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Abstract

This paper provides evidence for Genzel and Char-
niak’s (2002) entropy rate principle, which predicts
that the entropy of a sentence increases with its po-
sition in the text. We show that this principle holds
for individual sentences (not just for averages), but
we also find that the entropy rate effect is partly
an artifact of sentence length, which also correlates
with sentence position. Secondly, we evaluate a set
of predictions that the entropy rate principle makes
for human language processing; using a corpus of
eye-tracking data, we show that entropy and pro-
cessing effort are correlated, and that processing ef-
fort is constant throughout a text.

1 Introduction

Genzel and Charniak (2002, 2003) introduce the en-
tropy rate principle, which states that speakers pro-
duce language whose entropy rate is on average
constant. The motivation for this comes from in-
formation theory: the most efficient way of trans-
mitting information through a noisy channel is at a
constant rate. If human communication has evolved
to be optimal in this sense, then we would expect
humans to produce text and speech with approx-
imately constant entropy. There is some evidence
that this is true for speech (Aylett, 1999).

For text, the entropy rate principle predicts that
the entropy of an individual sentence increases with
its position in the text, if entropy is measured out of
context. Genzel and Charniak (2002) show that this
prediction is true for the Wall Street Journal corpus,
for both function words and for content words. They
estimate entropy either using a language model or
using a probabilistic parser; the effect can be ob-
served in both cases. Genzel and Charniak (2003)
extend this results in several ways: they show that
the effect holds for different genres (but the effect
size varies across genres), and also applies within
paragraphs, not only within whole texts. Further-
more, they show that the effect can also be ob-
tained for language other than English (Russian and

Spanish). The entropy rate principle also predicts
that a language model that takes context into ac-
count should yield lower entropy estimates com-
pared to an out of context language model. Genzel
and Charniak (2002) show that this prediction holds
for caching language models such as the ones pro-
posed by Kuhn and de Mori (1990).

The aim of the present paper is to shed further
light on the entropy rate effect discovered by Gen-
zel and Charniak (2002, 2003) (henceforth G&C)
by providing new evidence in two areas.

In Experiment 1, we replicate G&C’s entropy
rate effect and investigate the source of the effect.
The results show that the correlation coefficients
that G&C report are inflated by averaging over sen-
tences with the same position, and by restricting
the range of the sentence position considered. Once
these restrictions are removed the effect is smaller,
but still significant. We also show that the effect is
to a large extend due to a confound with sentence
length: longer sentences tend to occur later in the
text. However, we are able to demonstrate that the
entropy rate effect still holds once this confound has
been removed.

In Experiment 2, we test the psycholinguistic pre-
dictions of the entropy rate principle. This experi-
ment uses a subset of the British National Corpus
as training data and tests on the Embra corpus, a set
of newspaper articles annotated with eye-movement
data. We find that there is a correlation between
the entropy of a sentence and the processing ef-
fort it causes, as measured by reading times in eye-
tracking data. We also show that there is no corre-
lation between processing effort and sentence posi-
tion, which indicates that processing effort in con-
text is constant through a text, which is one of the
assumptions underlying the entropy rate principle.

2 Predictions for Human Language
Processing

Let us examine the psycholinguistic predictions of
G&C’s entropy rate principle in more detail. We
need to distinguish two types of predictions: in-
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context predictions and out-of-context predictions.
The principle states that the entropy rate in a text
is constant, i.e., that speakers produce sentences so
that on average, all sentences in a text have the same
entropy. In other words, communication is optimal
in the sense that all sentences in the text are equally
easy to understand, as they all have the same en-
tropy.

This constancy principle is claimed to hold for
connected text: all sentences in a text should be
equally easy to process if they are presented in con-
text. If we take reading time as a measure of pro-
cessing effort, then the principle predicts that there
should be no significant correlation between sen-
tence position and reading time in context. We will
test this prediction in Experiment 2 using an eye-
tracking corpus consisting of connected text.

