
Eriskay: a programming language based on

game semantics

John Longley Nicholas Wolverson

February 12, 2008

Abstract

We report on an ongoing project to design a strongly typed, class-based object-
oriented language based around ideas from game semantics. Part of our goal is to
create a powerful modern programming language whose clean semantic basis renders
it amenable to work in program verification; however, we argue that our semantically
inspired approach also yields benefits of more immediate relevance to programmers,
such as expressive new language constructs and novel type systems for enforcing secu-
rity properties of the language. We describe a simple-minded game model with a rich
mathematical structure, and explain how this model may be used to guide the design
of our language. We then focus on three specific areas where our approach appears
to offer something new: linear types and continuations; observational equivalence for
class types; and static control of the use of higher-order store.

In a substantial appendix, we present the formal definition of a fragment of our
language which embodies many of the innovative features of the full language.

1 Introduction and motivations

This paper reports on an ongoing experiment in applied semantics. Our goal, broadly, is
to take some simple and appealing mathematical model of computation, and to allow the
structure of this model to guide the design of a full-scale programming language. The hope
is that this will result in a clean and elegant language with a coherent design and pleasant
logical properties.

Our project in some ways seeks to emulate the development of Standard ML [24]. Part
of the explicit intention of the designers of ML was to provide a language with a sound
mathematical basis, not just in the sense of having a rigorous formal definition, but in the
sense of being based around a mathematically natural conception of computable functions,
as embodied by Scott’s LCF and its domain-theoretic model. As a result, the functional
fragment of ML, in particular, is widely considered to be a clean and beautiful system and
turns out to be particularly amenable from a logical point of view. (see e.g. [18]). Of course,
the demands of programming practice also motivated the inclusion of “non-functional” fea-
tures which could not be straightforwardly interpreted in the mathematical model, and with
hindsight, one can identify aspects of the design of these parts of ML which are troublesome
from a logical point of view (for instance, the possibility of anonymous exceptions). Nowa-
days, however, we have mathematically appealing semantic models for much more than

1

purely functional computation, and even some rather simple game models (see e.g. [2, 10])
are sufficient to underpin many of the features typical of modern programming practice,
such as state and control features, subtyping, second order polymorphism, and a class and
object system with inheritance and dynamic binding. We therefore believe that the time
has come for another attempt to design a mathematically based language, but making use
of some computationally much richer models that have emerged more recently from work
in game semantics.

Part of our aim is to create a language whose clean semantic basis makes it a suit-
able framework for future research in program verification. Besides the traditional problem
of proving a program correct relative to a specification, we have in mind problems such as
proving that two different implementations of a certain (Java-style) class are observationally
equivalent – an issue of clear relevance to modular program construction. (We shall explain
how game semantics sheds light on this particular problem in Section 5). The methodology
we have in mind is that the underlying and relatively simple model should guide the design
of a clean and expressive program logic (as in the case of LCF). Statements in the logic will
thus refer in principle to elements of the model; but if one has a strong correlation between
language and model known as logical full abstraction, they can equally well be interpreted
directly as statements about programs couched in terms of more familiar operational con-
cepts [17]. We will therefore have a particular interest in questions of full abstraction and
definability for our language and model. Another possible strength of this approach is that
it allows one to reason directly with expressions of the programming language itself, rather
than indirectly via a translation into some logical language as in e.g. [11].

Of course, only a small minority of programmers are likely to be excited by the prospect
of formal program verification. However, we believe that the ‘logical hygiene’ that makes a
language amenable to program verification also yields other benefits that are more imme-
diately relevant to the concerns of programmers. On one level, the search for a ‘tight fit’
between the language and the model can sometimes lead to the discovery of expressive new
language constructs. (For example, in Section 4 we present a semantically inspired control
operator with a ‘coroutining’ flavour, while in Section 5 we show how the semantic per-
spective leads naturally to a calculus in which class implementations are first-class values.)
On another level, our model suggests certain kinds of type systems which enforce certain
safety properties of programs, such as the security of the exception, continuation and name
generation mechanisms, in a manner quite different from that offered by effect type systems
as in [23]. We discuss the static control of exceptions as an example in Section 6.

Broadly speaking, we have in mind a strongly typed, class-based, object-oriented lan-
guage, with powerful polymorphism somewhat as in Generic Java, and with a functional,
higher-order flavour somewhat as in OCaml. Our main goals are:

• To develop a programming language, comparable in scale with ML or Haskell, which
owing to its clean semantic basis, will provide a suitable medium for future research
in program verification.

• To provide a showcase for certain language features inspired by game semantics, thus
enabling other language designers to assess the potential benefits of these features and
of our semantically inspired approach in general.

• To provide a platform which allows experimentation with the kinds of programming

2

styles supported by these features.

A formal definition of our language (which we call Eriskay) is underway, and a working draft
is available online [20]. We also intend to develop a prototype implementation to a level
suitable for research and teaching purposes. For the purpose of pedagogical presentation
and theoretical study, we have also isolated a subset of the language, called Lingay, which
embodies many of the innovative features of Eriskay but is not suitable as a practical pro-
gramming language. A complete definition of (the core of) Lingay is given in Appendix A.1

In this paper, our purpose is not to catalogue all the features of the proposed language,
but rather to explain in general terms how ideas from game semantics may be used to shape
the design of our language, and then to focus on some particular areas where our approach
seems to have something new to contribute. In Section 2 we informally introduce the game-
theoretic conception of computation and give a broad outline of the project as a whole.
In Section 3 we give the precise definition of our game model, and explain in particular
the paradigmatic interpretation of object types within it. We then consider three specific
areas of our language in more detail: the use of linear types in connection with continuation
operators (Section 4); the treatment of class implementations and observational equivalence
thereof (Section 5); and static control of the use of higher order store, with an application
to the analysis of exceptions (Section 6).

We are grateful to Bob Atkey, Sam Lindley, Don Sannella, Alex Simpson and Ian Star for
valuable feedback, and also to the referees of an earlier version of this paper for their helpful
comments. This work was supported by EPSRC Grant GR/T08791: “A programming
language based on game semantics”.

2 Programs as strategies

We now give a broad overview of the main ideas behind our project. Here, a comparison with
typed functional languages such as Standard ML and Haskell is instructive. In broad terms,
the design of these languages is based on a conception of program behaviour expressed by
the slogan: Programs are functions. (More precisely, the behaviour of a program may be
adequately captured by a mathematical function, say between suitable domains.) For both
ML and Haskell, this conception leads to a very clean and beautiful ‘core language’ which
admits pleasant reasoning principles. However, the demands of programming practice also
necessitate the inclusion of other features that do not immediately fit into a purely functional
framework (e.g. exceptions, state, I/O).

By analogy, our basic conception of program behaviour may be expressed by the slogan:
Programs are strategies. This says, for example, that the behaviour of an object on the heap
is adequately captured by a strategy or ‘decision tree’ determining how the object responds
under all possible interactions with its environment (typically the rest of the program). For
instance, in Fig. 1 we illustrate how a decision tree may represent the behaviour of a stateful
object with an int->int method under all possible sequences of method calls; and one may
readily imagine how more complex objects give rise to interaction strategies of a more

1Our languages, like Java, bear the names of islands. Eriskay is a small island in the Outer Hebrides,
and Lingay is a tiny uninhabited island nearby. The latter name also seems appropriate in view of the
associations with linearity and games.

3

����
3 ����

4 ����
5

����
7 ����

8 ����
9

�
�

�
�

�	

3

?

4

@
@

@
@
@R

5

�
�

�
�

�	

3

?

4

@
@

@
@
@R

5

..........

.....

.....

.....

.....

� @ � @ � @

� @ � @

Object adder = new Object() {
private int total = 0;
public int add (int i) {
total += i; return total
}
}

Figure 1: Part of the strategy associated with a Java-style object

elaborate kind. Here the labelled edges, representing method invocations with specified
arguments, correspond to possible moves played by an Opponent (the environment to the
object), whilst the labelled vertices, giving the return values, correspond to the response of
a Player who represents the object itself.

Clearly, objects with a more complicated interface type will be modelled by more elab-
orate kinds of strategies: for instance, if the argument to some method m is itself an object
o, the Player’s response might be first to interrogate o before returning from the call to m;
or if the return value of a call to m is itself an object o′, a possible Opponent response might
then be to interrogate o′. The basic paradigm, then, is that each programming language
type will be modelled by a game, which specifies the allowable forms of potential interac-
tions, while a term of some type will be modelled by a strategy of the corresponding game.
A more precise formulation of the game-theoretic model we have in mind will be given in
the next section.

On an intuitive level, this idea seems to fit very naturally with an object-oriented way
of thinking, in that it captures the essence of data abstraction — the concrete implemen-
tation of an object is hidden while only the externally visible interactions are modelled. It
is therefore not too surprising that interpretations based on strategies lead to fully abstract
models of suitable object-oriented languages. Moreover, games naturally embody a reac-
tive conception of computation as an ongoing process of interaction rather than a simple
terminating procedure that computes some final result.

Our approach, then, is to construct a simple mathematical model – the category GV to
be defined in the next section – which formalizes the ideas of games and strategies in an
intuitive way, and then to ask precisely which aspects of object-oriented languages can be
naturally and adequately captured in this model. This will lead to the definition of a core
language which can be smoothly interpreted in the model. Furthermore, we may ensure
that we are getting ‘value for money’ from our model, by requiring that our language can
express every (computable) strategy of appropriate type that the model supports.

The core language thus obtained turns out to be much richer than, say, the functional
core of ML or Haskell, but it still lacks some features that one would like for programming
purposes. For example, it is intuitively clear that a simple-minded semantics of objects in

4

terms of behaviour under message passing will not be able to account for reference equality
tests (== in Java). A more subtle example of the limitations of GV will be given in Section
6. Following the example of ML, we therefore augment our core language to a full language
which includes some of these missing features. However, in contrast to ML, we restrict
ourselves (even in the full language) to features which we are able to model within our
game-semantical framework, albeit at the cost of some additional complication. This will
mean that we will in principle have a relatively clean semantic basis for the whole language,
although it is for the core language that everything will work most smoothly.

In principle, then, the boundary between the core and the rest of the language is de-
termined by what can and cannot be naturally modelled in GV . From a syntactic point
of view, however, the drawing of this line turns out to be surprisingly delicate, and some
rather subtle syntactic criteria are involved (see Section 6). In our view, it is one of the
main virtues of a semantically inspired approach that it helps us to identify the ‘right’ place
to draw the boundary around certain classes of well-behaved programs.

To anticipate the outcome of this investigation, the scope of our core and full languages
respectively may be broadly summarized as follows. In the core language, we have (or can
naturally simulate):

• The kernel of a Java-style class and object system, including fields, methods and
constructors; public, protected and private access levels; and single inheritance with
method overriding and dynamic method invocation. However, all this is subject to
certain restrictions on the manipulation of higher-order store (see Section 6), which
imply (among other things) that only acyclic heaps may be constructed.

• Class types, allowing a treatment of class implementations as first-class expressions
(see Section 5).

• Recursion and mutual recursion for terms and types (including recursive object and
class types).

• Structural (sub)typing for objects, along with (unbounded and bounded) second-order
polymorphism at the level of both types and first-order type operators (this gives us
much of the essential power of F-bounded polymorphism).

• A system of linear types in the spirit of [27] (see Section 4).

• Control constructs sufficient to support coroutining (see Section 4).

