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Abstract

We show that the bar recursion operators of Spector and Kohlenbach, consid-
ered as third-order functionals acting on total arguments, are not computable in
Gödel’s System T plus minimization, which we show to be equivalent to a pro-
gramming language with a higher-order iteration construct. The main result is
formulated so as to imply the non-definability of bar recursion in T + min within
a variety of partial and total models, for instance the Kleene-Kreisel continuous
functionals. The paper thus supplies proofs of some results stated in the book by
Longley and Normann.

The proof of the main theorem makes serious use of the theory of nested se-
quential procedures (also known as PCF Böhm trees), and proceeds by showing
that bar recursion cannot be represented by any sequential procedure within which
the tree of nested function applications is well-founded.

1 Introduction

In the study of computability theory in a higher-order setting, where ‘computable op-
erations’ may themselves be passed as arguments to other computable operations, con-
siderable interest attaches to questions of the relative power of different programming
languages or other formalisms for computation [20]. In this paper, we shall compare the
expressive power of a higher-order language supporting general iteration (in the sense of
while loops) with one supporting general recursion (as in recursive function definitions).

On the one hand, it will be easy to see that our iteration constructs are definable
via recursion, so that the second language subsumes the first. On the other hand,
there is an example due to Berger [3] of a second-order functional H, informally of type
(N⊥ × N⊥ → N⊥) → N⊥, which is definable via recursion but not via iteration (see
Section 1.1 below). So in this sense at least, we may already say that iteration is weaker
than recursion.

However, it is crucial to Berger’s example that we are considering the behaviour of
H on arbitrary (hereditarily) partial arguments rather than just on total ones: indeed,
Berger also showed that if we merely ask which functionals of types (Nr → N)→ N⊥ are
representable, then iteration (even in a weak form) turns out to be just as powerful as
recursion. One may therefore wonder whether, more generally, iteration and recursion
offer equally powerful means for defining operations on ‘hereditarily total’ arguments.
The question is a natural one to ask in a computer science context, since it has sometimes
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been suggested that it is only the behaviour of a program on total arguments that is
likely to matter for practical purposes (see Plotkin [24]).

The main contribution of this paper is to answer this question in the negative: at
third order, there are ‘hereditarily total’ functionals definable by very simple kinds
recursion, but not by even the most general kind of iteration that we can naturally
formulate. Indeed, one example of such a functional is the well-known bar recursion
operator, first introduced by Spector in the context of interpretations of classical analysis
[27]. Since bar recursion and its close relatives themselves offer a number of intriguing
programming possibilities that are active topics of current research (e.g. within game
theory [7, 9] and proof mining [14, 22, 2]), we consider this to be an especially significant
example of the expressivity difference between iteration and recursion.

More specifically, we will show that neither Spector’s original bar recursion functional
nor the variant due to Kohlenbach [13] is computable in a language with ‘higher-order
iteration’, even if we restrict attention to ‘hereditarily total’ arguments. As we shall
see, there is more than one way to such a statement precise, but we shall formulate
our theorem in a robust form which (we shall argue) establishes the above claim in all
reasonable senses of interest.1

As our framework for computation with recursion, we shall work with Plotkin’s
well-known language PCF for partial computable functionals [23], in which recursion is
embodied by a fixed point operator Yσ : (σ → σ) → σ for each type σ. For iteration,
we shall introduce a bespoke language W with a higher-order while construct, and
show that it is equivalent in power to Gödel’s System T extended with the familiar
minimization (i.e. unbounded search) operator min. In fact, both PCF and T + min
have precursors and analogues in the earlier literature on higher-order computability,
and the study of the relationship between (broadly) ‘recursive’ and ‘iterative’ styles of
computation turns out to have quite deep historical roots. We now survey some of this
history in order to provide some further context for our present work.

1.1 Historical context

In a landmark paper of 1959, Kleene [12] provided the first full-blown generalization
of a concept of ‘effective computability’ to all finite type levels, working within the full
set-theoretic type structure S of hereditarily total functionals over N. This consisted
of an inductive definition of computations via nine schemes S1–S9, resulting in the
identification of a substructure SKl ⊂ S consisting of what we now call the Kleene
computable functionals (Kleene himself called them general recursive). Kleene’s scheme
S9, in particular, postulates in effect the existence of a ‘universal’ computable functional,
and this in turn gives rise to a very general form of recursive function definition (see e.g.
[20, Section 5.1.2]). Indeed, although Kleene’s S1–S9 definition looks superficially very
different from Plotkin’s PCF, it turns out that in a certain sense, the two formalisms
express exactly the same class of algorithms for higher-order computation (see [20,

1The main results of this paper were stated in [20] as Theorem 6.3.28 and Corollary 6.3.33, with
a reference to a University of Edinburgh technical report [17] for the proof. The present paper is a
considerably reworked and expanded version of this report, incorporating some minor corrections, and
more fully developing the connection with familiar iteration constructs (hence the change in the title).
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Sections 6.2 and 7.1]).2

In the same paper, Kleene also considered another notion of computability in which
S9 was replaced by a weaker scheme S10 for minimization (= unbounded search), giving
rise to a substructure Smin ⊂ SKl of µ-computable functionals (Kleene’s terminology was
µ-recursive). Whereas we can regard S9 as giving us ‘general recursion’, it is natural
to think of S10 as giving us a particularly simple kind of ‘iteration’: indeed, from a
modern perspective, we may say that S1–S8 + S10 corresponds to a certain typed λ
calculus Wstr

0 with strict ground-type iteration, or equivalently to a language Tstr
0 +min

with strict ground-type primitive recursion and minimization.
With the spectacles of hindsight, then, we can see that in [12] the stage was already

set for a comparison between ‘iterative’ and ‘recursive’ flavours of higher-order compu-
tation. Indeed, in [12, Section 8], Kleene showed (in effect) that the System T recursor
recN→N (a third-order functional in S) was Kleene computable but not µ-computable.
However, Kleene’s proof relied crucially on the possibility of applying recN→N to ‘discon-
tinuous’ arguments (in particular the second-order functional ∃2 embodying quantifica-
tion over N); it thus left open the question of whether every Ψ ∈ SKl could be mimicked
by some Ψ′ ∈ Smin if one restricted attention to ‘computable’ arguments.

Over the next two decades, much of the focus of research shifted from the full set-
theoretic model S to the Kleene-Kreisel type structure Ct of total continuous functionals,
a realm of functionals of a more ‘constructive’ character than S which was found to be
better suited to many metamathematical applications (see e.g. [15]). Once again, the
notions of µ-computability and Kleene computability respectively pick out substructures
Ctmin ⊆ CtKl of Ct, and Kreisel in [16, page 133] explicitly posed the question of whether
these coincide. (The question is harder to answer here than for S: Kleene’s counterex-
ample Ψ can no longer be used, because the necessary discontinuous functionals such as
∃2 are no longer present in Ct.) This question remained open for some years until being
answered by Bergstra [4], who used an ingenious construction based on the classical
theory of c.e. degrees to produce an example of a third-order functional in CtKl but not
in Ctmin. On the face of it, Bergstra’s example seems ad hoc, but one can extract from
his argument the fact that—once again—the System T recursor recN→N is Kleene com-
putable but not µ-computable (see [20, Section 8.5.2]). The fact that Kreisel’s question
remained open for so long in the face of such an ‘obvious’ counterexample suggests that
non-computability results of this kind were not readily accessible to the proof techniques
of the time.

Although Bergstra’s argument improves on Kleene’s in that it does not rely on the
presence of discontinuous inputs, it still relies on the existence of non-computable second-
order functions within Ct. The argument is therefore not as robust as we might like:
for example, it does not establish the non-µ-computability of recN→N within the type
structure HEO of hereditarily effective operations. For this, the necessary techniques
had to await certain developments in the computer science tradition, which, in contrast
to the work surveyed so far, tended to concentrate on type structures of hereditarily
partial functionals rather than total ones.

As far as we are aware, the first study of the relative power of iteration and recursion

2Strictly speaking, to obtain this equivalence at the algorithmic level, we need a mild extension of
PCF with an operator byval as described in Subsection 2.2 below.
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in a partial setting was that of Berger [3], who (in effect) compared the languages
T0 + min and PCF in terms of the elements of Scott’s well-known model PC of partial
continuous functionals that they define. Specifically, Berger introduced the partial
functional H ∈ PC((N2 → N)→ N) defined informally by

H = λgN
2→N. g(0, g(1, g(2, g(· · ·)))) ,

and showed that H is readily definable in PCF (using the recursor YN→N), but not at
all in T0 + min.

Although Berger concentrated on T0 + min definability in PC, his argument suffices
to show the non-definability of H in the whole of T + min, and also applies when we
replace PC by the type structure SFeff of PCF-computable functionals, yielding a slightly
stronger result (these points are explained in [20, Section 6.3]). Thus, Berger’s result
is apparently the first to show that recursion is stronger than iteration in a sense that
might matter to programmers: the behaviour of the functional H cannot be mimicked
using iteration alone, even if we restrict attention to computable arguments (which we
may here take to mean ‘arguments definable in T0 +min’). Note, however, that Berger’s
example, unlike those of Kleene and Bergstra, does emphatically depend on the presence
of the element ⊥ in the models.

Berger’s paper provided one of the main inspirations for the study of sublanguages
of PCF in the book of Longley and Normann [20]. There, the focus was on modelling
the ‘algorithms’ implicit in PCF programs as nested sequential procedures (NSPs), also
known as PCF Böhm trees. This is a model that had roots in early work of Sazonov [25],
but which came into focus in the course of work on game semantics for PCF [1, 11]. In
summary, an NSP is a potentially infinite ‘decision tree’ recording the various function
calls (including nested calls) that a higher-order program might make, along with the
dependency of its behaviour on the results of such calls (further detail will be given
in Section 2.2). One of the main ideas explored in [20, Chapter 6] was that certain
sublanguages of PCF can be correlated with certain classes of NSPs: for instance, any
NSP p definable in Tstr

0 +min is left-bounded (that is, there is a finite global bound d on
the nesting depth of function applications within p), while any NSP definable in T+min
is left-well-founded (that is, the tree of nested applications within p is well-founded).

It turns out that such observations, together with some concrete combinatorial anal-
ysis of NSP computations, can lead to interesting new non-definability results. For
instance, one of the main new results of [20] (Theorem 6.3.27) is that no left-bounded
procedure can have the same behaviour as recN→N when restricted to ‘total’ second-order
arguments; it follows that no program of Tstr

0 + min can faithfully represent the total
functional recN→N on all ‘total’ computable inputs. As will become clear below, there
is some ambiguity here as regards what ‘total’ ought to mean for NSPs; however, the
theorem in [20] was formulated in a robust way so as to be applicable to any reason-
able concept of totality. Moreover, it is also straightforward to transfer the result from
NSPs to any total model with appropriate structure—in this way, we obtain a robust
statement of the non-µ-computability of recN→N in such models [20, Corollary 6.3.33],
not relying on the presence of non-computable or non-total arguments, and immediately
applicable to a type structure such as HEO.

This seems to offer a satisfactory conclusion to the story as regards the difference
between µ-computability and more general (PCF or Kleene) computability. However,
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one is at this point tempted to ask whether the gap between these two notions might
be closed simply by extending the former with all the System T recursors recσ. Thus, a
revised version of Kreisel’s question might read: Is the system T + min as powerful as
full Kleene computability for the purpose of defining elements of Ct? (We have already
noted that in partial settings such as Scott’s PC, a distinction in power between T+min
and full PCF is established by Berger’s H functional.) Indeed, one may even feel that
T + min is the more natural level at which to ask such questions, especially given that
T + min corresponds in expressivity to a language W that embodies a very general
and natural concept of iteration (as represented by while loops, possibly manipulating
higher-order data).

Our main purpose in this paper is to show that, in fact, the famous bar recursion
operator furnishes the desired example of a (third-order) total functional that is Kleene
computable (and hence PCF computable) but not T + min definable. Put briefly,
we shall show that bar recursion does for T + min everything that recN→N does for
Tstr

0 + min as described above. As a further piece of relevant background, a brief glance
at the history of bar recursion is therefore in order.

Whereas the System T recursors recσ allow us to construct functions by recursion on
the natural numbers, bar recursion offers a powerful principle for defining functions by
recursion on well-founded trees (the precise definition will be given in Subsection 2.3).
Bar recursion was introduced by Spector [27] as a major plank of his remarkable ex-
tension of Gödel’s so-called ‘Dialectica’ interpretation of first-order arithmetic (modulo
a double-negation translation) to the whole of classical analysis (i.e. full second-order
arithmetic). Spector’s motivations were thus proof-theoretic: for instance, System T
extended with bar recursion offered a language of total functionals powerful enough to
define all functions N→ N provably total in classical analysis. Spector’s interpretation,
and variations on it, continue to this day to be a fruitful source of results in applied
proof theory [14].

Since System T itself defines only the provably total functions of first-order arith-
metic, it was thus clear at the outset that bar recursion could not be definable within
System T. However, these ideas are of little help when we move to languages such
as T + min, which defines all Turing computable functions—nor can methods such as
diagonalization be used to establish non-definability in the ‘partial’ setting of T + min.
The results of the present paper thus require quite different techniques.

For the purpose of interpreting classical analysis, one requires versions of bar re-
cursion at many different type levels; however, for the purpose of this paper, we may
restrict attention to the simplest non-trivial instance of bar recursion (a third-order
operation), since this already turns out to be non-computable in T + min. Another
subtlety concerns the way in which we represent the well-founded tree over which the
recursion takes place. Typically the tree is specified via a functional F : (N → N) → N

passed as an argument to the bar recursor—however, different ways of representing trees
by such functionals have turned out to have different proof-theoretic applications. In
this paper we shall consider two possible choices: the one used by Spector, and a variant
due to Kohlenbach [13]. As we shall see, the corresponding versions of bar recursion are
actually interdefinable relative to T + min, so that the difference is inessential from the
point of view of our main result.

Spector’s original treatment of bar recursion was syntactic, but it became clear
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through work of Scarpellini [26] and Hyland [10] that bar recursors could be viewed as
(Kleene computable) functionals within Ct. Thus, bar recursion was very much in the
consciousness of workers in Ct in the early 1970s, although it was evidently not obvious
at the time that it furnished a rather dramatic example of a Kleene computable but not
µ-computable functional. We will show in this paper how the more recent perspective
offered by nested sequential procedures helps to make such results accessible.

1.2 Content and structure of the paper

The main purpose of the paper is to show that the bar recursion functional BR, even at
the simplest type level of interest and in a somewhat specialized form, is not definable
in System T + min. As we shall see, there are various choices involved in making this
statement precise, but our formulation will be designed to be robust with respect to
such variations. Our argument will be closely patterned on the proof of the analogous
result for Tstr

0 + min and the System T recursor recN→N (see [20, Theorem 6.3.27]).
However, the present proof will also involve some further twists, illustrating some new
possibilities for reasoning with nested sequential procedures.

