⇒ ∃s.JhK s Jh′K ∧ ∀t. qsavt ∈ JhK‖JeK ⇔ qavt ∈ Jh′K‖JvK

Here we are saying that for every play qsavt in JeK in the original heap, where q

and av are the initial question and matching answer (with ground-type data v),

there is a play qavt in JvK in the new heap which omits the initial heap interaction

(since that is how the new heap arose) but gives the same result and is thereafter

the same. Note that this implies the statement of Theorem 5.1, but says more

since the relation of the denotations of the heap before and after evaluation are

related by JhK s Jh′K. This is the idea used in [7] for Idealized Algol.

Chapter 5. Proof of soundness 134

To see why this formulation is not sufficient for our purposes, consider the

evaluation of h, 〈e1, e2〉—in effect equivalent to command sequencing in Idealized

Algol if e1 has unit type—which proceeds as follows

h, e1 ⇓ h1, v1 h1, e2 ⇓ h2, v2

h, 〈e1, e2〉 ⇓ h2, 〈v1, v2〉

Roughly speaking, we also need to know that the denotation of the resulting

value JvK behaves correctly not only under interaction with the corresponding

heap Jh′K, but more generally under all possible interactions with heaps that

might arise in the evaluation of a larger program. Assume that JhK s1 Jh1K
with qs1a

v1t1 ∈ JhK‖Je1K ⇔ qav1t1 ∈ Jh1K‖Jv1K and Jh1K s2 Jh2K with qs2a
v2t2 ∈

Jh1K‖Jv1K ⇔ qav2t2 ∈ Jh2K‖Jv2K. One can show that JhK s1s2 Jh2K and

qs1s2a
v1,v2t2 ∈ JhK‖J〈e1, e2〉K ⇔ qav1,v2t2 ∈ Jh2K‖J〈v1, v2〉K

where t2 is some play in the right component (so matches the t2 in our assump-

tion). However one does not know that

qs1s2a
v1,v2t1 ∈ JhK‖J〈e1, e2〉K ⇔ qav1,v2t1 ∈ Jh2K‖J〈v1, v2〉K

where t1 is some play in the left component, since the assumption only gives

information on the behaviour of e1 and v1 under the assumption that after the

initial evaluation the heap behaves like h1. If the heap is updated before further

interaction with v1, we need to know the behaviour under that new heap. We

note that this issue does not apply in the case of the Idealized Algol proof, since

in the corresponding situation e1 is of ground type, and so permits no further

interaction.

We must thus enrich our induction claim to give information on the behaviour

of the expression in all possible future heaps. The behaviour of JeK in all possible

heaps after some initial interaction qsa is just the subforest of the strategy JeK
rooted below the prefix qsa. The substrategy σ of JeK consisting of all plays

prefixed by qsa is of interest; the strategy (not in fact a substrategy) JeKs—
defined by memoization in Section 2.5—which omits s but otherwise behaves as

σ is just JeK after the initial heap interaction s, and so should match JvK:

h, e ⇓ h′, v ⇒ ∃qsav ∈ JhK‖JeK. JeKs = JvK ∧ JhKs = Jh′K

Here JhKs is the matching notion for heaps, and indeed with relation to the

previous statement one could say that JhK s Jh′K where JhKs = Jh′K. It should

Chapter 5. Proof of soundness 135

be noted that when the above claim gives Jh′K; JvK = JhKs; JeKs, it is a general fact

that σs; τ
s = σ; τ , so Jh′K; JvK = JhK; JeK as desired.

Before moving onto more complex issues, we resolve one problem with the

above formulation: it does not take account of new heap locations in h′. It is

not reasonable to ask that JhKs = Jh′K when h′ is a larger heap than h; instead,

we merely wish to assert that they agree on their common portion. As in the

earlier formulation, the additional portion of the heap should be thought of in

conjunction with JvK as follows:

∆ ⊢ h, e ⇓ ∆,∆′ ⊢ h′, v ⇒ ∃qsav ∈ JhK‖JeK. JeKs = JvK◦ Jh′K∆
∆′ ∧ JhKs = Jh′K∆

Here Jh′K∆
∆′ is the portion of h′ in ∆′, leaving the ∆ portion to be filled in later.

The above relates the unevaluated and evaluated expressions and correspond-

ing heaps correctly where it is defined, but unfortunately still does not make sense

in general, which is to say the statement is not well-typed. The problem is that

the types of JhKs and Jh′K, and of JeKs and JvK, still do not quite match. If the

heap type is ∆, we have 1
JhKs- J∆Ks

JeKs

- X⊥. From Lemma 2.13, J∆Ks can be

decomposed as Zs⊗ J∆K—a copy of J∆K for future interaction, and a residue Zs.

This residue corresponds to the fact that J∆Ks may allow for further play in the

components already opened in s of any given heap object, or in other words al-

lows for further interaction with the argument or result of method invocations in

s. If we could exclude this interaction with Zs (e.g. by restricting method types),

the following formulation might suffice, if the isomorphism is the canonical one

given by Lemma 2.13:

h, e ⇓ h′, v ⇒

1
J∆ ⊢ hKs - J∆Ks

J∆ ⊢ eKs - X

∼=

Zs ⊗ J∆K

J∆K

Π
?

J∆,∆′ ⊢ h′K∆
∆′

-

J∆
⊢
h ′
↿
∆ K

-

J∆K ⊗ J∆′K

J∆,∆′ ⊢ vK

6

Here we simply throw away any possible continued interaction in opened compo-

nents with a projection, leaving an updated heap of the original type.

In general however, we do wish to allow for methods which return interesting

results, and expressions which do interesting things with them, so we must find a

way to add back the “missing” information. We first introduce a little notation.

Chapter 5. Proof of soundness 136

Definition 5.2. Given a morphism f : X → Y where X is a reusable object (as

per Definition 4.4), define f⊳ : X → Y ⊗X as

f⊳ = dX ; (f ⊗ idX)

and f⊲ : X → X ⊗ Y as

f⊲ = dX ; (idX ⊗ f)

Then we can consider the following revised formulation:

h, e ⇓ h′, v ⇒

1
J∆ ⊢ hKs - J∆Ks

J∆ ⊢ eKs - X

∼=

Zs ⊗ J∆K

J∆K

θ⊳
6

J∆,∆′ ⊢ h′K∆
∆′

-

J∆
⊢
h ′
↿
∆ K

-

J∆K ⊗ J∆′K

J∆,∆′ ⊢ vK

6

Here the morphism θ : J∆K → Zs supplies the continued behaviour in question.

In particular, for each method invocation m that occurs in s when evaluating e

to a value, θ gives the results of future interaction with m—namely the content

of any higher-type return value, which may depend on objects in the heap.

Given θ, there would now seem to be enough information; indeed, unlike the

previous few formulations this version is both well-typed and true in general. In-

deed, the claim we have arrived at seems more or less equivalent in strength to the

Soundness claim used in [10]. The claim there is that “if for some term M we have

(L, s) M ⇓ (L′, s′) V then Jnew L, s in (λx.N) MK = Jnew L′, s′ in (λx.N) V K
for any suitably typed term N”. Here the new expressions correspond to our JhK
and Jh′K and M and V to e and v, while the observing term λx. N seems to play

the rôle of ensuring that both heap and location agree.

This formulation is very elegant (although we feel there is also a virtue to the

directness of our more explicit formulation). However, in our case there is still

insufficient information for the purpose of proof. In the context of the general

references of [10], the entirety of the heap is created in one step, and each location

initialised in a second, while in our context it is not possible to divorce object

creation and initialisation. This means that we are not able to consider heap

locations as reorderable and must instead take seriously the dependence of one

heap location on earlier locations, giving a proof which respects this structure.

Chapter 5. Proof of soundness 137

Consider a method invocation on some location l in the middle of the heap.

This will result in the update of the heap location hl to some new value h′l,

and some particular reasoning about the semantics of method invocation will

relate the memoized strategy hsl

l with the syntactically derived updated one h′l.

However, the triangle of the above diagram only relates the two versions of the

later heap cells in the context of the old value of hl, and says nothing relevant to

the composition with the updated h′l.

We must therefore specify the relation of the two versions of each given heap

cell, so that if a cell references earlier heap cells which are updated, there is

enough information to know that the relationship still holds.

Recall from the previous chapter that if ∆i = l1 : λ1, . . . , ln : λi (and ∆ = ∆n),

by the property of the “relativised” denotation of heaps

JhK∆ = 1
Jh1K- Jλ1K - . . . - J∆i−1K

JhiK
∆i−1
li : λi- J∆iK - . . .

JhK
∆n−1
ln : λn- J∆K

where we write hi for h ↿∆i
(the initial portion of the syntactic heap h up to

location li). Given a terminating play qtav in JhK∆‖JeK∆, the process of resplitting

(as given by Lemma 2.6) yields when applied repeatedly play ti at each J∆iK such

that

(JhK∆)ti = 1
Jh1Kt1- Jλ1Kt1 - . . .

. . . - J∆i−1Kti−1

(JhiK
∆i−1
li : λi

)
ti−1
ti - J∆iKti - . . .

(JhK
∆n−1
ln : λn

)
tn−1
tn - J∆Ktn

(5.1)

where tn = t. From here on, we shall abbreviate JhiK∆i−1

li : λi
as Hi. We can introduce

a morphism ζi : Zi−1 ⊗ J∆i−1K → Zi and demand that

∀i ∈ dom(h).

J∆i−1Kti−1

(Hi)
ti−1

ti - J∆iKti
∼= ∼=

Zi−1 ⊗ J∆i−1K
(idZi−1

⊗ d∆i−1
); (ζi ⊗ Jh′iK

∆i−1

li : λi
)

- Zi ⊗ J∆iK

The collection of morphisms ζ1, . . . , ζn serve to specify θ as in the previous dia-

gram: we define θ = zip(ζ1, . . . , ζn) : J∆K → Zs, the zipping of ζ1, . . . , ζn, i.e. their

composition with the appropriate copying of (the appropriate parts of) J∆K. Then

the fact that for each i the above square commutes means that the triangle in the

previous diagram commutes; the square in that diagram can remain unchanged.

We introduce the formal definition of zipping. Here and in the next few defini-

tions, we write ∆ for the object playing the rôle of J∆K.

Chapter 5. Proof of soundness 138

Definition 5.3 (Zipping). For reusable objects ∆,Ξ, λ, given morphisms θ : ∆ →

Z and ζ : Z ⊗ ∆ ⊗ Ξ → Z ′ where ∆′ = ∆ ⊗ Ξ ⊗ λ, define the zipping of these as

zip(θ, ζ) = Π∆,Ξ; (Π∆; θ)⊳; ζ : ∆′ → Z ′

Given a collection of morphisms ζ1, . . . , ζn which have compatible types

ζi+1 : Zi ⊗ ∆i ⊗ Ξi → Zi+1

(where Z0 = 1,∆i+1 = ∆i ⊗ Ξi ⊗ λi) extend the notation as follows:

zip(ζ1, . . . , ζn) = zip(zip(ζ1, . . . , ζn−1), ζn)

This formulation is very close to being sufficient. In fact the property we have

specified is slightly too strong: the Zi−1 at the bottom left of the above diagram

allows for any continued interaction with the residue Zi−1, while the square may

only hold for some particular interaction in Zi−1. The issue here is that part

of Zi−1 may represent interaction between hi and the results of some method

invocation on an object hj (j < i). Then the memoized hi will make use of ζj

(while Jh′iK does not), and so the square will only commute when this particular

ζj is supplied.

The notion of zipping comes to the rescue here. Where θi = zip(ζ1, . . . , ζi),

the following diagram fills in the missing information correctly:

∀i ∈ dom(h).

J∆i−1Kti−1

(Hi)
ti−1

ti - J∆iKti
∼= ∼=

Zi−1 ⊗ J∆i−1K Zi ⊗ J∆iK

J∆i−1K
θ⊳
i−1

6
Jh′iK

∆i−1

li : λi - J∆iK
θ⊳
i

6

The sequence of such diagrams then composes to the triangle given before.

It turns out that we need to know a little more about ζi, namely that on the

parts of the residue on which Hi is simply a copycat (and so any play appears

both in ti and ti−1), ζi also passes through unaltered. We introduce an auxiliary

notion ζ∗i , where ζi will specify only the parts which are required, and elsewhere

ζ∗i will behave as the identity.

Definition 5.4. For a morphism ζ : ZR ⊗ ∆ → Z ′B and suitable objects Z, Z1

we can define a morphism ζ∗ : Z ⊗ ∆ → Z ′ which extends ζ with some copycat

Chapter 5. Proof of soundness 139

behaviour. With respect to a given pair of isomorphisms ı : Z ∼= ZL ⊗ ZR,

 : ZL ⊗ Z ′B ∼= Z ′ (typically determined by the context) we define

ζ∗ = (ı⊗ id∆); (idZL ⊗ ζ); 

Thus we instead require that θi = zip(ζ∗1 , . . . , ζ
∗
i) for suitable ı,  in the diagram

above. From the definition of Hi, if h(li) = 〈vs, vc〉 then

JhiK∆i−1

li : λi
= d; (id ⊗ [constr vs vc]∆i−1

)

Therefore there is some t̂i−1 with

(Hi)
ti−1

ti
= (∆i−1)ti−1

d
ti−1
t̂i−1- (∆i−1 ⊗ ∆i−1)t̂i−1

(id⊗[constr vs vc]∆i−1
)
t̂i−1
t̂i - (∆i)ti

In addition to (∆i)ti
∼= Zi ⊗ J∆iK, we can read off from Lemma 2.13 that since

J∆iK = J∆i−1K ⊗ JλiK, there is a matching decomposition Zi ∼= (ZA
i ⊗ ZB

i). Simi-

larly, where (J∆i−1K ⊗ J∆i−1K)t̂i−1
∼= (J∆i−1K ⊗ J∆i−1K) ⊗ Z ′

i−1, there is a decom-

position Z ′
i−1

∼= ZL
i−1 ⊗ ZR

i−1. Since the morphism (id ⊗ [constr vs vc]∆i−1
)
t̂i−1

t̂i

is the memoization of a pair of morphisms, the left of which is the identity, we

can see from Lemmas 2.8, 2.10 that we must have ZL
i−1 = ZA

i . Furthermore,

since the contraction d allocates components between the two copies of ∆i−1 and

thereafter is the copycat on each of these components, the memoized contraction

d
t̂i−1

t̂i−1
induces an isomorphism Zi−1

∼= ZL
i−1 ⊗ZR

i−1 corresponding to these two sets

of allocated components. We then take the isomorphisms:

ıi : Zi−1
∼= ZL

i−1 ⊗ ZR
i−1 ZL

i−1 ⊗ ZB
i
∼= Zi : i (5.2)

We note that we have so far failed to account for the possibility of new heap

cells in h′ between li−1 and li. Instead of Jh′iK
∆i−1

li : λi
we should include Jh′iK

∆′
i−1

Ξi,li : λi

in the bottom line of the above diagram. While in Lpair the new portion of heap

Ξi may still appear before li, but is not involved h′ after li, in Lret or Larg this

restriction is lifted.

We thus now have the enlarged type ∆′
i on the bottom line of the diagram

(and an enlarged type for ζi and θi). We shall write H ′
i to denote

Jh′iK
∆′

i−1

Ξi,li : λi
:
q
∆′
i−1

y
→

q
∆′
i−1,Ξi, li : λi

y

We shall also define θπi = θ⊳
i ; (idZi

⊗ Π∆i
); where Π∆i

: ∆′
i → ∆i. Where

Chapter 5. Proof of soundness 140

θi = zip(ζ∗1 , . . . , ζ
∗
i):

∀i ∈ dom(h).

J∆i−1Kti−1

(Hi)
ti−1

ti - J∆iKti
∼= ∼=

Zi−1 ⊗ J∆i−1K Zi ⊗ J∆iK

q
∆′
i−1

yθπi−1
6

H ′
i - J∆′

iK
θπi 6

At this point we make our first simplification for the purposes of the proof,

and restrict to the language Lret (we discuss the prospects for removal of this

restriction after the proof). This gives some additional structure which we shall

make use of in the proof. In Lret, the result of a method invocationm1 (or a locally

constructed object) is never directly “split” between the state and return value

in a calling method m2. As a consequence, we can think of θi as being a product

of a number of morphisms, each giving the behaviour of some component of the

residue Zi corresponding to the result of one method call (we shall call these

fibres). Similarly, ζi is a product of a number of morphisms, each giving the

behaviour of the part of the residue corresponding to one method call. Each such

morphism might depend on a number of different fibres of θi−1, but since each

such fibre is only used once, θi also consists of a (possibly smaller) number of

fibres.

Definition 5.5 (Fibred morphisms). A morphism f : A⊗∆ → B for a reusable

object ∆ is fibred with respect to decompositions ı : A ∼=
⊗

i∈X Ai,  : B
∼=

⊗

j∈Y Bj for finite sets X and Y if there are disjoint sets Xj with X =
⊔

j∈Y Xj

and for j ∈ Y morphisms fj :
⊗

i∈Xj
Ai ⊗ ∆ → Bj such that (omitting some

evident reorderings of products)

f =
(
ı⊗ d|Y |

)
;

(
⊗

j∈Y

fj

)

; −1

We will insist that ζ∗i : Zi−1 ⊗ J∆i−1K → Zi is fibred with respect to the

following decomposition of Zi−1 and Zi, given for each i by Lemma 2.13:

Zi ∼=
⊗

j∈J
0≤k<nj

(λj)tj,k
(5.3)

where tj,k = ti ↿(Xj)k
and JλiK =!λi. If ζi is fibred with respect to the correspond-

ing decomposition of ZR
i−1 and ZB

i , then ζ∗i will obviously be fibred with respect

to Zi−1 and Zi).

Chapter 5. Proof of soundness 141

We can now present our main induction claim. As the preceding pages have

shown, this property is surprisingly strong, and its formulation is not at all ob-

vious. We shall postpone proof of this lemma until after we establish some other

technical lemmas which are required for the proof.

Lemma 5.6 (Soundness). Suppose for ∆ ⊢ h, e and ∆′ ⊢ h′, v we have in Lret

h, e ⇓ h′, v

where (ordering by the left-pointing typing of Theorem 4.2)

∆ = l1 : λ1, . . . , ln : λn

∆′ = Ξ1, l1 : λ1, . . . ,Ξn, ln : λn,Ξn+1

Let ∆i = l1 : λ1, . . . , li : λi and ∆′
i = Ξ1, l1 : λ1, . . . ,Ξi, li : λi, and let hi = h ↿∆i

and h′i = h′ ↿∆′
i
. Then

1. (Termination property) JhK; JeK terminates.

2. (Heap property) Suppose for each 1 ≤ i ≤ n, ti denotes the resulting play

in J∆iK as in (5.1), and ıi : Zi−1
∼= ZL

i−1 ⊗ZR
i−1 and i : Z

L
i−1 ⊗ZB

i
∼= Zi are

as in (5.2). Then for each i there exists ζi : Z
R
i−1 ⊗ J∆′

iK → ZB
i which is

fibred as described in (5.3), such that if θi = zip(ζ∗1 , . . . , ζ
∗
i) with ζ∗i defined

relative to ıi, i, then

J∆i−1Kti−1

(Hi)
ti−1

ti - J∆iKti
∼= ∼=

Zi−1 ⊗ J∆i−1K Zi ⊗ J∆iK

q
∆′
i−1

yθπi−1
6

H ′
i - J∆′

iK
θπi 6

where
Hi = JhiK∆i−1

li : λi
: J∆i−1K → J∆, λiK

H ′
i = Jh′iK

∆′
i−1

Ξi,li : λi
:

q
∆′
i−1

y
→ J∆,Ξi, li : λiK

3. (Expression property) If θn = zip(ζ∗1 , . . . , ζ
∗
n) then

J∆Ktn
JeKtn∆ - JτK⊥

∼=

Zn ⊗ J∆K

J∆′K

θπn
6

Jh′K∆′

Ξn+1

- J∆′,Ξn+1K

JvK∆′,Ξn+1

6

Chapter 5. Proof of soundness 142

Proposition 5.7. Lemma 5.6 implies Theorem 5.1.