In the smaller Lingay language the main omissions are recursive types and polymorphism
(except for a limited form of row variable polymorphism required for the class inheritance
machinery — see Section5). Furthermore, declarations are omitted, and the language is
explicitly typed so that type inference is not an issue.

In the full Eriskay language, we also have the following non-core features:

• Unrestricted use of higher order store, including cyclic heap structures.

• A system of reference types, including reference equality.

• Exceptions and input/output.

5

We should also comment on features we are unable to include because our semantic
framework cannot accommodate them. Firstly, and most obviously, our chosen game models
do not support threads or concurrency, although the possibility of coroutining does offer
some compensation for this. Secondly, as is typical for systems that treat object types
structurally, we cannot deal with strong binary methods (those whose implementations can
access the private members of both the objects in question). Thirdly, we cannot cope with
typical ‘object-based’ features such as method update. An interesting question for further
investigation is whether our framework can accommodate type systems with MyType as
described in [8].

Another point to note is that our semantic approach tells us little about what concrete
syntax to use for the various language features. For practical purposes, the syntax presented
in Appendix A will need to be supplemented with a variety of sugared forms, which we intend
to finalize once an experimental prototype implementation has become available.

3 A simple game model

In this section we make precise the definition of our game model and summarize its key
properties. We use a category of games introduced by Lamarche [15], along with a ‘!’
operator described by Hyland in [10]. We concentrate here on details required for specifying
our interpretation of object types and class types. Readers not conversant with all the
mathematical concepts here should still be able to follow the rest of the paper on an informal
level.

Our games will involve opponent and player moves. It is technically convenient to
define a fixed universe of moves from which the moves involved in all games are drawn. In
general, moves in a complex game will need to be ‘tagged’ to show which constituent game
they belong to; we therefore define moves to be formal expressions generated by a simple
grammar which allows such tagging. For the purpose of the present paper, it suffices to
define sets O and P by the following grammar, in which i ranges over N and z ranges over
Z:

o ∈ O ::= q(z) | andL(o) | andR(o) | impL(p) | impR(o) | tag(i, o)
p ∈ P ::= a(z) | andL(p) | andR(p) | impL(o) | impR(p) | tag(i, p)

Fundamentally, every move is either a question q(z) or an answer a(z) labelled by a value z
of type int (which we regard as representative of all basic types). The remaining constructs
in the above grammar are used to specify in which constituent of a complex game the move
takes place. We use m to range over M = O ∪ P . We write And for the set of all moves
andL(m) or andR(m), and similarly for Imp; likewise, we write Tag for the set of all moves
tag(i,m). We also write Alt for the set of all finite sequences of the form o1p1 . . . onpn

(n ≥ 0) or o1p1 . . . on (n ≥ 1). If S ⊆ Alt, we write Sodd, Seven for the sets of odd- and
even-length sequences in S. If s, s′ ∈ Alt, s′ v s means s′ is a prefix of s. If s ∈ Alt and
µ is an injective mapping M → M , we write s � µ for the inverse image under µ of the
subsequence of s consisting of moves in the range of µ. We abbreviate s� tag(i,−) to s� i.

Definition 1 (i) A game G is a non-empty prefix-closed subset of Alt. The sequences s ∈ G
are called the legal plays or positions of G.

6

(ii) Given games G, H, we may define games G⊗H, G (H, !G as follows:

G⊗H = {s ∈ Alt ∩And∗ | s�andL ∈ G, s�andR ∈ H}
G (H = {s ∈ Alt ∩ Imp∗ | s� impL ∈ G, s� impR ∈ H}

!G = {s ∈ Alt ∩ Tag∗ | ∀i ∈ N. s� i ∈ G ∧
∀s′ v s. s′ � i = ε ⇒ s′ � i+1 = ε}

Note that there is no notion of winning or losing in our games.
Intuitively, G⊗H allows two games G, H to be played concurrently, where Opponent is

free to choose which component to play in at each stage (Player must follow suit). Likewise,
!G allows arbitrarily many copies of G to be played concurrently; at each stage, Opponent
may choose to play in any of the existing copies (indexed by 0, . . . , j − 1, say) or to start a
play in the next available fresh copy (indexed by j). The game G (H is best understood
in the light of:

Definition 2 (i) A strategy for G is a partial function f : Godd ⇀ P such that dom f is
closed under odd-length prefixes, and if f(s) = p then sp ∈ G.

(ii) The category G is defined as follows: objects are games, morphisms G → H are
strategies for G (H, and identities and composition are defined in the natural way (see
e.g. [2, 10]).

A strategy f for G (H is something whose back end may be hooked up to a strategy
for G, and whose front end will then behave as a strategy for H, with f itself mediating the
back-and-forth interactions between G and H.

A crucial point to note is that a strategy f for G⊗H need not be simply a strategy for
G combined with a strategy for H, since (for example) the response of f to an opponent
move in G may depend on what moves have occurred in H. This corresponds to the idea
that interacting with an H-program can influence the behaviour of a G-program if the
two programs share mutable state. Likewise, a strategy f for !G need not be just an N-
indexed family of strategies for G; this corresponds to the idea that different (and possibly
concurrent) invocations of a G-program may interfere in complex ways if G has mutable
state.

The definition of our category of games is rather simple compared with many of those in
the literature. This reflects the fact that many of the other models are specifically tailored to
match some given language, whereas for us, the idea is to let the language be determined by
a simple and natural model. Our model is also comparatively rich in terms of its expressive
power, i.e. the class of computations it supports. Some other game models surpass ours in
this respect (see e.g. [4]), but the combination of simplicity, intuitiveness and expressivity
offered by our model make it, in our view, an attractive choice as a basis for our project.
One should also note that expressive richness is a two-edged sword, in that the possibility
of modelling additional language features is typically achieved at the cost of more complex
denotations even for programs not involving these features, which increases the difficulty of
reasoning about such programs.

Our category G turns out to be well-endowed with computational and mathematical
structure. For example:

7

• The operator ! can be given the structure of a linear exponential comonad, so that G
is a model for the (⊗,(, !) fragment of linear logic (see [10, 29]).

• G is CPO-enriched, allowing us to interpret recursive programs. Moreover, the set
of all games ordered by inclusion is itself (literally) a CPO, so we may immediately
interpret recursive types as fixpoints of type operators.

• There is a natural subtyping relation on games (cf. [2]): we set G <: H if

s ∈ Geven ∧ so ∈ H ⇒ so ∈ G t ∈ Hodd ∧ tp ∈ G ⇒ tp ∈ H

• For any set F of games, we may define its ‘generic intersection’
∧
F to be the unique

game F satisfying the following (cf. [2]):

∀s ∈ F even, o ∈ O. (so ∈ F ⇔ ∃G ∈ F . s ∈ G ∧ so ∈ G)
∀t ∈ F odd, p ∈ P. (tp ∈ F ⇔ ∀G ∈ F . t ∈ G ⇒ tp ∈ G)

This, together with the subtyping relation, allows us to interpret System F style
polymorphism along with its bounded and F-bounded variants.

• G has a universal object U , in the sense that every game G is a retract of U (i.e. there
are morphisms ι : G → U , π : U → G with πι = idG). Specifically, we may take
U = Alt ∩ V ∗, where V is the set of moves q(z) or a(z).

• G has a universal projection, corresponding informally to a “type of types”. However,
our language design does not currently exploit this feature.

Broadly speaking, we wish to model types of our programming language by games, and
programs by strategies. For example, the type int of natural numbers can be represented
by the game Z = {ε, ?, . . . , ?a(−1), ?a(0), ?a(1), . . .}, where ? = q(0) say. Intuitively, the
Opponent move ? corresponds to a request from the environment for an expression to be
evaluated: the strategy {? 7→ a(n)} will respond with the Player move n, whilst the empty
strategy for Z will go undefined at this point. Thus, the game Z really models computations
of type int, playing the role of the object Z⊥ in classical domain theory.

Actually, since we wish to model a call-by-value language, we need to extend G to a
category GV which allows us also to represent already computed values of ground type.
We do this by means of a general construction given in [3]. In GV , objects are indexed
families of games (Gi | i ∈ I); the idea is that a choice of i ∈ I allows us to specify the
ground type information present in some value, while Gi is used to model any higher type
ingredients. A morphism (Gi | i ∈ I) → (Hj | j ∈ J) is a (dependently typed) function
mapping each i ∈ I to a pair (j, f) where j ∈ J and f ∈ HomG(Gi,Hj). Identities and
composition in GV are defined in the natural way, and we regard G as a full subcategory of
GV by identifying a game G with the corresponding singleton family. The definitions of ⊗
and ! lift easily from G to GV , and it is also straightforward to define a linear function space
constructor (: Gop

V × G → G, a lift functor −⊥ : GV → G, and a disjoint sum operation
⊕ : GV × GV → GV . The definitions of subtyping and generic intersection lift to GV as
follows:

(Gi | i ∈ I) <: (Hj | j ∈ J) iff I ⊆ J and ∀i ∈ I. Gi <: Hi

8

∧ {
(Gk

i | i ∈ Ik)
∣∣ k ∈ K} =

(∧
{Gk

i | k ∈ K}
∣∣∣ i ∈

⋂
{Ik | k ∈ K}

)
We are now able to give the paradigmatic interpretation of object types in our setting.

We adopt a structural view of types, according to which the type of an object is essentially
the interface that it implements. Suppose an object t has public methods with names
l1, . . . , ln, where the method li has argument type ζi and return type ξi. Assuming that
these types have already been assigned suitable denotations [[ζi]], [[ξi]] in GV , the type of x
may be interpreted in GV by the object⊗

1≤i≤n

!([[ζi]] ([[ξi]]⊥)

and the (externally visible) behaviour of t itself will be modelled by a strategy of this
type. Here the ‘

⊗
’ embodies the idea that the object’s environment may choose, at any

time, which method to invoke, while the ‘!’ captures the idea that each method may be
called more than once. Note that even in a sequential programming language, multiple
concurrent invocations of (the same or different) methods are possible in connection with
method arguments of higher type, for instance in the evaluation of re-entrant expressions
such as t.l1(fn x => t.l2()). (By contrast, if the body of the method l1 itself directly calls l2,
only the outer call will show up in the external view of the behaviour of t.)

An interpretation of objects of this kind was briefly outlined in [4], and is further devel-
oped in [29], which analyses the way in which a strategy for the external behaviour of an
object o may be obtained from a strategy for its internal behaviour (i.e. its concrete method
implementations), and works out the details of a game semantics for an object-oriented lan-
guage somewhat smaller than Lingay (e.g. without control features), along with a soundness
proof relative to a heap-based operational semantics. A corresponding account of the game
semantics for Lingay is in preparation.

Some comparison with other (syntactic or semantic) object encodings considered in the
literature may be helpful at this point (cf. [9]). Firstly, our interpretation is quite different
in flavour from those based on existential types, since an object’s internal representation
does not appear at all in the denotation of the object, even in a hidden way. In this respect,
our approach is closer to a classical ‘recursive record’ encoding insofar as it offers a purely
external view of objects. In contrast to this, however, our encoding is not a functional
encoding, in that our objects ‘manage their own state’, so we do not require each method
call to return an updated version of the target object. In our view, the key to our approach
resides in the inherently stateful nature of ⊗ and !, in conjunction with the use of linearity
to distinguish between different invocations of a method.