The entropy rate principle also makes the follow-
ing prediction: if the entropy of a sentence is mea-
sured out of context (i.e., without taking the preced-
ing sentences into account), then entropy will in-
crease with sentence position. This prediction was
tested extensively by G&C, whose results will be
replicated in Experiment 1. With respect to process-
ing difficulty, the entropy rate principle also predicts
that processing difficulty out of context (i.e., if iso-
lated sentences are presented to experimental sub-
jects) should increase with sentence position. We
could not test this prediction, as we only had in-
context reading time data available for the present
study.

However, there is another important prediction
that can be derived from the entropy rate principle:
sentences with a higher entropy should have higher
reading times. This is an important precondition for
the entropy rate principle, whose claims about the
relationship between entropy and sentence position
are only meaningful if entropy and processing effort
are correlated. If there was no such correlation, then
there would be no reason to assume that the out-
of-context entropy of a sentence increases with sen-
tence position. G&C explicitly refer to this relation-
ship i.e., they assume that a sentence that is more
informative is harder to process (Genzel and Char-
niak, 2003, p. 65). Experiment 1 will try to demon-
strate the validity of this important prerequisite of
the entropy rate principle.

3 Experiment 1: Entropy Rate and
Sentence Length

The main aim of this experiment was to replicate
G&C’s entropy rate effect. A second aim was to
test the generality of their result by determining if
the relationship between sentence position and en-

tropy also holds for individual sentences (rather than
for averages over sentences of a given position, as
tested by G&C). We also investigated the effect of
two parameters that G&C did not explore: the cut-
off for article position (G&C only deal with sen-
tences up to position 25), and the size of the n-gram
used for estimating sentence probability. Finally, we
include sentence length as a baseline that entropy-
based models should be evaluated against.

3.1 Method

3.1.1 Materials
This experiment used the same corpus as Genzel
and Charniak (2002), viz., the Wall Street Journal
part of the Penn Treebank, divided into a training
set (section 0–20) and a test set (sections 21–24).
Each article was treated as a separate text, and sen-
tence positions were computed by counting the sen-
tences from the beginning of the text. The training
set contained 42,075 sentences, the test set 7,133
sentences. The sentence positions in the test set var-
ied between one and 149.

3.1.2 Procedure
The per-word entropy was computed using an n-
gram language model, as proposed by G&C:1

Ĥ(X) = −
1
|X | ∑

xi∈X

logP(xi|xi−(n−1) . . .xi−1)(1)

Here, Ĥ(X) is the estimate of the per-word en-
tropy of the sentence X , consisting of the words xi,
and n is the size of the n-gram. The n-gram proba-
bilities were computed using the CMU-Cambridge
language modeling toolkit (Clarkson and Rosen-
feld, 1997), with the following parameters: vocab-
ulary size 50,000; smoothing by absolute discount-
ing; sentence beginning and sentence end as context
cues (default values were used for all other parame-
ters).

G&C use n = 3, i.e., a trigram model. We
experimented with this parameter and used n =
1, . . . ,5. For n = 1, equation (1) reduces to Ĥ(X) =
− 1

|X | ∑xi∈X logP(xi), i.e., a model based on word
frequency.

The experiment also includes a simple model that
does not take any probabilistic information into ac-
count, but simply uses the sentence length |X | to
predict sentence position. This model will serve as
the baseline.

1Note that the original definition given by Genzel and Char-
niak (2002, 2003) does not include the minus sign. However,
all their graphs display entropy as a positive quantity, hence we
conclude that this is the definition they are using.
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Figure 1: Experiment 1: correlation of sentence en-
tropy and sentence position (bins, 3-grams, cut-
off 76)

We also vary another parameter: c, the cut-off
for the position. Genzel and Charniak (2002) use
c = 25, i.e., only sentences with a position of 25
or lower are considered. In Genzel and Charniak
(2003), an even smaller cut-off of c = 10 is used.
This severely restricts the generality of the results
obtained. We will therefore report results not only
for c = 25, but also for c = 76. This cut-off has been
set so that there are at least 10 items in the test set
for each position. Furthermore, we also repeated the
experiment without a cut-off for sentence length.