Proof. The content of this is that the squares in (2) (for 1 ≤ i ≤ n) and the

square in (3) all compose, where the the left/top composite is JhK∆; JeK∆, and

the bottom/right composite is Jh′K∆′; JvK∆′. Clearly the verticals agree. The

leftmost vertical J∆0K
θ+0 - Z0 ⊗ J∆0K ∼= J∆0Kt0 is just 1 ∼= 1, while the top

composite was obtained earlier from resplitting and the definition of heaps from

J∆ ⊢ hKt; J∆ ⊢ eKt = JhK∆; JeK∆ (where qta is the terminating play of JhK; JeK).
The bottom line is

Jh′1KΞ1,l1 : λ1
; . . . ; Jh′nK

∆′
n−1

Ξn,ln : λn
; JvK∆′

By definition this gives the composite Jh′K∆′; JvK∆′ as required.

5.2 Various lemmas

Before proving the main soundness lemma which will give Theorem 5.1, we shall

first give some useful subsidiary lemmas. The most substantial relates composi-

tion and syntactic substitution. Other lemmas show that values of reusable type

are promoted morphisms and hence commute with contraction, and also show

some facts about zippings (and fibred zippings).

It is not true in general that the obvious substitution property holds (cf. [72]),

and here we identify the situation under which it does—only for values, and

only because any reusable value being substituted into some expression must be

interpreted by a promoted morphism.

Firstly, all values of reusable type are promoted morphisms.

Lemma 5.8 (Promoted values). When ∆ ⊢ v : τ with re(∆), re(τ) there exists f

such that

JvK∆ = η ◦ f ‡

Proof. By induction on the structure of v. Consider possible cases for v. If

v = l : λ ∈ ∆, then

JvK∆ = J∆1, l,∆2 ⊢ lK
= Jl ⊢ lK ◦ (1∆1 ⊗ id JλK ⊗ 1∆2)

= η ◦ (1∆1 ⊗ ελ ⊗ 1∆2)
‡

Chapter 5. Proof of soundness 143

If v = obj {m = vm}m∈X then

JvK∆ = ⊥(ppn) ◦ ψn ◦
⊗

0<i<n(JviK
‡
∆) ◦ dn

= ⊥(ppn) ◦ η ◦
⊗

0<i<n [vi]
‡ ◦ dn

= η ◦ (&0<i<n [vi]∆)‡

If v = Y(v′), and ∆ ⊢ v : ρ → ρ where ρ = Obj {m : σm → τm}m∈X , then by

expansion of the definition of Y we note that

JvK∆ = JY(v′)K∆

= Jobj {m = λx.v (Yv) ·m x}m∈XK∆

which has the required form by the reasoning above. Note that the case where

v = Y(v′) · m does not arise, because this must be of some non-reusable type

τ ⊸ τ ′.

If v = 〈v1, v2〉 then since by the inductive hypothesis Jv1K = f ‡ and Jv2K = g‡,

JvK∆ = ψ ◦ (Jv1K∆ ⊗ Jv2K∆) ◦ d∆

= η ◦ ([v1]∆ ⊗ [v2]∆) ◦ d∆

= η ◦ (f ‡ ⊗ g‡) ◦ d∆

= η ◦ (f&g)‡

Next, contraction can be performed before or after promotion.

Lemma 5.9 (Promotion-contraction). For f : !X → Y ,

dY ◦ f ‡ = (f ‡ ⊗ f ‡) ◦ dX

Proof. The following diagram commutes:

!X
δX - !!X

!f - !Y

!X⊗!X

dX

?

δX ⊗ δX
- !!X⊗!!X

d!X

?

!f ⊗ !f
- !Y⊗!Y

dY

?

the left square because δ is a morphism of comonoids, and the right square by

naturality of d.

We now combine these two lemmas to show that contraction can be performed

before or after the denotation of a value of reusable type.

Chapter 5. Proof of soundness 144

Corollary 5.10. If ∆ ⊢ v : τ with re(∆), re(τ) then

dτ ◦ [v]∆ = ([v]∆ ⊗ [v]∆) ◦ d∆

and hence

⊥(dτ) ◦ JvK∆ = ψ ◦ (JvK∆ ⊗ JvK∆) ◦ d∆

Proof. By Lemma 5.8, there exists a morphism f with JvK∆ = η◦f ‡, i.e. [v]∆ = f ‡

thus by Lemma 5.9, dτ◦[v]∆ = ([v]∆⊗[v]∆)◦d∆, giving the first equality. Note that

η◦dτ ◦ [v]∆ = ⊥(dτ)◦η◦ [v]∆ = ⊥(dτ)◦JvK∆, while similarly η◦([v]∆⊗ [v]∆)◦d∆ =

ψ ◦ (JvK∆ ⊗ JvK∆) ◦ d∆, giving the second equality.

The following lemma relates the syntactic substitution of values into expres-

sions (which is just the usual capture-avoiding substitution) to composition. Note

that there is a contraction on the right of the below equation, since on the left

there may be variables used both in e and v, and hence a contraction in the

semantics of the substituted term.

Both the restriction to a reusable context ∆ and to a value v are necessary

for the property to hold. Lemma 5.9 says that d ◦ f ‡ = (f ‡⊗ f ‡) ◦ d, but it is not

true in general that d ◦ g = (g⊗ g) ◦ d, and it is certainly not true in general that

expressions of reusable type are promoted morphisms (thanks to constr).

Lemma 5.11 (Substitution). If ∆ ⊢ v : τ ′ and ∆, x : τ ′ ⊢ e : τ , and re(∆) then

Je[v/x]K∆ = JeK∆,x : τ ′ ◦ (id∆ ⊗ [v]∆) ◦ d∆

This means that, in briefer notation, Je[v/x]K∆ = JeK∆,τ ′ ◦ [v]⊲∆, and also

Je[v/x]K∆ = JeK†∆,τ ′ ◦ ψ ◦ (η∆ ⊗ JvK∆) ◦ d∆.

Proof. By induction on the structure of e.

Case (constants)

Jcϕ[v/x]K∆ = JcϕK∆

= JcϕK∆,x : τ ′ ◦ (id∆ ⊗ [v]∆) ◦ d

Case (var 1)

Jx[v/x]K∆ = JvK∆

= (1∆ ⊗ ητ ′) ◦ (id∆ ⊗ [v]∆) ◦ d∆

= JxK∆,x ◦ (id∆ ⊗ [v]∆) ◦ d∆

Chapter 5. Proof of soundness 145

Case (var 2)

For y 6= x,

Jy[v/x]K∆ = JyK∆

= JyK∆ ◦ (id∆ ⊗ 1τ ′) ◦ (id∆ ⊗ [v]∆) ◦ d

= JyK∆,x : τ ′ ◦ (id∆ ⊗ [v]∆) ◦ d

Case (abs 1)

J(λx. e)[v/x]K∆ = Jλx. eK∆

= Jλx. eK∆ ◦ (id∆ ⊗ 1τ ′) ◦ (id∆ ⊗ [v]∆) ◦ d∆

= Jλx. eK∆,x : τ ′ ◦ (id∆ ⊗ [v]∆) ◦ d∆

Case (abs 2)

J(λy. e)[v/x]K∆ = Jλy. (e[v/x])K∆

= λY (Je[v/x]K∆)

= λY (JeK∆,x : τ ′ ◦ (id∆ ⊗ [v]∆) ◦ d∆)

= λY (JeK∆,x : τ ′) ◦ (id∆ ⊗ [v]∆) ◦ d∆

= Jλy. eK∆,x : τ ′ ◦ (id∆ ⊗ [v]∆) ◦ d∆

Case (unpairing)

The case for let 〈x, y〉 be e in e′ proceeds as for the two cases (abs 1), (abs 2).

Case (pair)

J〈e1, e2〉 [v/x]K∆ = J〈e1[v/x], e2[v/x]〉K∆

= ψ ◦ (Je1[v/x]K∆ ⊗ Je2[v/x]K∆) ◦ d∆

= ψ ◦
(
(Je1K∆,x : τ ′ ◦ (id∆ ⊗ [v]∆) ◦ d∆) ⊗

(Je2K∆,x : τ ′ ◦ (id∆ ⊗ [v]∆) ◦ d∆)
)

= ψ ◦ (Je1K∆,x : τ ′ ⊗ Je2K∆,x : τ ′) ◦
(
(id∆ ⊗ [v]∆) ⊗ (id∆ ⊗ [v]∆)

)
◦ (d∆ ⊗ d∆) ◦ d∆

How does this relate to J∆, x ⊢ 〈e1, e2〉K? We consider two possibilities for the

derivation of ∆, x ⊢ 〈e1, e2〉. Firstly, if x is of reusable type re(τ), we can assume

by coherence that the last steps perform contraction for the whole of (∆, x), i.e.

J〈e1, e2〉K∆,x : τ ′ = ψ ◦ (Je1K∆,x : τ ′ ⊗ Je2K∆,x : τ ′) ◦ d∆,τ

Chapter 5. Proof of soundness 146

Since we have shown in Corollary 5.10 that

((id∆ ⊗ [v]∆) ⊗ (id∆ ⊗ [v]∆)) ◦ (d∆ ⊗ d∆) = d∆,τ ′ ◦ (id∆ ⊗ [v]∆)

we have

J〈e1, e2〉 [v/x]K∆ = ψ ◦ (Je1K∆,x : τ ′ ⊗ Je2K∆,x : τ ′) ◦
(
(id∆ ⊗ [v]∆) ⊗ (id∆ ⊗ [v]∆)

)
◦ (d∆ ⊗ d∆) ◦ d∆

= J〈e1, e2〉K∆,x : τ ′ ◦ (id∆ ◦ [v]∆) ◦ d∆

Alternatively, if x is of non-reusable type, then either x appears in e1, or in

e2 (or neither), and we shall assume by coherence that the last steps perform

contraction of ∆. If x occurs in neither e1 nor e2 the options will agree. Consider

the second case, the first being similar:

J〈e1, e2〉K∆,x : τ ′ = ψ ◦ (Je1K∆ ⊗ Je2K∆,x : τ ′) ◦ (d∆ ⊗ id τ ′)

In the second case since ∆ ⊢ e1

Je1K∆ = Je1K∆,x : τ ′ ◦ (id∆ ⊗ [v]∆) ◦ d∆

and so

J〈e1, e2〉 [v/x]K∆ = ψ ◦ (Je1K∆,x : τ ′ ⊗ Je2K∆,x : τ ′) ◦
(
(id∆ ⊗ [v]∆) ⊗ (id∆ ⊗ [v]∆)

)
◦ (d∆ ⊗ d∆) ◦ d∆

= ψ ◦ Je1K∆ ⊗
(
Je2K∆,x : τ ′ ◦ (id∆ ⊗ [v]∆) ◦ d∆

)
◦ d∆

= ψ ◦ Je1K∆ ⊗
(
Je2K∆,x : τ ′ ◦ (id∆ ⊗ [v]∆) ◦ d∆

)
◦ d∆

= J〈e1, e2〉K∆,x : τ ′ ◦ (id∆ ⊗ [v]∆) ◦ d∆

Case (app)

J(e1 e2)[v/x]K∆ = Je1[v/x] e2[v/x]K∆

= eval † ◦ ψ ◦ (Je1[v/x]K∆ ⊗ Je2[v/x]K∆ ◦ d∆

Since this is simply eval † composed with what we had before, the reasoning in

the pairing case gives

J(e1 e2)[v/x]K∆ = Je1 e2K∆,x : τ ′ ◦ (id∆ ⊗ [v]∆) ◦ d∆

Chapter 5. Proof of soundness 147

Case (constr)

J(constr e1 e2)[v/x]K∆ = Jconstr e1[v/x] e2[v/x]K∆

= ⊥(thread) ◦ ψ ◦ (Je1[v/x]K∆ ⊗ Je2[v/x]K∆ ◦ d∆

Since this is simply thread † composed with what we had before, the reasoning in

the pairing case gives

J(constr e1 e2)[v/x]K∆ = Jconstr e1 e2K∆,x : τ ′ ◦ (id∆ ⊗ [v]∆) ◦ d∆

Case (ifz)

Again, this case proceeds as for pairing.

Case (object)

In this case we use the value restriction on Obj , to ensure that the components

of the object are promoted morphisms.

Jobj {mi = vi}i∈X [v/x]K∆

= Jobj {mi = vi[v/x]}i∈XK∆

= ⊥(ppn) ◦ ψn ◦ Jvi[v/x]K†∆d
= ⊥(ppn) ◦ ψn ◦ (JviK∆,x : τ ′ ◦ (id∆ ⊗ [v]∆) ◦ d∆)†

= ⊥(ppn) ◦ ψn ◦ (JviK∆,x : τ ′)
† ◦ (id∆ ⊗ [v]∆) ◦ d∆

= Jobj {mi = vi}i∈XK∆,x : τ ′ ◦ (id∆ ⊗ [v]∆) ◦ d∆

since by application of the comonad laws (which apply because [vi] is a promoted

morphism):

(f ◦ (id !X ⊗ g‡) ◦ dX)‡ = f ‡ ◦ (id !X ⊗ g‡) ◦ dX

Case (select)

Je ·m[v/x]K∆ = Je[v/x] ·mK∆

= Πm ◦ ε ◦ Je[v/x]K∆

= Πm ◦ ε ◦ JeK∆,x : τ ′ ◦ (id∆ ⊗ [v]∆) ◦ d

= [e ·m]∆,x : τ ′ ◦ (id∆ ⊗ [v]∆) ◦ d

Lemma 5.12 (Strictness). Suppose h : 1 → ∆, f : ∆ → X⊥, g : X⊥ → Y⊥. If g

is strict (as in Section 2.1.7) and

q1s1a1 ∈ h‖f

q2s2a2 ∈ hs1‖(f
s1; g)

Chapter 5. Proof of soundness 148

then
q2s1s2a2 ∈ h‖(f ; g)

(f ; g)s1s2 = (f s1; g)s2

Proof. Clearly if s2 ∈ hs1 then s1s2 ∈ h. By definition if g is strict it must

respond to q2 with q1, which is relayed to f . So we know by the first requirement

that q2q1s1a1 ∈ h‖(f‖g), and hence q2s1 ∈ h‖(f ; g) = (h‖f); g. Since q2s2a2 ∈

(hs1‖f
s1); g, q2s1s2a2 ∈ (hs1‖f

s1); g = hs1‖(f
s1); g.

Lemma 5.13 (Fibred zippings).

(i) If ζ is fibred with respect to ı, , and ζ∗ is defined relative to ı′, ′ then ζ∗ is

fibred with respect to ı′; (id ⊗ ı), ′−1; (id ⊗ ).

(ii) If for 0 < i ≤ n there is a decomposition ıi : Zi ∼=
⊗

j∈Xi
Zi,j, and each ζi is

fibred with respect to ıi, ıi+1 then the zipping θn : !∆n → Zn of ζ1, . . . ζn is a

fibred morphism with respect to the trivial decomposition  : 1 ∼= 1 and ın

In essence, the above lemma simply states that fibred morphisms compose

appropriately, where we may bundle together a collection of fibres if we wish, but

not split fibres.

Proof. (i). Easy to verify by expansion of the definition. (ii). By induction on n.

The trivial zipping θ0 : 1 → 1 is trivially fibred. If θi is fibred with respect to 

and ıi, there must be for j ∈ Xi morphisms ϑi,j : 1 ⊗ !∆i → Zi,j, such that

θi = (⊗ d|Xi|);

(
⊗

j∈Xi

ϑi,j

)

; ıi

If ζi+1 is fibred with respect to ıi and ıi+1 then there must be disjoint sets Xi,k

with Xi =
⊔

k∈Xi+1
Xi,k and for k ∈ Xi+1 morphisms

ζi+1,k :




⊗

w∈Xi+1,k

Zi,w



⊗ !∆ → Zi+1,k

such that

ζi+1 = (ıi ⊗ d|Xi+1|);




⊗

k∈Xi+1

ζi+1,k



 ; (ıi+1)
−1

Chapter 5. Proof of soundness 149

By definition zip(θi, ζi+1) = Π∆; θ+
i ; ζi+1 : 1⊗!∆i+1 → Zi+1. Construct for k ∈

Xi+1 morphisms ϑi+1,k : 1 ⊗ 1∆i+1
→ Zi+1,k such that

θi+1 = (⊗ d|Xi+1|);




⊗

k∈Xi+1

ϑi+1,k



 ; ıi+1

as

ϑi+1,k = Π∆;




⊗

w∈Xi+1,k

ϑi,w





+

; ζi+1,k

Lemma 5.14 (Zip-pair). For reusable objects ∆, Ξ1, and Ξ2, and morphisms

ζ1 : Z1 ⊗ ∆ ⊗ Ξ1 → Z ′
1, ζ2 : Z2 ⊗ ∆ ⊗ Ξ2 → Z ′

2 equipped with isomorphisms

ı1 : ZA ∼= (W ⊗ Z2) ⊗ Z1

ZB ∼= (W ⊗ Z2) ⊗ Z ′
1 : 1

ı2 : ZB ∼= (W ⊗ Z ′
1) ⊗ Z2

ZC ∼= (W ⊗ Z ′
1) ⊗ Z ′

2 : 2

giving

ζ∗1 : ZA ⊗ ∆ ⊗ Ξ1 → ZB ζ∗2 : ZB ⊗ ∆ ⊗ Ξ2 → ZC

there exists a morphism

Lζ1, ζ2M : (Z1 ⊗ Z2) ⊗ ∆ ⊗ Ξ1 ⊗ Ξ2 → (Z ′
1 ⊗ Z ′

2)

equipped with isomorphisms

ı : ZA ∼= W ⊗ (Z1 ⊗ Z2)

ZB ∼= W ⊗ (Z ′
1 ⊗ Z ′

2) : 

giving

Lζ1, ζ2M∗ : ZA ⊗ ∆ ⊗ Ξ1 ⊗ Ξ2 → ZC

such that:

zip(~ζ, ζ∗1 , (ζ2 ◦ Π∆,Ξ2)
∗) = zip(~ζ, Lζ1, ζ2M∗)

where Π∆,Ξ2 : Z2 ⊗ ∆ ⊗ Ξ1 ⊗ λ1 ⊗ Ξ2 → Z2 ⊗ ∆ ⊗ Ξ2 is the evident projection.

Furthermore, if ζ1, ζ2 are fibred with respect to decompositions ı′1 : Z1
∼=
⊗

j∈X1
Zj,

ı′2 : Z ′
1
∼=
⊗

i∈Y1
Zi, ı

′
3 : Z2

∼=
⊗

j∈X2
Z ′
j, ı

′
4 : Z ′

2
∼=
⊗

i∈Y2
Z ′
i then Lζ1, ζ2M is fibred

with respect to the decompositions ı′1 ⊗ ı′3 and ı′2 ⊗ ı′4.

Chapter 5. Proof of soundness 150

Proof. Take

Lζ1, ζ2M = (idZ1,Z2 ⊗ d∆); (idZ1 ⊗ γZ2,∆ ⊗ id∆); (ζ1 ⊗ ζ2)

Looking at the types above, the isomorphisms ı,  are self-evident. Calculation

from the definition of zip(−) gives the desired equality, since the types of the

isomorphisms ı1, 1, ı2, 2 ensure that ζ∗2 does not depend on the result of ζ1, only

the identity component of ζ∗1 . The definition is also easily seen to be fibred.