In Section 2 we define the languages mentioned in the above discussion—PCF,
T + min, W and Tstr

0 + min—and establish some basic relationships between them,
in particular showing that T + min and W are equivalent in expressive power. We then
summarize the necessary theory of nested sequential procedures (NSPs), relying heavily
on [20] for proofs, and in particular introducing the crucial substructure of left-well-
founded procedures, which suffices for modelling T + min and W. We also explain the
concepts of (Spector and Kohlenbach) bar recursion that we shall work with.

Section 3 is devoted to the proof of our main theorem: within the NSP model, no bar
recursor can be left-well-founded, hence no program of T+min or W can implement bar
recursion, even in a weak sense. As mentioned above, the proof will be closely modelled
on the corresponding theorem for recN→N: indeed, we shall take the opportunity to
explain more fully certain aspects of that proof that were presented rather tersely in
[20]. We shall also explain the new ingredients that form part of the present proof.

In Section 4, we show how our theorem for NSPs transfers readily to other models,
both partial and total, under relatively mild conditions. As an example, we infer that
bar recursion is not T + min definable within the type structure Ct of Kleene-Kreisel
continuous functionals.

2 Definitions and prerequisites

In this section we summarize the necessary technical background and establish a few
preliminary results. We introduce the languages in question in Subsection 2.1, the nested
sequential procedure model in Subsection 2.2, and bar recursion in Subsection 2.3.

2.1 Some languages for recursion and iteration

We start by giving operational definitions of the languages we shall study— principally
PCF, T+min and W—and establishing some basic relationships between them. A rela-

6



tively easy result here will be that T+min and W are equally expressive as sublanguages
of PCF. Of these, T + min is of course the more widely known and has served as the
vehicle for previous results in the area (e.g. in [20]); however, W appears to correspond
very directly to a familiar concept of iteration via while loops, suggesting that this
level of expressivity is a natural one to consider from the perspective of programming
language theory.

Our version of PCF will closely follow that of [20, Chapter 7], except that we shall
also include product types, at least initially. We shall present all our languages as
extensions of a common base language B.

Specifically, our types σ are generated by

σ, τ ::= N | σ → τ | σ × τ ,

Terms of B will be those of the simply typed λ-calculus (with binary products) con-
structed from the constants

n̂ : N for each n ∈ N
suc, pre : N→ N

ifzero : N→ N→ N→ N

Throughout the paper, we shall regard the type of a variable x as intrinsic to x, and
will often write xσ to indicate that x carries the type σ.

We endow B with a call-by-name operational semantics via the following (small-step)
basic reduction rules:

fst 〈M,N〉  M snd 〈M,N〉  N

(λx.M)N  M [x 7→ N ] suc n̂  n̂+ 1

pre n̂+ 1  n̂ pre 0̂  0̂

ifzero 0̂  λxy.x ifzero n̂+ 1  λxy.y

We furthermore allow these reductions to be applied in certain term contexts. Specif-
ically, the relation  is inductively generated by the basic rules above together with
the clause: if M  M ′ then E[M ] E[M ′], where E[−] is one of the basic evaluation
contexts

[−]N suc [−] pre [−] ifzero [−] fst [−] snd [−] .

We shall consider extensions of B with operations embodying various principles of
general recursion, iteration, primitive recursion and minimization. To these we also add
certain operations that allow us to pass arguments of type N ‘by value’, which will be
needed for technical reasons. The operations we consider are given as constants

Yσ : (σ → σ)→ σ

whileσ : (σ → N)→ σ → (σ → σ)→ σ

recσ : σ → (σ → N→ σ)→ N→ σ

min : (N→ N)→ N→ N

byval~στ : (~σ → N→ τ)→ (~σ → N→ τ)
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(where ~σ → ρ abbreviates σ0 → · · · → σr−1 → ρ if ~σ = σ0, . . . , σr−1), with associated
basic reduction rules

Yσ F  F (YσF )

whileσ C X F  ifzero (CX) (whileσ C (FX) F ) X

recσ X F 0̂  X

recσ X F n̂+ 1  F (recσX F n̂) n̂

min F n̂  ifzero (F n̂) n̂ (min F (suc n̂))

byval~στ F ~X n̂  F ~X n̂ , where | ~X| = |~σ|

and with our repertoire of basic evaluation contexts augmented by

recσX F [−] min F [−] byval~στ F ~X [−] where | ~X| = |~σ| .

The constants Yσ, recσ are familiar from PCF and System T respectively, whilst
min is an inessential variant of the standard minimization operator µ. The operator
whileσ is designed to capture that behaviour of a while loop that manipulates data of
type σ: the argument C is the looping condition (with N doing duty for the booleans,
and 0 as true), X is the initial value of the data, and F is the transformation applied to
the data on each iteration. The result returned by whileσ C F X is then the final value
of the data when the loop terminates (if it does).

The operator byval has a different character. The idea is that the evaluation of
byval~στ F ~X N : τ (where | ~X| = |~σ|) will proceed by first trying to compute the value

n̂ of N , and if this succeeds, will then call F ~X ‘by value’ on n̂. This does essentially
the same job as the operator byval of [20, Section 7.1], which in our present notation

would be written as byval εN. Indeed, for many purposes one could identify byval~στ with

λf~xn~y. byval εN (λn′. f~xn′~y) n ,

but there is a fine-grained difference in reduction behaviour which will matter for Propo-
sition 2 below.

Our languages of interest are obtained by extending the definition of B as follows:

• For PCF, we add the constant Yσ for each type σ.

• For W, we add the constants whileσ.

• For T, we add the constants recσ.

We shall also consider the further extensions T + min and PCF + byval , where we take
the latter to include all byval~στ .

Note that in each case, the reduction relation is generated inductively from the
specified basic reduction rules together with the clause ‘if M  M ′ then E[M ]  
E[M ′]’, where E[−] ranges over the appropriately augmented set of basic evaluation
contexts. We thus obtain reduction relations  PCF,  W etc. on the relevant sets of
terms. However, we may, without risk of ambiguity, write  for the union of all these
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reduction relations, noting that  is still deterministic, and that if M belongs to one
of our languages L and M  M ′ then M ′ belongs to L.

We write  + for the transitive closure of  , and  ∗ for its reflexive-transitive
closure. It is easy to see that if M is any closed term of type N, then either M  ∗ n̂
for some unique n ∈ N, or the unique reduction path starting from M is infinite; in the
latter case we say that M diverges.

The following fundamental fact will be useful. It was first proved by Milner [21] for
PCF, but extends readily to PCF + byval (cf. [20, Subsection 7.1.4]). Recall that two
closed PCF+byval terms M,M ′ : σ are observationally equivalent (written M 'obs M

′)
if for every program context C[−] : N of PCF + byval (with a hole of type σ) and every
n ∈ N, we have C[M ] ∗ n̂ iff C[M ′] ∗ n̂.

Theorem 1 (Context lemma for PCF + byval) (i) Suppose M,M ′ are closed terms
of type σ0 → · · · → σr−1 → τ . Then M 'obs M ′ iff for all closed N0 : σ0, . . . ,
Nr−1 : σr−1 we have

MN0 . . . Nr−1 'obs M ′N0 . . . Nr−1 .

(ii) For closed M,M ′ : σ × τ , we have M 'obs M ′ iff fst M 'obs fst M ′ and
snd M 'obs snd M ′.

(iii) For closed M,M ′ : N, we have M 'obs M
′ iff M,M ′ either both diverge or both

evaluate to the same numeral n̂.

Let us also write ≡ for the congruence on PCF + byval terms generated by  (i.e.
the least equivalence relation containing  and respected by all term contexts C[−]).
Clearly if M  M ′ then M 'obs M

′; hence also if M ≡ M ′ then M 'obs M
′. In

combination with the context lemma, this provides a powerful tool for establishing
observational equivalences.

For any type σ, we write ⊥σ for the ‘everywhere undefined’ program Yσ(λxσ.x). It
is not hard to see that if M : σ admits an infinite reduction sequence then M 'obs ⊥σ.

At this point, we may note that the addition of byval does not fundamentally affect
the expressive power of PCF, since as a simple application of the context lemma, we
have

byval~στ 'obs λf~xn~y. ifzero n (f~xn~y) (f~xn~y) .

This in turn implies that every PCF+byval term is observationally equivalent to a PCF
term, and also that it makes no difference to the relation 'obs whether the observing
contexts C[−] are drawn from PCF + byval or just PCF. Even so, we shall treat byval
as a separate language primitive rather than as a macro for the above PCF term, since
its evaluation behaviour is significantly different (cf. Subsection 2.2 below).

We now show how both W and T + min may be translated into PCF + byval . To
do this, we simply need to provide PCF + byval programs of the appropriate types
to represent the constants whileσ, recσ, min. As a first attempt, one might consider
natural implementations of these operations along the following lines:

Whileσ = λc xf. Yσ→σ(λw. ifzero (c x) (w(f x)) x)

Recσ = λxf. YN→σ(λr.λn. ifzero n x (f(r(pre n))(pre n)))

Min = λf. YN→N(λm.λn. ifzero (f n) n (m (suc n)))
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In fact, the above program Whileσ will serve our purpose as it stands, but for Recσ and
Min we shall need to resort to more complicated programs that mimic the reduction
behaviour of recσ, min in a more precise way, using byval to impose a certain evaluation
order. We abbreviate the type of recσ as ρ, and the type of min as µ; we also write
byval+

σ for byvalσ,(σ→N→σ)
σ .

Recσ = byval+
σ (Yρ (λrρ.

λxfn. ifzero n x (byval εN (λn′. f ((byval+
σ r)xfn

′) n′) (pre n))))

Min = byvalN→N
N (Yµ (λmµ. λfn. ifzero (f n) n ((byvalN→N

N m) f (suc n))))

We may then translate a term M : σ of W or T + min to a term M◦ : σ of PCF + byval
simply by replacing each occurrence of whileσ, recσ, min by the corresponding PCF +
byval program. The following facts are routine to check by induction on the generation
of  :

Proposition 2 (i) If M  M ′ then M◦  + M ′
◦
.

(ii) If M◦  N then there is some M ′ such that M  M ′.
(iii) Hence M  ∗ n̂ iff M◦  ∗ n̂. �

Next, we show that W and T + min are also intertranslatable, though in a looser
sense. First, in either of these languages, it is an easy exercise to write a program
6=: N → N → N that implements inequality testing. To assist readability, we shall use
6= as an infix, and also allow ourselves some obvious pattern-matching notation for λ-
abstractions on product types. To translate from T+min to W, we use the W programs

Rec′σ = λxfn. snd (whileN×σ (λ〈n′, x′〉. n′ 6= n)

〈0, x〉 (λ〈n′, x′〉. 〈suc n′, fx′n′〉))
Min ′ = λfn. whileN (λn′. fn′ 6= 0) n suc

We may then translate a T + min term M to a W term M† simply by replacing each
occurrence of recσ min by Rec′σ, Min ′ respectively. However, it will not in general

be the case for this translation that if M  M ′ then M†  + M ′
†
: the operational

behaviour of M and M† at an intensional level may be quite different. Nevertheless, we
can show that the translation is faithful in the sense that M and M† are observationally
equivalent when both are transported to PCF:

Proposition 3 (i) (Rec′σ)◦ 'obs Recσ and (Min ′)◦ 'obs Min as PCF terms.
(ii) For any closed term M of T + min, we have (M†)◦ 'obs M

◦.
(iii) For any closed M : N in T + min, we have M  ∗ n iff M†  ∗ n.

Proof sketch: (i) For Recσ, by Theorem 1 it suffices to show that for any closed PCF
terms X : σ, F : σ → N→ σ and N : N, we have

(Rec′σ)◦ X F N 'obs Recσ X F N .

But this is routinely verified: if N diverges then both sides admit infinite reduction
sequences and so are observationally equivalent to ⊥σ; whilst if N  ∗ n then an easy
induction on n shows that

(Rec′σ)◦ X F n ≡ F (· · · (F (F X 0̂) 1̂) · · ·) n̂− 1 ≡ Recσ X F n .
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A similar approach works for Min.
(ii) follows immediately, since (M†)◦ may be obtained from M◦ by replacing certain

occurrences of Recσ,Min by (Rec′σ)◦, (Min ′)◦.
(iii) is now immediate from (ii) and Proposition 2(iii). �

To translate from W to T + min, we may define

While ′σ = λcxf. Recσ x (λx′n. fx′)

(min (λn. Recσ x (λx′n. fx′) 6= 0) 0)

and translate a W term M to a T+min term M‡ by replacing each whileσ with While ′.
Once again, the operational behaviour of M‡ is in general quite different from that of
M : indeed, this translation is grossly inefficient from a practical point of view, since
typically some subcomputations will be repeated several times over. Nonetheless, if we
consider programs only up to observational equivalence, the translation is still faithful
in the way that we require:

Proposition 4 (i) (While ′σ)◦ 'obs Whileσ.
(ii) For any closed term M of W, we have (M‡)◦ 'obs M

◦.
(iii) For any closed M : N in W, we have M  ∗ n iff M‡  ∗ n.

Proof sketch: Closely analogous to Proposition 3. For (i), we show that by induction
on n that if C(Fn(X)) 0̂ whereas C(F i(X)) m̂i 6= 0̂ for each i < n, then

(While ′σ)◦ C F X ≡ Fn(X) ≡ Whileσ C F X .

Furthermore, we show that if there is no n with this property, then (While ′σ)◦ C F X and
Whileσ C F X both admit infinite reduction sequences, so that both are observationally
equivalent to ⊥σ. �

In summary, we have shown that T + min and W are equally expressive as sublan-
guages of PCF, in the sense that a closed PCF term M is observationally equivalent to
(the image of) a T + min term iff it is observationally equivalent to a W term. As al-
ready noted, the language W appears to embody a natural general principle of iteration,
suggesting that this level of expressive power is a natural one to consider.

Although not formally necessary for this paper, it is also worth observing that the
above equivalence works level-by-level. For each k ≥ 0, let us define sublanguages PCFk,
Tk + min, Wk of PCF, T + min, W by admitting (respectively) the constants Yσ, recσ,
whileσ only for types σ of level ≤ k. Then the translations −†,−‡ clearly restrict to
translations between Tk+min and Wk, so that Tk+min and Wk are equally expressive
as sublanguages of PCF.3 In fact, for k ≥ 1, we can even regard them as sublanguages
of PCFk, since it is an easy exercise to replace our ‘precise’ translation −◦ for Tk + min
or Wk by a translation −• up to observational equivalence that requires only PCFk.
This does not work for k = 0, however, since the implementation of recN requires at
least YN→N.