3.2 Results
Table 1 shows the results for the replication of Gen-
zel and Charniak’s (2002) entropy rate effect. The
results at the top of the table were obtained using
binning, i.e., we computed the mean entropy of all
sentences of a given position, and then correlated
these mean entropies with the sentence positions.
The parameters n (n-gram size) and c (cut-off value)
were varied as indicated in the previous section.

The bottom of Table 1 gives the correlation co-
efficients computed on the raw data, i.e., without
binning: here, we correlated the entropy of a given
sentence directly with its position. The graphs in
Figure 1 and Figure 2 illustrate the relationship be-
tween position and entropy and between position
and length, respectively.

3.3 Discussion
3.3.1 Entropy Rate and Sentence Length
The results displayed in Table 1 confirm G&C’s
main finding, i.e., that entropy increases with sen-
tence length. For a cut-off of c = 25 (as used by
G&C), a maximum correlation of 0.6480 is ob-
tained (for the 4-gram model). The correlations for
the other n-gram models are lower. All correlations
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Figure 2: Experiment 1: correlation of sentence
length and sentence position (bins, cut-off 76)

are significant (with the exception of the unigram
model). However, we also find that a substantial cor-
relation of −0.4607 is obtained even for the base-
line model: there is a negative correlation between
sentence length and sentence position, i.e., longer
sentences tend to occur earlier in the text. This find-
ing potentially undermines the entropy rate effect,
as it raises the possibility that this effect is simply
an effect of sentence length, rather than of sentence
entropy. Note that the correlation coefficient for the
none of the n-gram models is significantly higher
than the baseline (significance was computed on the
absolute values of the correlation coefficients).

The second finding concerns the question
whether the entropy rate effect generalizes to sen-
tences with a position of greater than 25. The re-
sults in Table 1 show that the effect generalizes to
a cut-off of c = 76 (recall that this value was cho-
sen so that each position is represented at least ten
times in the test data). Again, we find a significant
correlation between entropy and sentence position
for all values of n. This is illustrated in Figure 1.
However, none of the n-gram models is able to beat
the baseline of simple sentence position; in fact,
now all models (with the exception of the unigram
model) perform significantly worse than the base-
line. The correlation obtained by the baseline model
is graphed in Figure 2.

Finally, we tried to generalize the entropy rate ef-
fect to sentences with arbitrary position (no cut-off).
Here, we find that there is no significant positive
correlation between entropy and position for any of
the n-gram models. Only sentence length yields a
reliable correlation, though it is smaller than if a
cut-off is applied. This result is perhaps not surpris-
ing, as a lot of the data is very sparse: for positions
between 77 and 149, less than ten data points are
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c = 25 c = 76 c = ∞
Binned data r p r p r p
Entropy 1-gram 0.0593∗ 0.7784 0.3583 0.0015 −0.3486∗ 0.0000
Entropy 2-gram 0.4916 0.0126 0.2849∗ 0.0126 0.0723 0.3808
Entropy 3-gram 0.6387 0.0006 0.2427∗ 0.0346 0.1350 0.1006
Entropy 4-gram 0.6480 0.0005 0.2378∗ 0.0386 0.1354 0.0996
Entropy 5-gram 0.6326 0.0007 0.2281∗ 0.0475 0.1311 0.1111
Sentence length −0.4607 0.0205 −0.4943 0.0000 −0.1676 0.0410

c = 25 c = 76 c = ∞
Raw data r p r p r p
Entropy 1-gram −0.0023∗ 0.8781 0.0598∗ 0.0000 0.0301∗ 0.0110
Entropy 2-gram 0.0414 0.0056 0.0755∗ 0.0000 0.0615∗ 0.0000
Entropy 3-gram 0.0598 0.0001 0.0814∗ 0.0000 0.0706∗ 0.0000
Entropy 4-gram 0.0625 0.0000 0.0830∗ 0.0000 0.0712∗ 0.0000
Entropy 5-gram 0.0600 0.0001 0.0812∗ 0.0000 0.0695∗ 0.0000
Sentence length −0.0635 0.0000 −0.1099 0.0000 −0.1038 0.0000

Table 1: Results of Experiment 1: correlation of sentence entropy and sentence position, on binned data; c:
cut-off, r: correlation coefficient, p: significance level, ∗: correlation significantly different from baseline
(sentence length)

available per position. Based on data this sparse, no
reliable correlation coefficients can be expected.