Corollary 5.15 (Zip-swap). For reusable objects ∆,Ξ1,Ξ2, and morphisms ζ1 : Z1⊗

∆ ⊗ Ξ1 → Z2, ζ2 : Z3 ⊗ ∆ ⊗ Ξ2 → Z4 equipped with isomorphisms ı1, 1, ı2, 2 as

in the previous Lemma, there exist suitable ı′1, 
′
1, ı

′
2, 

′
2 such that

zip(~ζ, ζ∗1 , (ζ2 ◦ Π∆,Ξ2)
∗) = zip(~ζ, ζ∗2 , (ζ1 ◦ Π∆,Ξ1)

∗)

Proof. From the previous lemma, note that

zip(~ζ, ζ∗1 , (ζ2 ◦ Π∆,Ξ1)
∗) = zip(~ζ, Lζ1, ζ2M∗) = zip(~ζ, ζ∗2 , (ζ1 ◦ Π∆,Ξ2)

∗)

since Lζ1, ζ2M ∼= Lζ2, ζ1M modulo some twist maps.

Lemma 5.16 (Memoization of (fibred) zippings). Let θn = zip(ζ∗1 , . . . , ζ
∗
n) and

θ′n = zip(ζ ′∗1 , . . . , ζ
′∗
n) for appropriately fibred morphisms ζi, ζ

′
i, such that

∆′′
n

θ′πn- (∆′
n)s ∆′

n

θπ
n- (∆n)u

Assume furthermore that there exists a play t such that there is a memoization

(θπn)
s
t . Then there exist fibred morphisms ζ ′′1 , . . . ζ

′′
n such that if θ′′n = zip(ζ ′′∗1 , . . . , ζ

′′∗
n)

with

∆′′
n

θ′′πn- (∆n)ut

then θ′′πn = θ′πn ; (θπn)
s
t .

Proof (sketch). By induction on n. Trivial base case. For the inductive step,

assume the property holds at n− 1. Note that we can expand

θπn = d∆′
n
; (id∆′

n
⊗ (Π∆′

n−1
; θπn−1)); ι; (ζ

∗
n ⊗ idλn)

where ι is the isomorphsim ∆′
n⊗Zn−1 ⊗∆n−1

∼= Zn−1 ⊗∆′
n−1 ⊗Ξn⊗∆n−1 ⊗ λn.

We similarly expand θ′n.

By manipualting (θπn)
s
t we push the memoization into subexpressions, includ-

ing two of the form (θπn−1)
s2
s2

and (ζ∗n)
t′1
t1 . We can subsequently move the for-

mer subexpression past the (ζ ′n)
∗ term, since the play t′1 must only occur in the

Chapter 5. Proof of soundness 151

identity-part of the −∗ construction, arriving a the composition θ′πn−1; (θ
π
n−1)

s′

t′ . By

the inductive hypothesis this is equal to some fibred zipping θ′′πn−1.

Further structural manipulation moves the term (ζ∗n)
t′1
t1

beside ζ ′∗n , resulting in

the composition (ζ ′n); ; (id ⊗ (ζn)
s′′

t′′) for a suitable isomorphism . We thus take

ζ ′′n = ζ ′πn ; ; (id ⊗ (ζn)
s′′

t′′).

Finally, we note that if we take θ′′n = zip(θ′′n−1, ζ
′′
n), then the expression is in

the form of (θ′′n)
π expanded as described above.

5.3 Main induction

We shall prove the Lemma by induction on operational semantics derivations.

Before we do so, we perform a little “preprocessing” in order to simplify the

proof. Firstly, given an expression e, and a second expression e′ such that

h, e ⇓ h′, v ⇐⇒ h, e′ ⇓ h′, v and JeK = Je′K

then proof of the lemma for e′ also provides proof for e. To this end we make

the following simplifications wherever they apply in the operational derivation,

for fresh variables x1, x2:

e1 e2 let 〈x1, x2〉 be 〈e1, e2〉 in (x1 x2)

constr e1 e2 let 〈x1, x2〉 be 〈e1, e2〉 in (constr x1 x2)

ifz e then e1 else e2 let 〈x1, x2〉 be 〈e, 1〉 in
(
ifz x1 then e1 else e2

)

It is clear that operationally these expansions give the same results, as in all four

application rules and in the constr rule e1 and e2 are evaluated in turn, as in the

pairing rule for 〈e1, e2〉. Therefore we get essentially the same derivation.

Now note that

Jx1, x2 ⊢ x1 x2K = eval † ◦ ψ ◦ η ⊗ η = eval

and hence

J∆ ⊢ let 〈x1, x2〉 be 〈e1, e2〉 in x1 x2K = eval† ◦ J〈e1, e2〉K
= J∆ ⊢ e1 e2K

Similarly

Jx1, x2 ⊢ constr x1 x2K = ⊥(thread) ◦ ψ ◦ η ⊗ η = η ◦ thread

Chapter 5. Proof of soundness 152

and hence

J∆ ⊢ let 〈x1, x2〉 be 〈e1, e2〉 in constr x1 x2K = ⊥(thread) ◦ J〈e1, e2〉K
= J∆ ⊢ constr e1 e2K

Again, it is easy to check that

Jifz e then e1 else e2K∆ = (Jifz x1 then e1 else e2Kx1 : ι,x2 : ι,∆)† ◦ J〈e, 1〉K∆

=
q
let 〈x1, x2〉 be 〈e, 1〉 in

(
ifz x1 then e1 else e2

)y

These substitutions therefore allow us to consider the relevant rules as apply-

ing (in our derivation) only to values. We make the obvious simplifications to the

rules given in the previous chapter under this restriction—we shall present the

appropriate version of each rule as we consider each case in turn.

We now prove Lemma 5.6 by induction on the operational derivation of h, e ⇓

h′, v. The most interesting cases are those for pairing and unpairing, and of

course the method invocation rule. After our preprocessing stage, the cases for

the pairing and unpairing rules handle all the reasoning about the heap which

would otherwise be required for most rules. The remaining rules then generally

have zero or one premises, and so at least the heap property is trivial or follows

immediately from the inductive hypothesis. Of course the method invocation rule

genuinely involves detailed reasoning about the heap.

Case (Values)

Assume ∆ ⊢ h, v. The value rule is:

h, v ⇓ h, v

Since JvK∆ = η ◦ f , the composition JhK∆; JvK∆ terminates with some play qa,

and the play at each J∆iK is ε. Then since J∆iKε ∼= 1 ⊗ J∆iK we take

ζi = 11⊗∆i
: 1 ⊗ J∆i−1K → 1

and note that

θi = zip(ζ1, . . . , ζi) = 1∆i

and since the heap is unchanged,

H ′
i = JhiK∆i−1

Ξi,li : λi
= JhiK∆i−1

li : λi
= Hi

Chapter 5. Proof of soundness 153

Therefore we have the heap property, since

θπi−1; (Hi)
ε
ε = Hi = H ′

i; θ
π
i

For the expression property,

JvK∆ ◦ θπn = JvK∆ = JvK∆ ◦ JhK∆
Ξn+1

since JhK∆
Ξn+1

= id∆.

Case (Record selection)

Assume ∆ ⊢ h, e ·mi and ∆′ ⊢ h′, vi. The record selection rule is:

h, e ⇓ h′, obj {m1 = v1, . . . , mn = vn}

h, e ·mi ⇓ h′, vi
1 ≤ i ≤ n

By definition Je ·miK∆ = JeK∆;⊥(ε; Πmi
). Since JhK; JeK∆ terminates and ⊥(−) is

strict, JhK∆; Je ·miK∆ terminates. Since play in the heap is identical in both cases,

the heap property follows trivially with the same choice of ζi. The expression

property from the IH is

θ⊳
n ; JeKtn∆ = Jh′K∆n

Ξn+1
; Jobj {mj = vj}j∈XK∆

Expanding the definition of Jobj −K, and in particular some calculation with the

promotion operator shows that

JviK∆ = Jobj {mj = vj}j∈XK∆;⊥(ε; Πi)

which together with the above gives the expression property:

θ⊳
n ; (Je ·miK∆)tn = Jh′K∆n

Ξn+1
; JviK∆

Case (Method selection)

The method selection rule (for heap objects) is:

h, e ⇓ h′, l

h, e ·m ⇓ h′, l ·m

Since JhK; JeK terminates and ⊥(Πm) is strict, JhK; Je ·mK = JhK; JeK;⊥(Πm) ter-

minates. Since play in the heap is identical in both cases, the heap property again

carries over, and since θ⊳
n ; JeKtn = Jh′K∆

Ξ ; JlK then θ⊳; Je ·mKtn = Jh′K∆
Ξ ; Jl ·mK.

The case for the similar method rule for Y, which is:

h, e ⇓ h′,Y(v)

h, e ·m ⇓ h′,Y(v) ·m

holds by the same reasoning.

Chapter 5. Proof of soundness 154

Case (Ifz)

The reduced ifz rules are:

h, e1 ⇓ h
′, v

h, ifz 0 then e1 else e2 ⇓ h′, v

h, e2 ⇓ h
′, v

h, ifz n then e1 else e2 ⇓ h′, v
n 6= 0

In the first case, just from the definition of J−K and ifz

Jifz 0 then e1 else e2K = ifz ◦ (J0K ⊗ (Je1K&Je2K))
= Je1K

while in the second case

Jifz n then e1 else e2K = ifz ◦ (JnK ⊗ (Je1K&Je2K))
= Je2K

Therefore in both cases, the termination, heap and expression properties hold

unchanged from the inductive hypothesis.

Case (Application)

Assume ∆ ⊢ (λx.e) v′. The reduced application rule is:

h, e[v/x] ⇓ h′, v

h, (λx.e) v′ ⇓ h′, v

By Lemma 5.11,

Je[v′/x]K∆ = d∆; (id∆ ⊗ Jv′K∆); JeK∆,τ ′

= d∆; [λ(JeK∆,τ ′) ⊗ Jv′K∆)]; eval

= J(λx.e) v′K∆

By the inductive hypothesis, JhK; Je[v/x]K terminates, so JhK; J(λx.e) v′K termi-

nates. Similarly, the expression and heap properties hold unchanged from the

I.H. by the above equality.

Case (Y)

The reduced Y application rule is:

(v1 (Yv1)) v2 ⇓ v

(Yv1) v2 ⇓ v

Chapter 5. Proof of soundness 155

Calculate from the definition of JYv1K:

⊥(Y ◦ !(id ⊸ µ⊸)) ◦ Jv1K♯∆
= ⊥(Y ◦ !(id ⊸ µ⊸)) ◦ η ◦ [v1]

‡
∆

= η ◦ Y ◦ ((id ⊸ µ⊸) ◦ [v1]∆)‡

= η ◦ eval ◦ ((id ⊸ µ⊸) ◦ [v1]∆) ⊗ Y ◦ ((id ⊸ µ⊸) ◦ [v1]∆)‡

= η ◦ µ⊸ ◦ eval ◦ [v1]∆ ⊗ Y ◦ ((id ⊸ µ⊸) ◦ [v1]∆)‡

Then

J(Yv1) v2K =

= eval † ◦ ψ ◦ (JYv1K ⊗ Jv2K)
= eval † ◦ ψ ◦

(
η ◦ µ⊸ ◦ eval ◦ [v1]∆ ⊗ Y ◦ ((id ⊸ µ⊸) ◦ [v1]∆)‡

)
⊗ Jv2K

(as eval ◦ (µ⊸ ◦ f ⊗ g) = eval † ◦ ψ ◦ (f ⊗ η ◦ g))

= eval † ◦ ψ ◦
(
eval ◦ [v1]∆ ⊗ Y ◦ ((id ⊸ µ⊸) ◦ [v1]∆)‡

)
⊗ Jv2K

= eval † ◦ ψ ◦
(
eval † ◦ ψ ◦ (Jv1K∆ ⊗⊥(Y ◦ !(id ⊸ µ⊸)) ◦ Jv1K♯∆

)
⊗ Jv2K

= J(v1 (Yv1)) v2K

Thus the termination, heap and expression properties all hold unchanged from

the premise.

Case (Constr)

The reduced constr rule is:

h, constr vs, vc ⇓ h[l 7→ 〈vs, vc〉], l

The composition JhK; Jconstr vs vcK terminates with qa ∈ JhK‖Jconstr s1 vcK,
since:

Jconstr vs vcKΓ,∆ = (JvsK ⊗ JvcK);ψ;⊥(thread)

= ([vs] ⊗ [vc]); thread ; η

As l is a new location, we again take each ζi = 1∆i
, noting that this makes

θi = 1∆i
. The heap property is thus trivial, and for the expression property we

have:
θ+
n ; Jconstr vc s1K = Jconstr vc s1K

= Jconstr vc s1K⊲; J∆, l ⊢ lK
= Jh[l 7→ 〈s1, vc〉]K∆

l : λ; J∆, l ⊢ lK

Chapter 5. Proof of soundness 156

Case (Pair)

Assume ∆ ⊢ h, e1, ∆′ ⊢ h′, v1, ∆′ ⊢ h′, e2, ∆′′ ⊢ h′′, v2. The pair rule is:

h, e1 ⇓ h
′, v1 h′, e2 ⇓ h

′′, v2

h, 〈e1, e2〉 ⇓ h′′, 〈v1, v2〉

As JhK; Je1K∆ and Jh′K; Je2K∆ terminate, we have qtav1 ∈ JhK‖Je1K∆ and quav2 ∈

Jh′K‖Je2K∆′ , and for e1 we also have ζ1 . . . ζn with zipping θn (for e2 see below).

From the heap property for e1 we have Jh′ ↿∆′K∆′; θπn = JhKt. So by definition of ψ

and d we have qtua(v1,v2) ∈ JhK‖d; (Je1K⊗Je2K);ψ, that is JhK; J〈e1, e2〉K terminates.

Here u is as u but with component renaming via the contraction (since e2 must

now start wherever e1 finishes). This establishes the termination property.

Since we have two “levels” of newly created heap locations, we fix some no-

tation. We decompose ∆,∆′ as follows:

∆′ = Ξ1, λ1, . . .Ξn, λn,Ξn+1

Ξi = λi,1, . . . λi,mi

∆′′ = . . .Ξ′
i,1, λi,1, . . .Ξ

′
i,mi

, λi,mi
,Ξ′

i, λi . . .

Ξ′′
i = Ξ′

i,1, λi,1, . . . ,Ξ
′
i,mi

, λi,mi

We will then for e2 refer to the corresponding ζ ′1,1, . . . , ζ
′
1,m1

, ζ ′1, . . . , ζ
′
i,mi

, ζ ′i with

zipping θ′i, so that θ′i : ∆′′
i → Zui

.

For each λi, there is one instance of the heap property for e1, while e2 gives

a corresponding collection of instances at each of λi,1, . . . , λi,mi
, λi. We therefore

create one instance from this latter collection before pasting the two together.

The diagrams for e2 compose, giving

θ′πi−1; (Jh′K
∆′

i−1

Ξi,λi,1
)
ui−1
ui

= Jh′′K∆′′
i−1

Ξ′
i,1,λi,1

; . . . ; Jh′′K∆′′
i−1,Ξi

Ξ′
i,λi

; θ′πi

= Jh′′K∆′′
i−1

Ξ′′
i ,Ξ

′
i,λi

; θ′πi

To complete the construction of the “glued together” heap property, we con-

struct ζ ′′i to make zip(θ′i−1, ζ
′′
i) = θ′i. First define for ζ : ∆ ⊗ Ξ ⊗ Z → Z ′,

ζπ = (Π∆,Ξ ⊗ id); ζ : (∆ ⊗ Ξ ⊗ λ) ⊗ Z → Z ′. Then define the following aux-

iliary zipping construction:

rzip(ζ1, ζ2) = (id ⊗ d); (ζπ1 ⊗ id); ζ2

Define as before rzip(ζ1, . . . , ζi, ζi+1) = rzip(rzip(ζ1, . . . , ζi), ζi+1). Now take ζ ′′i =

Chapter 5. Proof of soundness 157

rzip(ζ ′i,1, . . . , ζ
′
i,mi

, ζ ′i), and note that

zip(θ′i−1, ζ
′′
i) = zip(θ′i−1, rzip(ζ ′i,1, . . . , ζ

′
i,mi

, ζ ′i))

= zip(θ′i−1, ζ
′
i,1, . . . , ζ

′
i,mi

, ζ ′i)

= θ′i

This completes the “glued” e2 heap property.

By resplitting the memoization JhKtū, the play at each ∆i must then be tiui

where the play was ti for e1 and ui for e2 respectively. Similarly, we can re-

split the heap diagram at various other points, yielding the following all-round

memoization (at e1):

(θπi−1)
ui−1
ūi−1

; (Hi)
ti−1ūi−1

tiūi
= (Jh′K∆′

i−1

Ξi,λi
)ui−1
ui

; (θπi)
ui−1
ūi−1

Note that (θπi−1)
ui−1
ūi−1

does not memoize θi−1, merely the promoted part. Composing

these two constructed properties we get

θ′πi−1; (θ
π
i−1)

ui−1
ūi−1

; (Hi)
ti−1ūi−1

tiūi
= Jh′′K∆′

i−1

Ξ′′
i ,Ξ

′
i
; θ′πi ; (θπi)

ui−1
ūi−1

We then note that by Lemma 5.16, there exist ζ ′′′i such that θ′′i = zip(ζ ′′′1 , . . . , ζ
′′′
i) =

θ′πi ; (θπi)
ui−1
ūi−1

. In fact in this case ζ ′′′i = Lζi, ζ ′′i M. This gives the desired heap prop-

erty that

θ′′πi−1; (Hi)
ti−1ūi−1

tiūi
= Jh′′K∆;i−1

Ξ′′
i ,Ξ

′
i
; θ′′πi

We now move on to the expression property. This is established by the fol-

lowing chain of reasoning:

θ′′πn ; (J〈e1, e2〉K∆)tu

= θ′′πn ; dtu
t̂û

; ı; (Je1Kt ⊗ Je2Ku);ψ
(where t̂ and û are the evident relabellings of t and u, and

ı : (∆′ ⊗ ∆′)t̂û
∼= ∆′

t ⊗ ∆′
u)

= d; θπn; Je1Kt ⊗ θ′πn ; Je2Ku

(since zip(. . . , Lζi, ζ ′′i M, . . .) = d; [zip(. . . , ζi, . . .) ⊗ zip(. . . , ζ ′′i , . . .)])

= d; (Jh′K∆′

Ξn+1
; Jv1K∆′,Ξn+1

⊗ Jh′′K∆′

Ξ′
n+1

; JvK∆′,Ξ′
n+1

;ψ

= Jh′′K∆′

Ξ′
n+1

; J〈v1, v2〉K∆′,Ξn+1,Ξ′
n+1

Case (Let-pair)

Assume ∆ ⊢ e and ∆′ ⊢ e′[v1/x, v2/y]. The let-pair rule is:

h, e ⇓ h′, 〈v1, v2〉 h′, e′[v1/x, v2/y] ⇓ h
′′, v

h, let 〈x, y〉 be e in e′ ⇓ h′′, v

Chapter 5. Proof of soundness 158

We first show the termination property—this requires not only the termination

property for each premise, but also the expression property for e, since v1 and v2

are used in the second premise. By definition

Jlet 〈x, y〉 be e in e′K = Je′K†∆,x,y ◦ ψ ◦ (η∆ ⊗ id) ◦ JeK⊲

∆

= Je′K†∆,x,y ◦ ψ ◦ (η∆ ⊗ JeK∆) ◦ d∆

From the inductive hypothesis, JhK; JeK terminates, and there are given ζ1, . . . , ζn

with zipping θn. If the terminating play is qtav1,v2 ∈ JhK‖JeK, then the I.H. also

gives

θπn; JeKt∆ = Jh′K∆′

Ξn+1
; J〈v1, v2〉K∆′,Ξn+1

By Lemma 5.11,

Je′[v1/x, v2/y]K = Je′K†∆,x,y ◦ ψ ◦ (((η∆ ◦ Π∆) ⊗ id) ◦ J〈v1, v2〉K⊲

∆′,Ξn+1

Therefore

Je′[v1/x, v2/y]K ◦ Jh′K∆′

Ξn+1

= Je′K†∆,x,y ◦ ψ ◦ (((η ◦ Π) ⊗ id) ◦ J〈v1, v2〉K⊲

∆′,Ξn+1
◦ Jh′K∆′

Ξn+1

= Je′K†∆,x,y ◦ ψ ◦ ((η ⊗ id) ◦ JeKt∆ ◦ θπn

So by Lemma 5.12, since Je′[v1/x, v2/y]K ◦ Jh′K∆
Ξn+1

terminates and JeK† is strict,

Je′K†∆,x,y ◦ ψ ◦ (η ⊗ id) ◦ JeK∆

terminates, i.e. Jlet 〈x, y〉 be e in e′K terminates, completing proof of the termi-

nation property.

