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Abstract
Research in visual cognition has demonstrated that scene un-
derstanding is influenced by the contextual properties of ob-
jects, and a number of computational models have been pro-
posed that capture specific context effects. However, a general
model that predicts the fit of an arbitrary object with the con-
text established by the rest of the scene is until now lacking.
In this paper, we explain the contextual fit of objects in visual
scenes using Bayesian topic models, which we induce from a
database of annotated images. We evaluate our models firstly
on synthetic object intrusion data, and then on eye-tracking
data from a spot-the-difference task and from an object naming
experiment. For the synthetic data, we find that our models are
able to detect object intrusions accurately. For the eye-tracking
data, we show that context scores derived from our models are
associated with fixation latencies on target objects.
Keywords: visual attention; object context; Bayesian model-
ing; eye-tracking data.

Introduction
Real-world objects are often related to each other and typ-
ically form a coherent scene. For example, a toothbrush is
likely to occur with a tube of toothpaste, a mirror, a sink;
it is unlikely to occur with a sauce pan, a salt shaker, a
cooker. For a given object, it is therefore possible to deter-
mine whether it is in context in a scene (toothbrush in bath-
room), or out of context (toothbrush in kitchen). Experimen-
tal evidence shows that context information facilitates human
object recognition (Bar, 2004). In visual search tasks, eye fix-
ations are targeted towards contextually appropriate regions
(Torralba et al., 2006), and out-of-context objects attract fixa-
tions earlier than in-context objects (Underwood et al., 2008).

In computer vision, being able to detect out of context ob-
jects is useful for object labeling. The local detectors stan-
dardly used for this task only consider the visual features
of the pixels within the bounding box of the object of inter-
est (Felzenszwalb et al., 2010). Local detectors are therefore
prone to confusing objects that are visually similar (e.g., fork
and toothbrush). This problem can be addressed by comb-
ing a local detectors with a model of object context, i.e., a
model that determines which objects occur together. While
this approach has been shown to increase object labeling
performance (Choi et al., 2010; Galleguillos et al., 2008),
the context models used are simple, typically relying on co-
occurrence statistics over object labels. Furthermore, the con-
text models used in computer vision are not designed to cap-
ture human performance (e.g., in visual search). Therefore,
these models have not been evaluated on tasks such as detect-
ing out-of-context objects.

In this paper, we present a new model of object context
based on a more complex notion of object label co-occurrence
that makes use of latent (i.e., unlabeled and unobserved)
scene types: the Latent Scene Type model. This model al-
lows us to exploit the common structure of scenes in order to
estimate reliable parameters even for infrequently occurring
objects. We investigate two model variants: the first is La-
tent Dirichlet Allocation (LDA, Blei et al. 2003), a standard
model of word-topic co-occurrence, which we use to capture
object-scene type co-occurrence. The second model variant
is formulated as a Bayesian mixture of multinomials, which
assumes one latent scene type per scene (rather than one per
object, as in LDA).

We test both model variants on the task of producing con-
text judgments for objects in scenes. We first use a synthetic
data set for evaluation (in this data, context objects have been
artificially inserted). In the second evaluation study, we use
our model to mimic the data from an eye tracking experi-
ment in which human participants had to spot out-of-context
objects. Finally, we demonstrate that our model can predict
fixation latencies in an object naming experiment which in-
cluded out-of-context objects.