Let us now turn to Table 1, which displays the
results that were obtained by computing correlation
coefficients on the raw data, i.e., without computing
the mean entropy for all sentences with the same po-
sition. We find that for all parameter settings a sig-
nificant correlation between sentence entropy and
sentence position is obtained (with the exception of
n = 1, c = 25). The correlation coefficients are sig-
nificantly lower than the ones obtained using bin-
ning, the highest coefficient is 0.0830. This means
that a small but reliable entropy effect can be ob-
served even on the raw data, i.e., for individual sen-
tences rather than for bins of sentences with the
same position.

However, the results in Table 1 also confirm our
findings regarding the baseline model (simple sen-
tence length): in all cases the correlation coefficient
achieved for the baseline is higher than the one
achieved by the entropy models, in some cases even
significantly so.

3.3.2 Disconfounding Entropy and Sentence
Length

Taken together, the results in Table 1 seem to indi-
cate that the entropy rate effect reported by G&C is
not really an effect of entropy, but just an effect of
sentence length. The effect seems to be due to the
fact that G&C compute entropy rate by dividing the
entropy of a sentence by its length: sentence length
is correlated with sentence position, hence entropy
rate will be correlated with position as well.

It is therefore necessary to conduct additional

analyses that remove the confound of sentence
length. This can be achieved by computing partial
correlations; the partial correlation coefficient be-
tween a factor 1 and a factor 2 expresses the degree
of association between the factors that is left once
the influence of a third factor has been removed
from both factors. For example, we can compute the
correlation of position and entropy, with sentence
length partialled out. This will tell us use the amount
of association between position and entropy that is
left once the influence of length has been removed
from both position and entropy.

Table 2 shows the results of partial correlation
analyses for length and entropy. Note that these
results were obtained using total entropy, not per-
word entropy, i.e., the normalizing term 1

|X | was
dropped from (1). The partial correlations are only
reported for the trigram model.

The results indicate that entropy is a signifi-
cant predictor sentence position, even once sentence
length has been partialled out. This result holds for
both the binned data and the raw data, and for all
cut-offs (with the exception of c = 76 for the binned
data). Note however, that entropy is always a worse
predictor than sentence length; the absolute value of
the correlation coefficient is always lower. This in-
dicates that the entropy rate effect is a much weaker
effect than the results presented by G&C suggest.

4 Entropy Rate Effect and Processing
Effort

The previous experiment confirmed the validity of
the entropy rate effect: it demonstrated a signifi-
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c = 25 c = 76 c = ∞
Binned data r p r p r p
Entropy 3-gram 0.6708 0.0000 0.1473 0.2067 0.1703 0.0383
Sentence length −0.7435 0.0000 −0.3020 0.0084 −0.2131 0.0093
Raw data r p r p r p
Entropy 3-gram 0.0784 0.0000 0.0929 0.0000 0.0810 0.0000
Sentence length −0.0983 0.0000 −0.1311 0.0000 −0.1176 0.0000

Table 2: Results of Experiment 1: correlation of entropy and sentence length with sentence position, with
the other factor partialled out

cant correlation between sentence entropy and sen-
tence position, even when sentence length, which
was shown to be a confounding factor, was con-
trolled for. The effect, however, was smaller than
claimed by G&C, in particular when applied to in-
dividual sentences, as opposed to means obtained
for sentences at the same position.

In the present experiment, we will test a crucial
aspect of the entropy rate principle, viz., that en-
tropy should correlate with processing effort. We
will test this using a corpus of newspaper text that
is annotated with eye-tracking data. Eye-tracking
measures of reading time are generally thought to
reflect the amount of cognitive effort that is required
for the processing of a given word or sentence.

A second prediction of the entropy rate princi-
ple is that sentences with higher position should be
harder to process than sentences with lower posi-
tion. This relationship should hold out of context,
but not in context (see Section 2).

