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Abstract

Describing the main event of an image in-
volves identifying the objects depicted and
predicting the relationships between them.
Previous approaches have represented images
as unstructured bags of regions, which makes
it difficult to accurately predict meaningful
relationships between regions. In this pa-
per, we introduce visual dependency represen-
tations to capture the relationships between
the objects in an image, and hypothesize that
this representation can improve image de-
scription. We test this hypothesis using a
new data set of region-annotated images, as-
sociated with visual dependency representa-
tions and gold-standard descriptions. We de-
scribe two template-based description gener-
ation models that operate over visual depen-
dency representations. In an image descrip-
tion task, we find that these models outper-
form approaches that rely on object proxim-
ity or corpus information to generate descrip-
tions on both automatic measures and on hu-
man judgements.

1 Introduction

Humans are readily able to produce a description of
an image that correctly identifies the objects and ac-
tions depicted. Automating this process is useful for
applications such as image retrieval, where users can
go beyond keyword-search to describe their infor-
mation needs, caption generation for improving the
accessibility of existing image collections, story il-
lustration, and in assistive technology for blind and

partially sighted people. Automatic image descrip-
tion presents challenges on a number of levels: rec-
ognizing the objects in an image and their attributes
are difficult computer vision problems; while deter-
mining how the objects interact, which relationships
hold between them, and which events are depicted
requires considerable background knowledge.

Previous approaches to automatic description
generation have typically tackled the problem us-
ing an object recognition system in conjunction with
a natural language generation component based on
language models or templates (Kulkarni et al., 2011;
Li et al., 2011). Some approaches have utilised the
visual attributes of objects (Farhadi et al., 2010),
generated descriptions by retrieving the descriptions
of similar images (Ordonez et al., 2011; Kuznetsova
et al., 2012), relied on an external corpus to pre-
dict the relationships between objects (Yang et al.,
2011), or combined sentence fragments using a tree-
substitution grammar (Mitchell et al., 2012).

A common aspect of existing work is that an im-
age is represented as a bag of image regions. Bags
of regions encode which objects co-occur in an im-
age, but they are unable to express how the regions
relate to each other, which makes it hard to describe
what is happening. As an example, consider Fig-
ure 1a, which depicts a man riding a bike. If the
man was instead repairing the bike, then the bag-
of-regions representation would be the same, even
though the image would depict a different action and
would have to be described differently. This type
of co-occurrence of regions indicates the need for a
more structured image representation; an image de-
scription system that has access to structured repre-
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(a)

A man is riding a bike down the road.
A car and trees are in the background.

(b)

ROOT bike car man road trees
- -

-

on
above

A man is riding a bike down the road.

det

nsubj

aux

root

det

dobj

advmod

det

pobj

(c)

Figure 1: (a) Image with regions marked up: BIKE, CAR,
MAN, ROAD, TREES; (b) human-generated image de-
scription; (c) visual dependency representation express-
ing the relationships between MAN, BIKE, and ROAD
aligned to the syntactic dependency parse of the first sen-
tence in the human-generated description (b).

sentations would be able to correctly infer the action
that is taking place, such as the distinction between
repairing or riding a bike, which would greatly im-
prove the descriptions it is able to generate.

In this paper, we introduce visual dependency rep-
resentations (VDRs) to represent the structure of im-
ages. This representation encodes the geometric re-
lations between the regions of an image. An ex-
ample can be found in Figure 1c, which depicts the
VDR for Figure 1a. It encodes that the MAN is above
the BIKE, and that the BIKE is on the ROAD. These
relationships make it possible to infer that the man
is riding a bike down the road, which corresponds

to the first sentence of the human-generated image
description in Figure 1b.

In order to test the hypothesis that structured im-
age representations are useful for description gener-
ation, we present a series of template-based image
description models. Two of these models are based
on approaches in the literature that represent images
as bags of regions. The other two models use vi-
sual dependency representations, either on their own
or in conjunction with gold-standard image descrip-
tions at training time.