3This hierarchy turns out to be strict, as will be shown in a forthcoming paper [19]. The strictness
of the hierarchy of languages PCFk is established in [18].
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2.1.1 Weaker languages

A few weaker languages will play more minor roles in the paper. We introduce them here,
suppressing formal justifications of points mentioned merely for the sake of orientation.

To motivate these languages, we note that even the primitive recursor recN of T0

works in a ‘lazy’ way: it is possible for the value of recNX F n̂+ 1 to be defined even
if that of recNX F n̂ is not, for example if n = 0, X = ⊥N and F = λxn.0. This
contrasts with the ‘strict’ behaviour of Kleene’s original version of primitive recursion,
in which the value of recNX F at n̂ is obtained by successively computing its values

at 0̂, 1̂, . . . , n̂− 1, all of which must be defined. (Of course, the distinction is not very
visible in purely total settings such as S or Ct.)

We may capture this stricter behaviour with the help of byval εN : (N→ N)→ N→ N,
which we shall here write as byval [N]. From this, we may inductively define an operator

byval [σ] : (σ → σ)→ σ → σ

for each level 0 type σ by:

byval [σ×τ ] = λf. λxσ×τ . byval [σ] (λyσ. byval [τ ](λz
τ . f〈y, z〉) (snd x)) (fst x) .

We may now use these operators to define ‘strict’ versions of recσ and whileσ for any
type σ of level 0. We do this by introducing constants recstr

σ and whilestr
σ of the same

types as recσ, whileσ, with reduction rules

recstr
σ X F 0̂  X

recstr
σ X F n̂+ 1  byval [σ] (λm.F m n̂) (recstr

σ X F n̂)

whilestr
σ C X F  byval [σ] (λx. ifzero (Cx) (whileσ C (Fx) F ) x) X

We also add recstr
σ X F [−] as a basic evaluation context. By using these in place of

their non-strict counterparts, and also including byval [N] so that the operators byval [σ]

are available, we obtain languages Tstr
0 , Tstr

0 + min and W str
0 .

Our earlier PCF programs Recσ, Whileσ may be readily adapted to yield faithful
translations of these languages into PCF + byval . It can also be checked that Tstr

0 +
min and W str

0 are intertranslatable in the same way as T0 + min and W0, and so are
equi-expressive as sublanguages of PCF. Finally, we can regard the strict versions as
sublanguages of the lazy ones up to observational equivalence,4 since for example

recstr
σ 'obs λxfn. byval [σ] (λx′. recσ x (λym. byval(λy′.fy′n) y)n) x .

and it is easy to supply terms of B observationally equivalent to each byval [σ].

It is natural to think of Wstr
0 as the language for ‘everyday’ iterative computations

on ground data. It is easy to check that at type level 1, Tstr
0 + min and Wstr

0 define

4It is shown in [20, Theorem 6.3.23] that recstr0 is strictly weaker than rec0 (note that T0 + min is

in essence the language known as Klexmin in [20]). What is perhaps more surprising is that T0 + min
defines more total functionals at third order than does Tstr

0 + min, despite the fact that rec0, recstr0
have the same behaviour on all total arguments [19].
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all Turing computable functions, and indeed that (respectively) recstr
N and whilestr

N×N are
sufficient for this purpose.

The weakest language of all that we shall consider is Tstr
0 . This will play an ancillary

as a language for a rudimentary class of ‘non-controversially total’ functionals present
in all settings of interest, enabling us to formulate our main theorem in a robust and
portable form. In all total type structures of interest, the Tstr

0 definable functionals
will clearly coincide with those given by Kleene’s S1–S8; at type level 1 these are just
the usual primitive recursive functions. However, a somewhat subtle point is that for
typical interpretations in partial type structures, Tstr

0 will be slightly stronger than the
usual formulations of S1–S8, since the constant ifzero will give us the power of strong
definition by cases which is not achievable via S1–S8 alone. This point will be significant
in Section 3, where we shall frequently claim that certain elements of the model SP0 are
Tstr

0 definable; the reader should bear in mind here that strong definitions by cases are
permitted.5

2.1.2 Elimination of product types

So far, we have worked with languages with product types in order to manifest the
equivalence of T + min and W (and various restrictions thereof) in a perspicuous way.
However, since the bar recursors that are the subject of our main theorem have a type
not involving products, it will be sufficient from here on to work with types without
×, and it will simplify the presentation of nested sequential procedures (in the next
subsection) to do so. From the point of view of expressivity, nothing of significance is
lost by dispensing with product types, in view of the following proposition. Here we
say a type σ is ×-free if it does not involve products, and a term M is ×-free if the
types of M and all its subterms are ×-free. In particular, a ×-free term M may involve
operators Yσ, recσ, whileσ only for ×-free σ. We shall write idσ for λxσ.x, and g ◦ f for
λx.g(f x).

Proposition 5 Suppose σ is ×-free. Then any closed term M : σ of PCF (resp. T +
min, W) is observationally equivalent to a ×-free term of the same language.

Proof sketch: This will be clear from familiar facts regarding the embeddability of
arbitrary types in ×-free ones, as covered in detail in [20, Section 4.2]. More specifically,
we may specify, for each type σ, a ×-free type σ̂ such that σ is a Tstr

0 definable retract
of σ̂ up to observational equivalence: that is, there are closed B terms encσ : σ → σ̂ and
decσ : σ̂ → σ such that λxσ. decσ(encσ x) 'obs idσ. Moreover, we may choose these
data in such a way that

• N̂ = N and σ̂ → τ = σ̂ → τ , and moreover we have encN = decN = idN, encσ→τ =
λf. encτ ◦ f ◦ decσ, and decσ→τ = λg. decτ ◦ g ◦ encσ (these facts imply that for
all ×-free σ we have σ̂ = σ and encσ 'obs decσ 'obs idσ),

• pairing and projections are represented relative to this encoding by ×-free pro-
grams Pair : σ̂ → τ̂ → σ̂ × τ , Fst : σ̂ × τ → σ̂, Snd : σ̂ × τ → τ̂ ,

5In [20], this issue was addressed by introducing a specially defined class SP0,prim+ of strongly total
elements of SP0.
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• for any σ we have Yσ 'obs decσ(Yσ̂), and similarly for recσ and whileσ.

Using these facts, it is easy to construct a compositional translation assigning to each
term M : σ (with free variables xi : σi) a ×-free term M̂ : σ̂ (with free variables

x̂i : σ̂i) such that M 'obs decσ(M̂ [~̂x 7→ enc(~x)]) (we omit the uninteresting details). In

particular, for closed M of ×-free type σ, this yields M 'obs M̂ , which achieves our
purpose. �

From here onwards, we shall therefore use the labels PCF, T + min, W, etc. to refer
to the ×-free versions of these languages, and shall only refer to types generated from
N via →.

2.2 Nested sequential procedures

Next, we summarize the necessary elements of the theory of nested sequential procedures
(NSPs) also known as PCF Böhm trees,6 relying on [20] for further details and for the
relevant proofs. Although we shall provide enough of the formal details to support what
we wish to do, a working intuition for NSPs is perhaps more easily acquired by looking
at examples. The reader may therefore wish to look at the examples appearing from
Definition 10 onwards in conjunction with the following definitions.

As explained in Subsection 3.2.5 and Section 6.1 of [20], nested sequential proce-
dures (or NSPs) are infinitary terms generated by the following grammar, construed
coinductively:

Procedures: p, q ::= λx0 . . . xr−1. e

Expressions: d, e ::= ⊥ | n | case a of (i⇒ ei | i ∈ N)

Applications: a ::= x q0 . . . qr−1

Informally, an NSP captures the possible behaviours of a (sequential) program with
inputs bound to the formal parameters xj , which may themselves be of function type.
Such a program may simply diverge (⊥), or return a value n, or apply one of its inputs
xj to some arguments—the subsequent behaviour of the program may depend on the
numerical result i of this call. Here the arguments to which xj is applied are themselves
specified via NSPs q0, . . . , qr−1 (which may also involve calls to xj). In this way, NSPs
should be seen as syntax trees which may be infinitely deep as well as infinitely broad.

We use t as a meta-variable ranging over all three kinds of NSP terms. We shall
often use vector notation ~x, ~q for finite sequences x0 . . . xr−1 and q0 . . . qr−1. Note that
such sequences may be empty, so that for instance we have procedures of the form λ.e.
As a notational concession, we will sometimes denote the application of a variable x to
an empty list of arguments by x(). If p = λ~y.e, we will also allow the notation λx.p to
mean λx~y.e. The notions of free variable and (infinitary) α-equivalence are defined in
the expected way, and we shall work with terms only up to α-equivalence.

If variables x are considered as annotated with simple types σ (as indicated by
writing xσ), there is an evident notion of a well-typed procedure term p : σ, where

6The term ‘nested sequential procedure’ was adopted in [20] as a neutral label for a notion that is
of equal relevance to both PCF and Kleene computability.
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σ ∈ T. Specifically, within any term t, occurrences of procedures λ~x.e (of any type),
applications x~q (of the ground type N) and expressions e (of ground type) have types
that are related to the types of their constituents and of variables as usual in typed
λ-calculus extended by case expressions of type N. We omit the formal definition here
since everything works as expected; for a more precise formulation see [15, Section 6.1.1].

For each type σ, we let SP(σ) be the set of well-typed procedures of type σ, and
SP0(σ) for the set of closed such procedures; note that SP0(N) ∼= N⊥. As a notational
liberty, we will sometimes write the procedures λ.n, λ.⊥ ∈ SP0(N) simply as n,⊥.

Note that in the language of NSPs, one cannot directly write e.g. fσ→Nxσ, since
the variable xσ is not formally a procedure. However, we may obtain a procedure
corresponding to xσ via hereditary η-expansion: if σ = σ0 → · · · → σr−1 → N, then we
define a procedure xση inductively on types by

xση = λzσ0
0 · · · z

σr−1

r−1 . case xz
σ0η
0 · · · zσr−1η

r−1 of (i⇒ i) .

For example, the procedure corresponding to the identity on type σ may now be written
as λxσ.xση. Note that xNη = λ. case x() of (i⇒ i).

In order to perform computation with NSPs, and in particular to define the ap-
plication of a procedure p to an argument list ~q, we shall use an extended calculus
of meta-terms, within which the terms as defined above will play the role of normal
forms. Meta-terms are generated by the following infinitary grammar, again construed
coinductively:

Meta-procedures: P,Q ::= λ~x.E

Meta-expressions: D,E ::= ⊥ | n | case G of (i⇒ Ei | i ∈ N)

Ground meta-terms: G ::= E | x ~Q | P ~Q

Again, our meta-terms will be subject to the evident typing rules which work as ex-
pected. Unlike terms, meta-terms are amenable to a notion of (infinitary) substitution:
if T is a meta-term and Q0, . . . , Qr−1 are meta-procedures whose types match those of

x0, . . . , xr−1 respectively, we have the evident meta-term T [~x 7→ ~Q].
We equip our meta-terms with a head reduction  h generated as follows:

• (λ~x.E) ~Q h E[~x 7→ ~Q] (β-rule).

• case ⊥ of (i⇒ Ei) h ⊥.

• case n of (i⇒ Ei) h En.

• case (case G of (i⇒ Ei)) of (j ⇒ Fj) h

case G of (i⇒ case Ei of (j ⇒ Fj)).

• If G h G
′ and G is not a case meta-term, then

case G of (i⇒ Ei) h case G′ of (i⇒ Ei) .

• If E  h E
′ then λ~x.E  h λ~x.E

′.
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We write  ∗h for the reflexive-transitive closure of  h. We call a meta-term a head
normal form if it cannot be further reduced using  h. The possible shapes of meta-
terms in head normal form are ⊥, n, case y ~Q of (i ⇒ Ei) and y ~Q, the first three
optionally prefixed by λ~x.

We may now see how an arbitrary meta-term T may be evaluated to a normal form t,
by a process analogous to the computation of Böhm trees in untyped λ-calculus. For the
present paper a somewhat informal description will suffice; for a more formal treatment
we refer to [20, Section 6.1]. First, we attempt to reduce T to head normal form by
repeatedly applying head reductions. If a head normal form is never reached, the normal
form is ⊥ (possibly prefixed by some λ~x appropriate to the type). If the head normal
form is ⊥ or n (possibly prefixed by λ~x), then this is the normal form of T . If the head

normal form is case y ~Q of (i ⇒ Ei), then we recursively evaluate the Qj and Ei to
normal forms qj , ei by the same method, and take t = case y~q of (i⇒ ei); likewise for

case expressions prefixed by a λ, and for meta-terms y ~Q. Since the resulting term t
may be infinitely deep, this evaluation is in general an infinitary process in the course
of which t crystallizes out, although any required finite portion of t may be computed
by just finitely many reductions.

If p = λx0 · · ·xr.e ∈ SP(σ → τ) and q ∈ SP(σ), we define the application p·q ∈ SP(τ)
to be the normal form of the meta-procedure λx1 · · ·xr. e[x0 7→ q]. This makes the sets
SP(σ) into a total applicative structure SP, and the sets SP0(σ) of closed procedures
into a total applicative structure SP0.

We write v for the syntactic ordering on each SP(σ), so that p v p′ if p is obtained
from p′ by replacing certain subterms (perhaps infinitely many) by ⊥. It is not hard to
check that each SP0(σ) is a DCPO with this ordering, and that application is monotone
and continuous with respect to this structure.

We also have an extensional preorder � on each SP0(σ) defined as follows: if p, p′ ∈
SP0(σ) where σ = σ0 → · · · → σt−1 → N, then

p � p′ iff ∀q0, . . . , qt−1.∀n. (p · q0 · . . . · qt−1 = λ.n) ⇒ (p′ · q0 · . . . · qt−1 = λ.n)

The following useful fact is established in Subsection 6.1.4 of [20]:

Theorem 6 (NSP context lemma) If p � p′ ∈ SP0(σ), then for all r ∈ SP0(σ → N)
we have r · p v r · p′.

We now have everything we need to give an interpretation of simply typed λ-calculus
in SP: a variable xσ is interpreted by xση, application is interpreted by ·, λ-abstraction
is interpreted by itself, and we may also add a constant p for each p ∈ SP0 (interpreted
by itself). The following non-trivial theorem, proved in [20, Section 6.1], ensures that
many familiar kinds of reasoning work smoothly for NSPs:

Theorem 7 SP0 is a typed λη-algebra: that is, if U, V : σ are closed simply typed λ-
terms with constants drawn from SP0 and U =β V , then U, V denote the same element
of SP0(σ) under the above interpretation.

One of the mathematically interesting aspects of SP0 is the existence of several well-
behaved substructures corresponding to more restricted flavours of computation. The
two substructures of relevance to this paper are defined as follows:
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Definition 8 (i) The application tree of an NSP term t is simply the tree of all occur-
rences of applications x~q within t, ordered by subterm inclusion.