4.1 Method

4.1.1 Materials
As a test corpus, we used the Embra corpus (Mc-
Donald and Shillcock, 2003). This corpus consists
of 10 articles from Scottish and UK national broad-
sheet newspapers. The excerpts cover a wide range
of topics; they are slightly edited to make them com-
patible with eye-tracking.2 The length of the articles
varies between 97 and 405 words, the total size of
the corpus is 2,262 words (125 sentences). Twenty-
three native speakers of English read all 10 arti-
cles while their eye-movements were recorded us-
ing a Dual-Purkinke Image eye-tracker. To make
sure that subjects read the texts carefully, compre-
hension questions were also administered. For de-
tails on method used to create the Embra corpus,
see McDonald and Shillcock (2003).

The training and development sets for this exper-
iment were compiled so as to match the test corpus
in terms of genre. This was achieved by selecting

2This includes, e.g., the removal of quotation marks and
brackets, which can disrupt the eye-movement record.

all files from the British National Corpus (Burnard,
1995) that originate from UK national or regional
broadsheet newspapers. This subset of the BNC was
divided into a 90% training set and a 10% develop-
ment set. This resulted in a training set consisting of
6,729,104 words (30,284 sentences), and a develop-
ment set consisting of 746,717 words (34,269 sen-
tences). The development set will be used to test if
the entropy rate effect holds on this new corpus.

The sentence positions in the test set varied be-
tween one and 24, in the development, they varied
between one and 206.

4.1.2 Procedure
To compute per-word entropy, we trained n-
gram models on the training set using the CMU-
Cambridge language modeling toolkit, with the
same parameters as in Experiment 1. Again, n was
varied from 1 to 5. We determined the correlation
between per-word entropy and sentence position for
both the development set (derived from the BNC)
and for the test set (the Embra corpus).

Then, we investigated the predictions of G&C’s
entropy rate principle by correlating the position
and entropy of a sentence with its reading time in
the Embra corpus.

The reading measure used was total reading time,
i.e., the total time it takes a subject to read a sen-
tence; this includes second fixations and re-fixations
of words. We also experimented with other reading
measures such as gaze duration, first fixation time,
second fixation time, regression duration, and skip-
ping probability. However, the results obtained with
these measures were similar to the ones obtained
with total reading time, and will not be reported
here.

Total reading time is trivially correlated with sen-
tence length (longer sentences taker longer to read).
Hence we normalized total reading time by sen-
tence length, i.e., by multiplying with the factor 1

|X | ,
also used in the computation of per-word entropy.
It is also well-known that reading time is corre-
lated with two other factors: word length and word
frequency; shorter and more frequent words take
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c = 25 c = 76 c = ∞
Binned data r p r p r p
Entropy 1-gram −0.5495 0.0044 −0.2510 0.0287 0.0232 0.7419
Entropy 2-gram 0.0602 0.7751 0.4249 0.0001 0.0392 0.5773
Entropy 3-gram 0.4523 0.0232 0.5395 0.0000 0.1238 0.0776
Entropy 4-gram 0.4828 0.0145 0.5676 0.0000 0.1229 0.0800
Entropy 5-gram 0.4834 0.0144 0.5723 0.0000 0.1223 0.0813
Sentence length −0.8584 0.0000 −0.2947 0.0098 −0.2161 0.0019
Raw data r p r p r p
Entropy 1-gram −0.0636 0.0000 −0.0543 0.0000 0.0364 0.0000
Entropy 2-gram −0.0069 0.2783 0.0435 0.0000 0.0477 0.0000
Entropy 3-gram 0.0162 0.0103 0.0659 0.0000 0.0687 0.0000
Entropy 4-gram 0.0193 0.0022 0.0691 0.0000 0.0711 0.0000
Entropy 5-gram 0.0192 0.0024 0.0685 0.0000 0.0707 0.0000
Sentence length −0.0747 0.0000 −0.1027 0.0000 −0.0913 0.0000

Table 3: Results of Experiment 2: correlation of sentence entropy and sentence position on the BNC

less time to read (Just and Carpenter, 1980). We
removed these confounding factors by conducting
multiple regression analyses involving word length,
word frequency, and the predictor variable (entropy
or sentence position). The aim was to establish if
there is a significant effect of entropy or sentence
length, even when the other factors are controlled
for. Word frequency was estimated using the uni-
gram model trained on the training corpus.