We find that descriptions generated using the
VDR-based models are significantly better than
those generated using bag-of-region models in au-
tomatic evaluations using smoothed BLEU scores
and in human judgements. The BLEU score im-
provements are found at bi-, tri-, and four-gram lev-
els, and humans rate VDR-based image descriptions
1.2 points above the next-best model on a 1–5 scale.

Finally, we also show that the benefit of the vi-
sual dependency representation is maintained when
image descriptions are generated from automatically
parsed VDRs. We use a modified version of the
edge-factored parser of McDonald et al. (2005) to
predict VDRs over a set of annotated object regions.
This result reaffirms the potential utility of this rep-
resentation as a means to describe events in images.
Note that throughout the paper, we work with gold-
standard region annotations; this makes it possible
to explore the effect of structured image representa-
tions independently of automatic object detection.

2 Visual Dependency Representation

In analogy to dependency grammar for natural lan-
guage syntax, we define Visual Dependency Gram-
mar to describe the spatial relations between pairs
of image regions. A directed arc between two re-
gions is labelled with the spatial relationship be-
tween those regions, defined in terms of three ge-
ometric properties: pixel overlap, the angle between
regions, and the distance between regions. Table 1
presents a detailed explanation of the spatial rela-
tionships defined in the grammar.

A visual dependency representation of an image
is constructed by creating a directed acyclic graph
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X −→on Y
More than 50% of the pixels of re-
gion X overlap with region Y.1

X
−−−−−−→
surrounds Y

The entirety of region X overlaps
with region Y.

X
−−−→
beside Y

The angle between the centroid of
X and the centroid of Y lies be-
tween 315◦ and 45◦ or 135◦ and
225◦.

X
−−−−−→
opposite Y

Similar to beside, but used when
there X and Y are at opposite sides
of the image.

X
−−−→
above Y

The angle between X and Y lies be-
tween 225◦ and 315◦.

X
−−−→
below Y

The angle between X and Y lies be-
tween 45◦ and 135◦.

X
−−−−→
infront Y

The Z-plane relationship between
the regions is dominant.

X
−−−−→
behind Y

Identical to infront except X is be-
hind Y in the Z-plane.

Table 1: Visual Dependency Grammar defines eight re-
lations between pairs of annotated regions. To simplify
explanation, all regions are circles, where X is the grey
region and Y is the white region. All relations are consid-
ered with respect to the centroid of a region and the angle
between those centroids. We follow the definition of the
unit circle, in which 0◦ lies to the right and a turn around
the circle is counter-clockwise.

over the set of regions in an image using the spa-
tial relationships in the Visual Dependency Gram-
mar. It is created from a region-annotated image and
a corresponding image description by first identify-
ing the central actor of the image. The central actor
is the person or object carrying out the depicted ac-
tion; this typically corresponds to the subject of the
sentence describing the image. The region corre-
sponding to the central actor is attached to the ROOT

node of the graph. The remaining regions are then
attached based on their relationship with either the
actor or the other regions in the image as they are

1As per the PASCAL VOC definition of overlap in the object
detection task (Everingham et al., 2011).

mentioned in the description. Each arc introduced
is labelled with one of the spatial relations defined
in the grammar, or with no label if the region is not
described in relation to anything else in the image.

As an example of the output of this annotation
process, consider Figure 1a, its description in 1b,
and its VDR in 1c. Here, the MAN is the central
actor in the image, as he is carrying out the depicted
action (riding a bike). The region corresponding to
MAN is therefore attached to ROOT without a spa-
tial relation. The BIKE region is then attached to the
MAN region using the

−−−→
above relation and BIKE is at-

tached to the ROAD with the −→on relation. In the sec-
ond sentence of the description, CAR and TREES are
mentioned without a relationship to anything else in
the image, so they are attached to the ROOT node. If
these regions were attached to other regions, such as
CAR

−−−→
above ROAD then this would imply structure in

the image that is not conveyed in the description.