Related Work
To our knowledge, ours is the first model to attempt to quan-
tify the degree of fit between arbitrary objects in a scene, and
to correlate the predictions of such a model with human be-
havior in scene viewing tasks. However, a number of mod-
els have been proposed to capture context effects on visual
attention; a prominent example is the Contextual Guidance
Model (CGM, Torralba et al. 2006), which combines bottom-
up saliency with global scene information (scene gist, Oliva
& Torralba 2006). The model is trained on a set of images in
which the target objects are labeled; from this data a prob-
ability distribution of typical positions of objects is learned.
This distribution is conditioned on the scene gist, essentially
a coarse-grained representation of global image features. Gist
is a latent variable in the model, comparable to scene type in
our approach. The CGM has been evaluated on eye-tracking
data from visual search experiments, and can successfully
predict the scene-type-specific search behavior that partici-
pants exhibit. However, the model is not specifically designed
to detect out-of-context objects, and has not been evaluated
on tasks that require an estimate of the contextual fit of an
object.
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In the computer vision literature, the work closest to ours
in spirit, if not in ultimate task, is that of Choi et al. (2010).
The authors use a generative model of images features, scene
gist, the set of objects in the image, and their locations, to
re-rank the output of a local object detector to respect contex-
tual interactions between objects, and show an improvement
over the baseline detector. The co-occurrence model used by
Choi et al. (2010) is a fairly simple binary tree of presence
features whose principal purpose is to facilitate inference on
other aspects of the image.

The model of object context proposed in this paper is for-
mulated as a topic model. While topic models have been stud-
ied extensively in both the language and vision literature,
they originate from applications to text, beginning with Latent
Dirichlet Allocation. LDA assumes a document is sampled
from a mixture of multinomials, where the multinomial from
which words are drawn is sampled once per word, and the
mixture co-efficients are sampled once per document. A cor-
pus is then a distribution over mixture co-efficients. This ap-
proach can be adapted fairly straightforwardly for modeling
objects instead of words, and scenes instead of documents.
However, we note that instead of being used as descriptive
tools to provide insight into collections, in this paper we are
interested in the predictive aspects of a topic model and want
to test how well they correlate with human scene viewing
data. In this respect, while the models we used are standard,
the purpose for which we use them is novel and we derive
new metrics to correlate with human behavior.

Topic models have been applied to images in the computer
vision literature (Wang et al., 2009; Li et al., 2009), but rather
than describing the sampling of object labels, these models
specify how discrete-valued image patches are sampled (by
quantizing continuous image features), and the relation be-
tween these patches and the labels applied to the image.

Models of Latent Scene Type
This paper presents a model of context, and by extension con-
textual fit, which rests solely on the set of object labels in the
image. The method we employ has two components: a distri-
bution over the set of labels in the scene, and the application
of such a model to a continuous measure of how well any ob-
ject fits with that scene. The observation of sets of objects is
explained through latent scene types, which can be thought of
as simple clusters of objects which are likely to co-occur. We
then use the predictive distribution over new sets of objects,
as derived from our latent scene type models, to determine
the fit of target objects to the scenes.

A Model Of the Probability of a Set of Object Labels
We experiment with two models of the probability of a set
of object labels, both of which are topic models. Topic mod-
els comprise mixtures over multinomial distributions, where
in this case the multinomial outcomes correspond to object
labels. The first topic model, Latent Dirichlet Allocation, is
fairly standard, while the second one, the mixture of multi-
nomials model, is less commonly used. Each of the models

describes a distribution over a vector of counts, which we call
o, such that oi is the count of the i-th object in the current
image (note that for most images, most of these elements will
be zero).

Latent Dirichlet Allocation There has been much interest
in the use of topic models as descriptive tools, able to infer
structure in collections of documents, or other collections of
discrete entities (Blei et al., 2003; Wang et al., 2009). For
the LDA model, the predictive distribution over new sets of
object labels is given by:

pLDA (o|α,β) =
Z

p(θ|α)

(
∏

n
∑
zn

p(zn|θ) p(ln|zn,β)

)
dθ

(1)
where ln is the label for the n-th object in the image, and zn
is the (latent) topic assignment for this label—counting the
ln gives o as defined above. The zs are indicators explaining
which latent scene type was used to generate the current la-
bel. As in the original paper, α is the Dirichlet prior on θ, and
β is the topic–word probability matrix that gives the probabil-
ity of each object label in each topic. The above is evaluated
using a particle-filter-inspired Monte Carlo method described
by Wallach et al. (2009).