The heap property proceeds as for the pairing case, excepting that u and ū

differ in a more interesting way, since there is play in the residue. Specifically,

the construction of ζ ′′′i via Lemma 5.16 takes care of our issues by ensuring θ′′i =

zip(ζ ′′′1 , . . . , ζ
′′′
i) = θ′πi ; (θπi)

ui−1
ūi−1

. Notice that each ζ ′′′i as given by that Lemma

contains both ζ ′i and a memoization of ζ ′′i , rather than that morphism itself as

in the pairing case, because there can be interaction in e′ with the result of e as

supplied by ζi. This gives the desired heap property that

θ′′πi−1; (Hi)
ti−1ūi−1

tiūi
= Jh′′K∆;i−1

Ξ′′
i ,Ξ

′
i
; θ′′πi

We now prove the expression property. Given that θn = zip(ζ∗1 , . . . , ζ
∗
n), by

the I.H. for the first premise

θπn ; JeKtn∆ = Jh′K∆′

Ξn+1
; J〈v1, v2〉K∆′,Ξn+1

Chapter 5. Proof of soundness 159

and by the I.H. for the second premise there are morphisms ζ ′1, . . . , ζ
′
m such that

where θ′m = zip(ζ ′1
∗, . . . , ζ ′m

∗),

θ′πm; Je′[v1/x, v2/y]Kum

∆′ = Jh′K∆′′

Ξm+1
; JvK∆′′,Ξm+1

Therefore,

θ′′πn ; [(JeKt)⊲]
u′n
u ; (Je′K†∆,x,y ◦ ψ ◦ (η!∆ ⊗ id))u

= θ′πn ; [(θπn; JeKt)⊲]un
u ; (Je′K†∆,x,y ◦ ψ ◦ (η!∆ ⊗ id))u

= θ′πn ; [(Jh′K∆
Ξn+1

; J〈v1, v2〉K∆′,Ξn+1
)⊲]un

u ; (Je′K†∆,x,y ◦ ψ ◦ (η!∆ ⊗ id))u

= θ′πn ; (Jh′K∆
Ξn+1

)un
um

; [J〈v1, v2〉K⊲

∆′,Ξn+1
]um
u ; (Je′K†∆,x,y ◦ ψ ◦ (η!∆ ⊗ id))u

= h′′; θ′πm; [J〈v1, v2〉K⊲

∆′,Ξn+1
; Je′K†∆,x,y ◦ ψ ◦ (η!∆ ⊗ id)]um

= h′′; θ′πm; Je′[v1/x, v2/y]Kum

= Jh′K∆′′

Ξm+1
; JvK∆′′,Ξm+1

This completes proof of the expression property.

Case (Method Invocation)

Assume ∆ ⊢ l ·m v1, where ∆ = ∆L, l : λ,∆R, so that ∆L ⊢ vc, s1, and suppose

∆ ⊢ l ·m : τ → τ ′ and ∆ ⊢ s1 : σ. The reduced method invocation rule:

h, vc ·m 〈s1, v1〉 ⇓ h
′, 〈s2, v2〉

h, l ·m v1 ⇓ h′[l 7→ 〈s2, vc〉], v2
h(l) = 〈s1, vc〉

This is by far the most demanding induction case, and where most of the inter-

esting context of the proof resides (details of the proof of this case were worked

out with John Longley).

Argument outline

Before proving the method invocation case, we attempt to give an intuition and

describe the structure of the proof.

From the inductive hypothesis we get a set of equations (the heap property)

expressing the heap update during evaluation of vc ·m 〈s1, v1〉, and an equation

giving the result 〈s2, v2〉 (the expression property). Since the method invocation

causes an update of the heap at l, the expression property for vc ·m 〈s1, v1〉 will

feed into the construction of both expression and heap properties for l ·m v1.

As an intermediate step, we shall construct a heap cell l′ as a copy of l, so

that l′ ·m will correspond to vc ·m resulting in heap h′, and l ·m will be as l′ ·m

Chapter 5. Proof of soundness 160

but resulting in heap h′[l 7→ 〈s2, vc〉]. Take a fresh location l′ containing 〈vc, s1〉,

located at the end of the heap. By the properties of thread from Chapter 3, one

finds that the result of l′ ·m v1 agrees with vc ·m 〈s1, v1〉, and the updated object

l′ after evaluation agrees with a new object constructed from vc and the state

part of vc ·m 〈s1, v1〉. From the inductive hypothesis, the result and state are v2

and s2 respectively.

By observing that vc can not refer to the portion of the heap from l onwards,

and the result of the method invocation cannot because vc · m cannot capture

pointers from v1, we can consider l′ to reside beside l in the heap. Given this newly

constructed heap, since they are constructed with the same implementation and

state, l′·m and l·m agree up to the point of termination, and yet may subsequently

differ. There are two reasons for this. Firstly, heap locations subsequent to l

may of course observe the updated state here. Secondly, if there are any nested

invocations of l, directly or indirectly caused by interaction with v1, in the case

of l′ ·m this will be observable as a state-change of l, while in the case of l ·m it

will not.

We finally observe that we can merge any nested invocations in l into l′, so

that l′ after l′ ·m is the same in both cases, the play in l′ is the desired interaction

and the updated state (s2) agrees with the result of the operational rule, where

we rename l′ to l (throwing away the original l).

Termination Property

By the induction hypothesis,

JhK; Jvc ·m〈s1, v1〉K∆ : 1 → Jσ ⊗ τ ′K⊥

terminates. We begin by throwing away the “state” component of the result. Let

Π′ = ⊥(ΠJτ ′K) : Jσ ⊗ τ ′K⊥ → Jτ ′K⊥

Then clearly JhK; Jvc ·m 〈s1, v1〉K∆; Π′ terminates: that is, there is some play

qtav2 ∈ JhK‖Jvc ·m 〈s1, v1〉K∆; Π′

Chapter 5. Proof of soundness 161

But

Jvc ·m 〈s1, v1〉K∆; Π′

= d3; ((JvcK∆;⊥(ε; Πm)) ⊗ Js1K∆ ⊗ Jv1K∆); eval †; Π′

(by definition of J−K)
= d3; (([vc]∆ ; ε; Πm) ⊗ [s1]∆ ⊗ [v1]∆); eval ; Π′

(since s1, v1, vc are values)

= d2;
(
(([〈s1, vc〉]∆ ; thread) ⊗ id); (ε; Πm) ⊗ [v1]∆

)
; eval

(by Thread Property 1, since both [vc]∆ and [s1]∆ are promoted

morphisms by Lemma 5.8)

= [constr s1 vc]
⊳

∆ ;
(
(ε; Πm) ⊗ [v1]∆

)
; eval

(by definition of [−])

= [constr s1 vc]
⊲

∆ ; γ∆,λ;
(
(ε; Πm) ⊗ [v1]∆

)
; eval

(swapping for later convenience)

Thus,

qtav2 ∈ JhK‖ [constr s1 vc]
⊲

∆ ;−@v1

where −@v1 abbreviates γ∆,λ; (ε; Πm⊗[v1]∆); eval . Shifting the interaction bound-

ary to the right, there is some play

qtav2 ∈ JhK; [constr s1 vc]
⊲

∆ ‖−@v1

where the internal interaction t takes place in the game J∆K ⊗ JλK. Moreover, it

is easy to see that the strategy responds to the initial question q with a question

qv10 in the m-component of JλK, and generates the answer av2 immediately from

the corresponding answer av20 . Thus, t has the form qv10 t
′av20 , and moreover all

moves in t′ are in the left component of J∆K⊗ JλK (corresponding to interactions

with the heap arising from locations appearing in v1).

We now concentrate on the left half of the above interaction, that is, the play

t = qv10 t
′av20 ∈ JhK; [constr s1 vc]

⊲

∆ : 1 → J∆K ⊗ JλK

We show that essentially the same play is possible if the “real” heap cell l in h is

used for the method call rather than the copy [constr s1 vc]∆ just created (i.e. l′

in the earlier discussion).

Chapter 5. Proof of soundness 162

First, let hL, hR be the heap portions corresponding to ∆L, ∆R respectively,

and define

HL = JhLK : 1 → J∆LK
Hℓ = JhL, l 7→ 〈s1, vc〉K∆L

l : λ : J∆LK → JλK
HR = JhK∆L,l : λ

∆ : J∆LK ⊗ JλK → J∆RK

Now note that by the left-pointing property of heaps,

[constr s1 vc]∆ = [constr s1 vc]∆L
⊗ 1λ,∆R

so we can effectively “commute” [constr s1 vc] past HR, so as to be adjacent to

the real heap cell l:

JhK; [constr s1 vc]
⊲

∆

= HL;H
⊲
ℓ ;H⊲

R ; ([constr s1 vc]∆L
⊗ 1λ,∆R

)⊲

= HL;H
⊲
ℓ ; ([constr s1 vc]∆L

⊗ 1λ)
⊲; (H⊲

R ⊗ idλ)

= HL;H
⊲
ℓ ; (Hℓ ⊗ 1λ)

⊲; (H⊲
R ⊗ idλ)

(by definition of Hℓ)

= HL; (d∆L
;Hℓ ⊗Hℓ)

⊲; (H⊲
R ⊗ idλ)

So the play qv10 t
′av20 is present in this latter strategy. Now consider the “exposed”

interaction in

HL; (d∆L
;Hℓ ⊗Hℓ)

⊲‖(H⊲
R ⊗ idλ)

Since the moves qv10 and av20 are simply copied back and forth by idλ (as well as

play in the method argument), we have some play

qv10 t
′′av20 ∈ HL; (d∆L

;Hℓ ⊗Hℓ)
⊲ : 1 → J∆LK ⊗ JλK ⊗ JλK

The strategy Hℓ appears twice here: the first copy (corresponding to the left hand

JλK) is used for any nested invocations of the object at l triggered (directly or

indirectly) by interaction with [v1], while the second copy is used for the method

call under consideration, and only for that. As we noted earlier, [vc]∆ and [s1]∆

are promoted morphisms, and since ∆L ⊢ vc : Obj X, by Lemma 4.6 [vc] is

a disciplined strategy. Therefore we are in the situation addressed by Thread

Property 3(a), which shows that all these interactions may as well use only a

single copy of Hℓ via the contraction map JλK → JλK ⊗ JλK:

qv10 t
′′av20 ∈ HL; (Hℓ; dλ)

⊲ : 1 → J∆LK ⊗ JλK ⊗ JλK

Chapter 5. Proof of soundness 163

We may now put back the parts of the composition we stripped away. Since

HL; (Hℓ; d)
⊲ behaves identically to HL;H

⊲
ℓ ; (Hℓ ⊗ 1λ)

⊲ under the relevant inter-

actions in J∆K ⊗ JλK ⊗ JλK, we have

qv10 t
′av20 ∈ HL; (Hℓ; dλ)

⊲; (H⊲
R ⊗ idλ)

= JhK; Π⊲
λ : 1 → J∆K ⊗ JλK

and likewise qtav2 ∈ JhK; Π⊲
λ ‖−@v1. But

Π⊲
λ ;−@v1 = d; (Πλ ⊗ id); (ε; Πm ⊗ [v1]∆); eval

= d; ((Πλ; ε; Πm) ⊗ [v1]∆); eval

= Jl ·m v1K∆

So qav2 ∈ JhK; Jl ·m v1K∆ as required.

Constructing a new heap cell

As a first step to establishing the heap property for the evaluation of l ·m v1 in h,

we consider the evaluation of l′ ·m v1 in a heap h[l′ 7→ 〈s1, vc〉], and first establish

the heap property for this situation. Throughout this section, let θn and tn mean

what they do in the context of the inductive hypothesis: here we will construct

a ζl′ for the additional heap cell.

From Theorem 4.2, s2 cannot contain (existing) locations from the right of

ln, and in Lret the set of new heap locations in s2 and v2 must be disjoint, i.e.

∆′
L,ΞS ⊢ s2 and ∆′,ΞV ⊢ v2. Then from part 3 of the I.H.:

θπn; Jvc ·m〈s1, v1〉Ktn∆ = Jh′K∆′

ΞS ,ΞV
; J〈s2, v2〉K∆′,ΞS ,ΞV

We now throw away the non-state component of the result. The state component

projects as follows:

θπn; Jvc ·m〈s1, v1〉Ktn∆ ;⊥(ΠJσK) = Jh′K∆′
L

ΞS
; Js2K∆′

L,ΞS

By Thread Property 2, there is a play u such that

[constr s1 vc]
tn
u ; ΠE =

(
(Jvc ·m〈s1, v1〉Ktn∆ ;⊥(ΠJσK)) ⊗ [vc]∆

)
; thread⋆

where ΠE : (!(JτK → Jτ ′K⊥))u ∼= (Zu⊗!(JτK → Jτ ′K⊥))
ΠR- !(JτK → Jτ ′K⊥). There-

fore

θπn; [constr s1 vc]
tn
u ; ΠE = Jh′K∆′

L

ΞS
; [constr s2 vc]

Chapter 5. Proof of soundness 164

Since [vc] is pair-like, by Thread Property 4 there are morphisms f and g

∆tn
∼= ∆tLn

⊗ ∆tRn

f⊗g- Zu ⊗ !(JτK → Jτ ′K⊥)

such that [constr s1 vc]
tn
u = f⊗g. Take the decompositions as ∆tLn

∼= ∆⊗ZL and

∆tRn
∼= ∆⊗ZR, so that Zn ∼= ZL⊗ZR. The inductive hypothesis states that θn is

fibred, so splitting θn as θn = θS ⊗ θV for fibres θS : ∆′ → ZL and θV : ∆′ → ZR

we have that

(θπS ⊗ θπV); Jconstr s1 vcKtnu =
Jh′K∆′

L

ΞS
; Jconstr s2 vcK ⊗

θπV ; Jconstr s1 vcKtnu ; ΠZu

We therefore define ζl′ : ∆′ ⊗ Zn → Zu as

ζl′ = 1ZL
⊗ Jconstr s1 vcKtnu ; ΠZu

and note that ζl′ is trivially fibred (consisting of only one fibre). Then we have

shown a suitable heap property for l′:

θπn; ([constr s1 vc]
tn
u)⊲ = (Jh′K∆′

L

ΞS
; [constr s2 vc]∆′

L
)⊲; (zip(θn, ζ

∗
l′))

π

Moving the new cell left

At this point we must move the new heap cell l′ from the end of the heap to

the position just after l, before we can merge the two. Here we show that one

can switch l′ with a single cell on its left (without altering the results of the

composition), because l′ is actually independent of that cell. This fact is then

repeatedly applied until l′ lies immediately to the right of l, which it does depend

on. At each stage, we wish to know that the heap property still holds for the

computation arising form evaluating l′ ·m v1. From the data ζj, ζl′ we construct

the new data simply as ζl′, ζj, since the −∗ operation will do the work for us.

Given

θπj−1; (Hj)
tj−1

tj
= H ′

j; (zip(θj−1, ζ
∗
j))

π

(zip(θj−1, ζ
∗
j))

π; [(Π∆j−1
;Hl)]

tj
tl

= (Π∆j−1
;H ′

l′); (zip(θj−1, ζ
∗
j , (Π∆j−1

; ζl′)
∗))π

calculation involving (memoizations of) the projections and the contraction and

identity in the various instances of −π shows that

θπj−1; (Hℓ)
tj−1

t′j
= H ′

l′; (zip(θj−1, ζ
∗
l′))

π

(zip(θj−1, ζ
∗
l′))

π; [(Π∆j−1
;Hj)]

t′j
tl

= (Π∆j−1
;H ′

j); (zip(θj−1, ζ
∗
l′, (Π∆j−1

; ζj)
∗))π

Chapter 5. Proof of soundness 165

where t′j is as tj but instead of passing through moves from hl passes through

moves from hj . Notice that the precise meaning of −∗ has changed between

these two sets of equations, in particular the type of the identity part. Further-

more, from Lemma 5.15 and reasoning as above we have that the identity of the

composite is maintained:

zip(θj−1, ζ
∗
j , (Π∆j−1

; ζl′)
∗); = zip(θj−1, ζ

∗
l′, (Π∆j−1

; ζj)
∗)

(Hj)
tj−1

tj
; [(Π∆j−1

;Hℓ)]
tj
tl

= (Hℓ)
tj−1

t′j
; [(Π∆j−1

;Hj)]
t′j
tl
; γ

H ′
j ; (Π∆j−1

;H ′
l′) = H ′

l′; (Π∆j−1
;H ′

j); γ

Merging heap cells—coincidence of play / diagram construction

We now have a heap with adjacent cells l and l′, which we wish to merge for our

resulting l cell. The key here is noticing that the play in l and l′ translates to a

play in l alone, and the resulting object at l′ after the former play is the object at

l after the latter. The object at l after the former play is not related to anything

in the latter, as it represents the discarded state update in a nested method call.

We shall now construct Diagram 5.1, showing the merged heap cell, and show

that it commutes. Take ζ ′l = Lζl, ζl′M, so that where θl = zip(θl−1, ζl) and θl′ =

zip(θl−1, ζl, ζl′), we have the new θ′l = zip(θl−1, ζ
′
l).

Recall from the termination argument that from Thread Property 3, the play

tl′ in ∆l−1 ⊗ λ (which is a terminating play in λ) is admitted both by (Hℓ; d∆,λ)
⊲

and H⊲
ℓ ; (Hℓ ⊗ 1λ)

⊲. Furthermore, Thread Property 3 says that if

Π̃ = (JλK ⊗ JλK)tl′ ∼= Ztl′ ⊗ JλK ⊗ JλK
idZt

l′
⊗1JλK⊗idJλK

- Ztl′ ⊗ JλK ∼= JλKtl′

then

[H⊲
ℓ ; (Hℓ ⊗ 1λ)

⊲]
tl−1

tl′
; Π̃ = ((Hℓ; d)

⊲)
tl−1

tl′
; Π̃ = (H⊲

ℓ)
tl−1

t′
l

For the corresponding lower triangle, take

Π = (id ⊗ 1λ ⊗ id)

and
H ′′
l = Jh′′l K

∆L

Ξl,Ξl′ ,li : λi

: J∆LK → J∆L,Ξl,Ξ
′
l, li : λiK

then by examination of the definition of relativised heaps and −⊲,

(H ′′
l)

⊲ = H ′⊲
l ; (Π∆L

;H ′
l′)

⊲; Π∆L,Ξl,Ξl′ ,λ

Chapter 5. Proof of soundness 166

The right-hand trapezoid Π̃ ◦ θπl′ = θ′π ◦ Π holds from the definition of Π and

Π̃, plus the fact that by Lemma 5.14

θl′ = zip(θl−1, ζ
∗
l , (Π∆ ◦ ζl′)

∗) = zip(θl−1, Lζl, ζl′M∗) = θ′l

The two inner diagrams are just the existing heap properties for l and l′, therefore

we have shown that Diagram 5.1 commutes.