2.1 Data

Our data set uses the images from the PASCAL
Visual Object Classification Challenge 2011 action
recognition taster competition (Everingham et al.,
2011). This is a closed-domain data set containing
images of people performing ten types of actions,
such as making a phone call, riding a bike, and tak-
ing a photo. We annotated the data set in a three-step
process: (1) collect a description for each image;
(2) annotate the regions in the image; and (3) create a
visual dependency representation of the image. Note
that Steps (2) and (3) are dependent on the image de-
scription, as both the region labels and the relations
between them are derived from the description.

2.2 Image Descriptions

We collected three descriptions of each image in our
data set from Amazon Mechanical Turk. Workers
were asked to describe an image in two sentences.
The first sentence describes the action in the image,
the person performing the action and the region in-
volved in the action; the second sentence describes
any other regions in the image not directly involved
in the action. An example description is given in
Figure 1b.

A total of 2,424 images were described by three
workers each, resulting in a total of 7,272 image de-
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Figure 2: Top 20 annotated regions.

scriptions. The workers, drawn from those regis-
tered in the US with a minimum HIT acceptance rate
of 95%, described an average of 145 ± 93 images;
they were encouraged to describe fewer than 300 im-
ages each to ensure a linguistically diverse data set.
They were paid $0.04 per image and it took on av-
erage 67 ± 123 seconds to describe a single image.
The average length of a description was 19.9 ± 6.5
words in a range of 8–50 words. Dependency parses
of the descriptions were produced using the MST-
Parser (McDonald et al., 2005) trained on sections
2-21 of the WSJ portion of the Penn Treebank.

2.3 Region Annotations

We trained two annotators to draw polygons around
the outlines of the regions in an image using the La-
belMe annotation tool (Russell et al., 2008). The
regions annotated for a given image were limited to
those mentioned in the description paired with the
image. Region annotation was performed on a sub-
set of 341 images and resulted in a total of 5,034
annotated regions with a mean of 4.19 ± 1.94 an-
notations per image. A total of 496 distinct labels
were used to label regions. Figure 2 shows the
distribution of the top 20 region annotations in the
data; people-type regions are the most commonly
annotated regions. Given the prevalence of labels
referring to the same types of regions, we defined
26 sets of equivalent labels to reduce label sparsity
(e.g., BIKE was considered equivalent to BICYCLE).
This normalization process reduced the size of the
region label vocabulary from 496 labels to 362 la-
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Figure 3: Distribution of the spatial relations.

bels. Inter-annotator agreement was 74.3% for re-
gion annotations, this was measured by computing
polygon overlap over the annotated regions.

2.4 Visual Dependency Representations

The same two annotators were trained to construct
gold-standard visual dependency representations for
annotated image–description pairs. The process for
creating a visual dependency representation of an
image is described earlier in this section of the pa-
per. The 341 region-annotated images resulted in a
set of 1,023 visual dependency representations. The
annotated data set comprised a total of 5,748 spatial
relations, corresponding to a mean of 4.79 ± 3.51
relations per image. Figure 3 shows the distribution
of spatial relation labels in the data set. It can be
seen that the majority of regions are attached to the
ROOT node, i.e., they have the relation label none.
Inter-annotator agreement on a subset of the data
was measured at 84% agreement for labelled de-
pendency accuracy and 95.1% for unlabelled depen-
dency accuracy. This suggests the task of generating
visual dependency representations can be performed
reliably by human annotators. We induced an align-
ment between the annotated region labels and words
in the image description using simple lexical match-
ing augmented with WordNet hyponym lookup. See
Figure 1c for an example of the alignments.

3 Image Description Models

We present four template-based models for gener-
ating image descriptions in this section. Table 2
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Regions VDR
External
Corpus

Parallel
text

PROXIMITY X
CORPUS X X

STRUCTURE X X
PARALLEL X X X

Table 2: The data available to each model at training time.

presents an overview of the amount of information
available to each model at training time, ranging
from only the annotated regions of an image to us-
ing visual dependency representation of an image
aligned with the syntactic dependency representa-
tion of its description. At test time, all models have
access to image regions and their labels, and use
these to generate image descriptions. Two of the
models also have access to VDRs at test time, al-
lowing us to test the hypothesis that image structure
is useful for generating good image descriptions.