(ii) An NSP term t is left-well-founded (LWF) if its application tree is well-founded.
(iii) A term t is left-bounded if its application tree is of some finite depth d.

The following facts are proved in [20, Section 6.3]:

Theorem 9 (i) LWF procedures are closed under application. Moreover, the substruc-
ture SP0,lwf of SP0 consisting of LWF procedures is a sub-λη-algebra of SP0.

(ii) Left-bounded procedures are closed under application, and the corresponding sub-
structure SP0,lbd is also a sub-λη-algebra of SP0.

Next, we indicate how NSPs provide us with a good model for the behaviour of
terms of PCF + byval .

Definition 10 To any PCF + byval term M : σ (possibly with free variables) we may
associate a procedure [[M ]] ∈ SP(σ) (with the same or fewer free variables) in a compo-
sitional way, by recursion on the term structure of M :

• [[xσ]] = xση.

• [[λx.M ]] = λx.[[M ]].

• [[MN ]] = [[M ]] · [[N ]]

• [[suc]] = λxN. case x() of (0⇒ 1 | 1⇒ 2 | 2⇒ 3 | · · ·).

• [[pre]] = λxN. case x() of (0⇒ 0 | 1⇒ 0 | 2⇒ 1 | · · ·).

• [[ifzero]] = λxNyNzN. case x() of (0⇒ case y() of (j ⇒ j)
| i+ 1⇒ case z() of (j ⇒ j)).

• [[byval~στ ]] = λf~σ→N→τ~xn~y. case n() of (0⇒ case f~x η(λ.0)~y η of (j ⇒ j)
| 1⇒ case f~x η(λ.1)~y η of (j ⇒ j)
| · · · ).

• If σ = σ0 → · · ·σr−1 → N, then [[Yσ]] is the NSP depicted below:λFσ x0σ0… xr-1σr-1 . case F(  ) x0η… xr-1η of  (i  i )
λx0σ0… xr-1σr-1 . case F(  ) x0η… xr-1η of  (i  i )
λx0σ0… xr-1σr-1 . case F(  ) x0η… xr-1η of  (i  i )

.  .  .
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The NSP for Yσ is the archetypal example of a non-LWF procedure: the nested
sequence of application subterms F (· · ·) never bottoms out.

The following theorem, proved in [20, Subsection 7.1.3], confirms that this interpre-
tation is faithful to the behaviour of PCF + byval programs:

Theorem 11 (Adequacy of NSP model) If M is any closed PCF + byval term of
type N, then M  ∗ n iff [[M ]] = λ.n, and M diverges iff [[M ]] = λ.⊥.

It is also the case that every computable element of any SP0(σ) is denotable by a closed
PCF + byval term of type σ (see [20, Subsection 7.1.5]), though we shall not need this
fact in this paper.

We also obtain interpretations of T+min and W in SP0, induced by the translations
of these languages into PCF as described in Subsection 2.1. Applying the definition of
[[−]] above to the PCF programs Recσ, Min, Whileσ, we may thus obtain the appropriate
NSPs for the constants recσ, min, whileσ respectively. To avoid clutter, we allow an
application term a to stand for the expression case a of (i⇒ i). Where a case branch
label involves a metavariable i or j, there is intended to be a subtree of the form displayed
for each i, j ∈ N. λxfny.  case n( ) of  (     ) .  .  .  .recσ:

0
→

→

xyη 1 2f(  )(λ.0)yη f(  )(λ.1)yη
λy. xyη

→ →

→ → λy. f(  )(λ.0)yη
λy. xyη

→ →

→→

λfn. case n( ) of  (   )

.  .  .  .
min :

0

i j+1

icase f(λ.i) of  (   )case f(λ.i+1) of  (   )i+1
0

j’+1
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λcxfy. case cxη of  (   )

.  .  .  .
whileσ :

0

j+1 case c(  ) of  (   ) case c(  ) of  (   )
0

j’+1

→

xy η→

0

λy. fxηy η→ → fxηy η→
j’’+1λy. f(  )y ηλy. fxηy η

→ →

→→ λy. fxηy ηf(  )y η
→ →

→

Clearly, each of these NSPs is left-well-founded; the one for min is even left-bounded,
since there is no nesting of calls to n or f . Since also the NSPs for suc, pre, ifzero,
byval and xση are plainly LWF, and LWF procedures are closed under λ-abstraction
and application (Theorem 9(i)), we have the following important result:

Theorem 12 The interpretation of any term of T + min or W is an LWF procedure.

The reader may also enjoy constructing the appropriate trees for recstr
σ and whilestr

σ

where σ is of level 0, and to observe that these trees are left-bounded (in contrast to
those for recσ and whileσ). Since the trees for min and all the constants of B are also
left-bounded, we may infer by Theorem 9(ii) that the interpretation of any term of
Tstr

0 + min or Wstr
0 is left-bounded. This may shed light on the discussion of Section 1,

but will not be formally required for the remainder of the paper.

2.3 Bar recursors

We conclude the section by explaining the notions of bar recursion that we shall use.
Traditionally, bar recursion has usually been considered either as a purely syntactic
operation (as in [27]), or as an element of a total type structure such as the Kleene-
Kreisel total continuous functionals Ct or Bezem’s strongly majorizable functionals SM.
Here, for expository purposes, we shall introduce bar recursion first in a ‘naive’ way
with reference to the full set-theoretic type structure S, and then as an operation within
SP0 defined by a certain PCF program—the latter will provide the setup for the main
theorem of Section 3. In Section 4, we will relate this to more familiar notions of bar
recursion and will show how our results transfer relatively easily from SP0 to models
such as Ct and SM.

As explained in Section 1, bar recursion is in essence recursion over well-founded
trees. For the purpose of this paper, a tree T will be an inhabited prefix-closed
subset of N∗ (the set of finite sequences over N), with the property that for every
~x = (x0, . . . , xi−1) ∈ T , one of the following holds:

1. There is no y ∈ N such that (x0, . . . , xi−1, y) ∈ T (we then say ~x is a leaf of T ).

2. For all y ∈ N, (x0, . . . , xi−1, y) ∈ T (we then say ~x is an internal node of T ).
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We write T l, T n for the set of leaves and internal nodes of T respectively.
A tree T is well-founded if there is no infinite sequence x0, x1, . . . over N such that

(x0, . . . , xi−1) ∈ T for every i. Thus, in a well-founded tree, every maximal path
terminates in a leaf. If T is well-founded, a function f : T → N may be defined by
recursion on the tree structure if we are given the following data:

• A leaf function L : T l → N specifying the value of f on leaf nodes.

• A branch function G : T n×NN → N specifying the value of f on an internal node
~x, assuming we have already defined the value of f on all the immediate children
of f . Specifically, if b(y) gives the value of f(~x, y) for every y ∈ N, then G(~x, b)
gives the value of f(~x).

Indeed, we may define the function BRTL,G obtained by bar recursion from L and G to
be the unique function T → N satisfying:

BRTL,G(~x) = L(~x) if ~x ∈ T l

BRTL,G(~x) = G(~x, Λy.BRTL,G(~x, y)) if ~x ∈ T n

The existence and uniqueness of BRTL,G are easy consequences of well-foundedness.
It is easy to see how L and G may be represented by objects of simple type: elements

of T may be represented by elements of N via some standard primitive recursive coding
〈· · ·〉 : N∗ → N, so that we may consider L and G as functions N→ N and N×NN → N
respectively. As regards the tree T itself, we now introduce two related ways, due
respectively to Spector [27] and Kohlenbach [13], for representing well-founded trees by
means of certain functionals F : NN → N. We shall write |~x| for the length of a sequence
~x, and if j ∈ N, shall write [~x jω] for the primitive recursive function N→ N defined by

[x0, . . . , xr−1, j
ω](i) =

{
xi if i < r,
j if i ≥ r

Definition 13 Suppose F is any function NN → N.
(i) We say ~x ∈ N∗ satisfies the Spector bar condition (with respect to F ) if

F ([~x 0ω]) < |~x| ,

and the Kohlenbach bar condition if

F ([~x 0ω]) = F ([~x 1ω]) .

(ii) The Spector tree of F , written T S(F ), is the set of sequences ~x ∈ N∗ such that
no proper prefix of ~x satisfies the Spector bar condition w.r.t. F . The Kohlenbach tree
T K(F ) is defined analogously using the Kohlenbach bar condition.

Both T S(F ) and T K(F ) are clearly trees in our sense. Furthermore, the following
important fact ensures a plentiful supply of functionals giving rise to well-founded trees.

Proposition 14 If F is continuous with respect to the usual Baire topology on NN, then
both T S(F ) and T K(F ) are well-founded.
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Proof sketch: For any infinite sequence x0, x1, . . ., there will be some ‘modulus of
continuity’ m for F such that for all n ≥ m and all j we have F ([x0, . . . , xn−1, j

ω]) =
F (Λi.xi). It follows easily that some finite subsequence (x0, . . . , xn−1) will satisfy the
Spector [resp. Kohlenbach] condition. The shortest such prefix will then be a leaf in
T S(F ) [resp. T K(F )]. �

There are also other ways in which well-founded trees may arise—for instance, it is
well-known that if F is majorizable then T S(F ) is well-founded—but it is the continuous
case that will be most relevant to our purposes.

Using the above representations, we may now introduce our basic definition of bar
recursion. We are here naively supposing that F,L,G are drawn from the full set-
theoretic type structure S, although this is not really the typical situation; relativizations
of this definition to other total type structures will be considered in Section 4.

Definition 15 (Bar recursors) A Spector bar recursor (over S) is any partial func-
tion

BR : S((N→ N)→ N) × S(N→ N) × S(N× (N→ N)→ N) ⇀ N
such that for all F : NN → N with T S(F ) well-founded and for any L : N → N and
G : N× NN → N, we have

BR(F,L,G)(〈~x〉) = L(〈~x〉) whenever ~x ∈ T S(F )l,

BR(F,L,G)(〈~x〉) = G(〈~x〉, Λz.BR(F,L,G)(〈~x, z〉) whenever ~x ∈ T S(F )n.

The notion of Kohlenbach bar recursor is defined analogously using T K(F ).

Note that the above equations uniquely fix the value of BR(F,L,G)(〈~x〉) for all ~x ∈
T S(F ). We shall not be concerned with the behaviour of bar recursors BR on sequences
~x outside the tree in question,7 nor with their behaviour on arguments F such that T (F )
is not well-founded.

Our next step will be to re-construe the definition of bar recursors as a recursive
program within PCF. For this, we first note that both the Spector and Kohlenbach
bar conditions are readily testable by means of programs in PCF or indeed in Tstr

0 .
Although these languages have just a single base type N, for clarity we shall write N∗

for occurrences of N whose role is to represent sequences ~x via their codes 〈~x〉. We shall
suppose we have a fixed choice of Tstr

0 programs

len : N∗ → N , add : N∗ → N→ N∗ , basic : N∗ → N→ (N→ N)

such that for any ~x, z, j, i we have

len 〈~x〉  ∗ |~x| , add 〈~x〉 z  ∗ 〈~x, z〉 , basic ~x j i  ∗ [~x, j](i) ,

(where we omit the hats from PCF numerals). We also presuppose fixed Tstr
0 imple-

mentations of = and <. Using this machinery, we may now define a PCF term

BRS : ((N→ N)→ N) → (N∗ → N) → (N∗ → (N→ N)→ N) → (N∗ → N)

7In this respect our definition of ‘bar recursor’ here is slightly weaker than some given in the literature
(e.g. in [20, Section 7.3]); this will in principle make our main theorem slightly stronger, though not in
any deep or essential way.
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by

BRS F L G x = if (F (basic(x, 0)) < len x) then L x

else G x (λz.BRS F L G (add x z))

or a little more formally by

BRS = λFLG. YN→N (λB. λx.

if (F (basic(x, 0)) < len x) then L x else G x (λz.B(add x z))) .

The Kohlenbach version BRK (of the same type) is defined analogously, replacing the
subterm (F (basic(x, 0)) < len x) by (F (basic(x, 0)) = F (basic(x, 1))).

Both of these PCF terms may be interpreted in SP0, yielding NSPs at the above
type which we shall also denote by BRS and BRK respectively. We shall refer to these
as the canonical (Spector or Kohlenbach) bar recursors within SP0.

It is not hard to see intuitively that these NSPs for BRS and BRK are non-LWF,
since the unrolling of the recursion will lead to an infinite sequence of nested calls to
G. To illustrate the phenomenon, we schematically depict here part of the NSP for
λFLG. BRS F LG 〈 〉 (so that evaluations of x are elided):λFLG.   case  F (0ω)  of  (−  ⇒  G ⟨⟩ (   ))

.  .  .  .
λz. case  F (z,0ω)  of  (0  ⇒  L⟨z⟩  |  −  ⇒  G ⟨z⟩ (   ))

λz’. case  F (z,z’,0ω)  of  (0,1  ⇒  L⟨z,z’⟩  |  −  ⇒  G ⟨z,z’⟩ (   ))
It follows immediately by Theorem 12 that these particular bar recursors within SP0

are not denotable in T+min. However, this does not in itself address the main question
of interest: what we wish to know is that no element of SP0 can have the extensional
behaviour of a bar recursor, even if we restrict attention to arguments F,L,G which
represent total functionals in the spirit of Definition 15. This begs the question of what
it means for an element of SP0 to ‘represent’ a total functional. We now briefly indicate
why there is room for several reasonable answers to this question, thus motivating our
‘robust’ approach which is designed to work for all of them.

The general picture we have in mind is that of some chosen type structure T of total
functionals over N—that is, a family of sets T (σ) where T (N) = N and T (σ → τ) is
some set of total functions T (σ)→ T (τ)—along with some way of representing T within
SP0. The latter will in general consist of what in [20] we call a (type- and numeral-
respecting) applicative simulation γ : T −−BSP0: that is, a family of total relations
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γσ ⊆ T (σ) × SP0(σ) such that γN (n, x) iff x = n, and γσ→τ (f, f ′) and γσ(x, x′) imply
γ(f(x), f ′ · x′). Relative to this, we may call an element of SP0(σ) total if it is in the
image of γσ. We might then regard as a ‘bar recursor’ in SP0 any procedure Φ that
satisfies (an analogue of) the equations of Definition 15 for all total F,L,G ∈ SP0 of
appropriate types.

However, there is scope for variation here, both in the choice of T (which could be
either Ct or HEO, for example) and in the choice of the simulation γ. Different choices
will in general lead to different notions of ‘total element’ within SP0 (this phenomenon
is explored in [24]), and hence to different criteria for what it means to be a bar recursor
in SP0.