Heap property

Since we have collapsed l and l′, we can now remove the contraction to produce

the desired final heap. Since each heap cell now has the form Π∆j−1
;Hj we note

that

(id ⊗ dλ); (Π∆j−1
;Hj); (id ⊗ γ) = Hj ; (id ⊗ dλ ⊗ id); (id ⊗ γ)

The memoization is then for the play tj at ∆j , where all play in λ is in the same

copy as desired. Similarly, d; zip(θ, (Π; ζj)
∗) = zip(θ, ζ∗j).

We have therefore proved the desired heap property.

Expression property

The verification of the expression property proceeds somewhat similarly to the

section “Constructing a new heap cell”. As in that section, from the inductive

hypothesis we have

θπn ; Jvc ·m〈s1, v1〉Ktn ;⊥(ΠV) = Jh′K∆′

ΞV
; Jv2K∆′,ΞV

Then if we define
θ′′ = zip(θn, (Π∆ ◦ ζl′)

∗)

= zip(ζ∗1 , . . . , Lζl, ζl′M∗, . . . , ζ∗n)

C
h
a
p
ter

5
.

P
ro

o
f
o
f
so

u
n
d
n
ess

1
6
7

(J∆lK ⊗ JλK)t̂l′

J∆lKtl−1
(H⊲

ℓ)
tl−1

tl

-

(H
⊲
ℓ
)
tl−1

t̂′l

-

(J∆lK ⊗ JλK)tl
((Hℓ ⊗ 1λ)

⊲)
tl′
tl

- (J∆lK ⊗ JλK ⊗ JλK)tl′
Π̃

-

Zl−1 ⊗ J∆lK

∼=6

Zl ⊗ (J∆lK ⊗ JλK)

∼=
6

Zl′ ⊗ (J∆lK ⊗ JλK ⊗ JλK)

∼=
6

Zl′ ⊗ J∆lK ⊗ JλK

∼=

6

J∆′
lK

θπl−1

6

(H ′
ℓ)

⊲

- J∆′
lK ⊗ JΞlK ⊗ JλK

θπl
6

(Π∆L
;H ′

ℓ′)
⊲

- J∆′
lK ⊗ JΞlK ⊗ JλK ⊗ JΞl′K ⊗ JλK

θπl′
6

θ′πl

6

J∆′
lK ⊗ JΞlK ⊗ JΞl′K ⊗ JλK

Π

-(H ′′
l)⊲

-

F
ig

u
re

5
.1

:
M

erg
in

g
h
ea

p
cells

Chapter 5. Proof of soundness 168

the following reasoning establishes the expression square:

θπn ; Jvc ·m〈s1, v1〉Ktn ;⊥(ΠV)

= θπn ; ([constr s1 vc]
⊳

∆ ; (Πm; ε⊗ [v1]∆); eval)tn

(By Thread Property 1.)

= θπn ; ([constr s1 vc]
⊳

∆)tnu ; ((Πm; ε⊗ [v1]∆); eval)u

(Resplitting.)

= θπn ; ([constr s1 vc]
⊳

∆)tnu ; ΠZ ; [(Πm; ε⊗ [v1]∆); eval]u

(By examination of [−]u—as ε means no more uses of l′.)

= θπX ; ([constr s1 vc]
⊳

∆)tnu ; ΠZ ; θπY ; ((Πm; ε⊗ [v1]∆); eval)u

(θ is fibred.)

= (θ′ ⊗ θY)π; ((Πm; ε⊗ [v1]∆); eval)u

(By construction of ζ ′l and hence θ′ from the earlier section.)

= θ′′π; Jl ·m v1Ku∆
(Definition of θ′′, J−K.)

5.4 Further issues

We have given a soundness proof for the restricted language Lret rather than the

more general case of Larg. This is a genuine restriction, which prohibits methods

which create new objects and both store them in their state and return them.

However, unlike in Lpair, methods may return higher-type results from their state.

In both cases, arbitrary results may be returned from other objects in the heap

(but again, the results of such a method call may be stored in the state, or

returned, but not both). Despite the restriction of Lret, it may be possible to

accomplish the same results as a method in Larg via multiple method calls, first

storing some locally created object in the state then subsequently retrieving that

object and returning it. Here we discuss the implications to the proof of removing

this restriction.

The restriction manifests istelf in the statement of the soundness property.

The restriction of ~ζ (and hence θ) to fibred morphisms builds in a separation

between the results of any two method invocations. This is important in the

method invocation case, where we both make use of the assumption of fibredness,

and construct a new morphism which is fibred because of the pair-like property

of the method implementation.

Recall that the shape of our heap is always a DAG, i.e. there are no circular

Chapter 5. Proof of soundness 169

references. While the shape of dependencies on method return results is generally

a DAG, in the restricted situation this structure is a tree. This can be most easily

seen in the definition of fibred morphisms: several fibres can be “tied together”

when a method calls several methods and returns a result constructed from their

return values, but a fibre can never be split by using it both to update the state

and return a value (this would be non-pair-like behaviour). Our proof follows

this tree-structure, while a more general proof would seem to have to follow the

DAG-structure.

5.5 Adequacy

The property of computational adequacy states that the operational and denota-

tional semantics agree:

h, e ⇓ h′, v ⇐⇒ JhK; JeK = Jh′K; JvK

The soundness property we have proved gives the ⇒ direction. The remainder

amounts to proof that J−K is not over-defined, i.e.

JhK; JeK 6= ⊥ =⇒ ∃h′, v. h, e ⇓ h′, v

For reasons of time we do not prove this property here. It seems highly

implausible that it is false—it is hard to imagine where our denotational semantics

might “invent” a value where we do not intend to produce one. Moreover, we have

had to impose considerable restrictions to ensure that our operational semantics is

not over -defined, not just by the pair-like restriction but by the restricted typing

for method implementations to produce disciplined strategies and avoid cycles in

the heap.

The probable truth of this property aside, the proof will still be non-trivial.

However, we expect that the standard proof technique using logical relations will

suffice. In this case, the essence of the problem will be to formulate the correct

relation. We believe that the detailed analysis of our semantics which has been

required for the soundness proof will also go much of the way towards proving

the remainder of the adequacy property.

Chapter 6

Definability and full abstraction

In this chapter we shall show that the interpretation of our object-oriented lan-

guage in BGV satisfies two important properties. We show that definability and

full abstraction hold at a certain (somewhat unusual) subset of denotable types,

including types of any given rank (and in particular all pure types).

Define the sets of types T and ArgT by the following grammar:

T ::= ι | (ArgT ⇒ T)

ArgT ::= ι | (T ⇒ ι)

We shall now state the the properties proven in this chapter. Firstly, call a

strategy effective if the underlying function from odd-length plays to moves is

effectively computable. Then at types in T all effective strategies are definable:

Theorem 6.1 (Definability). For any type τ ∈ T , and any effective strategy

a : 1 → JτK, there exist suitable sets of computable constant functions Φ = {Φk |

k ∈ N}, and a closed term ∅ ⊢ e : τ in Larg with constants from Φ, such that

J∅ ⊢ e : τK = a.

Secondly, at types in ArgT the interpretation is fully abstract:1

Theorem 6.2 (Full abstraction). For any type τ ∈ ArgT and terms ⊢ e : τ ,

⊢ e′ : τ :

(
∀C[−], v. C[e] ⇓ v ⇔ C[e′] ⇓ v

)
⇒ J⊢ e : τK = J⊢ e′ : τK

where C[−] ranges over ground-type contexts and e ⇓ v abbreviates ∃h′. ∅, e ⇓

h′, v.

1Technically our full abstraction result is not quite for the interpretation in BG
V , but for a

“truncated” version—see Section 6.4.

170

Chapter 6. Definability and full abstraction 171

We shall show both of these properties by constructing a suitable family of

programs. There is a type ρ (namely the type of objects with a single ι → ι

method) such that for any strategy σ : JτK we can give a program σ̂ of type ρ

encoding the sequence of moves in σ (we apologise for the unfortunate clash of

notation with regards σ and ρ, τ). We then define a program interpret τ : ρ → τ

with the property that

Jinterpretτ σ̂K = σ

Both properties follow easily from the existence of these programs.

For the purposes of this chapter, we shall restrict our attention to the frag-

ment of our language without product types and where objects have only single

methods—these features do not seem to add any new issues with respect to defin-

ability, but would add a great deal of complication in the proof. We also restrict

ourselves to the intuitionistic fragment; additional language features are required

for definability at certain types involving linear functions, and we discuss this is-

sue in Section 7.3.4. As noted above, our proof will fail to cover the entire range

of product-free intuitionistic types; we shall describe the problematic behaviour,

and suggest a possible language extension which might remove this restriction.

6.1 Notation

In this chapter we are interested in product-free types, and so we will often be

discussing objects with a single method. We will abbreviate the “intuitionistic”

type Obj {m : τ → τ ′} as τ ⇒ τ ′, and for an object o of that type abbreviate

o • e o ·m e

Note that we are not defining τ ⇒ τ ′ as Obj {m : τ} → τ ′ as one might expect

from the usual linear-logic decomposition of A ⇒ B as !A ⊸ B, since we want

to use constr to construct stateful objects.

When defining such objects, we further abbreviate

letrec f • x = e in e′ let f be [Y(λf. obj {m = λx.e})] in e′

We shall also make use of the derived forms given in Chapter 4. In particular

we recall:

letrec f(x) = e in e′ let f be Y (λf. λx. e) in e′

g ◦ f λx.g(f(x))

o2 ◦ o1 obj { m = o2.m ◦ o1.m }m∈X

Chapter 6. Definability and full abstraction 172

We will also find it convenient to use ι in the rôle of a unit type, using ∗ in place

of a binding variable and () as the unit value, standing for some unimportant ι

value.

6.2 Coding

For any type τ , a strategy of that type is simply a function from sequences of

moves to moves. Given an encoding of moves of JτK as natural numbers

Ψτ : MJτK → N

one can thus code each effective strategy as a program of a suitable function type,

by adding a constant representing the strategy’s underlying function to our set

of function names. We choose to use the type

ρ = ι⇒ ι = Obj {m : ι→ ι}

The program e representing a strategy σ is thus a stateful one which given an op-

ponent move responds with the appropriate player move for σ given the sequence

of moves which e has seen so far. It is easy to write such a program by creating

an object with an integer state, given a bijection N∗ ∼= N.

Since

Jι⇒ ιK =!(&NΣN1)

we refer to the moves of this game in component i with value n as qni or ani .

Now consider the relation between the game JτK and its encoding at the above

type. One can imagine a strategy in each direction translating the move m to

Ψ(m) and vice versa.

However, only one direction results in well-bracketed play. We define a mor-

phism codesτ : Jι⇒ ιK → JτK as follows:

codesτ (sa
Ψ(m1)
i m2) = q

Ψ(m2)
i+1

codesτ (sa
Ψ(m1)
i) = m1 s↿JτK m1 ∈ JτK

Note that the restriction s ↿JτK m1 ∈ JτK avoids copying moves from the generic

game that are not permissible in the game JτK; removal of this restriction results

in plays which violate bracketing or simply the basic rules of the game.

The property of the desired programs interpret τ above is then that

∀(∅ ⊢ e : ι⇒ ι). codesτ ◦ JeK = Jinterpret τ eK

Chapter 6. Definability and full abstraction 173

We now construct a term σ̂ : ι⇒ ι such that codes◦Jσ̂K = σ. If σ is an effective

strategy, we can assume a function ϕσ such that ϕσ(Ψ
∗(t)) = Ψ(a) ⇔ σ(t) = a,

where Ψ∗ extends Ψ to a coding on sequences. Then

σ̂ = constr Ψ∗(ε) obj {m = λ〈t, a〉. let b be cϕσ(t · a) in 〈t · a · b, b〉}

where · is a function such that Ψ∗(t) · Ψ(a) = Ψ∗(ta).

The existence of these programs means that the above property of interpret τ

gives definability at τ . It should be noticed that the use of state in σ̂ explains why

we will be able to define interpret programs for some types without using new

which nevertheless cater correctly for strategies involving some stateful behaviour.

6.3 The “interpret” programs

Here we define a family of programs interpret τ parametrised over types τ , where

interpret τ : (ι⇒ ι) → τ

The definition of interpretτ at higher types quickly becomes rather complex, so we

shall give definitions at successively higher types, incrementally adding features to

the programs to deal with the increasing range of possible behaviour. Figure 6.1

shows the language constructs and behaviours required at each of these types.

In each case, interpret τ must construct an object of type τ from an argu-

ment which is an encoding of a strategy for JτK, so that the denotation of the

constructed object is the strategy being simulated. At higher types we give pro-

grams for types involving variables X, Y, Z, . . .—these range over types for which

the appropriate interpret program has already been defined, and will use that pro-

gram recursively to construct the result. The definitions below should be thought

of as an informal meta-program which, given some concrete type τ , constructs a

program of our language by repeatedly expanding the appropriate definition of

interpret according to the structure of τ .2

It is notable that the interpret program can be defined by such an expansion.

In [58] Longley and Plotkin similarly construct programs to interpret a coding

of some term as the corresponding term itself. In that case the coding is a

Gödel-numbering, and the interpreting program has to be defined as a mutual

recursion over all the types involved. In a sense our programs perform a similar

2To do this in the language itself would require some form of polytypic programming.

Chapter 6. Definability and full abstraction 174

1 ι method invocation, arithmetic.

2 ι→ X 1 + obj {. . .}, λ, ifz .

3 ι⇒ X 2 + constr , 〈−,−〉, let 〈x, y〉 be −.

4 (X ⇒ ι) → Y 3 + Y (with nested method calls).

5 (X ⇒ (Y ⇒ ι)) → Z 4 + object state, . . .—not handled here.

Figure 6.1: Language features required for interpretτ at various types τ

recursion “lazily”: each interpretτ program is recursively defined, and any use of

interpretX for a smaller type X is with an argument object constructed from both

the strategy σ̂ being interpreted and a recursive use of the interpretτ program

itself.3 We are able to be lazy here because we interpret strategies of type ι ⇒ ι

rather than an encoding of type ι.

Interpreting ι

Most simply, interpret ι must return a number (type ι) from the encoding of a

strategy representing that number. Given coding functions

qι : ι aι : ι→ ι

satisfying

qι = Ψι(q) aι(Ψι(a
n)) = n

we define

interpret ι(σ̂) = aι(σ̂ • qι)

This program satisfies the required property, since if σ(q) = ⊥, Jσ̂ • qιK = ⊥

and hence Jaι(σ̂ • qι)K(q) = ⊥, and if σ(q) = an, Jσ̂ • qιK = JΨι(a
n)K and hence

Jaι(σ̂ • qι)K(q) = n.

Interpreting ι→ X

We now consider types of the form ι→ X, where X is a type for which interpretX

is defined. While this is a linear and not an intuitionistic type, we present this

definition as a suitable stepping stone towards the types we are interested in, and

3This is a simplification, as it is not interpretτ which is recursively defined but some function
within its definition.

Chapter 6. Definability and full abstraction 175

an aid to understanding those. Given coding functions

q∗ : ι isqX : ι→ ι outX : ι→ ι

qX : ι→ ι inX : ι→ ι

satisfying

q∗ = Ψι→X(q) outX(Ψι→X(x)) = ΨX(x)

qX(n) = Ψι→X(qn) inX(ΨX(x)) = Ψι→X(x)

isqX(ΨX(q)) = 0

isqX(n) = 1 (n 6= ΨX(q))

define the program

interpret ι→X(σ̂) =

σ̂ • q∗; λn.

interpretX(obj {m = λv. ifz isqX(v) then outX(σ̂ • qX(n))

else outX(σ̂ • inX(v))})

Given the argument n, we extract an encoded strategy of type JXK from s, from

which interpretX constructs a genuine expression of type X. The encoded strat-

egy is easy to extract, being simply a recoding of moves with the exception of the

initial question, which carries a value in Jι → XK but not JXK⊥.

Interpreting ι⇒ X

We now move on to object types. For interpret ι⇒X we must construct an object

with a method which at each invocation extracts an appropriate strategy from

σ̂. Each method call is associated with a new component in σ̂, so ι-type state

must be used to keep track of which component is to be associated with the next

invocation. Other than this, the program is the same as that for ι→ X.

Given coding functions

q∗ : ι isqX : ι→ ι outX : ι→ ι

qX : ι⊗ ι→ ι inX : ι⊗ ι→ ι

satisfying

q∗ = Ψι⇒X(q) outX(Ψι⇒X(xi)) = ΨX(x)

qX(i, n) = Ψι⇒X(qni) inX(i,ΨX(x)) = Ψι⇒X(xi)

isqX(ΨX(q)) = 0

isqX(n) = 1 (n 6= ΨX(q))

Chapter 6. Definability and full abstraction 176

define the program

interpret ι⇒X(σ̂) =

σ̂ • q∗; constr 0 obj {λ〈i, n〉. 〈i+ 1, interpretX(f(σ̂, i, n))〉}

where

f(σ̂, i, n) = obj {m = λv. ifz isqX(v) then outX(σ̂ • qX〈i, n〉)

else outX(σ̂ • inX〈i, v〉)

Here f(σ̂, i, n) is simply factored out for space and convenience. It should also be

noted that while the argument to outX could be some number not representing

a move the correct X component, this will not occur with any σ̂ coding some

strategy σ simply by the switching condition of the game !Jι→ XK.
Now if σ(tqmj) = axj we show Jinterpret (σ̂)K(tqmj) = axj . Note that by the

interpretation of constr, it is the case that

Jσ̂ ⊢ constr 0 Obj {λ〈i, n〉.〈i+ 1, interpretX(f〈σ̂, i, n〉)〉}| =

λ(δ;
⊗

iJσ̂ ⊢ λn.interpretX(f〈s, i, n〉)K)

So

Jinterpret (σ̂)K(tqmj) =
(
Jσ̂K; δ;

⊗

i

&nJσ̂ ⊢ interpretXf〈σ̂, i, n〉K
)
(tqmj)

Since interpretX is given a view of component j of σ̂, we are interested in

the restriction of the play in question to component j. We can always construct

a strategy containing this play—but this is dependent on the particular play

in question, and σ may contain plays leading to various different strategies for

component j (i.e. there may be interference). Define

σti(qi) = avi ⇔ σ(tqi) = avi

σti(t↿i xi) = x′i ⇔ σ(txi) = x′i

and note that

(Jσ̂K; δ;
⊗

i

fi)(tx) =
⊗

i

Jσ̂tiK; fi

Then
(
Jσ̂K; δ;⊗i &nJσ̂ ⊢ interpretXf〈σ̂, i, n〉K

)
(tqmj) =

(⊗

i &nJσ̂tiK; Jσ̂ ⊢ interpretXf〈σ̂, i, n〉K
)
(tqmj)

Now define
σti,n(q) = av ⇔ σ(tqni) = avi

σti,n(t↿i x) = x′ ⇔ σ(txi) = x′i

Chapter 6. Definability and full abstraction 177

and note that Jf〈σ̂, i, n〉K = Jσti,nK, so

(⊗

i &nJσ̂tiK; Jσ̂ ⊢ interpretXf〈σ̂, i, n〉K
)
(tqmj)

=
(⊗

i &nJσ̂ ⊢ interpretX σ̂
t
iK
)
(tqmj)

= axj

Thus interpret ι⇒X satsifies the required property.

Interpreting (X ⇒ ι) → Y

We can now give a definition for (X ⇒ ι) → Y . The ideas required to handle

strategies of this type combine in a straightforward fashion with that from ι⇒ X

above to give a program for types of the form (X ⇒ ι) ⇒ Y , but we refrain from

doing so here in order to reduce clutter and simplify the presentation.