In the eye-tracking literature, it is generally rec-
ommended to run regression analyses on the reading
times collected from individual subjects. In other
words, it is not good practice to compute regressions
on average reading times, as this fails take between-
subject variation in reading behavior into account,
and leads to inflated correlation coefficients. We
therefore followed the recommendations of Lorch
and Myers (1990) for computing regressions with-
out averaging over subjects (see also McDonald and
Shillcock (2003) for details on this procedure).

4.2 Results

Table 3 shows the results of the correlation analyses
on the development set. These results were obtained
after excluding all sentences at positions 1 and 2.
In the newspaper texts in the BNC, these positions
have a special function: position 1 contains the title,
and position 2 contains the name of the author. The
first sentence of the text is therefore on position 3
(unlike in the Penn Treebank, in which no title or
author information is included and texts start at po-
sition 1).

We then conducted the same correlation analyses
on the test set, i.e., on the Embra eye-tracking cor-
pus. The results are tabulated in Table 4. Note we set
no threshold for sentence position in the test set, as

Binned data Raw data
r p r p

1-gram −0.6505 0.0006 −0.2087 0.0195
2-gram −0.3471 0.0965 −0.1498 0.0954
3-gram −0.5512 0.0052 −0.1674 0.0620
4-gram −0.5824 0.0028 −0.1932 0.0308
5-gram −0.5750 0.0033 −0.1919 0.0320
Length 0.3902 0.0594 0.0885 0.3264

Table 4: Results of Experiment 2: correlation of sen-
tence entropy and sentence position on the Embra
corpus

r p
Entropy 2-gram 0.1551 0.007
Entropy 3-gram 0.1646 0.000
Entropy 4-gram 0.1650 0.000
Entropy 5-gram 0.1648 0.000
Sentence position −0.0266 0.564

Table 5: Results of Experiment 2: correlation of
reading times with sentence entropy and sentence
position

the maximum article length in this corpus was only
24 sentences.

Finally, we investigated if the total reading times
in the Embra corpus are correlated with sentence po-
sition and entropy. We computed regression analysis
that partialled out word length, word frequency, and
subject effects as recommended by Lorch and My-
ers (1990). All variables other than position were
normalized by sentence length. Table 5 lists the re-
sulting correlation coefficients. Note that no binning
was carried out here. Figure 3 plots one of the cor-
relations for illustration.
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Figure 3: Experiment 2: correlation of reading times
and sentence entropy (3-grams)

4.3 Discussion

The results in Table 3 confirm that the results ob-
tained on the Penn Treebank also hold for the news-
paper part of the BNC. The top half of the table lists
the correlation coefficients for the binned data. We
find a significant correlation between sentence po-
sition and entropy for the cut-off values 25 and 76.
In both cases, there is also a significant correlation
with sentence length; this correlation is particularly
high (−0.8584) for c = 25. The entropy rate effect
does not seem to hold if there is no cut-off; here,
we fail to find a significant correlation (though the
correlation with length is again significant). This is
probably explained by the fact that the BNC test set
contains sentences with a maximum position of 206,
and data for these high sentence positions is very
sparse.

The lower half of Table 3 confirms another result
from Experiment 1: there is generally a low, but sig-
nificant correlation between entropy and position,
even if the correlation is computed for individual
sentences rather than for bins of sentences with the
same position. Furthermore, we find that sentence
length is again a significant predictor of sentence
position, even on the raw data. This is in line with
the results of Experiment 1.

Table 4 lists the results obtained on the test set
(i.e., the Embra corpus). Note that no cut-off was
applied here, as the maximum sentence position in
this set is only 24. Both on the binned data and
on the raw data, we find significant correlations be-
tween sentence position and both entropy and sen-
tence length. However, compared to the results on
the BNC, the signs of the correlations are inverted:
there is a significant negative correlation between
position and entropy, and a significant positive cor-
relation between position and length. It seems that

the Embra corpus is peculiar in that longer sen-
tences appear later in the text, rather than earlier.
This is at odds with what we found on the Penn
Treebank and on the BNC. Note that the positive
correlation of position and length explains the neg-
ative correlation of position and entropy: length en-
ters into the entropy calculation as 1

|X | , hence a high
|X | will lead to low entropy, and vice versa.