On another axis, our approach relates closely to recent work on trace semantics for
fragments of Java [1, 12], in which one models objects solely in terms of their interactions
with the environment, leading to full abstraction results. The languages treated in these
papers are richer than ours in some respects (e.g. concurrency is addressed). However, the
set of traces is defined on whole programs in a rather operational, non-compositional way.
We believe our more structural approach will facilitate the formulation of natural reasoning
principles.

9

4 Linear types and continuations

We now turn our attention to some particular features of our core language.
Firstly, since our model supports linear (more precisely, affine) types, we may incorpo-

rate a linear type system up-front in our language. For the time being, we consider the
types generated by the grammar:

σ ::= int | σ1*σ2 | σ1+σ2 | σ1->σ2 | !σ1 | {l1:σ1, . . . ,ln:σn}

Semantically, we define [[int]] = ({ε} | i ∈ Z) and [[σ1->σ2]] = [[σ1]] ([[σ2]]⊥; we interpret
! using !, + using ⊕, and * and record types using ⊗. The essential point here is that if
we are passed a function of type σ->τ , we may invoke this function at most once, whilst a
function of type !(σ->τ) may be invoked as many times as we please. The type system of
our language statically enforces the ‘once-only’ discipline for linear values by keeping track
of which variables are and are not reusable (cf. [5]).

A linear type system offers several potential advantages. Firstly, there are possible
implementation benefits, as discussed in [27]. Secondly, for the purpose of reasoning about
programs, it is a great help if we know that some expression can be interpreted in the game
[[σ]] ([[τ]]⊥ rather than the more complicated game ![[σ]] ([[τ]]⊥, since in the former
case we are dealing with a much smaller decision tree. We here focus on a third kind of
advantage: the ability to enforce (one kind of) linear use of continuations as discussed in
[6].

We introduce (various versions of) a control operator catchcont, which may be regarded
as a typed version of the resumable exception construct of Common Lisp, or else as a
resumable variant of the Cartwright/Felleisen catch operator. Consider first the following
typing rules (where ρ, τ are ground types).

x : ρ->σ ` e : τ

` catchcont1 x => e
: {value: τ} +
{arg:ρ, resume : σ->τ}

x : !(ρ->σ) ` e : τ

` catchcont2 x => e
: {value: τ} +
{arg:ρ, resume : σ->!(ρ->σ)->τ}

To evaluate catchcont1 x => e, we try to evaluate e, treating x as a dummy variable of
function type. If the evaluation completes without ever attempting to call x, we obtain a
result of type τ . Otherwise, if we attempt to call x on some argument y : ρ, the value of y
is returned, along with a function allowing us to resume the evaluation of e at some later
date (this latter feature is what distinguishes our operator from catch).

Linear typing is used in two distinct ways to enforce the safety of this operator. Firstly,
the resume function may only be invoked once; this in essence means that the continuation
at the point of calling x is only used ‘linearly’. Secondly, the form of the premise means that
the evaluation of e can attempt to call x at most once; thus, when we invoke the resume
function, there is no danger that we will encounter a second application of x. A more general
behaviour is admitted by the operator catchcont2, where e may attempt to call x many
times; here we must supply the resume function with an operator to provide the value of x
for the purpose of subsequent invocations. (We can, if we like, trap the second use of x by
a further use of catchcont2.)

10

The restriction that τ be of ground type is important. If the evaluation of catchcont2 x => e
were to return a result of some non-ground type τ , further interaction with this result might
run into lingering occurrences of x which are now out of scope. However, we can overcome
this restriction with a yet more powerful version of catchcont. Here we split the type of e
into a ground type component τ and a component of arbitrary type τ ′. In order to make
use of the latter, one must again supply an argument giving the ‘meaning’ of x.

x : !(ρ->σ) ` e : τ*τ ′

` catchcont3 x => e
: {value: τ, more:!(ρ->σ)->τ ′} +
{arg:ρ, resume : σ->!(ρ->σ)->τ*τ ′}

ρ, τ ground

The details of an operational semantics for this operator are included in Appendix A.
This last version of catchcont was suggested to us by semantic considerations, and in

particular by the idea that all computable strategies (at the types considered here) ought
to be definable in the language. As explained in [16], we can establish both definability
and full abstraction at such types with the help of the universal object U from Section 3,
which is essentially the denotation of the universal type univ = {play:!(int->int)}. The
properties of definability and full abstraction are trivial for univ itself, and they extend
to all types if we can show that for every type τ we have a language-definable retraction
[[τ]] C [[univ]] (see [16]). For this, it suffices to check each of the types int, univ*univ,
univ+univ, univ->univ, !univ is a definable retract of univ.

It turns out that all the relevant operations are programmable using familiar language
constructs, except for the abstraction operation (univ->univ) → univ, which calls for
something with the power of catchcont3.2 In Figure 2 we give the code for the abstraction
operation, which constitutes the most interesting part of the definability proof. (An ML
version of this program is given in [22].) We write pre_univ for the type int->int*univ,
and we presuppose here the existence of a program fold:pre_univ->univ which collects
a family of univ objects into a single object which chooses one of them according to the
argument passed on the first invocation of play, and a program unfold:univ->pre_univ
for the corresponding inverse operation. The programs tagL, tagR serve as the left and
right components of some coding function Z + Z → Z.

Our semantics has thus guided us to an interesting new language construct, which natu-
rally provides support for ‘coroutining’ styles of programming within our type system. The
fact that such a construct (in the context of ‘linear PCF’, for example) yields full abstraction
and definability for our model G appears to be a new theoretical result in game semantics,
although Laird [14] shows that a closely related coroutining operation (which is definable
from ours) yields full abstraction and definability for the corresponding intuitionistic model.

All these versions of catchcont can in essence be implemented in New Jersey ML using
callcc (see [22]). However, there are several possible advantages to packaging up the power
of callcc in the above constructs. Firstly, the types involved are more familiar, and for
some programmers more intuitive. Secondly, we get better run-time security, since our
operators can never give rise to a TopLevelCallCC error. (Indeed, a theorem asserting the
run-time security of our dummy variable mechanism follows readily from the adequacy of

2In fact, the first author originally conjectured that catchcont2 would suffice, and it was the attempt to
code the abstraction operation that led us to the definition of catchcont3.

11

val abstract : (univ->univ)->univ =
split rec (abstr’,abstr’’) =>

(fn P:pre_univ->unit =>
fold (fn h:int => abstr’’
(fn g:pre_univ => unfold (P g) h)),

fn R:pre_univ->int*univ =>
case catchcont x:!pre_univ => R(der x) of

inl {result=r, more=P’} => (tagL r, abstr’ P’)
| inr {arg=q, resume=Q} =>
(tagR q,
fold (fn h:int => abstr’’

(fn branches:pre_unit =>
Q (a, fold branches) dummy))))

as (abstr’,abstr’’) in
fn F:univ->univ =>

abstr’ (fn branches:int->int*univ => F (fold branches))
end

Figure 2: Code for abstraction operation

our denotational semantics.) Thirdly, our operators enforce linear use of the underlying
continuations, which significantly simplifies the task of implementation of the language as
it avoids the need for reification of the stack.

Finally, we mention that our category G also supports a more powerful linear exponential
‘!’ operator which would allow one to model ‘non-linear’ uses of continuations (e.g. back-
tracking). The ‘!’ in question is described (implicitly) in Section 6.6 of [16], and provides the
basis of the Stratagem system [21], which allows dynamic explorations (possibly including
backtracking) of the strategies underlying a given ML program. However, we have chosen
not to follow this route, partly because of the known implementation difficulties, and also
in the interests of simplying reasoning about programs: working with the more subtle linear
exponential would result in much larger decision trees, and a correspondingly finer notion
of observational equivalence, imposing an added burden on reasoning even for programs not
involving control features.

5 Class implementations

Next, we explain our treatment of class implementations and their semantics. We adopt a
system of class types close to that of [7]. We concentrate here mostly on a ‘default’ scenario
in which all methods are public and all fields are protected.

Omitting some bells and whistles, a class implementation c will be an expression of some
class type of the form classimpl τf,τm,τk, where τf is a labelled record type giving details
of any fields; τm = {l1:!(ζ1->ξ1), . . . ,ln:!(ζn->ξn)} gives the names and externally visible
types of the methods (so that objects obtained as instances of c will have type τm); and τk

is the argument type of the (single) constructor for the class.

12

In any given object of such a class, the concrete implementation of the methods may be
considered as having type

τm\τf = {l1:!(ζ1*τf->ξ1*τf), . . . , ln:!(ζn*τf->ξn*τf)}

(Note the ‘functional’ treatment of the internal state at this point, in contrast to the imper-
ative treatment in [7]. This has some rather subtle implications for the precise semantics of
method calling, since (in effect) an object’s state can only be updated in-place at the end
of a method call; however, these subtleties only manifest themselves for re-entrant method
calls involving higher-order arguments.)

However, in the class implementation itself, we wish to leave these method implementa-
tions ‘open’ in order to allow for method overriding in subclasses. We achieve this using the
idea of early self binding as in [25, 28]. Specifically, in a class implementation, the method
bodies (of type τm\τf) are parameterized by a variable self (also of type τm\τf). This
operator τm\τf -> τm\τf may be modified and extended in subclasses, and its fixpoint is
taken at object creation time to yield the concrete implementation of the object in question.
As is well-known, this correctly captures the effect of dynamic method invocation.

Two further ingredients should be mentioned. Firstly, our method implementations
should also be parameterized by a variable super in order to admit superclass method calls.
Secondly, as explained e.g. in [8], in order to allow for the possibility of additional fields
present in future subclasses, we need to replace τf above by an arbitrary type τf**ρ, where
ρ is a row variable ranging over sets of labelled record type components, and ** denotes
record extension. (The more usual formulation in terms of an arbitrary type ζ<:τf does
not work out correctly in our setting.)

In the light of this discussion, we may formulate the following typing rules for our
basic (unsugared) class constructs. Here, for convenience, we temporarily assume that the
language supports explicit System F style quantification over row variables;3 later we will
show how one may dispense with this assumption.

root : classimpl{},{},{}
c : classimpl τf,τm,τk

new c : !(τk->τm)

c : classimpl τf,τm,τk

em : polytype ρ => !(τsuper->τself->τself)
ek : !(τ ′k->τk*(τf->τ ′f))

extend c with em,ek : classimpl τ ′′f ,τ
′′
m,τ ′k

τsuper = τm\(τ ′′f **ρ)
τself = τ ′m\(τ ′′f **ρ)
τ ′′f = τf]τ ′f
τ ′′m = τm]τ ′m
τf , τ ′f have disjoint labels

This can be seen as a type-theoretic presentation of the kernel of a Java-style class
system with inheritance. Classes are constructed by (repeatedly) extending a single vacuous
root class. The constructor implementation ek returns a value to be passed up to the
superclass constructor, together with an operation for filling out the new fields once the
superclass fields have been initialized. We will also (temporarily) assume that the language
contains a simpler version of the extend rule for final classes, i.e. expressions of the form

3This feature will probably not be included in Eriskay, owing to the complications involved in avoiding
component name clashes.

13

final extend c with em,ek, in which the variable ρ is omitted everywhere. (This feature
is present in Eriskay, but not in Lingay.)