Mixture of Multinomials The mixture of multinomials
model is defined over the same count vector o as above, but
for this model the scene type z is sampled only once per scene.
The parameters to the model are φ (the mixture coefficients)
and θ (the parameters for the component multinomials). The
distribution over the observable variables, o, is:

p(o) = ∑
z

φz p(o|θz) (2)

where the distribution p(o|θz) is a multinomial parametrized
by the vector θz (its components giving the probabilities of
each possible label occurring within that component).

We explore two variants of this model—the first uses max-
imum a posteriori (MAP) estimation to fix the parameters to
the (approximate) posterior mode—the single best estimate of
model parameters. This can be done using EM, and we em-
ploy uniform priors on both sets of parameters. Conditioned
on some observations (training data, which we label D), the
maximum likelihood method stipulates:

φ̂, θ̂ = argmax
θ,φ

p(D|φ,θ) (3)

pml (o|D) = p
(
o|φ̂, θ̂

)
(4)

This predictive distribution (4) is what we are interested in:
exploring the probability of new scenes given our training
data.

However, from a computational as well as cognitive per-
spective, given only limited samples from the process we
should feel uneasy about saying with any certainty what the
values of the parameters are. Instead, we suggest that given
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our experience we have beliefs about what is likely to hap-
pen, but we retain uncertainty and factor this in to our pre-
dictions. In light of this, we also employ a Bayesian version
of this model, which integrates over the full parameter space
given our training data D:

pbayes (o|D) =
Z

p(φ,θ|D) p(o|φ,θ) dφ,dθ (5)

For the mixture of multinomials model we cannot evaluate
this integral in closed form, so we sample mixture models
from their posterior p(φ,θ|D)—i.e., we retain uncertainty
about which model best explains our data, and average over
this uncertainty in deriving our predictions. Assuming Dirich-
let priors (in our case, uniform) on φ and θ leads to Dirichlet
posteriors over these same parameters, conditioned on assign-
ments of training observations to latent mixture components;
it is these assignments that we sample. We then evaluate the
p(o|φ,θ) at each of these sampled points; in practice we do
not sample different mixture models for each new o we wish
to evaluate, but run the sampler once in training and store all
mixture models sampled. This allows us to simply average
over the sampled components for the predictive distribution,
leading to a deterministic evaluation of (5) as simply the mean
of the probability p(o|φ,θ) under the sampled models.

As a final note for all these models, while inference tech-
niques are approximate in all cases, and different between the
MoM and LDA models, we are confident that the particu-
lar approximations do not overly sway the models’ ultimate
performance. While using heldout probability as the metric
of concern show disparities between different approximations
for the LDA model in Wallach et al. (2009), our uses of the
models are different. Most of the problems we consider are
decision problems where the exact probability is less of a
concern than the relative probabilities of the scenes under two
models, and in the final section we are interested in the cor-
relation between the probabilities and some other continuous
measure which is unlikely to be affected by (relatively) small
changes due to approximation error.

Detecting Out-of-context Objects with Scene
Probability
The previous section presented models which have been used
previously in other fields for describing the co–occurrence of
entities. We turn in this section to the manipulation of these
models to derive quantities which we will correlate with hu-
man performance.

There are two distinct tasks we explore in this paper: which
of two objects is more probable given a scene, and whether
a given object belongs to a scene or not. Here, we briefly de-
scribe the use of the models we defined in the previous section
to achieve these tasks.

Firstly, the conditional probability of some object (label) in
question o′ given a set of object labels o (where o is the count
vector as above) is:

p
(
o′|o
)

=
p(o∪o′)

∑onew p(onew∪o)
(6)

That is, the probability of the count vector which includes the
new label o′, normalized by the probability of the context for
all possible objects which could be added to the scene.

To determine which of o1 and o2 better fits some context o
we can compare p

(
o1|o

)
and p

(
o2|o

)
computed as in (6)—

we may simply interested in which of these is the larger, or
perhaps in the ratio between these two quantities. Note that in
either case, the normalizing constant can be dropped since it
is common to both (this speeds up computation considerably).