Our approach to dealing with this is to identify a core class of elements of SP0 which
are likely to be ‘total’ under all reasonable choices of interest, and then postulate,
as a minimal requirement for any proposed ‘bar recursor’ in SP0, that the equations
of Definition 15 should at least be satisfied by these core total elements. Our main
theorem will then claim that even this minimal requirement cannot be met by any LWF
procedure. As we shall argue in Section 4, this will enable us to conclude that in no
reasonable sense can a bar recursor be definable in T + min or W.

In fact, a suitable class of core total elements for our purpose will be those definable
in the language Tstr

0 of Subsection 2.1.1 (interpreted in SP0 via its translation to PCF).
Our rationale for this is that all reasonable choices of the total type structure T can
be expected to be models for Tstr

0 (or equivalently for Kleene’s S1–S8), and that it is
furthermore a mild requirement that γ should relate the interpretation of any closed
Tstr

0 term in T to its interpretation in SP0. (This will in fact be so if it is the case
for the standard programs k and s and for the constants suc, pre, ifzero, recstr

σ .) Our
thesis, then, is that the Tstr

0 definable elements of SP0 can be expected to be ‘total’ in
all senses of interest.

All of this leads us to the following definitions. Here we identify the PCF programs
basic, add, len with their interpretations in SP0.

Definition 16 Suppose F ∈ SP0((N→ N)→ N)
(i) We say ~x ∈ N∗ satisfies the Spector bar condition with respect to F if F · (basic ·

〈~x〉·0) < len·〈~x〉, and the Kohlenbach bar condition if F ·(basic·〈~x〉·0) = F ·(basic·〈~x〉·1).
(ii) The tree T S(F ) [resp. T K(F )] consists of all sequences ~x such that no proper

prefix of ~x satisfies the Spector [resp. Kohlenbach] bar condition.

The following easy fact will be useful:

Proposition 17 If F ∈ SP0((N→ N)→ N) is definable by a term of Tstr
0 , then T S(F ),

T K(F ) are well-founded.

Proof: If F is Tstr
0 definable, clearly F will represent a total functional F : NN → N with

respect to the obvious representation of functions N→ N within SP0(N→ N). Moreover,
since application in SP0 is continuous, it is easy to see that F will be continuous for
the Baire topology, and so by Proposition 14 the trees T S(F ) = T S(F ) and T K(F ) =
T K(F ) will be well-founded. �
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Definition 18 A weak Spector bar recursor in SP0 is an element

Φ ∈ SP0 (((N→ N)→ N) → (N∗ → N) → (N∗ → (N→ N)→ N) → (N∗ → N))

such that the following hold for all Tstr
0 -definable F,L,G ∈ SP0 of appropriate types

such that for all ~x ∈ T S(F ):

Φ · F · L ·G · 〈~x〉 = L · 〈~x〉 if ~x ∈ T S(F )l ,
Φ · F · L ·G · 〈~x〉 = G · 〈~x〉 · (λzN. Φ · F · L ·G · (add · 〈~x〉 · z)) if ~x ∈ T S(F )n .

The notion of weak Kohlenbach bar recursor in SP0 is defined analogously.

Here the abstraction λz is understood simply as a λ-abstraction within the language of
NSPs; note that for any given Φ, F, L,G, ~x, the body of this abstraction will evaluate
to an NSP with free variable z.

Clearly the canonical bar recursors BRS , BRK defined earlier are examples of weak
bar recursors in this sense. Moreover:

Proposition 19 If Φ is any weak (Spector or Kohlenbach) bar recursor, F,L,G are
Tstr

0 -definable, and ~x ∈ T (F ), then the value of Φ · F · L · G · 〈~x〉 is a numeral and is
uniquely determined by the defining equations above.

Proof: For a given F,L,G, we show that the set S of ~x ∈ T (F ) for which the propo-
sition holds contains all leaves and all internal nodes whose immediate children are all
in S; it follows that S is the whole of T (F ) since the latter is well-founded. For the
step case, we use the fact that if G is Tstr

0 -definable and h ∈ SP0(N → N) is total (i.e.
h · z ∈ N for all z ∈ N), then G · x · h ∈ N for any x ∈ N. We show this by an easy
induction on the Tstr

0 term that denotes G, which we may assume to be some β-normal
form λxh.M , so that all variables are bound within M are of type level 0. �

Clearly, if F represents an element F̌ ∈ Ct((N→ N)→ N) via any reasonable simula-
tion γ, it will be automatic that T (F ) is well-founded since any such F̌ is continuous.
Indeed, since bar recursors exist as third-order functionals Φ̌ within Ct, any elements
Φ ∈ SP0 that represent such Φ̌ will be total weak bar recursors relative to γ. The
situation is different for the type structure HEO: there are classically discontinuous
functions F̌ ∈ HEO((N→ N)→ N), and if F ∈ SP0 represents such an F̌ then T (F ) may
be non-well-founded, in which case Definition 18 places no condition on how Φ should
behave on F .

In our main proof, we shall find it more convenient to work with the Kohlenbach
definition, but the theorem will transfer readily to the Spector version in view of the
following easy relative definability result. From here on, we shall allow ourselves to
write k for the pure type of level k, so that 0 denotes N and k + 1 denotes k → N.

Proposition 20 If ΦS is any weak Spector bar recursor in SP0, then a weak Kohlenbach
bar recursor ΦK is T + min definable relative to ΦS. Hence if an LWF weak Spector
bar recursor exists in SP0, then so does an LWF weak Kohlenbach bar recursor.
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Proof: We first construct a T + min definable element U ∈ SP0(2 → 2) such that
for any F ∈ SP0(2) whose Kohlenbach tree is well-founded and is not simply {〈 〉}, the
Spector tree of U · F is precisely the Kohlenbach tree of F . We may achieve this by
defining (in PCF-style notation)

U = λF.λg. (min r. F ([g(0), . . . , g(r − 1), 0ω]) = F ([g(0), . . . , g(r − 1), 1ω]))− 1 .

Using this, we may define

ΦK = λFLGx. if F ([0ω]) = F ([1ω]) then L〈〉 else ΦS(U(F ), L,G)(x) .

It is now easy to check by bar induction on nodes in T K(F ) that BRK is a weak
Kohlenbach bar recursor. �

Conversely, a more subtle argument (given in Kohlenbach [13]) shows that Spector
bar recursion is definable from Kohlenbach bar recursion even in System T, though
we shall not need this here. We also refer the reader to Escardó and Oliva [8] for a
cornucopia of related functionals known to be either interdefinable with or stronger
than Spector bar recursion over System T; our main theorem will thus yield that none
of these functionals are definable in T + min.

One final preliminary is needed. In order to ease notation in our main proof, we
shall actually consider a simpler kind of bar recursor readily obtained as a specialization
of those described above.

Definition 21 A simplified weak Spector bar recursor (in SP0) is an element

Φ ∈ SP0(2→ 2→ 1)

such that the following hold for all T str
0 -definable F,G ∈ SP0 of appropriate types such

that for all ~x ∈ T S(F ):

Φ · F ·G · 〈~x〉 = 2〈~x〉+ 1 if ~x ∈ T S(F )l ,
Φ · F ·G · 〈~x〉 = G · (λzN. Φ · F ·G · (add · ~x · z)) if ~x ∈ T S(F )n .

The notion of simplified weak Kohlenbach bar recursor is defined analogously.

It is easily seen that a simplified weak (Spector or Kohlenbach) bar recursor is Tstr
0 -

definable from an ordinary one just by specializing the leaf function L to λx.2x+1 (this
move is admittedly hard to motivate at this point!) and by eschewing the dependence
of G on an argument x. By analogy with Proposition 19, we have:

Proposition 22 If Φ is any simplified weak (Spector or Kohlenbach) bar recursor, F,G
are Tstr

0 -definable, T (F ) is well-founded and ~x ∈ T (F ), then the value of Φ · F ·G · 〈~x〉
is a numeral and is uniquely determined by the defining equations above.

The proof of Proposition 20 clearly also yields the following:

Proposition 23 If an LWF simplified weak Spector bar recursor exists in SP0, so does
an LWF simplified weak Kohlenbach bar recursor.
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Such simplified bar recursors were called restricted bar recursors in [20, Section 6.3.4],
but the latter name clashes with a different use of the same term by Spector in [27]. In
[20] we supposed that the simplified bar recursors were weaker than the general ones,
so that they led to a slightly stronger non-definability result. Actually, it turns out to
be not too hard to define general bar recursors from simplified ones (we leave this as an
exercise for the interested reader). Nevertheless, we shall prove our main theorem for
the simplified versions, both because that was what was claimed in [20], and because it
does lighten the notational load in parts of our proof. Against this, the later parts of the
proof (Sections 3.5 and 3.6) turn out to be a little more delicate in the simplified setting,
but we think there is also some interest in the opportunity this gives for illustrating the
versatility of our method of proof.

3 The main theorem

In this section, we shall prove the following theorem:

Theorem 24 Within SP0, no simplified weak Kohlenbach bar recursor can be LWF,
and hence none can be definable in T + min or in W .

The corresponding fact for simplified Spector bar recursion (stated as Theorem 6.3.28
in [20]) will then follow immediately by Proposition 23. It will also follow, a fortiori,
that no ordinary Spector or Kohlenbach bar recursor in the sense of Definition 15 can
be LWF. From here on we shall consider only Kohlenbach bar recursion, and will write
T K(F ) simply as T (F ).

The proof of Theorem 24 follows the method of proof of Theorem 6.3.27 in [20],
which shows that no NSP weakly representing the System T recursor recN→N can be
definable in Tstr

0 + min. The proof of this theorem is already quite intricate, and that
of the present theorem adds some further ingredients. The reader may therefore find
it helpful to study the proof of [20, Theorem 6.3.27] in conjunction with the present
one—however, the account given here will be technically self-contained, and we shall
also offer a more extended motivational discussion here than we did in [20].8

We start with an informal outline of our argument. Suppose that Φ is any gen-
uine (simplified, weak) bar recursor as per Definition 21, and that Ψ is some LWF
procedure purported to be such a bar recursor. We shall set Φ0 = λFG.ΦFG〈〉 and

8We take the opportunity to draw attention here to a small error in the proof of [20, Theorem 6.3.27].

In the penultimate sentence of the proof (on page 258), we claim that F1(gF1
()

) = K. For this, we use

the previously established fact that gF1
()

(0) = 〈0, . . . , 0〉; in the context of the proof, it is natural to

denote this by y0. However, one also wants that y0 is distinct from all of y1, . . . , yd, which we do not
here know to be the case.

The problem is readily fixed by simply adding, at the point at which each yw is selected (for 1 ≤
w ≤ d), the further requirement that yw 6= y0. For this, we need to add 1 to the lower bounds on the
moduli mw from earlier in the proof, so that we take m0 > n0 + 2, m1 > n0 + n1 + 3, etc. Then,
when picking the path through the tree for Ψd at the bottom of page 256, we should start by defining

y0 = gF0
()

(0) (so that actually y0 = c), then insert the requirements that y1, y2, . . . differ from y0. (In

the last line of page 256, y0 was originally intended to read y1, but should now be modified to y0, y1.)

In the third-to-last line of page 257, the claim that gF1
(~z,0)

(0) = yw now holds even when w = 0.
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Ψ0 = λFG.ΨFG〈〉, so that Ψ0 is also LWF by Theorem 9(i). Our task will be to
find some particular Tstr

0 -definable arguments F ∈ SP0(2), G ∈ SP0(2) such that
Ψ0 · F · G 6= Φ0 · F · G. Since Φ here is an arbitrary bar recursor, this will show
that Ψ is not a bar recursor after all.

The key idea is that Ψ, being LWF, will only be prepared to nest calls to G to a finite
depth along any specified computation path. On the other hand, Φ, being a genuine bar
recursor, must be willing to nest such calls to any depth required, as dictated by T (F ).
In order to manifest an extensional difference between Φ0 and Ψ0, we therefore wish to
construct an F such that T (F ) that goes deeper on some path than Ψ0 is willing to
explore, together with a G that forces the computation of Φ0 to explore precisely this
path. In this way, we can arrange that the computation of Φ0 · F · G retrieves from
within G some numerical value K that is not discoverable by Ψ0, and propagates it to
the top level.

Much of the proof is aimed at acquiring a sufficient grasp of the behaviour of Ψ0

that we can guarantee that Ψ0 ·F ·G does not return this value K. Our approach to this
will be similar to that in [20, Theorem 6.3.27]. Assuming for the moment that we know
how to obtain a suitable F , we shall start by considering the computation of Ψ0 ·F ·G0

for a certain very simple functional G0. Suppose that this evaluates to some number
c. By analysing this and some related computations in detail, we shall discover a set of
properties of G0 that suffice to secure this computation, in the sense that for any other
G with these properties, a precisely similar computation will go through, yielding the
same result c. Put another way, we shall find a certain neighbourhood G of G0 such that
for all G ∈ G we have Ψ0 ·F ·G = c. Moreover, the construction of G will be so arranged
that it is possible to pick some G1 ∈ G which forces Φ0 to explore beyond the reach of
Ψ0 in the manner suggested above. Indeed, by choosing such a G1 with some care, we
can ensure that Φ0 ·F ·G1 evaluates to a number K chosen to be different from c. This
establishes the required difference between Φ0 and Ψ0.

The main new ingredient, not present in the proof of [20, Theorem 6.3.27], concerns
the way in which a suitable argument F is chosen. As indicated above, we want F
to represent a well-founded tree that ‘undercuts’ the tree explored by Ψ0 in a certain
computation; on the other hand, the computation performed by Ψ0 will itself depend
partly on the argument F that we give it. This apparent circularity suggests that we
should try to arrive at a suitable F (which we call F∞) by a process of successive
approximation in tandem with our analysis of the computation of Ψ0 · F · G0. This
will allow us to ensure that T (F∞) undercuts Ψ0 with respect to the computation of
Ψ0 · F∞ ·G0 itself.

More specifically, our proof will be structured as follows. In Section 3.1 we begin
with some very simple functionals G0 ∈ SP0(2) and F+

0 ∈ SP0(2), of which the latter
will serve as the first step in the iterative construction of a suitable F . By analysing
the computation of Ψ0 · F+

0 · G0 = c, initially just at the ‘top level’ (that is, without
delving into the computations of the type 1 arguments passed to F+

0 and G0), we are
able to glean some ‘neighbourhood information’ about G0 which helps to secure aspects
of this computation (and will also secure the corresponding computation for G1 once
the latter has been constructed). In the course of this, we will also have replaced F+

0

by the next iteration F+
1 .
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However, the information about G0 gathered so far does not by itself suffice to secure
the entire computation: the top-level computation will typically rely on certain infor-
mation about the arguments passed to F and G; and since these may themselves involve
calls to G, some further constraints on G0 may be needed to secure this information.
We are thus led to repeat our analysis for certain subcomputations associated with the
arguments to F and G—and so on recursively to whatever depth is required. This is
done in Section 3.2.