The aim of each model is to determine what is
happening in the image, which regions are impor-
tant for describing it, and how these regions relate to
each other. Recall that all our images depict actions,
and that the gold-standard annotation was performed
with this in mind. A good description therefore is
one that relates the main actors depicted in the im-
age to each other, typically through a verb; a mere
enumeration of the regions in the image is not suffi-
cient. All models attempt to generate a two-sentence
description, as per the gold standard descriptions.

In the remainder of this section, we will use Fig-
ure 1 as a running example to demonstrate the type
of language each model is capable of generating. All
models share the set of templates in Table 3.

3.1 PROXIMITY

PROXIMITY is based on the assumption that people
describe the relationships between regions that are
near each other. It has access to only the annotated
image regions and their labels.

Region–region relationships that are potentially
relevant for the description are extracted by calculat-
ing the proximity of the annotated regions. Here, oi

is the subject region, o j is the object region, and si j

is the spatial relationship between the regions. Let

T1 DT Oi AUX REL DT O j. T5?

T2 There AUX also {DT Oi}
|unrelated|
i=1 in the image.

T3 DT Oi AUX REL DT O j REL DT Ok. T5?
T4 REL DT O j.

T5 PRP AUX {REL DT Oi}
|dependents|
i=1 .

Table 3: The language generation templates.

R = {(oi, si j, o j), . . .} be the set of possible region–
region relationships found by calculating the near-
est neighbour of each region in Euclidean space be-
tween the centroids of the polygons that mark the re-
gion boundaries. The tuple with the subject closest
to the centre of the image is used to describe what is
happening in the image, and the remaining regions
are used to describe the background.

The first sentence of the description is realised
with template T1 from Table 3. oi is the label of
the subject region and o j is the label of the object
region. DT is a simple determiner chosen from {the,
a}, depending on whether the region label is a plural
noun; AUX is either {is, are}, depending on the num-
ber of the region label; and REL is a word to describe
the relationship between the regions. For this model,
REL is the spatial relationship between the centroids
chosen from {above, below, beside}, depending on
the angle formed between the region centroids, us-
ing the definitions in Table 1. The second sentence
of the description is realised with template T2 over
the subjects oi in R that were not used in the first
sentence. An example of the language generated is:

(1) The man is beside the bike. There is also a
road, a car, and trees in the image.

With the exception of visual attributes to describe
size, colour, or texture, this model is based on the
approach described by Kulkarni et al. (2011).

3.2 CORPUS

The biggest limitation of PROXIMITY is that regions
that are near each other are not always in a rele-
vant relationship for a description. For example, in
Figure 1, the BIKE and the CAR regions are near-
est neighbours but they are unlikely to be described
as being in an relationship by a human annotator.
The model CORPUS addresses this issue by using an
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external text corpus to determine which pairs of re-
gions are likely to be in a describable relationship.
Furthermore, CORPUS can generate verbs instead of
spatial relations between regions, leading to more
human-like descriptions. CORPUS is based on Yang
et al. (2011), except we do not use scene type (in-
door, outdoor, etc.) as part of the model. At training
time, the model has access to the annotated image
regions and labels, and to the dependency-parsed
version of the English Gigaword Corpus (Napoles
et al., 2012). The corpus is used to extract subject–
verb–object subtrees, which are then used to predict
the best pairs of regions, as well as the verb that re-
lates the regions.

The set of region–region relationships
R = {(oi, vi j, o j), . . .} is determined by search-
ing for the most likely o∗j ,v

∗ given an oi over a set
of verbs V extracted from the corpus and the other
regions in the image. This is shown in Equation 1.

o∗j ,v
∗|oi = argmax

o j ,v
p(oi) · p(v|oi) · p(o j|v,oi) (1)

We can easily estimate p(oi), p(v|oi), and p(o j|v,oi)
directly from the corpus. If we cannot find an o∗j ,v

∗

for a region, we back-off to the spatial relationship
calculation as defined in PROXIMITY. When we
have found the best pairs of regions, we select the
most probable pair and generate the first sentence of
the description using that pair an template T1. The
second sentence is realised with template T2 over the
subjects in R not used in generating the first sen-
tence. An example of the language generated is:

(2) The man is riding the bike. There is also a
car, a road, and trees in the image.