What is an appropriate denotational semantics for (non-final) class types? First, we
note that the behaviour of a class implementation c : classimpl τf,τm,τk may intuitively
be captured by a strategy of the following ‘representing type’:

classrep(τf , τm, τk) = (polytype ρ => !(τm\(τf**ρ)->τm\(τf**ρ))) * !(τk->τf)

Here the first component gives the behaviour of the method implementations relative to
self, and the second component gives the behaviour of the constructor implementation.
(There is no need to incorporate a dependence on super here, since any class expression
may be normalized to one that directly extends the root class.) This suggests that we
could simply define [[classimpl τf,τm,τk]] to be [[classrep(τf , τm, τk)]] (the polytype being
interpreted by generic intersection over all possible ground instantiations of ρ). In fact, this
works out well, and allows us to give adequate interpretations of extend and new expressions
(cf. [19, 29]).

Actually, this interpretation of class types turns out to be ‘best possible’, in that the
types classimpl τf,τm,τk and classrep(τf , τm, τk) are definably isomorphic. That is, there
are language-programmable mappings in both directions whose denotations in GV are mu-
tually inverse. Specifically, given a variable rep of type classrep(τf , τm, τk), we may define
a corresponding class implementation by the expression is straightforwardly defined by the
expression

split rep as (meth-rep, constr-rep) in
extend triv with meth-rep, constr-rep

end

Conversely, given a variable impl of type classimpl(τf , τm, τk), we may extract the under-
lying representation by means of a programming trick involving overriding and super. We
illustrate this in Figure 3 for the case τf = tf, τk = tk, τm = {m:!(ta->tb)}.

Thus, questions of observational equivalence for class implementations can be reduced to
the corresponding questions for their representations. Furthermore, if τf , τm, τk do not them-
selves involve class types or polymorphism, then our interpretation of classrep(τf , τm, τk) is
itself fully abstract (cf. Section 4), so we have a fully abstract model for classimpl τf,τm,τk.

We have been over-simplifying slightly here, since (as we will explain in Section 6) only
argument-safe method bodies may legitimately appear in a class implementation. This does
not pose a serious problem, since we may cut down from arbitrary strategies to argument-
safe ones by means of an appropriate retraction (see [22]). Adapting the definition of
[[classimpl τf,τm,τk]] to take account of this, we do indeed obtain full abstraction for
class implementations as claimed. Moreover, exactly the same picture remains valid if
private fields of ground type are added to the mix (the situation for non-ground private
fields requires further investigation).

In fact, we can make our interpretation of class implementations even more concrete than
this, and (at the same time) dispense with any dependence on row variable quantification
in the language. A slightly troubling feature of the above interpretation is that the game
[[classimpl τf,τm,τk]], being defined as a generic intersection, contains rather a lot of
junk for our purposes. (More specifically, we only really wish to consider those ‘uniform’

14

(polytype ’@r => prom
(fn source: {m: !(ta*(tf**’@r) -> tb*(tf**’@r))} =>

let val impl’ = final extend impl with
prom (fn super => fn self =>

{m = source.m,
m’ = super.m,

read = prom (fn (x:unit,s:tf**’@r)=>(s,s))}) ,
prom (fn s:tf**’@r => (dummy, fn t:tf => s))

in {m = prom (fn (a:ta, s:tf**’@r) =>
let val o = new impl’ s in

o.m’(a) ; o.read void
end)}

end) ,
let val impl’’ = final extend impl with

prom (fn super => fn self =>
{read = prom (fn (x:unit,s:tf) => (s,s))}) ,

prom (fn k:tk => (k, fn s:tf => s))
in prom (fn k:tk => der (new impl’’ k).read void)
end)

Figure 3: Code for class representation extraction

strategies which behave as copycat on the portions corresponding to the indeterminate game
for ρ.) However, we have the following useful fact: a polymorphic strategy of such a type
is uniquely determined by any of its instances (e.g. the instantiation given by ρ := { }).
Intuitively, this is because in the course of any play of this strategy, there is, at any time, at
most one value of type τf**ρ available, since ρ is treated by the type system as non-reusable.
We may think here in terms of a single ‘token’ which we give away whenever we invoke a
self or super method implementation, and which is returned to us when the method call
returns. It is now fairly clear that the way in which the token is threaded through the
computation can be recovered from just the single instance ρ := { }.

More precisely, the strategies of interest in [[polytype ρ => !(τm\(τf**ρ) → τm\(τf**ρ))]]
may equally be represented as the strategies for a certain retract of [[!(τm\τf → τm\τf)]].
This suggests that we may work with the alternative representation

classrep′ τf,τm,τk = !(τm\τf → τm\τf) * !(τk → τf)

Moreover, in the presence of catchcont, both halves of the corresponding retraction turn
out to be syntactically definable, so that we may define [[classimpl τf,τm,τk]] to be the
relevant retract of [[classrep′ τf,τm,τk]]. This gives us a remarkably concrete semantics for
class implementations for which we have both full abstraction and definability; moreover,
the limited row polymorphism available in Lingay suffices to define the relevant programs.

These ideas offer a seemingly novel approach to the question of observational equivalence
for non-final class implementations (where ‘observations’ may involve subclassing the given
class), at least for our chosen language. Whereas in e.g. [13, 26] this question is reduced to

15

the existence of an appropriate logical relation or bisimulation, we reduce it to the question
of equality for particular strategies which may be described very concretely. We expect this
to make the problem much easier, although we have yet to work through any particular
cases in detail.

We note in passing that the question of semantics for final classes is very much easier:
if c is some class implementation which we are not allowed to extend, we may take its
interpretation [[c]] to be simply [[new c]], a strategy of type [[τk → τm]] where we already
have full abstraction if τk, τm are simple types.

One further aspect of our class system deserves a brief mention. If the type τf of an
object’s internal state is not reusable, it will be impossible for the object’s environment
to engage in two method invocations concurrently, since the state is ‘used up’ by the first
method call and we must wait for the updated state to be returned before initiating a second
call. Since methods with higher-order arguments naturally give rise to the possibility of
concurrent invocations via re-entrant method calls, we had better restrict arguments to be
of ground type for classes with non-reusable state. This motivates a system of linear classes
in which this restriction is imposed, and it turns out that this gives just what is needed to
achieve definability and full abstraction at all (linear) types.

As an aside, we also believe that it will be of interest to explore in more detail the
‘functorized’ styles of programming in the large which our first-class treatment of class
implementations appears to support.

6 Restrictions on higher-order store

We now come to consider the most severe and perhaps the most embarrassing limitation of
our core language: the use of higher-order store is significantly restricted, so that it is not
even possible to implement a simple higher-order store cell. Of course, this is not fatal from
the programmer’s point of view, since the restrictions may be bypassed in the full language;
however, we shall argue that there are still reasons why programmers should care about
these restrictions.

We start by explaining what is permitted in the core language, what is excluded, and why.
As a running example, we consider a class c containing a field f of type int->int, which we
regard as representative of arbitrary non-ground types (including object types). Firstly, we
do allow objects to have fields of non-ground type, and initial values of such fields may be
supplied via constructor arguments. For instance, the evaluation of new c (g:int->int)
might perform f:=g. So in this sense, we may store non-ground values on the heap.

However, we do not permit a method to store a non-ground argument in a field of the
target object. (For instance, a method call m1(g) cannot perform f:=g.) More generally, a
method may not store any non-ground value obtained from such an argument (thus, a call
m2(h:int->int->int) cannot perform f:=h(5)). The precise meaning of ‘obtained from’
here will be clarified below.

On the positive side, a method call can do any or all of the following:

• Interact with non-ground fields (e.g. a call m() can return f(5)).

• Update non-ground fields (m() can perform f:=fn i=>f(i+1)).

16

• Make unrestricted use of ground type information extracted from its argument (m1(g)
can perform p:=g(5); f:=fn i=>i+p).

• Export non-ground field contents as return values (m() can return f).

• Use arguments without restriction in return values (m1(g) can return g).

To summarize, information of non-ground type can flow freely from the object’s state to the
return value, or from the argument to the return value, but any dependency of the updated
state on the argument must be funnelled through a value of ground type. A useful intuition
may be gained by thinking about objects and pointers: in the course of a method call, the
target object may make use of pointers acquired from the method argument, but it is not
allowed to retain hold of such pointers after we return from the method call.

Programs which obey the above discipline are called argument-safe. This discipline is
statically enforced by the typing rules of our core language, which keep track of which
variables are safe (i.e. may be used unrestrictedly), and which terms depend on unsafe
variables only in safe ways. Here are some sample typing rules in a simplified form; the idea
is worked out in detail for Lingay in Appendix A.

Γ, x : τ ` x : τ Γ, x : τ safe ` x : τ safe

Γ ` e : τ

Γ ` e : τ safe
τ ground

Γ, xarg : ρ, ystate : σ ` ereturn : ξ Γ, xarg : ρ, ystate : σ safe ` e′state : σ safe

Γ ` fn 〈xarg, ystate〉 => 〈ereturn, e′state〉 : ρ*σ->ξ*σ argsafe

To explain the reason for these rather odd syntactic restrictions, let us look at what goes
wrong in our semantics if a program is not argument safe. For example, suppose s is a store
cell for the type int->int with get and put methods, and consider the interactions with s
when we try to execute s.put(fn x=>x); s.get()(5):

put : (int->int) -> unit get : unit -> (int->int)
O ?−
P !()
O ?()
P !−
O ?5
P ?5

In the last move here, Player (presumably) will respond to Opponent’s query by interro-
gating the argument passed to put. However, at this point in the dialogue, such a move
will be out of turn from the point of view of the put component of the game, where it is
Opponent’s turn to move.

Naturally, these difficulties can be overcome by moving to a more elaborate game model
(as in [4]), but at the cost of complicating the whole setup. More specifically, the decision
tree that represents the behaviour of a program up to observational equivalence will now be
larger inasmuch as it may involve non-alternating subplays in certain components, resulting
in more fine-grained observational distinctions even for purely functional programs. One
response would be to accept the added difficulty in reasoning about programs as a price

17

worth paying for the expressive power we gain; alternatively, we may ask whether there are
any positive benefits to be reaped from the above restrictions.

In fact, argument-safety does give rise to various pleasant consequences – for instance,
it can be shown that argument-safe programs never give rise to cycles in the heap – and
this reinforces the impression that argument-safety is somehow a natural condition which
facilitates reasoning about programs. However, we will here focus on an application to a
problem of more immediate relevance to programmers: the static control of exceptions in
the presence of higher-order store.

In general, the combination of exceptions and higher-order store can give rise to strange
phenomena. In ML, for instance, we may create a store cell, then use it to store a function
with raises a locally declared exception. Later, outside the scope of this exception, we may
apply this function, causing an anonymous (out of scope) exception to be raised. In Java,
by contrast, the use of exceptions is tightly regulated by requiring all method signatures to
declare explicitly any (checked) exceptions the method might throw. However, this system
is perhaps overly conservative, and one might hope to allow more whilst still retaining
static control over exceptions. Consider for instance a Java interface List, with a method
add (Element x) (for adding elements to the list) and a method map (Function F) (for
applying a given function to all the elements of the list):

interface Function {Element f (Element x);}
interface List {void add (Element x);

void map (Function F);
Element nth (int n);}

Then we cannot invoke L.map with a function F that may raise exceptions not anticipated
in the declaration of Function. However, there is a sense in which such method invocations
are ‘safe’, since F is discarded by L after the method call, so that any exceptions present in F
will not unexpectedly surface later. By contrast, a method invocation L.add(x) is ‘unsafe’
if x may raise an unanticipated exception, since this exception may resurface at an arbitrary
later point (e.g. outside its static scope). Intuitively, this is related to the fact that map is
argument-safe while add is not.