Secondly, to determine whether o′ is in context or not, we
can compare p(o′|o) with the quantity obtained by marginal-
izing out the extra object, namely:

p(onew|o) = ∑
on

p(on) p(on|o) (7)

where p(on) is the probability of on occurring in any scene,
for which we use simply the fraction of all objects across all
scenes which are on. For this paper, we explore both the de-
cision problem (is p(o′|o) > p(onew|o), i.e., is the object in
context or not) and the continuous scores derived as above.

Evaluation on Synthetic Out-of-context Objects
We construct our first test set based on the Spatial Envelope
data set (Oliva & Torralba, 2001). Here, the models will be
used to determine whether an object is in context with re-
spect to the rest of a scene, or not (Equation (7)). The im-
ages in the data set contain full object annotations, but also
scene type labels. These allow us to construct test data for the
scenario we are interested in. (Note, however, that this is the
only use of overt scene type labels in this paper; the scene
types in our model are latent.) The data set is annotated using
LabelMe conventions, but does not overlap with the LabelMe
data from which our models are estimated. In terms of ob-
jects per scene, there are on the order of ten objects in each
image, and the number of images is reasonably balanced be-
tween scene types. We extract scenes which are either rural or
urban (the two top level scene types). We produce frequency
counts of objects within these two categories, and compute
a χ2 statistic for each to measure the distinctiveness of that
object in that class. We then select the 25 most distinctive ob-
jects for each class which occur in at least ten scenes, and
extract all scenes containing each of these objects. These dis-
tinctive objects are treated as the targets, and the other objects
in the image form the contexts.

The original scenes form examples of in-context objects—
to produce out-of-context ones, for each scene we replace the
in-context target with a randomly selected member of the dis-
tinctive list for the other category. This produces a set of just
over 26,000 scenes, equally balanced between in- and out-of-
context objects, to use for further experimentation. We divide
this into 6,000 scenes for development (model selection and
parametrization), with the remainder being used for held-out
testing. In all cases, the held-out data are unobserved until all
model parameters are fixed. Table 1 shows examples of the
data we produce.
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Target In/Out Context Context

stone in stick:1 stone:1 tree trunk fallen:2 trees:1 ground:2 brushes:1
buildings in skyscraper:1 building occluded:2 buildings:1 sky:1 skyscraper occluded:1

road out tree:1 stone:3 river water:1 trees:1 field:1 sky:1 stones:2 rocky mountain:1

sea water out
window:11 car occluded:2 pot plant occluded:1 sidewalk:1 person occluded:1

arcade:1 palm tree:1 car:1 window occluded:1 person walking:3
person woman walking:1 traffic light:1 hall:1 building:1 road:1

Table 1: Some examples of the synthetic data—the context is depicted as a sparse vector over the outcomes in the form [la-
bel:count], which is then reduced as appropriate for a trimmed vocabulary

LDA ML-MoM B-MoM

|T | 500V 1000V 500V 1000V 500V 1000V
50 0.737 0.747 0.674 0.679 0.896 0.895
100 0.759 0.801 0.660 0.662 0.897 0.899

Table 2: Accuracy (proportion of decisions where the correct
determination is made) on the synthetic data

Results Table 2 shows results on the synthetic dataset. The
Bayesian Mixture of Multinomials is clearly superior to the
other two models, and the larger vocabulary size and greater
dimensionality improves this slightly. The LDA model shows
greater sensitivity to parametrization than the other two, and
the maximum likelihood model is considerably worse than
the others across all parameter settings. Of particular note is
the maximum likelihood model getting worse as the dimen-
sionality increases; this is a classic result for non-Bayesian
models, where as the parameter space expands it is less and
less well summarized by a single point (the mode) and that
mode becomes harder to find.