In comparison to PROXIMITY, this model will only
describe pairs of regions that have observed rela-
tions in the external corpus. The corpus also pro-
vides a verb that relates the regions, which pro-
duces descriptions that are more in line with human-
generated text. However, since noun co-occurrence
in the corpus controls which regions can be men-
tioned in the description, this model will be prone
to relating regions simply because their labels occur
together frequently in the corpus.

3.3 STRUCTURE

The model STRUCTURE exploits the visual depen-
dency representation of an image to generate lan-
guage for only the relationships that hold between
pairs of regions. It has access to the image regions,
the region labels, and the visual dependency repre-
sentation of an image.

Region–region relationships are generated during
a depth-first traversal of the VDR using templates
T1, T3, T4, and T5. The VDR of an image is traversed
and language fragments are generated and then com-
bined depending on the number of children of a node
in the tree. If a node has only one child then we
use T1 to generate text for the head-child relation-
ship. If a node has more than one child, we need to
decide how to order the language generated by the
model. We generate sentence fragments using T4 for
each child independently and combine them later. In
STRUCTURE, the sentence fragments are sorted by
the Euclidean distance of the children from the par-
ent. In order to avoid problematic descriptions such
as “The woman is above the horse is above the field
is beside the house”, we include a special case for
when a node has more than one child. In these cases,
the nearest region is realized in direct relation to the
head using either T3 (two children) or T1 (more than
two children), and the remaining regions form a sep-
arate sentence using T5. This sorting and combing
process would result in “The woman is above the
horse. She is above field and beside the house” for
the case mentioned above.

An example of the type of description that can be
generated during a traversal is:

(3) The man is above the bike above the road.
There is also a car and trees in the image.

In comparison to PROXIMITY, this model can exploit
a representation of an image that encodes the rela-
tionships between regions in an image (the VDR).
However, it is limited to generating spatial relations,
because it cannot predict verbs to relate regions.

3.4 PARALLEL

The model PARALLEL is an extension of STRUC-
TURE that uses the image descriptions available to
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predict verbs that relate regions in parent-child re-
lationships in a VDR. At training time it has ac-
cess to the annotated regions and labels, the visual
dependency representations, and the gold-standard
image descriptions. Recall from Section 2.1 that
the descriptions were dependency-parsed using the
parser of McDonald et al. (2005) and alignments
were calculated between the nodes in the VDRs and
the words in the parsed image descriptions.

We estimate two distributions from
the image descriptions using the align-
ments: p(verb|ohead ,ochild ,relhead−child) and
p(verb|ohead ,ochild). The second distribution is used
as a backoff when we do not observe the arc label
between the regions in the training data. The gener-
ation process is similar to that used in STRUCTURE,
with two exceptions: (1) it can generate verbs
during the generation steps, and (2) when a node
has multiple dependents, the sentence fragments
are sorted by the probability of the verb associated
with them. This sorting step governs which child is
in a relationship with its parent. When the model
generates text, it only generates a verb for the
most probable sentence fragment. The remaining
fragments revert back to spatial relationships to
avoid generating language that places the subject
region in multiple relationships with other regions.
An example of the language generated is:

(4) The man is riding the bike on the road. There
is also a car and trees in the image.

In comparison to CORPUS, this model generates de-
scriptions in which the relations between the regions
determined by the image itself and not by an external
corpus. In comparison to PROXIMITY and STRUC-
TURE, this model generates descriptions that express
meaningful relations between the regions and not
simple spatial relationships.

4 Image Parsing

The STRUCTURE and PARALLEL models rely on vi-
sual dependency representations, but it is unreal-
istic to assume gold-standard representations will
always be available because they are expensive to
construct. In this section we describe an image
parser that can induce VDRs automatically from

region-annotated images, providing the input for
the STRUCTURE-PARSED and PARALLEL-PARSED

models at test time.