A key step in the proof is to observe that since Ψ0 is LWF, this entire construction
will eventually bottom out in a situation where no further subcomputations need to be
analysed (there is a crucial appeal to König’s lemma here). We record what happens at
this final stage of the construction in Section 3.3.

At the end of this computation analysis, we are left with two things. First, in the
course of the analysis, the value of F we are considering will have been successively
refined via an approximation process, and at the end we are able to fix on the definitive
value (denoted by F∞) which we shall use to obtain a contradiction. Second, our
analysis as a whole generates enough ‘neighbourhood conditions’ on G0 to secure the
entire computation: that is, we obtain a certain neighbourhood G ⊆ SP0(2) containing
G0 such that for any G ∈ G we have Ψ0 · F∞ ·G = c. The definition of G together with
this key property are established in Section 3.4.

The remainder of the proof proceeds along the lines already indicated. In Section 3.5,
we draw on the above analysis to construct a certain procedure G1 designed to force
Φ0 to explore parts of T (F∞) beyond the reach of Ψ0. In Section 3.6 we verify the
required properties of G1, namely that G1 ∈ G (so that Ψ0 · F∞ ·G1 = c) and also that
Φ0 ·F∞ ·G1 yields some value K different from c. Since this latter fact will hold for any
genuine bar recursor Φ, this establishes that Ψ is not a genuine bar recursor.

We now proceed to the formal details of the proof.

3.1 Computation analysis: the top level

As indicated above, we begin by supposing that Φ,Ψ ∈ SP0(2 → 2 → 1) are simplified
weak Kohlenbach bar recursors in the sense of Definition 21, and assuming for contra-
diction that Ψ is LWF. We set Φ0 = λFG.ΦFG〈〉 ∈ SP0(2→ 2→ 0) (or more formally
Φ0 = λFG.Φ · F η · Gη · 〈〉), and similarly Ψ0 = λFG.ΨFG〈〉. Clearly Ψ0 is LWF by
Theorem 9(i).

In general, if t is any NSP term possibly containing F 2, G2 free, and F ′, G′ ∈ SP0(2),
we shall write t[F ′, G′] for the closed term obtained from t by instantiating F,G to
F ′, G′ and then evaluating. (For instance, if t is a procedure then formally t[F ′, G′] =
(λFG.t) · F ′ ·G′.)

To start our construction, we consider the Tstr
0 -definable procedures

G0 = λg. case g(0) of (i⇒ 2i) ,

F+
0 = λf. case f(0) of (i⇒ 〈i〉) .

The purpose of the doubling in the definition of G0 is hard to motivate here, but will
emerge in Section 3.6. The functional F+

0 represents a very simple well-founded tree:
note that 〈〉 is not a leaf in T (F+

0 ), but 〈x0〉 is a leaf for every x0 ∈ N.
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The definition of simplified weak bar recursor now implies that Ψ0 · F+
0 · G0 now

evaluates to a certain c ∈ N, or more formally to λ.c. (In fact c = 4〈0〉 + 2, but we
will not need this information.) By continuity of application, we may pick k0 > 0 large
enough that Ψ0 · F0 ·G0 = c, where

F0 = λf. case f(0) of (i < k0 ⇒ 〈i〉 | i ≥ k0 ⇒ ⊥)

(extending our notation for case expressions in an obvious way). Note that F0 v
F+

0 . We shall actually use F0 (rather than F+
0 ) as the first step in our approximative

construction of a suitable F .
Let us now look at the computation of Ψ0 · F0 · G0 = c. This will take the form of

a head reduction of Ψ0F0G0, and by inspection of the reduction rules in Section 2.2, it
is clear that this will follow a path through the syntax tree of Ψ0 consisting of a finite
sequence of calls to F or G (in any order), and leading to a leaf c. For example, such a
path might have the form

λFG. case F (f0
0 ) of u0

0 ⇒ case G(g0
0) of v0

0 ⇒ case F (f0
1 ) of u0

1 ⇒ · · · ⇒ c .

where the f0
i and g0

i are themselves type 1 procedures which appear syntactically within
Ψ0 and which may contain F,G as free variables (the superscript indicates that we are
here analysing the computation at ‘level 0’). We can view the tracing of such a path
through Ψ as the ‘top level computation’; in addition to this, there will be subcom-
putations showing (for instance) that (Ff0

0 )[F0, G0] evaluates to u0
0 and (Gg0

0)[F0, G0]
evaluates to v0

0 ,
Let f0

0 , . . . , f
0
l0−1 be the complete list of such procedures appearing as arguments to F

along this computation path, with u0
0, . . . , u

0
l0−1 the corresponding outcomes when F,G

are instantiated to F0, G0. Likewise, let g0
0 , . . . , g

0
n0−1 be the list of procedures appearing

as arguments to G on this path, with v0
0 , . . . , v

0
n0−1 the corresponding outcomes.

Of course, when F = F0 and G = G0, the procedures f0
i and g0

i will be interrogated
only on the argument 0. This suggests that in order to ‘secure’ the whole computation,
we will also want to analyse the computations of (f0

i 0)[F0, G0] = u0
i and (g0

i 0)[F0, G0] =
v0
i for each i. In fact, we shall do more: in order to give ourselves sufficient room for

manoeuvre to construct the contrary example G1 below (with the assurance of a similar
evaluation behaviour for G1), we shall analyse the behaviour of each g0

i on all integer
arguments z up to a certain modulus m0. In fact, it will suffice to take

m0 > k0 + n0 + 1 .

Again, this condition is hard to motivate at this stage; the reason for it will emerge
during the construction of G1 in Section 3.5, at the point where we select x0, the first
step in our critical path through T (F∞).

In order to proceed further, we need to extend our approximation to F . First, extend
the procedure F0 to a Tstr

0 -definable F+
1 :

F+
1 = λf. case f(0) of (i0 < k0 ⇒ 〈i0〉 | i0 ≥ k0 ⇒

case f(1) of (i1 ⇒ 〈i0, i1〉)) .
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(It is an easy exercise to verify that this is indeed Tstr
0 -definable.) The idea is that 〈x0〉

will be a leaf node in T (F+
1 ) when x0 < k0, but elsewhere T (F+

1 ) will have depth 2.
We now consider the computation of Ψ0 · F+

1 ·G0. Since F+
1 w F0, this follows the

same path through Ψ0 as before and features syntactically the same type 1 procedures
f0
i and g0

i and the same outcomes u0
i , v

0
i . Furthermore:

Lemma 25 (i) For any i < n0 and any z ∈ N, the evaluation of g0
i [F+

1 , G0] · z yields a
natural number, which we denote by r0

iz.
(ii) For any i < l0 and any z ∈ N, the evaluation of f0

i [F+
1 , G0] · z yields a natural

number, which we denote by q0
iz.

Proof: (i) Suppose for contradiction that g0
i [F+

1 , G0](z) = ⊥ for some i, z, and let
G′0 = λg. case g(z) of (j ⇒ G0(g)). Clearly G′0 is Tstr

0 -definable. Also G′0 � G0 in the
extensional preorder on NSPs, so by Theorem 6 we have

(G0(g0
i ))[F+

1 , G
′
0] v G′0(g0

i [F+
1 , G0]) = ⊥ .

Moreover, for each application F (f0
j ) (respectively G(g0

j )) occurring before G(g0
i ) in the

path in question, we have (F (f0
j ))[F+

1 , G
′
0] v u0

j (respectively (G(g0
j ))[F+

1 , G
′
0] v v0

j ),

whence it is clear that Ψ0 · F+
1 · G′0 is undefined. But this contradicts Proposition 22,

since both F+
1 , G

′
0 are Tstr

0 -definable, T (F+
1 ) is well-founded and 〈 〉 ∈ T (F+

1 ).
The proof of (ii) is precisely similar. �

We shall make use of part (i) of the above lemma for all z < m0, and of part (ii)
only when z = 0. (The apparently superfluous use of z in the latter case is intended to
mesh with a more general situation treated below.)

We may now make explicit some significant properties of G0 in the form of neigh-
bourhoods, using the information gleaned so far. For each i < n0, define

V 0
i = {g ∈ SP0(1) | ∀z < m0. g · z = r0

iz} ,
G0
i = {G ∈ SP0(2) | ∀g ∈ V 0

i . G · g = v0
i } .

Clearly G0 ∈ G0
i for each i, because G0 interrogates its argument only at 0. Also

g0
i [F+

1 , G0] ∈ V 0
i for each i < n0. This completes our analysis of the computation at

top level; we shall refer to this as the depth 0 analysis.
The idea is that the sets G0

i will form part of a system of neighbourhoods recording
all the necessary information about G0; we will then be free to select any G1 from
the intersection of these neighbourhoods knowing that the computation will proceed as
before. As things stand, the neigbourhoods G0

i do not achieve this: for an arbitrary G
in all these neigbourhoods, there is no guarantee that the value of each g0

i (z) at F+
1

and G will agree with its value at F+
1 and G0 (and similarly for each f0

i (0)). To secure
the whole computation, we therefore need a deeper analysis of these subcomputations
in order to nail down the precise properties of G0 on which these rely.

3.2 Computation analysis: the step case

The idea is that we repeat our analysis for each of the finitely many computations of

f0
i (z)[F+

1 , G0] (i < l0, z < 1) , g0
i (z)[F+

1 , G0] (i < n0, z < m0) .
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The analysis at this stage is in fact illustrative of the general analysis at depth w,
assuming we have completed the analysis at depth w − 1. For notational simplicity,
however, we shall concentrate here on the depth 1 analysis, adding a few brief remarks
on the depth 2 analysis in order to clarify how the construction works in general.

First, since each of the above computations yields a numeral q0
iz or r0

iz as appropriate,
we may choose k1 such that all these computations yield the same results when F+

1 is
replaced by

F1 = λf. case f(0) of (i0 < k0 ⇒ 〈i0〉 | i0 ≥ k0 ⇒
case f(1) of (i1 < k1 ⇒ 〈i0, i1〉 | i1 ≥ k1 ⇒ ⊥)) .

Note in passing that F0 no longer suffices here: there will be computations of values for
g0
i (z) that did not feature anywhere in the original computation of Ψ0 · F0 ·G0.

Everything we have said about the main computation and its subcomputations
clearly goes through with F+

1 replaced by F1. So let us consider the shape of the
computations of

f0
i (z)[F1, G0] (i < l0, z < 1) , g0

i (z)[F1, G0] (i < n0, z < m0) .

At top level, each of these consists of a finite sequence of applications of F1 and G0

(in any order), leading to the result q0
iz or r0

iz. Taking all these computations to-
gether, let f1

0 , . . . , f
1
l1−1 and g1

0 , . . . , g
1
n1−1 respectively denote the (occurrences of) type

1 procedures to which F1 and G0 are applied, with u1
0, . . . , u

1
l1−1 and v1

0 , . . . , v
1
n1−1 the

corresponding outcomes. Although we will not explicitly track the fact in our notation,
we should consider each of the f1

j and g1
j as a ‘child’ of the procedure f0

i or g0
i from

which it arose. Note that if g1
j is a child of f0

i (for example), then just as Ff0
i appears

as a subterm within the syntax tree of Ψ0, so Gg1
j appears as a subterm within the

syntax tree of f0
i . Thus, each of the f1

j and g1
j corresponds to a path in Ψ0 with at least

two left branches.
We now select a suitable modulus for our analysis of the g1

i . Choose

m1 > k1 + n0 + n1 + 2 , m1 ≥ m0 .

(Again, the reason for this choice will emerge in Section 3.5.) Extend F1 to the Tstr
0 -

definable functional

F+
2 = λf. case f(0) of (i0 < k0 ⇒ 〈i0〉 | i0 ≥ k0 ⇒

case f(1) of (i1 < k1 ⇒ 〈i0, i1〉 | i1 ≥ k1 ⇒
case f(2) of (i2 ⇒ 〈i0, i1, i2〉 ))) .

Replacing F1 by F+
2 preserves all the structure established so far, and just as in

Lemma 25 we have that g1
i (z) at F+

2 , G0 yields a numeral r1
iz for each i < n1 and

z < m1; similarly f1
i (z) at F+

2 , G0 yields a numeral q1
iz for each i < l1 and z < 2.

(In fact, it is superfluous to consider f1
i (1) in cases where f1

i (0) < k0, but it simplifies
notation to use 2 here as our uniform modulus of inspection for the f1

i .) We may now
augment our collection of neighbourhoods by defining

V 1
i = {g ∈ SP0(1) | ∀z < m1. g · z = r1

iz} ,
G1
i = {G ∈ SP0(2) | ∀g ∈ V 1

i . G · g = v1
i } .
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for each i < n1; note once again that G0 ∈ G1
i and that g0

1 [F+
2 , G0] ∈ V 1

i for each i.
This completes our analysis of the computation at depth 1.

At the next stage, we choose k2 so that the above all holds with F+
2 replaced by

F2 = λf. case f(0) of (i0 < k0 ⇒ 〈i0〉 | i0 ≥ k0 ⇒
case f(1) of (i1 < k1 ⇒ 〈i0, i1〉 | i1 ≥ k1 ⇒
case f(2) of (i2 < k2 ⇒ 〈i0, i1, i2〉 | i2 ≥ k2 ⇒ ⊥))) .

We now repeat our analysis for each of the computations of

f1
i (z)[F2, G0] (i < l1, z < 2) , g1

i (z)[F2, G0] (i < n1, z < m1) .

Having identified the relevant type 1 procedures f2
0 , . . . , f

2
l2−1 and g2

0 , . . . , g
2
n2−1 that

feature as arguments to F and G, we pick

m2 > k2 + n0 + n1 + n2 + 3 , m2 ≥ m1 ,

and use this to define suitable sets V 2
i ,G2

i for i < n2. By this point, it should be clear
how our construction may be continued to arbitrary depth.

3.3 Computation analysis: the bottom level

The crucial observation is that this entire construction eventually bottoms out. Indeed,
using h as a symbol that can ambivalently mean either f or g (and likewise H for F
or G), we have that for any sequence h0

i0 , h
1
i1 , . . . of type 1 procedures where each hw+1

iw+1

is a child of hwiw , the syntax tree of Ψ0 contains the descending sequence of subterms
H0h0

i0 , H
1h1
i1 , . . .. Since Ψ0 is LWF by assumption, any such sequence must eventually

terminate. Moreover, the tree of all such procedures hwi is finitely branching, so by
König’s lemma it is finite altogether.