We have no immediate explanation for the inver-
sion of the relationship between position and length
in the Embra corpus; it might be an idiosyncrasy
of this corpus (note that the texts were specifically
picked for eye-tracking, and are unlikely to be a ran-
dom sample; they are also shorter than usual news-
paper texts). Note in particular that the Embra cor-
pus is not a subset of the BNC (although it was sam-
pled from UK broadsheet newspapers, and hence
should be similar to our development and training
corpora).

Let us now turn to Table 5, which lists the re-
sults of the analyses correlating the total reading
time for a sentence with its position and its entropy
(derived from n-grams with n = 2, . . . ,5). Note that
these correlation analyses were conducted by par-
tialling out word length and word frequency, which
are well-know to correlate with reading times. We
find that even once these factors have been con-
trolled, there is still a significant positive correlation
between entropy and reading time: sentences with
higher entropy are harder to process and hence have
higher reading times. This is illustrated in Figure 3
for one of the correlations. As we argued in Sec-
tion 2, this relationship between entropy and pro-
cessing effort is a crucial prerequisite of the entropy
rate principle. The increase of entropy with sen-
tence position observed by G&C (and in our Exper-
iment 1) only makes sense if increased entropy cor-
responds to increased processing difficulty (e.g., to
increased reading time). Note that this result is com-
patible with previous research by McDonald and
Shillcock (2003), who demonstrate a correlation be-
tween reading time measures and bigram probabil-
ity (though their analysis is on the word level, not
on the sentence level).

The second main finding in Table 5 is that there is
no significant correlation between sentence position
and reading time. As we argued in Section 2, this
is predicted by the entropy rate principle: the opti-
mal way to send information is at a constant rate.
In other words, speakers should produce sentences
with constant informativeness, which means that if
context is taken into account, all sentences should
be equally difficult to process, no matter which po-
sition they are at. This manifests itself in the absence
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of a correlation between position and reading time
in the eye-tracking corpus.

5 Conclusions

This paper made a contribution to the understanding
of the entropy rate principle, first proposed by Gen-
zel and Charniak (2002). This principle predicts that
the position of a sentence in a text should correlate
with its entropy, defined as the sentence probabil-
ity normalized by sentence length. In Experiment 1,
we replicated the entropy rate effect reported by
Genzel and Charniak (2002, 2003) and showed that
it generalizes to a larger range of sentence posi-
tions and also holds for individual sentences, not
just averaged over all sentences with the same posi-
tion. However, we also found that a simple baseline
model based on sentence length achieves a corre-
lation with sentence position. In many cases, there
was no significant difference between the entropy
rate model and the baseline. This raises the possibil-
ity that the entropy rate effect is simply an artifact
of the way entropy rate is computed, which involves
sentence length as a normalizing factor. However,
using partial correlation analysis, we were able to
show that entropy is a significant predictor of sen-
tence position, even when sentence length is con-
trolled.

In Experiment 2, we tested a number of important
predictions of the entropy rate principle for human
sentence processing. First, we replicated the entropy
rate effect on a different corpus, a subset of the BNC
restricted to newspaper text. We found essentially
the same pattern as in Experiment 1. Using a cor-
pus of eye-tracking data, we showed that entropy
is correlated with processing difficulty, as measured
by reading times in the eye-movement record. This
confirms an important assumption that underlies the
entropy rate principle. As the eye-tracking corpus
we used was a corpus of connected sentences, it en-
abled us to also test another prediction of the en-
tropy rate principle: in context, all sentences should
be equally difficult to process, as speakers gener-
ate sentences with constant informativeness. This
means that no correlation between sentence position
and reading times was expected, which is what we
found.

Another important prediction of the entropy rate
principle remains to be evaluated in future work: for
out-of-context sentences, there should be a correla-
tion between sentence position and processing ef-
fort. This prediction can be tested by obtaining read-
ing times for sentences sampled from a corpus and
read by experimental subjects in isolation.
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