The parser is based on the arc-factored depen-
dency parsing model of McDonald et al. (2005).
This model generates a dependency representation
by maximizing the score s computed over all edges
of the representation. In our notation, xvis is the set
of annotated regions and yvis is a visual dependency
representation of the image; (i, j) is a directed arc
from node i to node j in xvis, f(i, j) is a feature rep-
resentation of the arc (i, j), and w is a vector of fea-
ture weights to be learned by the model. The overall
score of a visual dependency representation is:

s(xvis,yvis) = ∑
(i, j)∈yvis

w · f(i, j) (2)

The features in the model are defined over re-
gion labels in the visual dependency representation
as well as the relationship labels. As our depen-
dency representations are unordered, none of the
features encode the linear order of region labels,
unlike the feature set of the original model. Uni-
gram features describe how likely individual region
labels are to appear as either heads or arguments and
bigram feature captures which region labels are in
head-argument relationships. All features are con-
joined with the relationship label.

We evaluate our parser on the 1,023 visual depen-
dency representations from the data set. The evalu-
ation is run over 10 random splits into 80% train-
ing, 10% development, and 10% test data.2 Per-
formance is measured with labelled and unlabelled
directed dependency accuracy. The parser achieves
58.2%± 3.1 labelled accuracy and 65.5%± 3.3 un-
labelled accuracy, significantly better than the base-
line of 51.6% ± 2.5 for both labelled and unlabelled
accuracy (the baseline was calculated by attaching
all image regions to the root node; this is the most
frequent form of attachment in our data).

5 Language Generation Experiments

We evaluate the image description models in an au-
tomatic setting and with human judgements. In

2Different visual dependency representations of the same
image are never split between the training and test data.
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Automatic Evaluation Human Judgements

BLEU-1 BLEU-2 BLEU-3 BLEU-4 Grammar Action Scene

PARALLEL-PARSED 45.4 ± 2.0 16.1 ± 0.9 6.4 ± 0.7 2.7 ± 0.5 4.2 ± 1.3 3.3 ± 1.7 3.5 ± 1.3

PROXIMITY 45.1 ± 0.8 10.2 ± 1.0? 2.1 ± 0.6? 0.4 ± 0.2? 3.7 ± 1.5? 2.1 ± 0.3? 3.0 ± 1.4?

CORPUS 46.1 ± 1.1 12.4 ± 1.3? 3.1 ± 0.8? 0.7 ± 0.3? 4.4 ± 1.1 2.2 ± 1.3? 3.4 ± 1.3

STRUCTURE 40.2 ± 3.0? 11.5 ± 1.2? 3.5 ± 0.5? 0.3 ± 0.1? 4.1 ± 1.4 2.1 ± 1.4? 3.0 ± 1.4?

STRUCTURE-PARSED 41.1 ± 2.1? 12.2 ± 0.9? 3.6 ± 0.4? 0.4 ± 0.2? 4.0 ± 1.4 1.6 ± 1.3? 3.2 ± 1.3

PARALLEL 44.6 ± 3.1 16.0 ± 1.5 6.8 ± 1.0 2.9 ± 0.7 4.5 ± 1.0? 3.4 ± 1.6 3.7 ± 1.3

GOLD - - - - 4.8 ± 0.4? 4.8 ± 0.6? 4.6 ± 0.7?

Table 4: Automatic evaluation results averaged over 10 random test splits of the data, and human judgements on the
median scoring BLEU-4 test split for PARALLEL. We find significant differences (? p < 0.05) in the descriptions gener-
ated by PARALLEL-PARSED compared to models that operate over an unstructured bag of image regions representation.
Bold means PARALLEL-PARSED is significantly better than PROXIMITY, CORPUS, and STRUCTURE.

the automatic setting, we follow previous work and
measure how close the model-generated descrip-
tions are to the gold-standard descriptions using the
BLEU metric. Human judgements were collected
from Amazon Mechanical Turk.