We therefore suggest that the notion of argument-safety offers a natural answer to the
question: “Which uses of higher-order store can safely coexist with exceptions (in the sense
of allowing us to retain static control over the latter)?” Furthermore, one may use this
idea as the basis for a static type system guaranteeing security of exceptions whilst allowing
more flexibility than Java.

In our full language, we plan to introduce a more programmer-friendly exception mech-
anism than that offered by catchcont, in which the type of an expression M is in general
annotated by a single set X of exceptions, documenting the exceptions which M might be
responsible for raising in some context C[M]. Some sample typing rules are:

M : (σ->τ)X M ′ : σX′

M M ′ : τX∪X′

M : τX∪{e} M ′ : τX′

M handle e =>M ′ : τX∪X′ τ ground

Furthermore, for any specified type τX we may declare an associated type of references to
values of τX . For example:

reftype EltRef for Element{e} with (ref,deref) ;

18

has the effect of introducing an abstract type EltRef for Element{e}, which comes equipped
with referencing and dereferencing operations which are bound to ref, deref. From the
point of view of the type system, EltRef is treated as a ground type; there is therefore
no violation of argument-safety in writing a List class for storing references to elements.
(This shows how the higher-order store restrictions may be circumvented in the full language
when necessary.) The add method of such a class will have type EltRef->unit, and this
enforces the fact that we may not add elements that raise exceptions other than e. (Note
that the scope of e must enclose that of EltRef itself.) By contrast, the map method, being
argument-safe anyway, can be given the type !(Element->Element)->unit, and may be
invoked with an argument F involving any exceptions whatever, by virtue of the above
typing rule for application.

Although in this article we have not given details of our proposal for interpreting the
full language within our game model, we expect to be able to do so, and the soundness of
this interpretation will then readily imply the following exception safety property:

if the evaluation of M : τX raises e, then e ∈ X.

Furthermore, we anticipate that what we are able to achieve for exceptions will equally
be feasible for other impure effects: for example, our type system will likewise enforce a
non-extrusion property for references themselves.

It is pleasing to find that the notion of argument-safety, which arose from a quest for
mathematical simplicity, seems also to have applications to more practical problems. We
regard this, along with the other results described in this paper, as supporting our view
that a simple mathematical model can lead to a harmonious language design with some
unexpected good properties. We expect our game model to remain a fruitful source of
inspiration as our language design continues to take shape, and thereafter in the design of
suitable program logics for the language.

References

[1] Àbrahàm, E., Bonsangue, M., de Boer, F., Steffen, M.: Object connectivity and full
abstraction for a concurrent calculus of classes. Proc. 1st ICTAC, Z. Liu and K. Araki,
eds., Springer LNCS 3407 (2004) 37–51

[2] Abramsky, S.: Semantics of Interaction: an introduction to game semantics. Proc.
CLiCS Summer School, P. Dybjer and A. Pitts, eds., CUP (1997) 1–31

[3] Abramsky, S., McCusker, G.: Call-by-value games. Proc. 11th CSL, M. Nielsen and
W. Thomas, eds., Springer LNCS 1414 (1998) 1–17

[4] Abramsky, S., Honda, K., McCusker, G.: A fully abstract game semantics for general
references. Proc. 13th LICS, IEEE Press (1998) 334–344

[5] Barber, A., Plotkin, G.: Dual intuitionistic linear logic. University of Edinburgh Tech-
nical Report ECS-LFCS-96-347 (1997)

[6] Berdine, J., O’Hearn, P., Reddy, U., Thielecke, H.: Linear continuation-passing. Higher
Order and Symbolic Computation vol. 15 (2002) 181–208

19

[7] Bono, V., Patel, A., Shmatikov, V., Mitchell, J.: A core calculus of classes and objects.
Proc. MFPS’99, Elsevier ENTCS 20 (1999) 1–22

[8] Bruce, K.: Foundations of Object-Oriented Languages. MIT Press (2002)

[9] Bruce, K., Cardelli, L., Pierce, B.: Comparing object encodings. Information and
Computation 155 (1999) 108–133

[10] Hyland, M.: Game semantics. Proc. CLiCS Summer School, P. Dybjer and A. Pitts,
eds., CUP (1997) 131–184

[11] Jacobs, B. et al : Reasoning about Java Classes (Preliminary Report). Object-Oriented
Programming Systems, Languages and Applications, ACM Press (1998) 329–340

[12] Jeffrey, A., Rathke, J.: A fully abstract may testing semantics for concurrent objects.
Theor. Comp. Sci. 228 (2005) 17–63

[13] Koutavas, V., Wand, M.: Reasoning about class behaviour. Presented at FOOL’07.

[14] Laird, J.: Functional programs as coroutines. Draft paper (2007).

[15] Lamarche, F.: Sequentiality, games and linear logic. Manuscript (1992)

[16] Longley, J.: Universal types and what they are good for. Proc. 2nd ISDT, GQ Zhang,
J. Lawson, Y.-M. Liu and M.-K. Luo, eds., Kluwer (2003) 25–63

[17] Longley, J., Plotkin, G.: Logical full abstraction and PCF. Tbilisi Symposium on Logic,
Language and Computation, SiLLI/CSLI (1997) 333–352

[18] Longley, J., Pollack, R.: Reasoning about CBV functional programs in Isabelle/HOL.
In Theorem Proving in Higher Order Logics, 17th International Conference, 2004, Utah,
proceedings, Springer LNCS 3223 (2004), 201-216.

[19] Longley, J., Wolverson, N.: Game semantics for object-oriented languages: a
progress report. Presented at GaLoP II, Seattle (2006). Available online from
homepages.inf.ed.ac.uk/jrl/Research

[20] Longley, J.: Definition of the Eriskay programming language. Working draft (63 pages)
available from the above URL.

[21] Longley, J.: Stratagem. NJ-SML software available from the above URL (2002)

[22] Longley, J.: Catchcont and friends. NJ-SML source file from the above URL (2007)

[23] Lucassen, J.M., Gifford, D.K.: Polymorphic effect systems. Proc. 15th POPL Sympo-
sium, ACM Press (1988) 47–57

[24] Milner, R., Tofte, M., Harper, R., MacQueen, D.: The definition of Standard ML
(revised). MIT Press (1997)

[25] Reddy, U.: Objects as closures: Abstract semantics of object-oriented languages. Proc.
ACM Symp. Lisp and Functional Programming Languages (1998) 289–297

20

[26] Sumii, E., Pierce, B.: A bisimulation for type abstraction and recursion. Proc. 32nd
POPL Symposium, ACM Press (2005) 63–74

[27] Wadler, P.: Linear types can change the world! Programming Concepts and Methods,
Israel, North-Holland (1990)

[28] Wand, M.: Type inference for objects with instance variables and inheritance. Theo-
retical Aspects of Object-Oriented Programming, C. Gunter and J. Mitchell, eds., MIT
Press (1994) 97–120

[29] Wolverson, N.: Game semantics of object oriented languages. PhD thesis, University
of Edinburgh, submitted December 2007.

Appendix A: Provisional definition of Lingay

The Lingay programming language is a medium-scale fragment of the Eriskay language,
embodying many of the innovative features of Eriskay and intended as a suitable target
language for theoretical study, but not possessing the full range of features needed for a
practical programming language. It is intended that Lingay is literally a sublanguage of
Eriskay in the following strong sense:

• Every valid Lingay program is a valid Eriskay program with the same observable
evaluation behaviour.

• If two Lingay programs are observationally equivalent in Lingay, they are also obser-
vationally equivalent in Eriskay.

• Every Eriskay program whose type exists in Lingay is observationally equivalent (in
Eriskay) to some Lingay program.

This appendix contains a provisional formal definition of Lingay, to a level of rigour which
provides a suitable basis for proofs of metatheoretical results. Note that the definition of
Lingay may be subject to further change in the near future: in particular, a backtracking
version of catchcont is under consideration for inclusion, as is a more imperative treatment
of method implementations based on read and write operations.

Where convenient we adopt a similar style of definition for the two languages, although
we are occasionally somewhat less formal and complete here than in the full Eriskay defini-
tion.

21

Lexical matters

A Lingay program may be regarded as a sequence of lexical tokens. Each token is a non-
empty sequence of non-whitespace ASCII characters, and tokens are of two kinds: reserved
and non-reserved. The reserved tokens featuring in Lingay are as follows:4

{ } [] () : ; , ! -> => :: % | = $ ** +>
as bool case classimpl der else end extend false
fn if in int linear new of prom rec split then triv true with

Each non-reserved token belongs to one of six lexical categories, which are pairwise
disjoint. In addition, certain reserved tokens are classified as belonging to one of these
categories. The lexical categories are as follows; we refer to the Eriskay definition for full
details.

• Identifiers such as x and foo5, ranged over by the metavariables x, y, k, f,m, t accord-
ing to the context.

• Special constants, which in Lingay are just the tokens intPlus, intMinus, intTimes
and intLeq.

• Boolean literals, which are just the reserved tokens true and false.

• Integer literals such as 00 and +23.

• Row variables such as ’@a, ranged over by ρ.

• Type constants, which in Lingay are just the reserved tokens bool and int, ranged
over by κ.

We also define the class of expression constants (ranged over by ec) to consist of the special
constants, boolean literals, and integer literals.

Types

The syntax of type expressions is given in Figure 4. We let τ, σ, ζ, ξ range over type expres-
sions and π over labelled product type expressions.

Strictly speaking, type expressions are parse trees generated by the above grammar
rather than sequences of lexical tokens, as the grammar is formally ambiguous. However,
we shall of course denote type expressions by sequences of tokens, freely adding brackets to
disambiguate where necessary.5 As usual, we treat -> as right-associative.

The intention behind row variables is that they should range over sets of components
for labelled product types; the type expression {a:int}**ρ refers to the labelled product
type obtained by extending {a:int} with whatever components are included in ρ; thus,

4In addition, for the sake of compatibility, all other reserved tokens of Eriskay should be considered as
reserved in Lingay. We refer to the Eriskay definition for the complete list.

5The brackets in binary product types are made obligatory in Lingay to avoid confusion over type
expressions such as τ0*τ1*τ2 which in Eriskay denote ternary products.

22

type-expr ::= κ (nullary type constant)
| (type-expr * type-expr) (binary product)
| lab-prod-type (labelled product)
| [Clist (comp-type)] (labelled sum)
| ! type-expr (reusable type)
| type-expr -> type-expr (linear function type)
| lin-opt classimpl type-expr,

type-expr,type-expr (class implementation)
lab-prod-type ::= { Clist (comp-type) } (simple labelled product)

| lab-prod-type ** ρ
comp-type ::= k:type-expr (component typing)

lin-opt ::= ε | linear

Figure 4: Context-free grammar for types

instantiating ρ to {b:bool} yields the type expression {a:int, b:bool}. The following
“shallow” definition of row variable instantiation π[ρ := π′] suffices for our purposes. If

π = {k0 : τ0, · · · ,kn−1 : τn−1}**ρ0 · · · **ρm−1

π′ = {k′0 : τ ′0, · · · ,k′n′−1 : τ ′n′−1}**ρ′0 · · · **ρ′m−1

where k0, . . . , kn−1, k
′
0, . . . , k

′
n′−1 are all distinct, ρ0, . . . , ρm−1, ρ

′
0, . . . , ρ

′
m′−1 are all distinct,

and ρ = ρi, we define π[ρ := π′] to be the labelled product type expression

{k0 : τ0, · · · ,kn−1 : τn−1,k′0 : τ ′0, · · · ,k′n′−1 : τ ′n′−1}
ρ0 · · · **ρi−1ρi+1 · · · **ρm−1**ρ′0 · · · **ρ′m−1

Note that π[ρ := π′] is undefined if π′ contains component names clashing with those in π,
or if the row variables themselves clash.