Modeling Human Experimental Data
The evaluation study presented in the previous section used
artificially generated data. It showed that the Latent Scene
Type Model is highly accurate at detecting out-of-context ob-
jects which have been inserted into a scene. In the present
study, we validate this result using a data set from an eye
tracking experiment by Underwood et al. (2008). In this ex-
periment, participants had to perform a search task (determine
whether two scenes are the same or different); in the different-
scene condition, the target object was either out of context or
in context, with saliency being controlled. An example pair of
scenes can be found in Figure 1. The results show that scenes
with in-context objects are inspected for longer and received
more fixations than scenes with out-of-context objects. Also
the in-context objects themselves were detected later and re-
quired more fixations prior to detection than out-of-context
objects.

We expect our Latent Scene Type Model to capture the
behavioral effect of out-of-contextness demonstrated by Un-
derwood et al.’s study: out-of-context objects should receive

lower probabilities than in-context objects in their data set.
Underwood et al.’s study contains 80 pairs of scenes. In one

scene in the pair, the target object is in context (congruent, in
the language of that paper) and in the other it is out of context.
(Saliency was also manipulated in the study, but this is not of
interest here.) We manually listed the objects in each scene
(the contexts are identical between pairs, and two pairs are
identical save for their targets). Checking the labels against
our LabelMe training data revealed that 25% of target objects
were observed in LabelMe, and just over 30% of all objects.
LabelMe contains mainly outdoor scenes, while the experi-
mental data set are all indoor scenes, predominantly kitchen,
utility room or bathroom scenes, in which the objects have
been carefully arranged.

We therefore iteratively relabeled the target objects to es-
tablish a closer match with the LabelMe database, choosing in
some cases synonyms and in others (direct) hypernyms. This
was a manual process which relied on linguistic resources
such as WordNet. This produced a target coverage rate of just
over 70%, making it possible to use 45 of the 80 scene pairs,
with each scene having on average approximately 60% of its
context object appear in the training data (note that this in-
crease was incidental, as we optimized the coverage of the
target objects and simply propagated corrections through to
contexts as well so as to reduce the amount of manual engi-
neering). The selected scenes contain an average of ten ob-
jects in total.

Given the small size of the test set, we were not able to
split off a separate development set, and therefore retained
the parameters as set in the previous section on the synthetic
data set.

Results Table 3 shows results on the Underwood et al. data
for the task of detecting which of two possible objects is out
of context. As in previous sections, we note that the Bayesian
version of the mixture of multinomials model performs better
than the maximum likelihood version of the model, but given
the small dataset it is not possible to compare the B-MoM and
LDA models except to say that both are significantly differ-
ent from a random (50%) baseline as established by a bino-
mial test. Note that while seeming disappointing initially, the
performance of the models here is limited because the Un-
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Method LDA ML-MoM B-MoM
Accuracy 31/45 24/45 29/45

Table 3: Proportion of scenes in the Underwood et al. (2008)
data where the correct determination was made. The LDA
and B-MoM models are significantly different from a random
(50%) baseline, but not one another

Figure 1: A pair of example scenes from the eye tracking ex-
periment of Underwood et al. (2008). The target object in the
left hand image is the sock (in context), while in the right
hand image it is the can of soup (out of context)

derwood et al. scenes are staged indoor shots featuring many
objects that occur infrequently, if at all, in our training data
(only 60% of context objects appeared at all). The next sec-
tion presents an evaluation where objects are more frequently
observed.

Modeling an Object Naming Dataset
The third evaluation of our models used eye-tracking data
from an object naming experiment by Coco et al. (2012).
In this study, 24 participants were presented with 28 photo-
realistic scenes and asked to name the five most important
objects in the scene. In each scene, an object of interest and
two competitors were inserted using Photoshop. The Saliency
(Salient, Non-Salient) and Contextual Fit (In-Context, Out-
of-Context) of the object of interest was manipulated. In con-
trast to Underwood et al. (2008), this study shows that out-
of-context objects are less likely to be named than in-context
objects. Moreover, first fixation latency, i.e., the time to land
on a target object for the first time from scene onset, is longer
for out-of-context than for in-context objects. A naming task
demands a joint evaluation of both linguistic and visual infor-
mation, thus even if an out-of-context object might be visu-
ally more informative, it is linguistically less relevant.