5.1 Methodology

The task is to produce a description of an image.
The PROXIMITY and CORPUS models have access
to gold-standard region labels and region bound-
aries at test time. The STRUCTURE and PARALLEL

models have additional access to the visual depen-
dency representation of the image. These represen-
tations are either the gold-standard, or in the case of
STRUCTURE-PARSED and PARALLEL-PARSED, pro-
duced by the image parser described in Section 4.
Table 2 provides a reminder of the information the
different models have access to at training time.

Our data set of 1,023 image–description–VDR
tuples was randomly split into 10 folds of 80%
training data, 10% development data, and 10% test
data. The results we report are means computed
over the 10 splits. The image parser used for mod-
els STRUCTURE-PARSED and PARALLEL-PARSED

is trained on the gold-standard VDRs of the train-
ing splits, and then predicts VDRs on the develop-
ment and test splits. Significant differences were
measured using a one-way ANOVA with PARALLEL-

PARSED as the reference3, with differences between
pairs of mean checked with a Tukey HSD test.

5.2 Automatic Evaluation

The model-generated descriptions are compared
against the human-written gold-standard descrip-
tions using the smoothed BLEU measure (Lin and
Och, 2004). BLEU is commonly used in ma-
chine translation experiments to measure the effec-
tive overlap between a reference sentence and a pro-
posed translation sentence. Table 4 shows the re-
sults on the test data and Figure 4 shows sample out-
puts for two images. PARALLEL, the model with
access to both image structure and aligned image
descriptions at training time outperforms all other
models on higher-order BLEU measures. One rea-
son for this improvement is that PARALLEL can for-
mulate sentence fragments that relate the subject, a
verb, and an object without trying to predict the best
object, unlike CORPUS. The probability associated
with each fragment generated for nodes with mul-
tiple children also tends to lead to a more accurate
order of mentioning image regions. It can also be
seen that PARALLEL-PARSED remains significantly
better than the other models when the VDRs of im-
ages are predicted by an image parser, rather than
being gold-standard.

3Recall that PARALLEL uses gold-standard VDRs and
PARALLEL-PARSED uses the output of the image parser de-
scribed in Section 4.
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The weakest results are obtained from a model
that relies on the proximity of regions to generate de-
scriptions. PROXIMITY achieves competitive BLEU-
1 scores but this is mostly due to it correctly gener-
ating region names and determiners. CORPUS is bet-
ter than PROXIMITY at correctly producing higher-
order n-grams than because it has a better model of
the region–region relationships in an image. How-
ever, it has difficulties guessing the correct verb for
a description, as it relies on corpus co-occurrences
for this (see the second example in Table 4). STRUC-
TURE uses the VDR of an image to generate the de-
scription, which this leads to an improvement over
PROXIMITY on some of the BLEU metrics; however,
it is not sufficient to outperform CORPUS.

5.3 Human Judgements

We conducted a human judgement study on Me-
chanical Turk to complement the automatic evalu-
ation. Workers were paid $0.05 to rate the quality of
an image–description pair generated by one of the
models using three criteria on a scale from 1 to 5:

1. Grammaticality: give high scores if the de-
scription is correct English and doesn’t contain
any grammatical mistakes.

2. Action: give high scores if the description cor-
rectly describes what people are doing in the
image.

3. Scene: give high scores if the description cor-
rectly describes the rest of the image (back-
ground, other objects, etc).

A total of 101 images were used for this evalua-
tion and we obtained five judgments for each image-
description pair, resulting in a total of 3,535 judg-
ments. To ensure a fair evaluation, we chose the
images from the split of the data that gave median
BLEU-4 accuracy for PARALLEL, the best perform-
ing model in the automatic evaluations.

The right side of Table 4 shows the mean judge-
ments for each model for across the three evalua-
tion criteria. The gold-standard descriptions elicited
judgements around five, and were significantly bet-
ter than the model outputs on all aspects. Further-
more, all models produce highly grammatical out-
put, with mean ratings of between 3.7 and 4.5. This

can be explained by the fact that the models all relied
on templates to ensure grammatical output.