The new feature at this type is the interesting argument type X ⇒ ι. We

shall define a program which, given an argument g of that type, and where σ̂ has

requested the value of some component of JgK, constructs an expression of type

X with which to supply g, again by using interpretX with an argument derived

from interaction with σ̂. When g finishes its interaction with this argument, and

returns some number n we have the result to supply to σ̂ as the answer of JgK.
The response of σ̂ at this point may be a move in Y (which we may simply

pass on to interpretY) or another question of JgK. In this case we must go through

the same process again, and repeatedly so until σ̂ responds in Y , resulting in the

need for the recursively defined function f in the below definition.

There is also a possibility for nested method calls during interaction in X, as

would occur when σ̂ is the encoding of the strategy for a program which supplies

g an argument which on evaluation makes use of a further call to g. The following

is such a program, with X = (ι⇒ ι) and Y = ι, the simplest (intuitionistic) type

at which this occurs:

σ =

t
λg : ((ι⇒ ι) ⇒ ι).

g (obj { m = λx. 2 ∗ g (obj {m = λy. y + 1}) })

|

Chapter 6. Definability and full abstraction 178

An example play from σ, is as follows:

((ι⇒ ι) ⇒ ι) → ι

q

q0

q3
0,0

q1

q4
1,0

a5
1,0

a24
1

a42
0,0

a24
0

a24

This play might arise from g playing the following stateful function:

t
let flag be constr 0 obj {m = λ〈n, ∗〉. 〈1, n〉}

in obj {m = λf. ifz flag • () then f • 3 else f • 4}

|

Notice that an auxiliary integer state cell is used to give the behaviour of g, as

the state must be updated before the nested call rather than after the outer call.

The recursive definition of f also accounts for this, as we make use of interpretX

with an argument constructed from f as well as σ̂. This argument behaves much

as the one constructed for interpretY , with moves in X simply being recoded (in

this case involving the use of the index j) while moves corresponding to nested

invocations of g are handled by a recursive invocation of f .

The function f thus behaves as follows. When given some move by σ̂, f gives

the next move in the same game (i.e. Y or some particular copy of X) after any

nested interaction with g—just what is needed for interpretY or interpretX .

Given coding functions

q∗ : ι isqX : ι→ ι outX : ι → ι

ans ι : ι⊗ ι→ ι isX : ι→ ι inX : ι → ι

qval : ι→ ι isY : ι→ ι outY : ι → ι

index : ι→ ι inY : ι → ι

Chapter 6. Definability and full abstraction 179

satisfying

q∗ = Ψ(X⇒ι)→Y (q) outX(Ψ(X⇒ι)→Y (x)) = ΨX(x)

ans ι(i, n) = Ψ(X⇒ι)→Y (ani) inX(ΨX(x)) = Ψ(X⇒ι)→Y (x)

isqX(ΨX(q)) = 0 outY (Ψ(X⇒ι)→Y (y)) = ΨY (y)

isqX(n) = 1 (n 6= ΨX(q)) inY (ΨY (y)) = Ψ(X⇒ι)→Y (y)

isqY (ΨY (q)) = 0 qval (Ψ(X⇒ι)→Y (qx)) = ΨX(ax)

isqY (n) = 1 (n 6= ΨY (q)) index (Ψ(X⇒ι)→Y (qxi)) = i

isX(Ψ(X⇒ι)→Y (x)) = 0 isY (Ψ(X⇒ι)→Y (y) = 0

isX(n) = 1 (n 6= Ψ...(x)) isY (n) = 1 (n 6= Ψ...(y))

define the program

interpret (X⇒ι)→Y (σ̂) =

σ̂ • q∗; λg : (X ⇒ ı).

let o = λ〈σ̂, j, v〉. obj

{

m = λz.
ifz isqX(z) then qval(v)

else outX(σ̂ • (inX(j, z)))

}

in letrec f • v =

ifz isY (v) then outY (v)

else ifz isX(v) then outX(v)

else let j be index(v) in

f • (σ̂ • (ans ı〈j, g • (interpretX(o〈f ◦ σ̂, j, v〉)〉)))

in interpretY (f ◦ σ̂ ◦ inY)

We prove correctness by induction on length of plays via the following prop-

erty:

P (n) = ∀t(with length(t) = n). ∀σ.

σ(m1t) = m2 ⇒ Jg ⊢ f ◦ σ̂K(qΨ(m1)Ψ•(m1, t)) =

{

aΨ(m2) (sc(m1, m2))

m2 (otherwise)

σ(m1t) = ⊥ ⇒ Jg ⊢ f ◦ σ̂K(qΨ(m1)Ψ•(m1, t)) = ⊥

where sc(m1, m2) if m1 and m2 are in the “same component” in (X ⇒ ι) → Y ,

i.e. are both in Y or in the same copy of X. This means m2 is in a sense a

response to m1, but they need not be a question/answer pair. Also define

Ψ•(m,m1t) =







qΨ(m1)Ψ•(m, t) sc(m,m1) and λ(m1) = O

aΨ(m1)Ψ•(m, t) sc(m,m1) and λ(m1) = P

m1Ψ
•(m, t) otherwise

Chapter 6. Definability and full abstraction 180

and let Ψ•(mt) = Ψ•(m, t)—here the m identifies the location of the component

which should be encoded, and any moves elsewhere are left unchanged.

Note that the above property gives

Jg ⊢ interpretY (f ◦ σ̂)K(t) = σ(t)

when combined with the property of interpretY , and thus we have

q
interpret (X⇒ι)→Y (σ̂)

y
(t) = σ(t)

The proof splits into three parts, each of which use the inductive hypothesis

in a different way. Firstly, a move in Y or X with an immediate response in that

same component, or an answer in ι with a response in X or Y , corresponds to a

single invocation of f , and any further play is simply a shorter play and hence

handled correctly by subsequent invocations of f .

Secondly, an unclosed call to g comprises some shorter play in interpretY (...)

(or interpretX(...) if nested), which is handled by a nested use of f . The above

property holds of the nested f , and by the property of the nested interpret the

“decoded” version holds of interpret (. . . f . . .), giving the property for the outer

f .

Thirdly, a completed call to g results in a tail-call of f , and the shorter play

starting from this point is thus correctly handled by f .

We start with the case of a response in X or Y . Assume σ(m1) = m2 with

m2 : X or m2 : Y . Then as f is the identity here, Jg ⊢ f ◦ σ̂K(qΨ(m1)) = aΨ(m2).

Otherwise if σ(m1) = ⊥ then Jf ◦ σ̂K(qΨ(m1)) = ⊥. We shall omit consideration

of any further cases where σ(tm1) = ⊥, as it is always the case that we evaluate

Jσ̂K(qΨ(m1)) for each move m1, and as this is ⊥ the expression in question will be

too.

Now assume σ(m1m2t) = m′. There is another strategy σm1m2 with σm1m2(t) =

σ(m1m2t). Since JfKqΨ(m1)aΨ(m2) = JfK and Jσ̂KqΨ(m1)aΨ(m2)t =
q
σ̂m1m2

y

Jf ◦ σ̂KqΨ(m1)aΨ(m2)(t) =
q
f ◦ σ̂m1m2

y
(t)

and thus the property holds.

We now move on to a call to g. If σ(m1) = q then examination of f(Ψ(q))

reveals that by evaluation order the initial question is asked to determine the

value of g. So Jg ⊢ f ◦ σ̂K(m1) = q. For continued play in the argument to g,

assume σ(m1qt) = m2 (where t does not answer q). There is a strategy σ′ with

Chapter 6. Definability and full abstraction 181

σ′(t) = σ(m1qt); by the inductive hypothesis Jg ⊢ f ◦ σ̂′K(Ψ•(t)) = m2 (or aΨ(m2)),

so Jg ⊢ interpret (f ◦ σ̂)K(t) = m2 (in either case). Thus Jg ⊢ f ◦ σ̂K(m1qt) = m2.

Now we reach an answer to g. Note that where g returns a value a, f con-

structs the coded answer Φ(a) and returns (f ◦ σ̂)(Φ(a)). So

Jf ◦ σ̂K(m1qtm2a) =
q
f ◦ σ̂m1qtm2

y
(qΨ(a))

6.3.1 Definable types

The programs presented so far handle definability only at a subset of all possible

intuitionistic product-free types. However, these types include those of arbitrarily

high rank. Define rank as follows:

rank(ι) = 0 rank(σ ⇒ τ) = max(rank(σ) + 1, rank(τ))

For any rank k there is a pure type k of that rank defined as follows:

0 = ι k + 1 = k ⇒ ι

The above interpret programs give definability for these types. However, we can

go much further. The following grammar captures precisely the subset of the

intuitionistic product-free types for which we have definability:

T ::= ι | (ArgT ⇒ T)

ArgT ::= ι | (T ⇒ ι)

This grammar shows that parity is important—arrows nested at even levels on

the left can have general return types, whereas arrows nested at odd levels may

only return ι. These types could also be characterised as those (intuitionistic,

product free) types which contain no type of the form T ⇒ (T ⇒ T) at an

odd-rank position.

It is rather unusual that we have definability at types of arbitrary depth (i.e.

rank) but bounded width, as the more normal situation is that every type is a

definable retract of some pure type k. The terms which would normally define

these retractions do not compose to give the identity in our setting, because our

model is so intensionally fine-grained.

6.3.2 Issues at more complex types

We shall now discuss a proposed interpret program for the type

(X ⇒ (Y ⇒ ι)) → Z

Chapter 6. Definability and full abstraction 182

Inspection of the shortcomings of this program will reveal underlying issues with

regards to the present language definition. It is notable that the program comes

rather close to performing its intended purpose; it is also the case that (if correct)

the program would seem to contain all the ideas needed to handle all product-free

intuitionistic types, i.e. those of the form [X ⇒ (Y ⇒ (. . .⇒ ι))] ⇒ Z.

The main addition in the program below is that on receiving a result of type

(Y ⇒ ι) from the argument g this program must store that result for use at some

arbitrary later point (or points), where the previous program could just return a

ground-type answer once and for all.

In order to store a number of such objects, one can maintain an accumulator,

using the following implementation of a functional vector :

vec[τ] = (ι ⇒ τ)

empty = obj {λn.⊥}

update : vec[τ] ⊗ τ ⊗ ι → vec[t]

= λ〈f, x, n〉. obj {get = λm.ifz m = n then x else f ·m}

For convenience we use the following syntactic sugar below:

[] = empty

e[n] = e · get(n)

e[n 7→ e1] = update〈e, e1, n〉

We can then replace the recursive definition of f with a definition using the

constr operator, maintaining an accumulator of a vector type and saving this

as state between calls to f . There is some subtlety in this definition. It is

not possible to correctly bind f recursively within its definition,4 and instead

we create a clone of the implementation fimpl as f ′ for the recursive use within

interpretX and interpretY ; the consequences of this are discussed below.

Given coding functions for W = ((X ⇒ (Y ⇒ ι)) → Z), and for each of

T ∈ {X, Y, Z}:

4This would result in the creation of a fresh object each recursion, losing the accumulated
state.

Chapter 6. Definability and full abstraction 183

interpret (X⇒(Y⇒ι))→Z(σ̂) =

σ̂ • q; λg : X ⇒ (Y ⇒ ι).

—Helper functions o and o′ generate object for uses of interpret .

—Note s will be f ′ ◦ σ̂

let o = λ〈s, j, v〉. obj

{

m = λz.
ifz isqX(z) then qvalX(v)

else outX(s • (inX(j, z)))

}

in let o′ = λ〈s, j, k, v〉. obj






m = λz.

ifz isqY (z) then qvalY (v)

else outY (s • (inY (j, k, z)))







—The main definition. Construct outer f from recursively defined fimpl :

in let f = constr [] (letrec fimpl = obj {m = λ〈acc : vec[(Y ⇒ ı)], v : ı〉.

ifz isZ(v) then 〈acc, outZ(v)〉

else ifz isY (v) then 〈acc, outY (v)〉

else ifz isX(v) then 〈acc, outX(v)〉

—Case for outer ⇒. Clone f as f ′, call argument g using interpretX with f ′

—and store result o : Y ⇒ ι under key j (the outer ⇒ index) in the most

—recent store from f ′, then recurse:

else ifz isq1(v) then let j be index 1(v) in

fimpl • 〈 let f ′ be constr acc fimpl in

let o be g • interpretX(o〈f ′ ◦ σ̂, j, v〉)

in (f ′ · acc())[j 7→ o], σ̂ • ans(Y⇒ı)(j) 〉

—Case for inner ⇒. Clone f as f ′, pick up o : Y ⇒ ι stored in previous case

—as acc[j] and call o, with no need to store the returned value n, then recurse:

else ifz isq2(v) then let 〈j, k〉 be index 2(v) in

fimpl • 〈acc, let f ′ be constr acc fimpl

in let n be acc[j] • (interpretY (o′〈f ′ ◦ σ̂, j, k, v〉))

in σ̂ • (ans ı〈j, k, n〉) 〉

else 〈acc, 0〉,—Default case, unused.

—The read method acc extracts the state from f ′ in f :

acc = λ〈acc, ∗〉. 〈acc, acc〉})

in interpretZ(f ◦ σ̂ ◦ inZ)

Figure 6.2: Extended interpret program.

Chapter 6. Definability and full abstraction 184

q∗ : ι isqT : ι→ ι outT : ι→ ι

ansι : ι⊗ ι⊗ ι→ ι isq1 : ι→ ι inT : ι→ ι

ans(Y⇒ι) : ι→ ι isq2 : ι→ ι index 1 : ι→ ι

qvalT : ι→ ι index 2 : ι→ ι⊗ ι

satisfying

q∗ = ΨW (q) inT (ΨT (m)) = ΨW (m)

ans ι(i, j, n) = ΨW (ani,j) outT (ΨW (m)) = ΨT (m)

ans(Y⇒ι)(i) = ΨW (a∗i) qvalT (ΨW (qv)) = ΨT (av)

index 1(ΨW (qxi)) = i isqT (ΨT (q)) = 0

index 2(ΨW (qyi,j)) = 〈i, j〉 isqT (n) = 1 (n 6= ΨT (q))

isq1(ΨW (qxi)) = 0 isq2(ΨW (qyi,j)) = 0

isq1(n) = 1 (n 6= ΨW (qxi)) isq2(ΨW (n)) = 1 (n 6= ΨW (qyi,j))

define the program in Figure 6.2.

Before discussing the limitations of this program, we shall illustrate the wide

range of strategies for which it suffices. We shall give some plays at the type

((ι→ ι) ⇒ (ι⇒ ι)) → ι

We use the type (ι→ ι) rather than (ι⇒ ι) for X for simplicity of notation, but

one should bear in mind that it is the latter type which is under consideration.

A move q3
0 in the below is a question carrying value 3 in component 0 of the !

corresponding to the outer ⇒; similarly moves with two subscripts indicate the

components of the !’s corresponding to the outer and inner ⇒ (in that order).

Consider the following strategy:

σ = Jλg. let o be g • obj {m = λx.x+ 1} in o • 1 + o • 2K

An interaction with an argument such as

g = Jλz. let n be z • 3 in obj {m = λKn.n+ z}

Chapter 6. Definability and full abstraction 185

gives the following play:

(ι → ι) ⇒ (ι ⇒ ι) → ι

q

q0

q3
0

a4
0

a0

q1
0,0

a5
0,0

q0
0,1

a4
0,1

a9

It can be seen by stepping through the definition of interpret that this play is

indeed in Jinterpret (σ̂)K. In particular, f stores the object returned by g, and

twice extracts that object from the state and calls a method on it, and as directed

by σ adds the results to obtain the result value.

The following play illustrates more complex behaviour which is still correctly

handled by interpret :

(ι → ι) ⇒ (ι ⇒ ι) → ι

q

q0

q37
0

q1

a1

a37
0

a0

q42
1,0

a1,0

a

This play is included in the strategy

σ = Jλg. let f be constr ⊥

obj

{

m = λ〈s, x〉. 〈g • (obj {m = λx. x}), x〉,

read = λ〈s, 〉. 〈s, s〉

}

in g • (f); f · read() • 42 K

Chapter 6. Definability and full abstraction 186

Note that the above program for σ calls g with an argument which itself calls g

on a call of its method m. The typing derivation makes crucial use of subtyping,

to assign f the type (ι⇒ ι) in order to pass it to g.

The interest in the above play is twofold. Firstly, interpret is able to handle

strategies containing nested calls. Secondly, the object returned by one of those

nested calls is available after that call has terminated (due to the expression

f ′ • acc extracting the resulting state of the nested call). Indeed, the object is

available after other objects have been stored as a result of the containing call.

This could be thought of as a violation of some weak bracketing property—in a

sense q42
1,0 refers to the response a1—but of course the play above is a valid fully

bracketed play in our setting.

We now come to the end of the line. There are further extensions to interpret

which will admit further plays similar to the above. However, the complexity of

these alterations still does not seem to buy us full generality. The following play

does not elicit a correct response by interpret :

(ι → ι) ⇒ (ι ⇒ ι) → ι

q

q0

qn0

q1

a1

am0

a0

qn1,0

qn1

qn0,0

am0,0

am1

am1,0

am

Not only does interpret not cater for the above play, but we are at present

not able to directly give a program for any strategy containing this play. We

conjecture that there is in fact no such program in our language, and dealing

with this behaviour will require some language extension.

Chapter 6. Definability and full abstraction 187

It is not obvious what goes wrong here; the above play appears to be the

shortest violating example, and here the problem occurs at the tenth move qn0,0.

The play up until just before this point is as the previous example, the program

for which required a little trickery to construct, so the reader could be forgiven

for thinking this is rather obscure behaviour. In terms of that program, the

behaviour here corresponds to g • (f) updating the state of f and the method

f ·m calling g with an argument which inspects the state of f and makes use of

the object there, i.e. that returned by the outer call of g. Neither of these things

is possible, the former being more problematic, but it is not obvious that there

is no (possibly unrelated) program which exhibits this behaviour.

Consideration of interpret may be more illuminating. In the move from the

previous iteration of the program, the recursive use of f inside the nested interpret

has been switched to a new object f ′ which starts as a duplicate of f . In a sense,

if we were actually able to use f here the problem would be solved—the failure

of interpret is the divergence of state between these two objects. It is possible

for f to keep up to date with changes to f ′ by calling a method on f ′ to extract

its state, since f has a reference to f ′. However, f cannot update f ′ with new

objects—f ′ would then be acting as a general reference cell.

The initial reason that we cannot simply use a recursive call to f is that

there is no such thing at this point—fimpl is the only recursive binding here.

One cannot simply recursively bind f within fimpl , for this would just mean a

new object is constructed for each use of f . The only way to get a reference to

the relevant object is to give the method an additional argument, so that f is

passed to its own method. The problem is that we need to store the result of

g • interpretX(o〈f ′ ◦ σ̂, j, v〉), and this would entail storing a reference to f . This

is not only a captured pointer, but a circular reference.

Indeed, any method of giving f ′ a reference to the result object is again the

same problem. Consider the execution of the above “problem play”. The result

heap is structured roughly as follows, where oi is the result of the ith call of g,

and interpret stands in for the interpretX expression involving σ̂ and f ′:

[f 7→ (o0, o1); o0 7→ interpret ; interpret 7→ f ′; f ′ 7→ o1]

This example illustrates why we cannot collapse f and f ′. If we could somehow

allow f ′ to obtain a reference to o0 then we would be happy in this case, since

Chapter 6. Definability and full abstraction 188

there would be no need to store that reference, but in the case of the next type

(X ⇒ (Y ⇒ (Z ⇒ ι))) →W

this is no longer true.