The rules below generate judgements of the form ` τ ∝ sd, meaning “τ is a well-
formed type expression of status sd”. Here sd ranges over the three status descriptors
ordinary, reusable, ground.

The rules for classimpl types require the following definitions. A pair (πf , πm) is said
to be of class form relative to σ0, . . . , σq−1 if:

• πf is a simple labelled product expression;

• πm is of the form

{ m0:!(σ0->σ
′
0), . . . ,mq−1:!(σq−1->σ

′
q−1) }

for some σ′0, . . . , σ
′
q−1 and distinct m0, . . . ,mq−1.

We say simply that (πf , πm) is of class form if it is of class form relative to some σ0, . . . , σq−1.

` κ ∝ sd
(1)

23

` τ0 ∝ sd ` τ1 ∝ sd
` (τ0*τ1) ∝ sd

(2)

` τ0 ∝ sd · · · ` τn−1 ∝ sd
` { k0:τ0, . . . ,kn−1:τn−1 } ∝ sd

k0, . . . , kn−1 distinct
(3)

` π ∝ sd
` π ** ρ ∝ ordinary

ρ not in π
(4)

` τ0 ∝ sd · · · ` τn−1 ∝ sd
` [k0:τ0, . . . ,kn−1:τn−1] ∝ sd

k0, . . . , kn−1 distinct
(5)

` τ ∝ ordinary

` !τ ∝ reusable

(6)

` τ ∝ ground

` !τ ∝ ground

(7)

` τ ∝ ordinary ` τ ′ ∝ ordinary

` τ->τ ′ ∝ ordinary

(8)

` πf ∝ reusable ` πm ∝ reusable ` τk ∝ ordinary

` classimpl πf,πm,τk ∝ reusable
(πf , πm) of class form

(9)

` πf ∝ ordinary ` πm ∝ reusable ` τk ∝ ordinary
` σ0 ∝ ground · · · ` σq−1 ∝ ground

` linear classimpl πf,πm,τk ∝ reusable

(πf , πm) of class form
relative to σ0, . . . , σq−1

(10)

Note that ` τ ∝ ground implies ` τ ∝ reusable which implies ` τ ∝ ordinary. We say τ is a
well-formed type expression if ` τ ∝ ordinary. We say that well-formed type expressions τ, τ ′

are equivalent if they are the same up to permutations of explicitly named components in
labelled product and sum types; we omit the formal definition. (Note that e.g. π**ρ**ρ′ and
π**ρ′**ρ are not deemed equivalent.) For the purpose of Lingay, we may define underlying
types to be the well-formed types modulo equivalence. We let τ ,σ range over underlying
types.

Next we define a subtyping relation on well-formed type expressions. The following rules
generate assertions of the form τ <: τ ′. In the last rule, lo ranges over the syntactic category
lin-opt.

κ <: κ

(11)

24

τ0 <: τ ′0 τ1 <: τ ′1
(τ0,τ1) <: (τ ′0,τ

′
1)

(12)

τ0 <: τ ′0 · · · τn−1 <: τ ′n−1

{k0 : τ0, · · · ,kn′−1 : τn′−1} <: {kp0 : τ ′p0, · · · ,kp(n−1) : τ ′p(n−1)}

n′ ≥ n
p ∈ Sn

τn, . . . , τn′−1 not ground

(13)

π <: π′

π**ρ <: π′**ρ

(14)

τ0 <: τ ′0 · · · τn−1 <: τ ′n−1

[kp0 : τp0, · · · ,kp(n−1) : τp(n−1)] <: [k0 : τ ′0, · · · ,kn′−1 : τ ′n′−1]

n′ ≥ n
p ∈ Sn

(15)

τ <: τ ′

!τ <: !τ ′
(16)

τ ′0 <: τ0 τ1 <: τ ′1
τ0->τ1 <: τ ′0->τ

′
1

(17)

π′k <: πk

lo classimpl πf,πm,πk <: lo classimpl πf,πm,π′k

(18)

Clearly the relation <: is compatible with equivalence of type expressions, so that we
may regard <: as a relation (in fact, a partial order) on underlying types.

Finally, to each expression constant ec we associate a type ty (ec) as follows. Boolean
literals have type bool; integer literals have type int; intPlus, intMinus, intTimes have
type int*int->int; and intLeq has type int*int->bool.

Expressions

The syntax of expressions is given in Figure 5. As with type expressions, an expression
is officially a parse tree generated by the above grammar, and we freely use brackets for
disambiguation as required. We let e range over expressions.

Certain expressions are syntactically designated as values. The notion of value is of
particular importance in the dynamic semantics, but it also features in the static semantics
in rule 28. The grammar for values is given in Figure 6. We let v range over values.

We also allow ourselves the use of the following syntactic sugar:

let val x : τ = e in e′ end for (fn x : τ => e′) $ e

fn (x : σ,y : τ) => e for fn z : (σ*τ) => split z as (x,y) in e end

rec (x : σ,y : τ) => e for rec z : (σ*τ) => split z as (x,y) in e end

e e′ for (der e) $ e′

e.m for split e as {m=x, · · · } in x end

where z does not occur free in e.

25

expr ::= x (variable)
| ec (expression constant)
| (expr,expr) (pair)
| split expr as (x0,x1)

in expr end (pair separation)
| {Clist (comp-assign) } (labelled record)
| expr +> expr (record merge/override)
| split expr as {Clist (comp-bind) }

in expr end (record separation)
| % k expr (labelled sum injection)
| case expr of Blist (clause) end (labelled sum elimination)
| prom expr (reusable promotion)
| der expr (non-reusable dereliction)
| fn boundvar => expr (linear function)
| expr $ expr (strict application)
| expr = expr (equality test)
| if expr then expr else expr (conditional)
| rec boundvar => expr (fixed point)
| catchcont boundvar =>expr (continuation catching)
| expr :: type-expr (upcasting)
| lin-opt triv (trivial class body)
| lin-opt extend expr with

expr,expr (class extension)
| new expr (new object)

comp-assign ::= k = expr (component assignment)
comp-bind ::= k = boundvar (component binding)

clause ::= % k boundvar => expr (match clause)
boundvar ::= x : type-expr (bound variable)

Figure 5: Context-free grammar for expressions

26

value ::= ec
| (value,value)
| {Clist (comp-value) }
| % k value
| prom value
| fn boundvar => expr
| value :: type-expr
| new value
| lin-opt triv
| lin-opt extend triv with value,value

comp-value ::= k = value

Figure 6: Context-free grammar for values

Notation and conventions

A (static) environment Γ is an ordered list of entries of the form x : τ safe-tag, where x is
an identifier, τ an underlying type, and safe-tag is one of the following five safety tags:

ε safe halfsafe argsafe metasafe

In writing environments we shall often use type expressions to stand for the underlying
types they represent. We write Γ[x] for the rightmost type (if any) associated with x in Γ.
We say Γ is reusable if Γ[x] is reusable whenever it is defined. If e is an expression, we write
Γe for the environment consisting of just the entries in Γ pertaining to variables that occur
free in Γ. We also write Safe(Γ) for the environment obtained from Γ by setting all safety
tags to safe.

The following notation will be employed in many of the typing rules to ensure that
linear variables (i.e. those of non-reusable type) do not appear more than once in well-typed
expressions.6 If Γ is an environment, x0, . . . , xn−1 are variables, and e, e′ are expressions,
we say e, e′ are Γ-compatible modulo x0, . . . , xn−1, and write e ∼x0,...,xn−1

Γ e′, if for all
x ∈ dom Γ − {x0, . . . , xn−1} such that x occurs free in both φ and φ′, the type Γ[x] is
reusable. In the case n = 0 we may simply write φ ∼Γ φ′.

For rules which are declared to be subject to the safety convention, an auxiliary rule may
be derived from it as follows. First, the tag safe is added to each variable environment entry
explicitly displayed in the rule without a safety tag. (Entries appearing within variable
environments denoted by metavariables such as Γ are unaffected.) Next, the tag safe is
added to each judgement which is displayed in the rule without a safety tag. (We do not
add safe to those environment entries or judgements in which the presence of the empty
safety tag is explicitly indicated by the symbol ε, as in rules 33,35.)

Rules that are subject to the safety convention are identified by the letter S appearing
to the left of the rule. For such rules, it is to be understood that both the original rule and
the auxiliary rule derived from it are applicable.

6A similar effect could be achieved using a dual-context type system, except that this would not allow
us to resolve name clashes between linear and reusable variables.

27

By exact analogy, we also have halfsafety, argsafety and metasafety conventions in-
volving the tags halfsafe, argsafe and metasafe respectively. Rules that are subject to these
conventions are identified by the letters H, A, M. The safety, halfsafety, argsafety and
metasafety conventions will be referred to collectively as the SHAM conventions. Note that
the same rule may be subject to several of these conventions.

In some rules, where we require two degrees of freedom with respect to safety tags, we
make use of the SHAM conventions in conjunction with a metavariable safe-tag which plays
the role of a second ‘safety parameter’, whose possible values may be specified by a side-
condition. If this metavariable appears within angle brackets as 〈safe-tag〉, the intention is
that this safety parameter is present in the auxiliary rules derived via the SHAM conventions,
but not in the original rule itself, where the safety parameter is assumed to be ε. Thus,
for example, rule 22 expands to three rules, of which two feature the metavariable safe-tag
ranging over {ε, safe}, yielding a total of five possible variants of this rule.

In rule 35, we write Catchcont (ζ, ξ, τ0, τ1) as an abbreviation for the type expression

[result : {value:τ0, more: !(ζ->ξ)->τ1}
query : {arg:ζ, resume: ξ->!(ζ->ξ)->τ0 ∗ τ1}]

Finally, some specialized notation for use in rule 38. Suppose τ = {k0 : τ0, · · · ,kn−1 :
τn−1} and τ ′ = {k′0 : τ ′0, · · · ,k′n′−1 : τn−1}.

• If the ki and k′j are all distinct, we write τ + τ ′ for the type

{k0 : τ0, · · · ,kn−1 : τn−1,k
′
0 : τ ′0, · · · ,k′n′−1 : τn−1}

(otherwise τ + τ ′ is undefined).

• We say τ ′ is compatible with τ if whenever ki = k′j , we have τi = τ ′j . In this case we
define τ ⊕ τ ′ to be the type

{ki0 : τi0, · · · ,kir−1 : τir−1,k
′
0 : τ ′0, · · · ,k′n′−1 : τn−1}

where {ki0 , . . . , kir−1} = {k0, . . . , kn−1} − {k′0, . . . , k′n′−1}.