Let us see explicitly what happens at the last stage of the construction. For some
depth d, we will have constructed the fdi , g

d
i , u

d
i , v

d
i as usual, along with md, F+

d+1, the

numbers rdiz, q
d
iz and the neighbourhoods Gdi , but will then discover that ld+1 = nd+1 = 0:

that is, none of the relevant computations of fdi (z) or gdi (z) (relative to F+
d+1 and G0)

themselves perform calls to F or G.
At this point, we may settle on F+

d+1 as the definitive version of F to be used in our
counterexample, and henceforth call it F∞. Explicitly:

F∞ = λf. case f(0) of (i0 < k0 ⇒ 〈i0〉 | i0 ≥ k0 ⇒
case f(1) of (i1 < k1 ⇒ 〈i0, i1〉 | i1 ≥ k1 ⇒
· · ·
case f(d) of (id < kd ⇒ 〈i0, · · · , id〉 | id ≥ kd ⇒
case f(d+ 1) of (id+1 ⇒ 〈i0, · · · , id+1〉 )) · · ·)) .

Clearly F∞ is Tstr
0 and F∞ w Fw for w ≤ d. It is also clear from the above definition

how F∞ represents a certain well-founded tree T (F∞) of depth d + 2. Note that if
f(0) ≥ k0, . . . , f(d) ≥ kd then F∞ · f = 〈f(0), . . . , f(d+ 1)〉; indeed 〈f(0), . . . , f(d+ 1)〉
is a leaf in T (F ). It is this portion of the tree, not visited by any of the computations
described so far, that we shall exploit when we construct our counterexample G1.
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3.4 The critical neighbourhood of G0

We may now define the critical neighbourhood G ⊆ SP0(2) by

G =
⋂

w≤d, i<nw

Gwi .

Clearly G0 ∈ G by construction. Moreover, the following lemma shows that G provides
enough constraints to secure the result of the entire computation:

Lemma 26 For all G ∈ G and all w ≤ d, we have:

1. fwi (z)[F∞, G] = qwiz for all i < lw and z ≤ w.

2. gwi (z)[F∞, G] = rwiz for all i < nw and z < mw.

3. F (fwi )[F∞, G] = uwi for all i < lw.

4. G(gwi )[F∞, G] = vwi for all i < nw.

5. Ψ0 · F∞ ·G = c.

Proof: We prove claims 1–4 simultaneously by downwards induction on w. For w = d,
claims 1 and 2 hold because the computations in question make no use of F∞ or G.
For any w, claim 1 implies claim 3: Fw was chosen so that (among other things)
Fw(fwi [Fw, G0]) = uwi is defined; moreover, Fw interrogates its argument only on
0, . . . , w at most, so the established values of fwi (z)[F∞, G] for z ≤ w suffice to en-
sure that Fw(fwi [F∞, G]) = uwi , and hence that F∞(fwi [F∞, G]) = uwi . Likewise, claim
2 implies claim 4, since G ∈ Gwi by hypothesis, and the established values of gwi secure
that gwi ∈ V wi (at F∞ and G).

Assuming claims 3 and 4 hold for w+ 1, it is easy to see that claims 1 and 2 hold for
w: the relevant top-level computation may be reconstituted from left to right leading
to the result qwiz or rwiz. Applying the same argument one last time also yields claim 5.
�

3.5 The counterexample G1

It remains to construct our contrary example G1 ∈ G. The idea is that G1 will be chosen
so that according to the definition of simplified bar recursion, some value K 6= c will be
generated at depth d + 1 of the tree T (F∞) and then propagated up to the surface of
the computation via nested applications of G1. We work with paths beyond the horizon
defined by k0, k1, . . . to ensure that we do not encounter a leaf prematurely, and also
exploit the choice of moduli mw to ensure that the type 1 functions at intermediate
levels steer clear of the sets V wi .

Recall that Φ is assumed to be a genuine simplified bar recursor within SP0. Set
φ0 = Φ ·F∞ ·G0 ∈ SP0(1). If x is any sequence code 〈x0, . . . , xn−1〉 and z ∈ N, we shall
write x.z for the sequence code 〈x0, . . . , xn−1, z〉, so that x.z is the number computed
by add · x · z.
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Since G0 = λg.2g(0) and the leaf function has been fixed at x 7→ 2x + 1, we have
that for any sequence code x, φ0 · x will take one of the values

2x+ 1 , 2(2(x.0) + 1) , 4(2(x.0.0) + 1) , 8(2(x.0.0.0) + 1) , . . . ,

according to where a leaf of T (F∞) appears in the sequence x, x.0, x.0.0, . . .. In partic-
ular, for any fixed j, if we know that j < |x|, we can recover xj from φ0 ·x and even from
θ(φ0 · x), where θ(n) denotes the unique odd number such that n = 2t.θ(n) for some
t. We shall write x.0t for the result of appending t occurrences of 0 to the sequence
number x; note that θ(φ0 · x) will have the value 2(x.0t) + 1 for some t.

We construct a finite path x0, x1, . . . , xd through the tree for F∞ in the following
way, along with associated numbers y0, y1, . . . , yd, yd+1. Start by setting y0 = φ0 · 〈0〉.
Next, note that the mappings z 7→ φ0 · 〈z, 0〉 and z 7→ θ(φ0 · 〈z, 0〉) are injective; so
because m0 > k0 + n0 + 1, we may pick x0 with k0 ≤ x0 < m0 such that:

• y1 = φ0 · 〈x0, 0〉 differs from g0
i (0) (more precisely from r0

i0) for each i < n0,

• θ(y1) = θ(φ0 · 〈x0, 0〉) differs from θ(y0).

Likewise, the mapping z 7→ θ(φ0 · 〈x0, z, 0〉) is injective, so since m1 > k1 + n0 + n1 + 2
we may pick x1 with k1 ≤ x1 < m1 such that

• y2 = φ0 · 〈x0, x1, 0〉 is different from all r0
i0 and r1

i′0 where i < n0, i′ < n1,

• θ(y2) is different from θ(y0) and θ(y1).

In general, we pick xw with kw ≤ xw < mw such that

• yw+1 = φ0 · 〈x0, . . . , xw, 0〉 is different from all rui0 with u ≤ w and i < nu,

• θ(yw+1) is different from θ(y0), . . . , θ(yw).

In each case, the first condition ensures that the type 1 function Λz. φ0 · 〈~x, z〉 steers
clear of the sets V ui , so that the functional G1 to be defined below remains within G.
The second condition will ensure that the nested calls to G1 do not interfere with one
another in their role of propagating the special value K. Since xw ≥ kw for each w ≤ d,
we have that 〈x0, . . . , xd, 0〉 is a leaf of T (F∞).

We now take K to be some natural number larger than any that has featured in the
construction so far, and in particular different from c, and define

G1 = λg. case g(0) of (
yd+1 ⇒ K

| yd ⇒ case g(xd) of (K ⇒ K | j ⇒ 2i)
| · · ·
| y1 ⇒ case g(x1) of (K ⇒ K | j ⇒ 2i)
| y0 ⇒ case g(x0) of (K ⇒ K | j ⇒ 2i)
| i⇒ 2i

) .

Here we understand i, j as ‘pattern variables’ that catch all cases not handled by the
preceding clauses. In particular, the clauses j ⇒ 2i, i⇒ 2i mean that unless g possesses
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some special property explicitly handled by some other clause, we will have G1 · g =
2(g · 0) = G0 · g. It is straightforward to verify that G1 is Tstr

0 -definable, bearing in
mind the availability of ifzero in Tstr

0 (see the discussion in Section 2.1.1).

3.6 Properties of G1

We first check that G1 falls within the critical neighbourhood:

Lemma 27 G1 ∈ G, whence Ψ · F∞ ·G1 · 〈 〉 = c.

Proof: Suppose w ≤ d and i < nw; we will show G1 ∈ Gwi . Consider an arbitrary
g ∈ V wi (note that g is not assumed to represent a total function); we want to show that
G1 ·g = vwi . From the definition of V wi we have g ·0 = rwi0, so for u > w, we have g ·0 6= yu
by choice of yu. If also g · 0 6= yu for each u ≤ w then G1(g) = 2(g · 0) = G0(g) = vwi
as required. If g · 0 = yu for some u ≤ w, then G1(g) = case g(xu) of (K ⇒ K | i ⇒
2(g · 0)). However, since xu < mu ≤ mw we have g(xu) = rwixu

, and K was assumed to
be larger than this, so once again G1(g) = 2(g · 0) = vwi .

By claim 5 of Lemma 26, it follows that Ψ · F∞ ·G1 · 〈 〉 = c. �

We now work towards showing that, by contrast, Φ · F∞ · G1 · 〈〉 = K. Set φ1 =
Φ · F∞ ·G1, and for w ≤ d+ 1, denote 〈x0, . . . , xw−1〉 by xw.

Lemma 28 φ1 · (xw.0) = yw for all w ≤ d+ 1.

Proof: Recall that yw = φ0 · (xw.0), which has the form 2t.s where s = θ(yw) =
φ0 · (xw.0.0t) and xw.0.0t is a leaf for F∞, so that s = 2(xw.0.0t) + 1. Note also that if
0 < t′ ≤ t then φ0 ·(xw.0.0t

′
) = 2t−t

′
.s, which is distinct from yw (this is the point of the

doubling in the definition of G0), and also from all the other yu since θ(y0), . . . , θ(yd+1)
are all distinct.

We may now see by reverse induction on t′ ≤ t that φ1 · (xw.0.0t
′
) = 2t−t

′
.s. When

t′ = t, this holds because xw.0.0t is a leaf for F∞ so φ1 · (xw.0.0t) = φ0 · (xw.0.0t).
Assuming this holds for t′ + 1 with 0 ≤ t′ < t, because xw.0.0t

′
is not a leaf we have

φ1 · (xw.0.0t
′
) = G1 · (λz.φ1 · (xw.0.0t

′
.z))

= case φ1 · (xw.0.0t
′
.0) of (· · · | i⇒ 2i)

= case 2t−(t′+1).s of (· · · | i⇒ 2i)

= 2t−t
′
.s ,

using the observation that 2t−(t′+1).s is distinct from all of the yu.
In particular, φ1 · (xw.0) = 2t.s = yw, so the lemma is established. �

Lemma 29 φ1 · xw = K for all 0 ≤ w ≤ d+ 1.

Proof: By reverse induction on w. For the case w = d + 1, we have by the previous
lemma that φ1 · (xd+1.0) = yd+1, and since xd+1 is not a leaf for F∞, we have

φ1 · xd+1 = G1(λz. φ1 · (xd+1.z))

= case φ1 · (xd+1.0) of (yd+1 ⇒ K | · · ·)
= K .
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For w < d + 1, again we have by the previous lemma that φ1 · (xw.0) = yw, and the
induction hypothesis gives us φ1 · (xw.xw) = φ1 · (xw+1) = K. Since xw is not a leaf for
F∞, we have

φ1 · xw = G1(λz. φ1 · (xw.z))
= case φ1 · (xw.0) of

(· · · | yw ⇒ case φ1 · (xw.xw) of (K ⇒ K | · · ·) | · · ·)
= K . �

In particular, when w = 0 we have φ1 · 〈 〉 = φ1 · x0 = K. Combining this with
Lemma 27, we have

Ψ · F∞ ·G1 · 〈〉 = c 6= K = φ1 · 〈 〉 = Φ · F∞ ·G1 · 〈〉 .

Since this argument applies for any genuine weak simplified bar recursor Ψ, we may
conclude that Ψ is not a restricted bar recursor after all. This completes the proof of
Theorem 24.

4 Other models

Finally, we show how our non-definability result now transfers readily to settings other
than SP0, both partial and total. The combined message of these results will be that
bar recursion is not computable in T + min or W in any reasonable sense whatever,
however one chooses to make such a statement precise.

4.1 Partial models

It is relatively easy to transfer Theorem 24 to other ‘partial’ settings, by which we here
mean simply-typed λ-algebras A with A(N) ∼= N⊥. As a first step, it is convenient to
detach our main theorem from SP0 and present its content in purely syntactic terms.

Let F : 2 be a closed term of Tstr
0 . Using the Tstr

0 program ‘basic’ introduced in
Section 2.3, and reinstating the hat notation for programming language numerals, we
may say a sequence ~x ∈ N∗ satisfies the Kohlenbach bar condition w.r.t. F if the closed
Tstr

0 terms

F (basic(〈̂~x〉, 0̂)) , F (basic(〈̂~x〉, 1̂))

evaluate to the same numeral; we may thus define T K(F ) to be the tree of sequences
~x such that no proper prefix of ~x satisfies this bar condition. It is clear that this
purely syntactic definition of T K(F ) agrees with Definition 16 for NSPs: if [[F ]] is the
denotation of F in SP0, then T K(F ) = T K([[F ]]) by the adequacy of [[−]].

This allows us to reformulate the content of Theorem 24 syntactically as follows.
Here we write = to mean that the closed programs on either side evaluate to the same
numeral.
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Theorem 30 There is no closed T + min term BR : 2→ 2→ 1 such that the following
hold for all closed Tstr

0 terms F,G : 2 with T K(F ) well-founded, and for all ~x ∈ T K(F ):

BR F G 〈̂~x〉 = ̂2〈~x〉+ 1 if ~x ∈ T K(F )l ,

BR F G 〈̂~x〉 = G(λzN. BR F G (add 〈̂~x〉 z)) if ~x ∈ T K(F )n .

Proof: If such a term BR existed, then by adequacy of [[−]], Φ = [[BR]] ∈ SP0 would be
a T + min definable simplified weak Kohlenbach recursor, contradicting Theorem 24. �

Now suppose A is any simply typed λ-algebra equipped with elements 0, 1, . . ., suc,
pre, ifzero, recσ, min of the appropriate types, such that the induced interpretation
[[−]]A of T + min in A is adequate: that is, for closed programs M : N and n ∈ N, we
have [[M ]]A = n ∈ A(N) iff M  ∗ n. Note that this requires A(N) to contain elements
other than the numerals, since in the presence of min, diverging programs are possible.
In most cases of interest, we will have A(N) ∼= N⊥: typical examples include the Scott
model PC of partial continuous functionals, its effective submodel PCeff, the model SF of
PCF-sequential functionals (arising as the extensional quotient of SP0) and its effective
submodel SFeff of PCF-computable functionals.

In this setting, we have a notion of Tstr
0 -definable element of A, so Definitions 16, 18

and 21 immediately relativize to A, giving us the notion of a (simplified) weak (Spector
or Kohlenbach) bar recursor within A. We are now able to conclude:

Theorem 31 No simplified weak Kohlenbach bar recursor within A can be T + min
definable.

Proof: If BR were a term of T+min defining a simplified weak Kohlenbach bar recursor
in A, then by adequacy of [[−]]A, BR would satisfy the conditions in Theorem 30, a
contradiction. �

The corresponding results for Spector bar recursion follow by Proposition 20 rela-
tivized to A. It is also clear that we obtain similar results with W in place of T + min.

4.2 Total models

We now consider the situation for total type structures such as Ct and HEO. We work
in the general setting of a simply-typed total combinatory algebra A with A(N) = N.