It is natural at this point to ask for a language extension in order to achieve

definability. In Chapter 3, when discussing the behaviour of nested method calls

we observed that the choice to give method implementations at the type

σ ⊗ τ ⇒ σ ⊗ τ

has the consequence that the state updates from nested calls are discarded. In

our definition in Figure 6.2 we have managed to sidestep this in one case, where

the clone f ′ has made an update during the initial interaction with g, but this is

not a general solution. It seems possible to give method implementations at the

following more generous type:

(1 ⇒ σ) ⊗ τ ⇒ σ ⊗ τ

Here instead of a state, the method implementation receives a read function (of

type 1 ⇒ σ) allowing the state to be inspected at any point. This ability to

read the state at any time would seem to give strictly more expressive method

implementation, and may be a large part of what is required to prove definability.

However, it appears that not all uses of such an operation are semantically sound,5

and one would need to identify a syntactic restriction (perhaps along the lines

of argument-safety) under which a read operation is permissible. It seems likely

that we could also define a corresponding write operation (for values obeying the

argument-safety restriction).

It certainly is the case that there is some language extension which gives the

required definability result—since there is a strategy for any interpret τ , namely

λ(codesτ), we can add a constant in the language for each one. The real question

is whether there is some useful construct we can add—one which is natural from

a program-writing point of view, or at least illuminating, aiding understanding of

the semantic behaviour and the corresponding expressive power. It may be that

the constructs in question are suitably restricted read and write operations, but

we must leave the investigation of this to future work.

5There are potential issues such as the possibility of circular references.

Chapter 6. Definability and full abstraction 189

6.4 Full abstraction

Two expressions e and e′ are observationally equivalent (e ≡ e′) if when placed

in any context C[−] they evaluate to the same value:

e ≡ e′ ⇐⇒ ∀C[−], v. C[e] ⇓ v ⇔ C[e′] ⇓ v

Adequacy as discussed in the previous chapter would show that if two terms

are equivalent in our games model then they are observationally equivalent:

JeKΓ = Je′KΓ ⇒ e ≡ e′

Full abstraction is the converse, i.e. that any two observationally equivalent terms

have exactly the same denotation. We shall first show how definability (for all

types) gives the full abstraction result, before discussing the limitations described

above.

We prove the result in the following form:

JeKΓ 6= Je′KΓ ⇒ e 6≡ e′

Firstly note that without loss of generality we can restrict attention to closed

terms. Where Γ = x1 : τ1, . . . , xn : τn one can equivalently consider instead the

terms λx1. . . . λxn. e and λx1. . . . λxn. e
′, so below we assume ∅ ⊢ e : τ and ∅ ⊢

e′ : τ . Strictly speaking, to remain within the intuitionistic fragment we must

consider obj {λx1. ...obj {λxn. e}...} (and similarly for e′), but it is still the case

that the denotation of these closed expressions differ when JeKΓ and Je′KΓ differ.

6.4.1 Identifying indistinguishable strategies

There are some strategies in BG which are distinct yet arise as the denotation

of two programs not distinguishable in our language. In fact these are exactly

the strategies f, g : 1 → JτK not distinguishable by any h : JτK → JιK⊥. If we try

to construct a suitable h, we find that it is not well-bracketed, even though f

and g are. The problem is that strategies may “chatter” before going undefined.

Consider the following two programs:

λf : ι→ ι. f 1;⊥ λf : ι→ ι. ⊥

Both of these programs go undefined on any argument, but could be distinguished

by a control operator (e.g. the simple catch operator). In the existing language,

Chapter 6. Definability and full abstraction 190

they are indistinguishable by a program context, so in order to achieve full ab-

straction, we must interpret them the same strategy. This is easily achieved by

“trimming” the denotation of the former to match the latter, removing all play

that cannot possibly lead to termination.

We define an operation F (−) on strategies which trims them to their maximal

fully bracketed plays (and prefixes thereof):

F (σ) = {s ∈ σ | s ⊑even t, t ∈ σ is fully bracketed}

We then consider full abstraction with respect to such strategies rather than BG

(in the next section by J−K we really mean F (J−K)).
This trimming operation seems to be that induced by the quotient construc-

tion of [7].

6.4.2 Definability to full abstraction

If JeK 6= Je′K, there must be some minimal play s on which the two strategies

disagree. Either there are distinct moves a and b such that JeK(s) = a but

Je′K(s) = b, or there is an a such that JeK(s) = a but Je′K(s) = ⊥; first consider the

former situation. A strategy (F (J−K)) only contains a play if it also contains some

fully bracketed extension, so there must be sequences t1 and t2 with sat1 ∈ JeK
and sbt2 ∈ Je′K. We construct a morphism

test : 1 → JτK⊸ JιK⊥

comprising solely the plays {qsat1a
0, qsbt2a

1} (and prefixes thereof). Since sat1

and sbt2 are fully bracketed, test is a valid strategy in BG. In the situation where

Je′K does not respond to s, the strategy following the play qsat1a
0 suffices.

By definability, there is an expression

∅ ⊢ etest : (τ ⇒ ι)

with JetestK = η ◦ !(test)—here we bump up the type of test to a reusable type

just to remain in the intuitionistic fragment, for simplicity. By the construction

of test , J∅ ⊢ etest • eK = J0K while J∅ ⊢ etest • e
′K = J1K (or ⊥JιK)—from adequacy

∅, etest e ⇓ h, 0 and ∅, etest e
′ ⇓ h′, 1 (or ∅, etest e

′ 6⇓). We have thus found a suitable

context to distinguish e and e′, so e 6≡ e′.

Chapter 6. Definability and full abstraction 191

6.4.3 Restricted full abstraction

In light of our restricted definability result, we do not actually have a fully abstract

semantics at all types. For closed terms, we have full abstraction at τ , that is

∀e1, e2 : τ. e1 ≡ e2 ⇒ JeK = Je′K

whenever the test expression at τ → ι is definable. This is the case when τ → ι

is in T , or equivalently when τ is in ArgT . Thus we have full abstraction at all

types in ArgT .

The implications for open terms rather illustrate the restrictions implicit in

the above statement. The closed term constructed above for an open term e only

has a type in ArgT for a single-variable context and e : ι. The former restriction

could be alleviated by showing definability at product types, but to remove the

latter it would seem we need a language extension such as that discussed earlier.

Even so, our present results are enough to yield full abstraction for non-trivial

object types admitting complex re-entrant behaviour, such as (ι⇒ ι) ⇒ ι. Since

two observably equivalent objects of this type may have wildly different concrete

implementations, our results provide support for the idea that our semantics

succeeds in capturing the essence of data abstraction.

Chapter 7

Possible extensions and further work

In this chapter we discuss various areas for future work. These broadly fall into

two camps: extensions to our language and the results presented here motivated

by semantic concerns, and suggested avenues for further research which support

the idea that the language presented here is interesting and worthy of our con-

sideration.

We address the latter point first, beginning with a discussion of our argument

safety restriction. We consider a more generous formulation of the restriction,

and discuss some desirable properties of programs which obey it.

We then present an interesting program which shows that in our language it is

possible to extract the approximation operator underlying a class implementation.

Next, we discuss some natural extensions of the results presented in this thesis,

and subsequently suggest some useful language extensions which enable the use

of behaviour naturally present in our game model.

Lastly, we discuss the extension of our language to one which is a good match

for SG, the category of games without bracketing constraints. We introduce a

control operator, and discuss modifications to our semantics to take account of

the new behaviour.

(The ideas presented in Sections 7.1, 7.2 and 7.5 are due mainly to John

Longley.)

7.1 Applications of argument safety

Semantic concerns regarding our game model led us to the imposition of the

restriction on method implementations that they be argument-safe. Before we

192

Chapter 7. Possible extensions and further work 193

discuss this further, we note that it is possible to relax the type system con-

siderably while maintaining the semantic restriction. We have given the simple

restriction presented here—where method bodies must have a particular syntactic

form—for ease of presentation and reasoning. However, the idea of “ground type

funnelling”, where all interaction with the method argument must pass through

a value of ground type before being stored in the state, can be the basis for a

more intelligent type system. Briefly, instead of forcing a method body to have

a particular form, the type system can keep track of what variables have been

potentially “tainted” by contact with the method argument, and marking as safe

those other variables which have only had contact with the argument via expres-

sions of ground type (if at all). There is a little subtlety regarding nested class

implementations, but this is the general idea used in [57].

This said, it could be alleged that if our semantics must impose such a restric-

tion it is not up to the demands of “the real world”. There are two closely related

answers to this. Firstly, we do not attempt to present a full-scale language, but

merely a object-oriented calculus which may form the core of a more powerful

language, and which is amenable to proof of properties such as soundness and

definability. Secondly, our language can represent a well-behaved core, so that

even in the context of a larger language, reasoning about programs which fall

within the purview of our system can exploit their restricted behaviour.

One property which has been highly relevant in this thesis has been that

argument-safe programs do not give rise to cycles in the heap. A less obvious

property has to do with the static control of exceptions. To quote [59]:

In Java, the use of exceptions is tightly regulated by requiring all
method signatures to declare explicitly any (checked) exceptions the
method might throw. However, this system is perhaps overly conser-
vative, and one might hope to allow more whilst still retaining static
control over exceptions. Consider for instance a Java class List, with
a method add (Element x) (for adding elements to the list) and a
method map (Function F) (for applying a given function to all the
elements of the list). Then we cannot invoke L.map with a func-
tion F that may raise exceptions not anticipated in the declaration
of Function. However, there is a sense in which such method invo-
cations are ‘safe’, since F is discarded by L after the method call, so
that any exceptions present in F will not unexpectedly surface later.
By contrast, a method invocation L.add(x) is ‘unsafe’ if x may raise
an unanticipated exception, since this exception may resurface at an
arbitrary later point (e.g. outside its static scope). Intuitively, this is
related to the fact that map is argument-safe while add is not.

Chapter 7. Possible extensions and further work 194

We therefore suggest that the notion of argument-safety offers a
natural answer to the question: “Which uses of higher-order store can
safely coexist with exceptions (in the sense of allowing us to retain
static control over the latter)?” Furthermore, one may use this idea as
the basis for a static type system guaranteeing security of exceptions
whilst allowing more flexibility than Java.

We now turn to the question of how one might extend our language in order

to interpret non-argument-safe behaviour. On the one hand, one might turn

to a more liberal “non-alternating” game model like that of [10, 51], where the

particular semantic concern that necessitates the argument-safety restriction in

our game model is not an issue. On the other hand, a purely “behavioural”

semantics of objects, even if it enables more expressive power than that presented

in this thesis, can still not account for the interpretation of a language with

features such as reference equality tests. We must regard two objects o1 and o2

as equal because they respond in the same way under all possible interactions,

but they may be distinguishable if their identity is taken into account (e.g. with

the Java == operator). We might therefore instead move to a semantics where

objects are associated with names (cf. [9], [54])—this would allow us to distinguish

two independently created objects with identical behaviour, and would also allow

the interpretation of cyclic heap structures by “breaking” the dependency of one

object on the behaviour of another with a level of indirection.

Either of these options would allow us to remove a restriction in our interpre-

tation of classes, whereby we are at present only able to give a good account of

private fields of ground type (by making use of an auxiliary reference cell). Of

course privacy can easily be imposed in our current system by a purely syntactic

constraint, but such a solution is undesirable from a semantic perspective (i.e.

with respect to full abstraction).

7.2 Classes and approximation operators

In this thesis we have given a simple class system as a set of derived types and

terms, which are translated into the language proper. This shows that we are able

to model such behaviour, but one might object that dispensing with an opaque

class system ignores the fact that classes give a form of encapsulation. In fact, in

our language it is possible to write a program which extracts the approximation

operator by which we interpret the class, using only the operations we have defined

Chapter 7. Possible extensions and further work 195

for classes. Therefore while a practical extension of our language might add an

opaque class system, we have not lost anything by not doing so here.1

Constructing a class from its approximation operator is easy:

λF. class (ς) { m = F (ς) }

In the other direction, for each method invocation with a given state argument

s, we can make use of the extend operation to create a class c′ from the original c

which is initialised with state s. The new class c′ replaces each methodm with the

version from the argument ς of the approximation operator under construction,

and for each m adds a new method m′ which uses the version from c.2 An

additional method get is added to obtain the resulting state. This means c′

extracts a single application of the approximation operator from c.3

λc : Class 〈σ;m : τm → τ ′m〉m∈X . λς : CObj {m : σ ⊗ τm → σ ⊗ τ ′m}m∈X .

let c′ be extend c with






m = ς ·m,

m′ = λ〈s, x〉. super ·m〈s, x〉,

get = λ〈s, z〉. 〈s, s〉







m∈X,m′∈X′

in obj {m = λ〈s, x〉. let o be (new s c′)

in let r be o ·m′(x)

in 〈o · get(), r〉}m∈X

The class c′ is constructed in the method m of the object comprising the result

of our approximation operator. This method can be seen to obey a version of

the argument-safety restriction, which is a mild relaxation to allow an alternating

sequence of argument-safe and non argument-safe let bindings. Thus the variable

o is safe, while r is not, but since we only store the result of o · get() in the state,

nothing goes wrong (the key here is that o ·m′(x) cannot capture a reference to

x).

We conjecture these programs implement a definable retraction of the follow-

1Similar issues are considered in [73].
2We use super here—this can easily be incorporated into the translation of the derived

construct extend.
3We can only use c′ for a single step, because to reuse c′ we would need to be able to set

the initial state before the next invocation of m′, and this falls foul of the argument safety
restriction.

Chapter 7. Possible extensions and further work 196

ing type:

Class 〈σ, τm → τ ′m〉m∈X ⊳
CObj {σ ⊗ τm → σ ⊗ τ ′m}m∈X →

CObj {σ ⊗ τm → σ ⊗ τ ′m}m∈X

This could be used to give a full abstraction and definability result for classes

via the corresponding results for the CObj type. Furthermore, an extended

version of this idea works even when additional fields in subclasses are added (see

Section 7.4).

7.3 Unfinished business

Here we shall briefly review a few natural extensions of the results in this thesis

which we previously discussed in the relevant chapters.

7.3.1 Soundness of Larg

In Chapter 5, we proved soundness for the restricted language Lpair rather than

the full generality of Larg. As discussed in Section 5.4, the restriction to “pair-

like” method implementations ensures the heaps arising in the evaluation of an

expression have a restricted structure. We have no reason to believe that the

soundness property should not hold for the whole of Larg. Indeed, we conjecture

that a broadly similar heap property would be suitable, but which caters for

interaction with heap cells newly created during a method call (and stored in the

object’s state) via the result of that call. The subtlety seems to be that these

possible interactions have a somewhat restricted form, so while the property we

have presented is too restrictive, the version suited to Larg would have to strike

a balance between this and being too permissive.

Several details of our proof are particular to Lpair, but these seem to be sim-

plifications rather than crucial restrictions.

7.3.2 Adequacy

In concluding Chapter 5 we admitted to the lack of a proof of the remaining part

of the adequacy property. As we said there, it seems highly implausible that it is

false, and given the detailed semantic analysis inherent in our soundness proof,

it is likely that the problem boils down to finding the correct property to prove.

Chapter 7. Possible extensions and further work 197

7.3.3 Intermediate state update

As noted in Chapter 4, viewing a method as a state-transforming function can be

thought of as allowing the state to be read at the start of a method’s execution

(taking a private copy) and written at the end. We might wish to extend this to

allow the state to be read from or written to at arbitrary points, as in most OO

languages.

In Chapter 6, we exhibited a strategy which we are at present unable to

define in our language, and suggested that a definability result at all types would

require a more expressive means of state interaction. In particular, we discussed

the introduction of read and write operations, allowing the state to be read from

and written to at intermediate points of a method’s execution. We might for

example give method implementations a type

(1 ⇒ σ) ⊗ (σ ⇒ 1) ⊗ τ ⇒ τ

instead of (σ ⊗ τ) ⇒ (σ ⊗ τ). It is certainly the case that some such operations

can be defined (both syntactically and semantically), but not in an unrestricted

form. A write operation would at least have to obey the usual restrictions on

argument-safety, while it seems there may also be some subtle restriction on the

use of a read operation.

7.3.4 Linear classes

In Chapter 6 we set out to give a definability result for intuitionistic, product-

free types. It does not seem that products would be more than an annoyance,

but the extension of our interpret programs to linear types requires a language

extension. Unlike the issues discussed above, these features are absent more by

way of simplification than for any technical reason.

We mentioned in Chapter 4 that it is possible to give a constr operation of

the following type:

Γ ⊢ c : Obj {m : σ ⊗ γm → σ ⊗ τ}m∈X ∆ ⊢ e : σ

Γ,∆ ⊢ constr e c : Obj {m : γm → τm}m∈X
basic(γm)

This corresponds to the “linear thread” operation we presented in Chapter 3

as a stepping stone on the route to our full definition. This version of constr

allows us to store values of linear type rather than only reusable type, because the

restriction to ground-type arguments excludes the possibility of nested method

Chapter 7. Possible extensions and further work 198

invocations. Given this,4 it should be straightforward to extend the adequacy

and definability results to include linear types.

7.4 Useful extensions

7.4.1 Polymorphism

With relatively minor alterations, our game model supports parametric polymor-

phism, as commonly found in functional languages (often called genericity in the

context of Object-Oriented languages). A suitable interpretation is described in

[8].

7.4.1.1 Adding new fields in subclasses

There is an important deficiency in the translation of classes we described earlier.

Normally when one creates a subclass, one would expect to add new fields as well

as methods, however we have not allowed for this. The problem is that the state

appears as both argument to and result of the step function being extended.

Various extensions to our calculus can be used to tackle this problem. When

defining a class, we must give the step function a type which includes not only

the state of that class, but the potential subclass state. When the class is ex-

tended, that potential subclass state will be partially instantiated as the newly

added state, together with the new potential additional state; when the class is

instantiated, the additional state is taken to be something trivial.

By treating the potential future state polymorphically, we thus cater for any

particular choice of additional state when a class is extended. To interpret a

class creating an object of type Obj {τ → τ ′} with state type σ, instead of an

approximation operator of type

Obj {σ ⊗ τ → σ ⊗ τ ′} → Obj {σ ⊗ τ → σ ⊗ τ ′}

we would take one of type

∀υ. Obj {(σ ⊗ υ) ⊗ τ → (σ ⊗ υ) ⊗ τ ′} → Obj {(σ ⊗ υ) ⊗ τ → (σ ⊗ υ) ⊗ τ ′}

The above is a well-known idea in the theory of object-oriented languages, as

in [23].

4Possibly an operation allowing us to get around a situation in which the type system is
over-conservative with respect to linearity is also required.

Chapter 7. Possible extensions and further work 199

7.4.2 Recursive types

In Section 2.1.8 we noted that SG supports recursive types, however the only

use of these we have made is to explain our exponential as !A = µX.A⊘X. An

obvious extension would be to add the corresponding notion of recursive types to

our language. Such an extension is somewhat orthogonal to the other issues we

have been discussing. In fact, such an addition gives us access to lots of behaviour

already present in our model, but not accessible for typing reasons. Here we shall

not concentrate on the addition of recursive types per se, but on this behaviour

they enable.

7.4.2.1 Recursive classes

Most fundamentally, recursive types allow us to define “recursive classes”. To

be a little more precise, recursive types enable the definition of (classes which

generate) objects with recursive types, and also (mutually) recursive classes.

Note that since the type of an object does not appear in its state (and we

give structural types), we can already create objects with pointers to others of

the same type. For example, in the present language we can define the following

linked list of integers:

letrec list imp = obj {

add = λ〈s, x〉.〈 〈x, constr list imp 〈h, t〉 〉, ∗〉,

nth = λ〈s, n〉.〈s, let 〈h, t〉 be s in ifz n then h else t · nth(n− 1)〉

} : Obj {add : S ⊗ ι→ S ⊗ ι, nth : S ⊗ ι→ S ⊗ ι}

where S = Obj {add : ι → ι, nth : ι → ι}. An object created from list imp via

constr would also have type S.

On the other hand, we could not add a method tail to return the tail of the

list, since the type of the entire object should then appear in the type of the tail

method—but one could easily do this in the presence of recursive types.