• If τ is as above with τi = !(ζi->ξi) for each i, and σ is an arbitrary type, we write
τ\σ for the type expression

{k0 : !(ζ0 ∗ σ->ξ0 ∗ σ), . . . ,kn−1 : !(ζn−1 ∗ σ->ξn−1 ∗ σ)}

Typing rules

We give a proof system for deriving judgements of the form

Γ ` e : τ safe-tag

where safe-tag is one of the five possible safety tags. For convenience, we freely use type
expressions τ in place of the underlying types they represent.

The following rules are associated with typing judgements of the form Γ ` e : τ .

SHAM
Γ ` x : τ

τ = Γ[x]
(19)

28

SHAM
Γ ` ec : τ

τ = ty (ec)
(20)

S
Γ ` e0 : τ0 Γ ` e1 : τ1

Γ ` (e0,e1) : τ0*τ1
e0 ∼Γ e1

(21)

SH

Γ ` e : τ0*τ1 〈safe-tag〉
Γ • x0 : τ0 〈safe-tag〉 • x1 : τ1 〈safe-tag〉 ` e′ : τ

Γ ` split e as (x0:τ0,x1:τ1)
in e′ end : τ

e ∼x0,x1
Γ e′

safe-tag ∈ {ε, safe}
(22)

SA
Γ ` e0 : τ0 · · · Γ ` en−1 : τn−1

Γ ` { k0 = e0, . . . ,kn−1 = en−1 } : { k0 : τ0, . . . ,kn−1 : τn−1 }
∀i 6= j. ei ∼Γ ej

(23)

SA
Γ ` e : π Γ ` e′ : π′

Γ ` e +> e′ : π]π′
π, π′ compatible

(24)

SHA

Γ ` e : { k0 : τ0, . . . ,kn−1 : τn−1 } 〈safe-tag〉
Γ • x0 : τ0 〈safe-tag〉 . . . • xn−1 : τn−1 〈safe-tag〉 ` e′ : τ

Γ ` split e as { k0=x0:τ0, . . . ,kn−1=xn−1:τn−1 }
in e′ end : τ

e ∼x0,...,xn−1
Γ e′

safe-tag ∈ {ε, safe}
(25)

S
Γ ` e : τ

Γ ` % k e : [k : τ]

(26)

SH

Γ ` e : [k0 : τ0, . . . ,kn−1 : τn−1] 〈safe-tag〉
Γ • x0 : τ0 〈safe-tag〉 ` e0 : τ ′

· · ·
Γ • xn−1 : τn−1 〈safe-tag〉 ` en−1 : τ ′

Γ ` case e of % k0x0:τ0=>e0 | · · ·
| % kn−1xn−1:τn−1=>en−1 end : τ ′

∀i. e ∼xi

Γ ei

safe-tag ∈ {ε, safe}
(27)

SA
Γv ` v : τ

Γ ` prom v : !τ
Γv reusable

(28)

SA
Γ ` e : !τ

Γ ` der e : τ

(29)

M
Γ • x : σ ` e : τ

Γ ` fn x:σ=>e : σ->τ

(30)

29

SM
Γ ` e : σ->τ Γ ` e′ : σ

Γ ` e $ e′ : τ
e ∼Γ e′

(31)

S
Γ ` e : τ Γ ` e′ : τ

Γ ` e = e′ : bool
e ∼Γ e′

τ ground
(32)

SH
Γ ` e : bool ε Γ ` e0 : τ Γ ` e1 : τ

Γ ` if e then e0 else e1 : τ
e ∼Γ e0, e ∼Γ e1

(33)

SH
Γ • x : τ ` e : τ

Γ ` rec x:τ=>e : τ

e′ = rec x:τ=>e
Γe′ reusable

(34)

S
Γ • x : σ ε ` e : τ0*τ1

Γ ` catchcont x:σ=>e : Catchcont (ζ, ξ, τ0, τ1)

ζ ground
τ0 ground
x 6∈ domΓ
σ = !(ζ->ξ)

(35)

SHAM
Γ ` e : τ

Γ ` e::τ ′ : τ ′
τ <: τ ′

(36)

S
Γ ` lo triv : lo classimpl {},{},{}

(37)

Γ ` e0 : lo′ classimpl τ1,τ2,τ3

Safe(Γ) ` e1 : !(τsuper ->τself ->τself) metasafe
Γ ` e2 : !(τ ′′3 ->τ3*(τ1->τ ′′1))

Γ ` lo extend e0 with e1,e2 : lo classimpl τ ′′1 ,τ
′′
2 ,τ

′′
3

· · ·
(38)

· · ·

e0 ∼Γ e1, e0 ∼Γ e2, e1 ∼Γ e2

τsuper = τ2\(τ ′′1 **ρ), τself = τ ′2\(τ
′′
1 **ρ), ρ fresh

τ ′′1 = τ1 + τ ′1, τ ′′2 = τ2 ⊕ τ ′2
lo′ = ε or lo = linear

S
Γ ` e : lo classimpl τ1,τ2,τ3

Γ ` new e : τ3->τ2

(39)

Rules associated with judgements Γ ` e : τ safe. In addition to the auxiliary rules
derived from the above via the safety convention, we have the following:

Γ ` x : τ safe

τ = Γ[x]
x argsafe or metasafe in Γ

(40)

30

Γ ` e : τ

Γ ` e : τ safe
τ ground

(41)

Γ • x : σ safe ` e : τ safe

Γ ` fn x:σ=>e : σ->τ safe

all y ∈ FV(e)−{x} safe,
argsafe or metasafe in Γ

(42)

Γ ` lo extend e0 with e1,e2 : τextend

Γ ` e0 : τsuperclass safe
Γ ` e1 : τmethods safe
Γ ` e2 : τconstr safe

Γ ` lo extend e0 with e1,e2 : τextend safe

(43)

Rules for judgements Γ ` e : τ halfsafe.

Γ ` e0 : τ0 Γ ` e1 : τ1 safe

Γ ` (e0,e1) : τ0 ∗ τ1 halfsafe
e0 ∼Γ e1

(44)

Γ ` e : τ0 ∗ τ1 halfsafe Γ • x0 : τ0 • safe x1 : τ1 ` e′ : τ safe-tag
Γ ` split e as (x0,x1) in e′ end : τ safe-tag

e ∼x0,x1
Γ e′

safe-tag 6= ε

(45)

Rules for judgements Γ ` e : τ argsafe.

Γ • x : σ halfsafe ` e : τ halfsafe

Γ ` fn x:σ=>e : σ->τ argsafe

(46)

Γ ` e : (τ0 ∗ τ1)->(τ ′0 ∗ τ ′1) argsafe Γ ` e′ : τ0 ∗ τ1 halfsafe

Γ ` e $ e′ : τ ′0 ∗ τ ′1 halfsafe

(47)

Rules for judgements Γ ` e : τ metasafe. Only two very simple rules are needed here:
the remaining work is done by the metasafety convention for the specified earlier rules.

Γ ` e : τ argsafe

Γ ` e : τ metasafe

(48)

Γ ` e : π metasafe

Γ ` e : π argsafe

(49)

31

Operational semantics

An extended language of expressions

For the purpose of the operational semantics, we need to add some auxiliary features and
constructs to our language. These features do not appear in programs written by users of
the language, but may arise at intermediate stages in the execution of programs.

First, we need to enlarge the set of identifiers that may be used as variable names. The
class of identifiers employed so far will now be called the class of standard identifiers; to this
we now add an infinite collection of test symbols, and the union of these two classes is called
the class of general identifiers. We continue to use the metavariables ident, x, y, k, f,m, t to
range only over standard identifiers; we use x̂, ŷ to range over test symbols. We accordingly
allow environments to contain type and safety ascriptions for test symbols as well as standard
variables; in this section we use Γ to range over such generalized environments. By a test
symbol environment we shall mean a variable environment all of whose variables are test
symbols; we use Γ̂ to range over such environments. We write Sym(Γ) for the test symbol
environment consisting of just the variable entries for test symbols occurring in Γ.

We shall also require a notion of a reference to an object. Let L be an infinite set of
location symbols (henceforth locations), disjoint from all other classes introduced so far.
We use ` to range over L. To facilitate the construction of canonical derivations, we shall
suppose L comes equipped with a choice function for generating fresh locations. Explicitly,
for any finite set L ⊂ L, we suppose freshLoc(L) is some choice of location ` 6∈ L.

A decorated location is an expression of the form `σ,τ

Γ̂
. Informally, σ here is the type

of the internal state of the object stored at the location `; τ will be the type of the object
itself; and Γ̂ records the test symbols which may potentially occur within the object. We
use ˜̀ to range over decorated location symbols.

Finally, a few additional syntactic constructs will be needed. We therefore define an
augmented version of our language by adding the following clauses to the grammar of
Figure 5:

expr ::= x̂

| ˜̀

| ˜̀.m
| fn x̂:type-expr => expr
| push expr
| update ˜̀ expr

For the remainder of this section we use e to range over expressions of the augmented
language.

We also need a suitable notion of a value for the augmented language. Here, by contrast
with Section 6, we shall define a class of values that admits certain occurrences of free
variables not underneath binders. Formally, the grammar for open values (of the augmented
language) is obtained by adding the following clauses to the grammar of Figure 6:

value ::= ˜̀ | ˜̀.m | x̂ | der ˜̀.m | der x̂

Throughout this section we use v to range over open values.

32

We extend our type system to the augmented language as follows. All the typing rules
of Section 6 still stand (with the proviso that any metavariables Γ, e, v or variants thereof
appearing in the rules now have the ranges appropriate for the augmented language). In
addition, we have the following typing rules for the new phrase forms:

S
Γ ` `σ,τ

Γ̂
: τ

Γ̂ = Sym(Γ)
(50)

S
Γ ` `σ,τ

Γ̂
.m : τ ′

Γ̂ = Sym(Γ)
τ = {m:τ ′, · · · }

(51)

S
Γ ` e : σ*(τ \σ)
Γ ` push e : τ

(52)

S
Γ ` e : ρ′*σ

Γ ` update `σ,τ

Γ̂
e : ρ′

(53)

Evaluation contexts

An evaluation context is, intuitively, a term with a single “hole” corresponding to the
location of the subterm which would need to be supplied for evaluation to proceed. Our
primary reason for introducing evaluation contexts is to give an operational semantics for
catchcont expressions.

The grammar for evaluation contexts is given in Figure 7. (Like expressions, evaluation
contexts are officially parse trees, and we use brackets to disambiguate where necessary.) We
use the metavariable E to range over evaluation contexts, and write E[e] for the expression
obtained by replacing the hole [−] in E by e. We also write E ◦E′ for the evident evaluation
context E[E′[−]]. We say an evaluation context E is transparent to a variable x if it is not of
the form E1[catchcont x : τ=>E2[−]] for any E1, E2. Finally, a stuck term is an expression
of the form E[der x̂ $ v]. We use u to range over stuck terms, and w to range over open
values plus stuck terms.

Heaps and evaluation judgements

Our operational semantics will make use of a simple model of memory provided by the
following definition of a heap. For the purpose of the formal definition, we regard both the
current state of an object and the code for its methods as being stored together as a pair
on the heap.

Formally, a heap is a function h from some finite set of decorated locations to pairs of
open values vs, vb, such that if h(`σ,τ

Γ̂
) = vs, vb then Γ̂ ` vs : σ and Γ̂ ` vb : τ \σ. We write

dom h for the set of ˜̀ for which h(˜̀) is defined.