Our formulation for total models will have a character rather different from the
above: since no suitable element min will be present in A, we cannot induce an inter-
pretation [[−]] straightforwardly from an interpretation of the constants—indeed, there
will be terms of T + min that have no denotation in A. Instead, we resort to an
approach more in the spirit of Kleene’s original definition of computability in total set-
tings, adapting the treatment in [20]. It is best here to assume that A is extensional :
in fact, we shall assume that each A(σ → τ) is a set of functions A(σ) → A(τ). It
is well-known that this implies that A is a typed λ-algebra (see [20, Section 4.1]). We
shall furthermore assume that A is a model of T0: that is, A contains elements suc,
pre, ifzero, and recσ for σ of level 0 satisfying the usual defining equations for these
constants. (Note that in the total extensional setting, there is no real difference between
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T0 and Tstr
0 , or between recσ and recstr

σ , and the operator byval is redundant. We shall
henceforth use T0 in this context as it is directly a sublanguage of T + min.)

First, we recall that every T + min term is βη-equivalent to one in long βη-normal
form—that is, to a β-normal term in which every occurrence of any variable or constant
f is fully applied (i.e. appears at the head of a subterm fN0 . . . Nr−1 of type N). We
shall define a (partial) interpretation in A for T + min terms of this kind, and will in
general write nf(M) for the long βη-normal form of M .9

For a given term M , a valuation ν for M will be a map assigning to each free variable
xσ within M an element ν(x) ∈ A(σ). We shall define a partial interpretation assigning
to certain terms M : σ and valuations ν for M an element [[M ]]ν ∈ A(σ). This takes
the form of an inductive definition of the relation [[M ]]ν = a, where M is a βη-normal
form of some type σ, ν is a valuation for M , and a ∈ A(σ).

1. [[n̂]]ν = n.

2. If [[M ]]ν = n then [[sucM ]]ν = n + 1 and [[pre M ]]ν = n−̇1, where −̇ is truncated
subtraction.

3. If [[M ]]ν = 0 and [[N ]]ν = n, then [[ifzero M N P ]]ν = n.

4. If [[M ]]ν = m+ 1 and [[P ]]ν = n, then [[ifzero M N P ]]ν = n.

5. If [[N ]]ν = 0 and [[nf(X~Y )]]ν = m, then [[recσX F N ~Y ]]ν = m.

6. If [[N ]]ν = n+ 1 and [[nf(F (recσX F n̂) n̂ ~Y )]]ν = m, then [[recσX F N ~Y ]]ν = m.

7. If [[N ]]ν = n and [[nf(F n̂)]]ν = 0, then [[min F N ]]ν = n.

8. If [[N ]]ν = n, [[nf(F n̂)]]ν = i+ 1 and [[min F n̂+ 1]]ν = m, then [[min F N ]]ν = m.

9. If f ∈ A(σ → τ) and [[M ]]ν[y 7→a] = f(a) for all a ∈ A(σ), where yσ 6∈ dom ν, then
[[λy.M ]]ν = f .

10. If ν(x) = f and [[Pi]]ν = ai for each i < r, then [[xP0 . . . Pr−1]]ν = f(a0, · · · , ar−1).

Other ways of treating the recursors recσ would be possible: the definition chosen above
errs on the side of generosity, in that it is possible e.g. for [[recσX F 0̂ ~Y ]]ν to be defined
even when [[X]]ν is not. Note too that we are not assuming that all the System T
operators recσ are actually present in A—if they are not, there will of course be many
System T terms whose denotations in A are undefined.

Definition 32 We say a partial function Φ : A(σ0) × · · · × A(σr−1) ⇀ N is T +
min computable if there is a closed T + min term M : N with free variables among
xσ0

0 , . . . , x
σr−1

r−1 such that for all a0 ∈ A(σ0), . . . , ar−1 ∈ A(σr−1) and all n ∈ N we have

[[M ]]x0 7→a0, ..., xr−1 7→ar−1 ' Φ(a0, . . . , ar−1) ,

where ' means Kleene equality.

9The correspondence between β-normal forms and Kleene-style indices is explained in [20, Sec-
tion 5.1]. Here we use long βη-normal forms in this role because of our treatment of suc and recσ as
first-class constants.
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Comparing this with the treatment in [20, Section 5.1], it is clear that if we restrict
our language to T0 + min, the computable partial functions over A obtained as above
coincide exactly with Kleene’s µ-computable partial functions. We also note in passing
that if the language is extended with the operator Eval described in [20, Section 5.1],
the computable partial functions are exactly the Kleene S1–S9 computable ones.

Next, we may adapt earlier definitions to say what it means to be a bar recursor
with respect to A. Note that since A is a model of Tstr

0 , all functions [~x jω] as defined
in Section 2.3 are present in A(1).

Definition 33 (i) For any F ∈ A(2), the Kohlenbach tree T K(F ) consists of all ~x
such that no proper prefix ~x′ of ~x satisfies F ([~x′ 0ω]) = F ([~x′ 1ω]).

(ii) A partial function Φ : A(2)×A(2)×A(0) ⇀ N is a simplified Kohlenbach bar
recursor if for all F,G ∈ A(2) with T K(F ) well-founded, and for all ~x ∈ T K(F ), we
have

Φ(F,G, 〈~x〉) = 2〈~x〉+ 1 if ~x ∈ T K(F )l ,
Φ(F,G, 〈~x〉) = G(Λz.Φ(F,G, 〈~x, z〉)) if ~x ∈ T K(F )n .

We shall take it to be part of the meaning of the latter condition that the relevant
function Λz.Φ(F,G, 〈~x, z〉) is indeed present in A(1); this is in effect a further hypothesis
on A which holds in all cases of interest.

We mention a few examples, all of which fall within the scope of Theorem 36 below:

1. In the Kleene-Kreisel model Ct, it is the case for any F ∈ Ct(2) that T K(F ) is
well-founded, and indeed a simplified bar recursor Φ is present within Ct itself, as
an element of Ct(2→ 2→ 0→ 0). It is known, furthermore, that such an element
is Kleene S1–S9 computable (see [20, Section 8.3]).

2. By contrast, in the model HEO, there are functionals F such that T K(F ) is
not well-founded (such functionals arise from the Kleene tree as explained in [20,
Section 9.1]), and consequently it is not possible to find a total bar recursor within
HEO itself. Nonetheless, partial simplified bar recursors Φ : HEO(2) × HEO(2) ×
HEO(0) ⇀ N as defined above do exist and are Kleene computable, by the same
algorithm as for Ct. The situation is in fact precisely similar for the full set-
theoretic model S: thus, partial bar recursors in the spirit of Definition 15 are
Kleene computable over S.

3. Another model of a quite different character is Bezem’s type structure of strongly
majorizable functionals [5], which has been found to be valuable in proof theory.
Here, as in Ct, a bar recursor lives as a total object within the model itself—despite
the presence of discontinuous type 2 elements in the model.

We shall show that no simplified Kohlenbach bar recursor for A can be T + min
computable in the sense above. This will follow easily from Theorem 30 once we have
established the ‘adequacy’ of our partial interpretation [[−]]. This we do by means of
a standard logical relations argument. For each σ, let us define a relation Rσ(M,a)
between closed T + min terms M : σ and elements a ∈ A(σ) as follows:

• RN(M,m) iff M  ∗ m̂.

39



• Rσ→τ (M,f) iff for all N : σ and a ∈ A(σ), Rσ(N, a) implies Rτ (MN, f(a)).

We often omit the type annotations and may refer to any of the Rσ as R.

Lemma 34 If [[M ]]ν = a and R(Ni, ν(xi)) for all xi free in M , then R(M [~x 7→ ~N ], a).

Proof: By induction on the generation of [[M ]]ν = a via clauses 1–10 above. The cases
for clauses 1–4 are trivial, and those for clauses 5–8 are very straightforward, using the
fact that any term M is observationally equivalent to nf(M) by the context lemma.

For clause 9, suppose we have [[λyσ.M ]]ν = f ∈ A(σ → τ) arising from [[M ]]ν[y 7→a] =
f(a) for all a ∈ A(σ), and suppose also that R(Ni, ν(xi)) for all xi free in λx.M . We

wish to show that Rσ→τ ((λy.M)[~x 7→ ~N ], f): that is, that for all P : σ and a ∈ A(σ),

Rσ(P, a) implies Rτ ((λy.M)[~x 7→ ~N ](P ), f(a)). So suppose Rσ(P, a). By assumption,

we have [[M ]]ν[x 7→a] = f(a) and R(Ni ν(xi)) for all i, so Rτ (M [~x 7→ ~N, y 7→ P ], f(a)) by
the induction hypothesis. The desired conclusion follows, since

(λy.M)[~x 7→ ~N ](P )  M [~x 7→ ~N, y 7→ P ]

and it is easy to see by induction on types that if Q Q′ and R(Q′, b) then R(Q, b).

For clause 10, suppose we have [[xj ~P ]]ν = f(~a) arising from ν(xj) = f and [[Pi]]ν = ai
for each i, and suppose again that R(Ni, ν(xi)) for all i. Writing ∗ for the substitution

[~x 7→ ~N ], we have (xj ~P )∗ = Nj ~P
∗, so it will suffice to show that R(Nj ~P

∗, f(~a)). But
we have R(Nj , ν(xj)) where ν(xj) = f , and also R(P ∗i , ai) for each i by the induction

hypothesis, so by definition of Rσ where σ is the type of Nj , we have R(Nj ~P
∗, f(~a)) as

required. �

The converse to Lemma 34 is not true. For instance, if M = f(min (λy.1̂) 0̂),
N = λx.2̂ and a = Λx.2 ∈ A(1), then R1(N, a) and M [f 7→ N ]  ∗ 2̂, but [[M ]]f 7→a
is undefined because min (λy.1̂) 0̂ receives no denotation. In this sense, T + min com-
putability in a total model is a stricter condition than it would be in a partial model.
It is therefore not too surprising that no bar recursor for a total model can be T + min
computable.

Recall that we are assuming that A is a model of T0, in the sense that A contains
suitable elements suc, pre, ifzero, recσ satisfying the relevant equations, giving rise via
the λ-algebra structure of A to an interpretation of T0 which we shall denote by I. We
may now verify that our two ways of interpreting T0 terms are in accord:

Lemma 35 Suppose M is any long βη-normal T0 term, and ν = (~x 7→ ~a) is any
valuation for M . Then [[M ]]ν is defined and is equal to I~x(M)(~a).

Proof: A routine induction on the structure of M . �

We now have all the pieces needed for the main result, which establishes Corol-
lary 6.3.33 of [20].

Theorem 36 No simplified Kohlenbach bar recursor for A can be T+min computable.
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Proof: Suppose B were a T + min term with free variables F : 2, G : 2, x : 0 defining
a simplified Kohlenbach bar recursor Φ : A(2)×A(2)×A(0) ⇀ N as above. We claim
that BR = λFGx.B satisfies the conditions of Theorem 30, yielding a contradiction.
Indeed, suppose F̂ , Ĝ : 2 are closed Tstr

0 terms with T K(F̂ ) well-founded. Construing
F̂ , Ĝ as T0 terms, we obtain elements [[F̂ ]], [[Ĝ]] ∈ A(2) by Lemma 35, and it is clear
from Lemma 34 that T K([[F̂ ]]) = T K(F̂ ).

Now suppose ~x ∈ T K(F̂ ). We now show by meta-level bar induction on ~x ∈ T K(F̂ )
that for all such ~x, [[B]]F 7→[[F̂ ]], G 7→[[Ĝ]], x 7→〈~x〉 is defined and agrees with the value of

BR F̂ Ĝ 〈̂~x〉, and moreover the latter satisfies the relevant condition of Theorem 30.
First, if ~x ∈ T K(F̂ )l, then by Definitions 32 and 33 we have

[[B]]F 7→[[F̂ ]], G 7→[[Ĝ]], x 7→〈~x〉 = Φ ([[F̂ ]], [[Ĝ]], 〈~x〉) = 2〈~x〉+ 1 .

Now by Lemma 34 we have R(F̂ , [[F̂ ]]), R(Ĝ, [[Ĝ]]) and R(〈̂~x〉, 〈~x〉), so by the same again

we have RN (B[F 7→ F̂ , G 7→ Ĝ, x 7→ 〈̂~x〉], 2〈~x〉+ 1), meaning that

B[F 7→ F̂ , G 7→ Ĝ, x 7→ 〈̂~x〉]  ∗ ̂2〈~x〉+ 1 .

Hence BR F̂ Ĝ 〈̂~x〉 satisfies the first condition of Theorem 30, and all parts of the induc-
tion claim are established.

Now suppose that ~x ∈ T K(F̂ )n, where each child ~x, z satisfies the induction claim.
We first show that

RN→N (λz.BR F̂ Ĝ (add 〈̂~x〉 z), Λz. [[B]]F 7→[[F̂ ]], G 7→[[Ĝ]], x 7→〈~x,z〉) .

For this, it suffices to show that if z ∈ N and RN(Z, z) (i.e. Z  ∗ ẑ), then

RN ((λz.BR F̂ ĝ (add 〈̂~x〉 z))Z, [[B]]F 7→[[F̂ ]], G 7→[[Ĝ]], x 7→〈~x,z〉) .

But this holds by the induction hypothesis along with the observational equivalence

(λz.BR F̂ Ĝ (add 〈̂~x〉 z))Z 'obs BR F̂ Ĝ 〈̂~x, z〉 .

Since R(Ĝ, [[Ĝ]]), we may conclude that

RN (Ĝ (λz.BR F̂ Ĝ (add 〈̂~x〉 z)), [[Ĝ]] (Λz. [[B]]F 7→[[F̂ ]], G 7→[[Ĝ]], x 7→〈~x,z〉))

so that the term on the left evaluates to (the numeral for) the value on the right. But
also by Definitions 32 and 33 we have

[[B]]F 7→[[F̂ ]], G 7→[[Ĝ]], x 7→〈~x〉 = Φ ([[F̂ ]], [[Ĝ]], 〈~x〉)

= [[Ĝ]] (Λz.Φ ([[F̂ ]], [[Ĝ]], 〈~x, z〉))
= [[Ĝ]] (Λz. [[B]]F 7→[[F̂ ]], G 7→[[Ĝ]], x 7→〈~x,z〉) .

In particular, [[B]]F 7→[[F̂ ]], G 7→[[Ĝ]], x 7→〈~x〉 is defined, so using Lemma 34 as before, we see

that B[F 7→ F̂ , G 7→ Ĝ, x 7→ 〈̂~x〉] also evaluates to [[Ĝ]] (Λz.[[B]]F 7→[[F̂ ]], G 7→[[Ĝ]], x 7→〈~x,z〉).

Thus the induction claim is established for ~x.
We have thus shown that BR satisfies the conditions of Theorem 30, so a contradic-

tion with that theorem is established. �

Clearly, similar results hold for Spector bar recursion or for the language W.
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