We first evaluate our models on the task of determining
which of two objects is in context, identical to that presented
in the previous section. Then, we investigate whether the con-
textual scores calculated by the models are correlated with the
visual responses observed on the associated objects. We em-
ploy linear mixed effects model (LME, Baayen et al. 2008)

(a) In context target

(b) Out of context

Figure 2: An example of a scene with an in-context target
(cup) and the same scene with an out-of-context target (fish)

analysis to investigate how first fixation latency (the depen-
dent measure) correlates with model score (our predictor).
LME is more appropriate than simple correlation because
there were many other factors considered in the experimen-
tal data which affect the dependent measure, including fre-
quency and saliency of objects in the scene and size of the
objects. Employing LME means we are able to control for
these factors by including them as covariates in the analysis.

On the basis of the experimental data, we expect the model
score to be negatively associated with first fixation latency,
i.e., the more out-of-context an object is, the longer it takes to
fixate it. Together with the Score, we include as predictors the
Saliency of the object, and the type of Model. As a random
effect, we include Scene. We residualize first fixation latency
by the area of the object (in pixel square) to reduce the effect
of area on the dependent measure. We select the final LME
model by following a forward step-wise procedure, where
nested models are compared on the basis of log-likelihood
improvement. In the following, we report the coefficients of
the predictors found significant after model selection.

Results We first present the results for the decision prob-
lem. There are fifty-six decisions to be made (28 pairs of
scenes, each in the salient and non-salient condition), with
the goal being to determine which of the pair is out of con-
text. Table 4 shows the results on this task, where we once
again see that the LDA and Bayesian models are significantly
above chance, but given the limited sample size not signif-
icantly different from one another. Table 5 shows the mean
context scores across the conditions for each of the three mod-

5



Method LDA ML-MoM B-MoM
Accuracy 46/56 33/56 50/56

Table 4: Proportion of scenes in the Underwood data where
the correct determination was made. The LDA and B-MoM
models are significantly different from a random (50%) base-
line, but not one another

LDA ML-MoM B-MoM
I O I O I O

S 0.0106 0.0001 0.0010 0.0010 0.0071 0.0006
NS 0.0064 0.0002 0.0010 0.0010 0.0054 0.0012

Table 5: Average context scores across the conditions—I is
in context, O out of context, S is the salient condition and
NS is the non-salient condition. ML-MoM scores are in fact
slightly different to one another, but both contexts are highly
improbable under the model

els, where we see that the effects of the models in the decision
problem (Table 4) are equally visible on the continuous scale.

When using the LME to check whether model score is a
predictor of first fixation latency, we find a significant effect
with βScore = −0.1309; p < 0.0001: the more in-context an
object is, the shorter the latency. We do not find an effect of
Saliency and Model. This result also echoes the experimental
finding obtained by Coco et al. (2012), and shows that the
scores generated by our models can capture the patterns in
the eye-movement responses.

General Discussion
This paper introduced the Latent Scene Type models for de-
scribing the fit of objects to scenes. Our models quantify how
well a target object fits an observed context (the other objects
in the image). Sets of objects are generated by latent scene
types, with scene types representing objects which tend to
co-occur. We choose a Bayesian formulation for our models,
as this is attractive from a cognitive point of view: a cog-
nitive process operates with finite experience, which means
that it has to estimate a model of the world based on a limited
sample (in our case of context and objects). Committing to
a single parameter setting based on a limited sample is dif-
ficult; it therefore seems more plausible to integrate over the
full parameter space, which is the hallmark of Bayesian mod-
els. The Bayesian approach therefore captures the uncertainty
faced by a cognitive process with access to limited data.

We showed that the Latent Scene Type models perform
well on the task of detecting out-of-context objects in a syn-
thetic dataset. Furthermore, we successfully applied the mod-
els to two eye-tracking datasets, one involving a spot-the-
difference task, the other involving object-naming. In both
cases, the models were able to successfully detect out-of-
context objects, and in the case of the naming data, we also
showed that model scores are associated with first fixation la-

tencies on a target object (either in or out of context).
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