33

eval ::= [−]
| (eval , expr)
| (value , eval)
| split eval as (x,y) in expr end
| { List (comp-comma) k=eval List (comma-comp) }
| eval +> expr
| value +> eval
| split eval as {Clist (comp-bind) } in expr end
| % k eval
| case eval of Blist (clause) end
| der eval
| eval $ expr
| value $ eval
| eval = expr
| value = eval
| if eval then expr else expr
| rec boundvar => eval
| catchcont boundvar => eval
| eval :: type-expr
| lin-opt extend eval with expr,expr
| lin-opt extend value with eval,expr
| lin-opt extend value with value,eval
| new eval
| push eval
| update ˜̀ eval

comp-comma ::= comp-value ,
comma-comp ::= , comp-assign

Figure 7: Context-free grammar for evaluation contexts

34

If ˜̀= `σ,τ

Γ̂
, Γ̂ ` vs : σ and Γ̂ ` vb : τ \σ, we write h(` 7→ vs, vb) for the heap defined by

h(` 7→ vs, vb)(`′) =

 vs, vb if `′ = `
h(`′) if `′ 6= ` and `′ ∈ dom h
undefined otherwise

We shall give a proof system for deriving evaluation judgements of the form:

Γ̂ ` h, e ⇓ h′, w

where: Γ̂ is a test symbol environment, such that no test symbol appears twice in Γ; each
˜̀∈ dom h ∪ dom h′ is of the form `σ,τ

Γ̂′
where Γ̂′ extends Γ̂; and e, w are well-typed terms

in Γ̂.

Some auxiliary programs

We next introduce a few auxiliary expression contexts that will be useful in our operational
rules. For readability, we shall write unit for the type expression {}, and void for the
expression {} (so that void has type unit).

The following provides what is needed for passing from the “approximation operator”
appearing in a class body to the method implementations for a particular object of that
class. If e is of type

unit -> (τ\(σ**ρ)) -> (τ\(σ**ρ))

then we define
foldτ,σ[e] : τ\σ

to be the expression
rec x : τ\σ => e [ρ := unit] void x

Note that if e is explicitly typed then τ, σ may be inferred from e, so that in rule 75 below
we write simply fold[e].

Next, some machinery for combining the method or constructor implementations from
a subclass and a superclass to yield appropriate method or constructor implementations for
the class as a whole; this will be required for in rule 71 below. We give the machinery for
constructors first. Suppose τ ′′1 = τ1+τ ′1 (see Section 6). Then given v2 : τ3->unit*(unit->τ1)
and v′2 : τ ′′3 ->τ3*(τ1->τ ′′1) we may define

comb constrsτ1,τ ′1,τ3,τ ′′3
[v2, v

′
2] : τ ′′3 ->unit*τ ′′1

to be the expression

fn x : τ ′′3 =>
split v′2 x as (y′ : τ3, z′ : τ ′1) in

split v2 y′ as (y : unit, z : τ1) in
(void, fn a : unit =>z′(z a)))

end
end

35

For method implementations, we require some simple isomorphisms between types. If
σ, σ′, σ′′ are such that σ + σ′ is defined, we take

mergeσ,σ′ : σ*σ′->σ + σ′ unmergeσ,σ′ : σ + σ′->σ*σ′

to be expressions defining the evident conversions; we omit the tedious definitions.
Now suppose τ ′′1 = τ1+τ ′1 and τ ′′2 = τ2⊕τ ′2, and take τ−2 , τ ′2

−
, τd such that τ ′′2 = τ−2 +τ ′2 =

τ2 + τ ′2
− and τ2 = τ−2 + τd, τ ′2 = τ ′2

− + τd. Then given

v1 : τ2\(τ1**ρ) -> τ2\(τ1**ρ)
v′1 : τ2\(τ ′′1 **ρ

′) -> τ ′2\(τ
′′
1 **ρ

′) -> τ ′2\(τ
′′
1 **ρ

′)

we may define

comb methsτ1,τ ′1,τ2,τ ′2
[v1, v

′
1] : polytype ρ => unit -> τ ′′2 \(τ ′′1 **ρ

′) -> τ ′′2 \(τ ′′1 **ρ
′)

to be the expression

fn super:unit => fn self:τ ′′2 \(τ ′′1 **ρ
′) =>

split unmerge self as

(oldself:τ2\(τ ′′1 **ρ), newself:τ ′2
−

\(τ ′′1 **ρ)) in
split unmerge self as

(oldself ′:τ−2 \(τ ′′1 **ρ), newself ′:τ ′2\(τ
′′
1 **ρ)) in

let val oldimpl:τ2\(τ ′′1 **ρ) = v1 [ρ := τ ′1**ρ
′] void oldself in

let val newimpl:τ ′2\(τ
′′
1 **ρ) = v′1 oldself newself ′ in

split unmerge oldimpl as
(oldimpl ′:τ−2 \(τ ′′1 **ρ

′), diff:τd\(τ ′′1 **ρ
′)) in

merge (oldimpl ′,newimpl)
end end end end end

Here we have omitted the type subscripts on the occurrences of unmerge, unflatten′,
merge since these may easily be inferred from the other type information present. Likewise,
in rule 71 below we omit the type subscripts on comb meths and comb constrs, since these
may be inferred from the types of the arguments.

Operational rules

We now give the rules for deriving evaluation judgements. Where test variable environments
are omitted, it is understood that each judgement in the rule should be prefixed with “Γ̂ `”.
Where heaps are omitted, it is understood that the following heap convention applies: a
rule given as

Γ̂0 ` e0 ⇓ v0 · · · Γ̂r−1 ` er−1 ⇓ vr−1

Γ̂ ` e ⇓ v
(side-conditions)

abbreviates the rule

Γ̂0 ` h0, e0 ⇓ h1, v0 · · · Γ̂n−1 ` hn−1, en−1 ⇓ hn, vn−1

Γ̂ ` h0, e ⇓ hn, v
(side-conditions)

36

The following rules are associated with successful evaluation to a value (though some of
them also deal with evaluation to stuck terms).

v ⇓ v

(54)

e0 ⇓ v0 e1 ⇓ w1

(e0,e1) ⇓ (v0,w1)

(55)

e ⇓ (v0,v1) e′[v0/x, v1/y] ⇓ w

split e as (x,y) in e′ end ⇓ w

(56)

e0 ⇓ v0 · · · en−1 ⇓ vn−1

{k0=e0, . . . ,kn−1=en−1} ⇓ {k0=v0, . . . ,kn−1=vn−1}
(57)

e ⇓ v e′ ⇓ v′

e +> e′ ⇓ v ⊕ v′
(58)

e ⇓ {k0=v0, . . . ,kn−1=vn−1} e′[v0/x0, . . . , vn−1/xn−1] ⇓ w

split e as {k0=x0:τ0, . . . ,kn−1=xn−1:τn−1} in e′ end ⇓ w

(59)

e ⇓ w

% k e ⇓ % k w

(60)

e ⇓ % ki v ei[v/xi] ⇓ w

case e of · · · % kixi:τi=>ei · · · end ⇓ w

(61)

e ⇓ w

prom e ⇓ prom w

(62)

e ⇓ prom v

der e ⇓ v

(63)

e ⇓ ec e′ ⇓ v

e$e′ ⇓ φec(v)
(64)

e ⇓ fn x : τ=>e0 e′ ⇓ v e0[v/x] ⇓ w

e$e′ ⇓ w

(65)

37

e0 ⇓ v0 e1 ⇓ v1

e0=e1 ⇓ v
v = eq(v0, v1)

(66)

e0 ⇓ true e1 ⇓ w

if e0 then e1 else e2 ⇓ w

(67)

e0 ⇓ false e2 ⇓ w

if e0 then e1 else e2 ⇓ w

(68)

e [rec x : τ=>e / x] ⇓ w

rec x : τ=>e ⇓ w

(69)

e ⇓ w

e::τ ⇓ w::τ

(70)

Γ̂ ` e0 ⇓ lo extend triv with v1,v2

Γ̂ ` e1 ⇓ v′1 Γ̂ ` e2 ⇓ v′2

Γ̂ ` lo extend e0 with e1,e2

lo extend triv with comb meths [v1, v
′
1],

comb constrs [v2, v
′
2]

(71)

Γ̂ ` h0, e ⇓ h1, (vs,vb)

Γ̂ ` h0, push e ⇓ h2, `
σ,τ

Γ̂

Γ̂ ` vs : σ

Γ̂ ` vb : τ \σ
` = freshLoc (dom h1)
h2 = h1(`

σ,τ

Γ̂
7→ vs, vb)

(72)

h0, e ⇓ h1, (v,v′)

h0, update ˜̀ e ⇓ h2, v

h1(˜̀) = vs, vb

h2 = h1(˜̀ 7→ v′, vb)
(73)

e ⇓ lo new (lo triv) push (e′,void) ⇓ w

e$e′ ⇓ w

(74)

e ⇓ lo new (lo extend triv with v1,v2)
push (v2 e′,fold[v1]) ⇓ w

e$e′ ⇓ w

(75)

h0, e ⇓ h1, der ˜̀.m h1, update ˜̀ (der vb.m $ (e′,vs)) ⇓ h2, w

h0, e$e′ ⇓ h2, w
h1(˜̀) = vs, vb

(76)

38

Γ̂ • x̂ : σ ` e[x̂/x] ⇓ (v0,v1)

Γ̂ ` catchcont x : σ=>e ⇓
%result {value=v0, more=fn x̂ : σ=>v1}

x̂ fresh
(77)

Γ̂ • x̂ : σ ` e[x̂/x] ⇓ E[der x̂ $ v]
Γ̂ ` catchcont x : σ=>e ⇓

%query {arg=v, resume=fn z : ξ=>fn x̂ : σ=>E[z]}

σ = ζ->ξ
x̂ fresh
y = fresh (E[−])

(78)

h0, e ⇓ h1, fn x̂ : τ=>e0 h1, e
′ ⇓ h2, v h2[v/x̂], e0[v/x̂] ⇓ h3, w

h0, e$e′ ⇓ h3, w

(79)

The following rules deal specifically with evaluation of expressions to stuck terms:

der x̂ $ v ⇓ der x̂ $ v

(80)

e ⇓ E[der x̂ $ v]
E′[e] ⇓ (E′ ◦ E)[der x̂ $ v]

E,E′ transparent to x
(81)

e0 ⇓ v0 · · · ei−1 ⇓ vi−1 ei ⇓ ui

{k0=e0, . . . ,kn−1=en−1} ⇓ {k0=v0, . . . ,ki=ui, . . . ,kn−1=en−1}
i < n

(82)

e ⇓ v e′ ⇓ u

e +> e′ ⇓ v +>u

(83)

e ⇓ v e′ ⇓ u

e$e′ ⇓ v u

(84)

e0 ⇓ v0 e1 ⇓ u1

e0=e1 ⇓ v0=u1

(85)

e0 ⇓ v0 e1 ⇓ w1

lo extend e0 with e1,e2 ⇓ lo extend v0 with w1,e2

(86)

e0 ⇓ v0 e1 ⇓ v1 e2 ⇓ w2

lo extend e0 with e1,e2 ⇓ lo extend v0 with v1,w2

(87)

Γ̂ • x̂ : σ ` e[x̂/x] ⇓ E[der ŷ $ v]
Γ̂ ` catchcont x : σ=>e ⇓ catchcont x : σ=>E′[der ŷ $ v′]

ŷ 6= x̂
E′ = E[x/x̂]
v′ = v[x/x̂]

(88)

39