The ratings of the action descriptions reveal the
usefulness of structural information. PROXIMITY,
CORPUS, and STRUCTURE all perform badly with
mean judgements around two, PARALLEL, which
uses both image structure and aligned descriptions,
significantly outperforms all other models with the
exception of PARALLEL-PARSED, which has very
similar performance. The fact that PARALLEL and
PARALLEL-PARSED perform similarly on all three
human measures confirms that automatically parsed
VDRs are as useful for image description as gold-
standard VDRs.

When we compare the quality of the scene de-
scriptions, we notice that all models perform simi-
larly, around the middle of the scale. This is proba-
bly due to the fact that they all have access to gold-
standard region labels, which enables them to cor-
rectly refer to regions in the scene most of the time.
The additional information about the relationships
between regions that STRUCTURE and PARALLEL

have access to does not improve the quality of the
background scene description.

6 Related Work

Previous work on image description can be grouped
into three approaches: description-by-retrieval, de-
scription using language models, and template-
based description. Ordonez et al. (2011), Farhadi
et al. (2010), and Kuznetsova et al. (2012) gener-
ate descriptions by retrieving the most similar image
from a large data set of images paired with descrip-
tions. These approaches are restricted to generating
descriptions that are only present in the training set;
also, they typically require large amounts of training
data and assume images that share similar properties
(scene type, objects present) should be described in
a similar manner.

Kulkarni et al. (2011) and Li et al. (2011) generate
descriptions using n-gram language models trained
on a subset of Wikipedia. Both approaches first
determine the attributes and relationships between
regions in an image as region–preposition–region
triples. The disadvantage of relying on region–
preposition–region triples is that they cannot distin-
guish between the main event of the image and the
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PROXIMITY A man is beside a phone. There is also a wall and a sign in the image.
CORPUS A man is holding a sign. There is also a wall and a phone in the image.
STRUCTURE A wall is above a wall. A man is beside a sign.
PARALLEL A man is holding a phone. A wall is beside a sign.
GOLD A foreign man with sunglasses talking on a cell phone.

A large building and a mountain in the background.

PROXIMITY A beach is above a beach.
There are also horses, a woman, and a man in the image.

CORPUS A woman is outnumbering a man.
There are also horses and beaches in the image.

STRUCTURE A man is beside a woman above a horse.
A horse is beside a woman beside a beach.

PARALLEL A man is riding a horse above a beach.
A horse is beside a beach beside a woman.

GOLD There is a man and women both on horses.
They are on a beach during the day.

Figure 4: Some example descriptions produced by PROXIMITY, CORPUS, STRUCTURE and PARALLEL.

background regions. Kulkarni et al. (2011) is closely
related to our PROXIMITY baseline.

Yang et al. (2011) fill in a sentence template
by selecting the likely objects, verbs, prepositions,
and scene types based on a Hidden Markov Model.
Verbs are generated by finding the most likely pair-
ing of object labels in an external corpus. This
model is closely related to our CORPUS baseline.
Mitchell et al. (2012) over-generates syntactically
well-formed sentence fragments and then recom-
bines these using a tree-substitution grammar.

Previous research has relied extensively on auto-
matically detecting object regions in an image using
state-of-the art object detectors (Felzenszwalb et al.,
2010). We use gold-standard region annotations to
remove this noisy component from the description
generation pipeline, allowing us to focus on the util-
ity of image structure for description generation.

7 Conclusion

In this paper we introduced a novel representation
of an image as a set of dependencies over its an-
notated regions. This visual dependency represen-
tation encodes which regions are related to each
other in an image, and can be used to infer the ac-

tion or event that is depicted. We found that im-
age description models based on visual dependency
representations significantly outperform competing
models in both automatic and human evaluations.
We showed that visual dependency representations
can be induced automatically using a standard de-
pendency parser and that the descriptions generated
from the induced representations are as good as the
ones generated from gold-standard representations.
Future work will focus on improvements to the im-
age parser, on exploring this representation in open-
domain data sets, and on using the output of an ob-
ject detector to obtain a fully automated model.
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