7.4.2.2 Clone

One particular example of an operation which we need recursive types to define

is a clone method. We can equip an object with a shallow clone method with the

following type:

µX. Obj {m1 : σ1 → τ1, . . . , mn : σn → τn, clone : 1 → X}

Chapter 7. Possible extensions and further work 200

We could do this by defining a “clone constr” operation cconstr as follows:

cconstr = λs.λe. Y(λmknew .λs.

constr s (extend e with {clone = λ〈s, ∗〉. 〈s,mknew s〉})) s

Notice that while we can define the above in the current language, the best type

we could give clone would be some finite expansion of the above recursive type,

i.e. we could happily create uncloneable “clones”.

7.5 Control

In Chapter 2 we presented SG as a simple and elegant game model, but after

introducing the well-bracketed model BG we proceeded to define a language in-

tended as a “match” for the latter. We could instead ask, what is the appropriate

language for SG? Given the well-known correspondence between bracketing and

control, we could expect to be able to introduce a control operator for SG.

7.5.1 A language extension

We mentioned in Section 2.3 that the catch operator exhibits the simplest vio-

lation of the BG bracketing condition. If we allow ourselves sum types τ1 + τ2,

which are a straightforward addition to the language, then we could give a catch

operator
Γ ⊢ e : (τ1 → τ2) → τ3
Γ ⊢ catch e : τ1 + τ3

where τ1, τ2, τ3 are all ground types. The catch operator of [27] returns 0 if

the evaluation of e z (where z is a dummy argument) attempts to evaluate z, or

otherwise n+1 if e evaluates to n without touching z. In the same way, the above

operation would return inl(v) if the evaluation of e z with a dummy argument z

attempts to evaluate some z v, and otherwise if e evaluates as normal to v′, then

the result would be inl(v′).

This operator captures one way of violating the bracketing condition, namely

answering a question prematurely (i.e. when there is some more recent pending

question). In SG it is also possible to define strategies which answer a question

“late” (i.e. after the question has been preempted by such a premature answer).

This corresponds to a kind of “resumable exception”, or restricted continuation

Chapter 7. Possible extensions and further work 201

operator

Γ ⊢ e : Obj {m : τ1 → τ2} → τ3
Γ ⊢ catchcont e : τ3 + (τ1 ⊗ (τ2 → Obj {m : τ1 → τ2} → τ3))

basic(τ1, τ2, τ3)

Here the linearity of the function type τ2 → Obj {m : τ1 → τ2} → τ3 is rather

important, meaning that the continuation may only be used once. This is exactly

right with reference to SG: we can lift the restriction from BG on when a question

may be answered, but the games we have defined do not support answering a

question repeatedly. From the point of view of a more practical implementation,

linearly used continuations are important, as they mean that there is no need to

copy the relevant portion of the stack.

It is relatively straightforward to give an operational semantics for the lan-

guage extended with this operator. As usual for the operational semantics of

exceptions, one can make use of evaluation contexts E[−]. Such an evaluation

context is an expression with a “hole” at the current point of evaluation. To give

a hint of such a semantics, we could give a small-step rule for catchcont:5

catchcont λx.E[x ·m v] → inr(〈v, λz.λx.E[z]〉)

We now come to the interaction of stateful objects and continuations. Our

existing method invocation rule has very much a “well-bracketed” character, and

does not seem compatible with the addition of continuations. In order to correctly

handle the case where the argument to catchcont is called from within the

evaluation of a method implementation, we can decompose the method invocation

into “read” and “update” stages along the following lines, by considering an

augmented language with an updatel operation for each location l:

h, l ·m v → h,updatel vc ·m〈vs, v〉 h(l) = 〈vs, vc〉

h,updatel 〈v
′
s, v

′〉 → h[l 7→ 〈v′s, vc〉], v
′ h(l) = 〈vs, vc〉

7.5.2 Interpretation in SG

Firstly, we note that it still makes sense to interpret our existing language in SG.

The semantics would still be adequate in SG (at least for the formulation of the

property at ground types)—the denotation of a program just happens to be well-

bracketed, rather than being constrained to be so. However, it is more interesting

to add “all” non-well-bracketed behaviour, in order to make every strategy in SG

at denotable type definable in some extension of our language.

5A big-step evaluation relation more in line with the operational semantics presented earlier
is possible with a little work.

Chapter 7. Possible extensions and further work 202

(
(

()

0

1

2

) ()
)
1

()
2

0 3 3

4 4

Figure 7.1: Non-well-bracketed method calls

We can interpret catchcont by a fairly straightforward extension of the catch

strategy. However, just as the operational semantics of method invocation has

a “well-bracketed” character, our morphism thread is defined in a well-bracketed

way. Recall that we split method calls into two groups: those which occur during

the call in question, and those which occur after. Now consider Figure 7.1, in

contrast to Figure 3.2 presented earlier—it is clear that this decomposition is no

longer valid, at least if one expects the obvious semantics corresponding to the

operational rules sketched above, where the last state update is the one which

“sticks”.

Fortunately, it seems one can define a version of thread which behaves cor-

rectly in the presence of such ill-bracketed behaviour, by not relying on the above

decomposition of method calls. However, the more structured definition in Chap-

ter 3 allowed us to state and prove our thread properties. Not only would these

not seem to hold in the new setting, but one might expect that the proof of the

appropriate properties would be more complex.

Indeed this will be more generally true of the proof of adequacy as a whole. As

more behaviour is added to the language, it is harder to show that the operational

and denotational interpretations agree. In contrast, the move to SG should make

the proof of definability simpler. One can show definability for the universal

object of SG (i.e. JObj {m : ι→ ι}K), and then with the help of catchcont6

write programs constituting a definable retraction to this object for each type,

following the scheme of Longley [60]. The key ingredients of such programs have

recently been implemented in [56].

6One actually requires a slightly more powerful catchcont operator, as discussed in [59].

Chapter 8

Conclusion

In this thesis we have put forward the view that object-oriented programming

and game models of computation are well matched, with particular emphasis on

the notion of data abstraction. In Chapter 3 we introduced the thread operator

taking an explicit implementation of an object in terms of an internal state and

producing the behaviour of the specified object. In Chapter 4 we then intro-

duced a corresponding language feature constr, and described how this allows

us to model classes and objects, before giving an operational semantics in terms

of heaps. In the soundness proof of Chapter 5 we had to go to some lengths to

reconcile the behavioural view of objects given by thread with the explicit heap

and state manipulation by the operational semantics, suggesting that the inter-

pretation in our game model really is more abstract. In Chapter 6 we gave a

limited full abstraction and definability result, which nonetheless demonstrates

the validity of our data abstraction operation at some interesting types—no mat-

ter what the concrete implementation, if the behaviour of two objects are the

same, the denotation they both receive is the same strategy.

The design of our language was heavily guided by our simple game model.

This model contains much interesting stateful behaviour, but led us to impose the

disciplined requirement on strategies implementing objects. Correspondingly, the

language we defined in Chapter 4 contains a level of expressivity intermediate in

power between that of simple ground-type state and the full generality of higher-

type references. This level of expressive power leads to a nontrivial soundness

proof, and has proved to be sufficiently subtle that our full abstraction result does

not hold at all types in the present language (and yet does so at an interesting

range of types).

203

Chapter 8. Conclusion 204

In Chapter 7 we presented a number of natural and useful extensions to our

language and model. These support the notion that the ideas presented in this

thesis are of wider interest in the context of a larger language.

Bibliography

[1] Martin Abadi and Luca Cardelli. A theory of primitive objects — un-
typed and first-order systems. In Masami Hagiya and John C. Mitchell,
editors, Theoretical Aspects of Computer Software, volume 789, pages 296–
320. Springer-Verlag, 1994.

[2] Mart́ın Abadi and Luca Cardelli. A theory of objects. Springer, 1996.

[3] Erika Ábrahám, Marcello M. Bonsangue, Frank S. de Boer, and Martin
Steffen. Object connectivity and full abstraction for a concurrent calculus of
classes. pages 37–51, July 2004.

[4] Erika Ábrahám, Frank S. de Boer, Marcello M. Bonsangue, Andreas Grüner,
and Martin Steffen. Observability, connectivity, and replay in a sequential
calculus of classes. pages 296–316.

[5] Erika Ábrahám, Andreas Grüner, and Martin Steffen. Dynamic heap-
abstraction for open, object-oriented systems with thread classes. In Proceed-
ings of Computability in Europe 2006: Logical Approaches to Computational
Barriers, CiE’06, January 2006.

[6] S. Abramsky and R. Jagadeesan. Games and full completeness for multi-
plicative linear logic. In R. Shyamasundar, editor, Foundations of Software
Technology and Theoretical Computer Science (FST-TCS’92), pages 291–
301, New Delhi, India, 1992.

[7] S. Abramsky and G. McCusker. Linearity, sharing and state: a fully abstract
game semantics for idealized algol with active expressions, 1997.

[8] Samson Abramsky. Semantics of interaction: an introduction to game se-
mantics. In A. M. Pitts and P. Dybjer, editors, Semantics and Logics of
Computation. Cambridge University Press, 1997.

[9] Samson Abramsky, Dan Ghica, Andrzej Murawski, Luke Ong, and Ian Stark.
Nominal games and full abstraction for the nu-calculus. In Proceedings of the
Nineteenth Annual IEEE Symposium on Logic in Computer Science, pages
150–159. IEEE Computer Society Press, 2004.

[10] Samson Abramsky, Kohei Honda, and Guy McCusker. A fully abstract game
semantics for general references, 1998.

205

Bibliography 206

[11] Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria. Full ab-
straction for PCF. In Theoretical Aspects of Computer Software, pages 1–15,
1994.

[12] Samson Abramsky and Guy McCusker. Call-by-value games. In CSL ’97:
Selected Papers from the 11th International Workshop on Computer Science
Logic, pages 1–17, London, UK, 1998. Springer-Verlag.

[13] Samson Abramsky and Guy McCusker. Game semantics. 1998.

[14] Samson Abramsky and C.-H. Luke Ong. Full abstraction in the lazy lambda
calculus. Inf. Comput., 105(2):159–267, 1993.

[15] A. Barber. Dual Intuitionistic Linear Logic. University of Edinburgh, Dept.
of Computer Science, Laboratory for Foundations of Computer Science, 1996.

[16] P. N. Benton. A mixed linear and non-linear logic: Proofs, terms and models
(extended abstract). In CSL, pages 121–135, 1994.

[17] P. N. Benton, Gavin M. Bierman, Valeria de Paiva, and Martin Hyland.
Linear lambda-calculus and categorial models revisited. In CSL, pages 61–
84, 1992.

[18] G. Berry and Pierre-Louis Curien. Sequential algorithms on concrete data
structures. Theor. Comput. Sci., 20:265–321, 1982.

[19] G. Bierman, M. Parkinson, and A. Pitts. MJ:An imperative core calculus
for Java and Java with Effects. 2003.

[20] Gavin M. Bierman. What is a categorical model of intuitionistic linear logic?
In TLCA, pages 78–93, 1995.

[21] Andreas Blass. A game semantics for linear logic. Ann. Pure Appl. Logic,
56(1-3):183–220, 1992.

[22] Viviana Bono, Amit J. Patel, Vitaly Shmatikov, and John C. Mitchell. A core
calculus of classes and objects. In Fifteenth Conference on the Mathematical
Foundations of Programming Semantics, 1999.

[23] Kim B. Bruce. Foundations of Object-Oriented Languages. MIT press, 2002.

[24] Kim B. Bruce, Luca Cardelli, Giuseppe Castagna, Jonathan Eifrig, Scott F.
Smith, Valery Trifonov, Gary T. Leavens, and Benjamin C. Pierce. On binary
methods. Theory and Practice of Object Systems, 1(3):221–242, 1995.

[25] Kim B. Bruce, Luca Cardelli, and Benjamin C. Pierce. Comparing object
encodings. In Theoretical Aspects of Computer Software, pages 415–438,
1997.

[26] Luca Cardelli. A semantics of multiple inheritance. Information and Compu-
tation, 76(2/3):138–164, 1988. A revised version of the paper that appeared
in the 1984 Semantics of Data Types Symposium, LNCS 173, pages 51–66.

Bibliography 207

[27] R. Cartwright and M. Felleisen. Observable sequentiality and full abstraction.
ACM Press New York, NY, USA, 1992.

[28] Robert Cartwright, Pierre-Louis Curien, and Matthias Felleisen. Fully
abstract semantics for observably sequential languages. Inf. Comput.,
111(2):297–401, 1994.

[29] W. Cook and J. Palsberg. A denotational semantics of inheritance and its
correctness. ACM SIGPLAN Notices, 24(10):433–443, 1989.

[30] William R. Cook, Walter Hill, and Peter S. Canning. Inheritance is not
subtyping. In POPL ’90: Proceedings of the 17th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 125–135, New
York, NY, USA, 1990. ACM Press.

[31] Pierre-Louis Curien. Notes on game semantics.
http://www.pps.jussieu.fr/ curien/.

[32] Pierre-Louis Curien. On the symmetry of sequentiality. In Proceedings of the
9th International Conference on Mathematical Foundations of Programming
Semantics, pages 29–71, London, UK, 1994. Springer-Verlag.

[33] Pierre-Louis Curien. Definability and full abstraction. Electr. Notes Theor.
Comput. Sci., 172:301–310, 2007.

[34] P.L. Curien and G. Ghelli. Coherence of Subsumption, Minimum Typing
and Type-Checking in. Theoretical Aspects of Object-Oriented Programming:
Types, Semantics, and Language Design, 1994.

[35] O-J Dahl, B Myhrhaug, and K Nygaard. Simula 67 common base language.
Technical report, 1968.

[36] M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and mixins. Pro-
ceedings of the 25th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 171–183, 1998.

[37] J.Y. Girard. Linear logic. Theoretical Computer Science, 50(1):1–102, 1987.

[38] Adele Goldberg and David Robson. SmallTalk-80 The Language and its
Implementation. 1983.

[39] Andrew Gordon and Gareth Rees. Bisimilarity for a first-order calculus of
objects with subtyping. In Conference Record of the 23rd ACM Symposium
on Principles of Programming Languages, St. Petersburg Beach, Florida,
pages 386–395, 1996.

[40] Andrew D. Gordon and Paul D. Hankin. A concurrent object calculus:
Reduction and typing. In Proceedings HLCL’98. Elsevier ENTCS, 1998.

[41] James Gosling, Bill Joy, and Guy L. Steele. The Java Language Specification.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1996.

Bibliography 208

[42] K. Honda and N. Yoshida. Game-theoretic analysis of call-by-value compu-
tation. Theoretical Computer Science, 221(1-2):393–456, 1999.

[43] J. M. E. Hyland and C.-H. Ong. On full abstraction for PCF: I. models,
observables and the full abstraction problem ii. dialogue games and innocent
strategies iii. a fully abstract and universal game model.

[44] J. M. E. Hyland and C.-H. L. Ong. Fair games and full completeness for
multiplicative linear logic without the mix-rule. 1993.

[45] Martin Hyland. Game semantics. In A. M. Pitts and P. Dybjer, editors,
Semantics and Logics of Computation. Cambridge University Press, 1997.

[46] Atshushi Igarashi, Benjamin Pierce, and Philip Wadler. Featherweight Java:
A minimal core calculus for Java and GJ. In Loren Meissner, editor, Proceed-
ings of the 1999 ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages & Applications (OOPSLA‘99), volume 34(10),
pages 132–146, N. Y., 1999.

[47] Alan Jeffrey and Julian Rathke. A fully abstract may testing semantics for
concurrent objects. Theor. Comput. Sci., 338(1-3):17–63, 2005.

[48] Alan Jeffrey and Julian Rathke. Java jr: Fully abstract trace semantics for
a core java language. In ESOP, pages 423–438, 2005.

[49] S.N. Kamin and U.S. Reddy. Two Semantic Models of Object-Oriented
Languages. Theoretical Aspects of Object-Oriented Programming: Types,
Semantics, and Language Design, 1994.

[50] Alan C. Kay. The early history of smalltalk. pages 511–598, 1996.

[51] J. Laird. A categorical semantics of higher-order store. In 9th Conference
on Category Theory and Computer Science, Electronic notes in Theoretical
Computer Science. Elsevier, 2002.

[52] Jim Laird. Full abstraction for functional languages with control. In Logic
in Computer Science, pages 58–67, 1997.

[53] Jim Laird. A semantic analysis of control. PhD thesis, University of Edin-
burgh, 1998.

[54] Jim Laird. A game semantics of local names and good variables. In 9th
Conference on category theory and computer science, 2002.

[55] F. Lamarche. Sequentiality, games and linear logic. In Workshop on Cate-
gorical Logic in Computer Science. Aarhus University, 1992.

[56] J. Longley. Catchcont and friends. NJ-SML source file, available from
http://homepages.inf.ed.ac.uk/jrl.

[57] J. Longley. Definition of the Eriskay programming language. In preparation.
Draft available at http://homepages.inf.ed.ac.uk/homepages/jrl.

Bibliography 209

[58] J. Longley and G. Plotkin. Logical full abstraction and PCF. In J. Ginzburg,
Z. Khasidashvili, C. Vogel, J.-J. Levy, and E. Vallduvi, editors, Tbilisi Sym-
posium on Language, Logic and Computation., 1997.

[59] J. Longley and N. Wolverson. Eriskay: an experiment in semantically in-
spired programming language design. In preparation. Draft available at
http://homepages.inf.ed.ac.uk/homepages/jrl.

[60] John Longley. Universal types and what they are good for. Domain theory,
logic and computation.

[61] John Longley. Interpreting localized computational effects using operators
of higher type. In A. Beckmann, C. Dimitracopoulos, and B. Loewe, editors,
Logic and Theory of Algorithms, Fourth Conference on Computability in Eu-
rope, CiE 2008, Athens, volume 5028 of Lecture Notes in Computer Science.
Springer, 2008. To appear.

[62] P. Lorenzen. Ein dialogisches Konstruktivitätskriterium. In Infinitistic Meth-
ods (Proc. Sympos. Foundations of Math., Warsaw, 1959), pages 193–200.
Pergamon, Oxford, 1961.

[63] P.A. Mellies. Comparing hierarchies of types in models of linear logic. In-
formation and Computation, 189(2):202–234, 2004.

[64] Paul-André Melliès. Sequential algorithms and strongly stable functions.
Theor. Comput. Sci., 343(1-2):237–281, 2005.

[65] Robin Milner, Mads Tofte, and David Macqueen. The Definition of Standard
ML. MIT Press, Cambridge, MA, USA, 1997.

[66] J.C. Mitchell. Toward a typed foundation for method specialization and
inheritance. In Proc. 17th ACM Symp. on Principles of Programming Lan-
guages, pages 109–124, January 1990.

[67] Eugenio Moggi. Computational lambda-calculus and monads. In Proceedings
4th Annual IEEE Symp. on Logic in Computer Science, LICS’89, Pacific
Grove, CA, USA, 5–8 June 1989, pages 14–23. IEEE Computer Society
Press, Washington, DC, 1989.

[68] B.C. Pierce and D.N. Turner. Simple Type-Theoretic Foundations
for Object-Oriented Programming. Journal of Functional Programming,
4(2):207–247, 1994.

[69] Gordon D. Plotkin. LCF considered as a programming language. Theor.
Comput. Sci., 5(3):225–255, 1977.

[70] U. Reddy. Objects as closures: abstract semantics of object-oriented lan-
guages. ACM Press New York, NY, USA, 1988.

[71] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley Pub-
lishing, 1986.

Bibliography 210

[72] P. Wadler. There’s no substitute for linear logic. Manuscript, December
1991.

[73] Mitchell Wand. Type inference for objects with instance variables and in-
heritance. In Theoretical aspects of object-oriented programming: types, se-
mantics, and language design, pages 97–120. MIT Press, 1994.

