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Abstract

This paper provides an overview of Linear Optimality Theory (LOT), aarar
of Optimality Theory (OT) designed for the modeling of gradient acceptabildg{ju
ment data. We summarize the empirical properties of gradient data that bawe b
reported in the experimental literature, and use them to motivate the desigpitof L
We discuss LOT’s notions of constraint competition and optimality, as well @sva n
formulation of ranking argumentation, which makes it possible to apply stelqdar
rameter estimation techniques to LOT. Then the LOT model is compared to Standar
OT, to Harmonic Grammar, and to recently proposed probabilistic versio®3 of

1 Introduction

This paper provides an overview of Linear Optimality The@tyDT), a variant of opti-
mality theory initially proposed by Keller (2000) to modefaglient linguistic data. It is
important to note that LOT is a framework designed to accdangradient judgment
data; as has been argued elsewhere in this volume (Crockéedlei, 2006), gradience
in processing data and in corpus data has different pr@gsefrtom gradience in judgment
data, and it is unlikely that the two types of gradience camdmounted for in a single,
unified framework.

The remainder of the paper is structured as follows. In 8ai, we summarize the
empirical properties of gradient judgments that motivatedesign of LOT. Section 3 de-
fines the components of an LOT grammar, and introduces thed@ddns of constraint
competition and optimality. Based on this, ranking argutagon is defined, an algorithm
for computing constraint ranks is introduced, and a meastirmodel fit in LOT is de-
fined. Finally, Section 4 provides a comparison with otherards of OT, particularly with
Standard OT and with Harmonic Grammar. This section alstates a survey of more
recent developments, such as Probabilistic OT and var@n®T based on maximum
entropy models.

Gisbert Fanselow, CarolinegFy, Ralph Vogel, and Matthias Schlesewsky, e@sadiencein
Grammar: Generative Perspectives, 270-287. Oxford: Oxford University Press, 2006.



2 Empirical properties of gradient judgments

Reviewing experimental data covering a range of syntadienpmena in several lan-
guages, Sorace and Keller (2005) identify a number of ssuEgradience in grammatr.
The two central experimental findings according to Sorackkailer (2005) are that con-
straints are ranked and that constraint violations are datwa. Constraint ranking means
that some constraint violations are significantly more geatable than others. Cumula-
tivity means the multiple constraint violations are sigrafitly more unacceptable than
single violations. These properties seem to be fundamemthe explanation of gradient
linguistic judgments and therefore should form the base miodel of gradience in gram-
mar. Cumulativity also accounts for the ganging up of comstsamultiple violations of
lower ranked constraints can be as unacceptable as a siotddion of a higher ranked
constraint. Experimental results reported by Keller (208fow that a ganging up effect
can be observed for constraints on word order, extractiod gapping.

Sorace and Keller (2005) list a range of other propertiesratlignt data: context
effects, crosslinguistic effects, and developmentalamatiity. They claim that these prop-
erties make it possible to classify linguistic constraimi® soft and hard constraints.
While this is an interesting claim, it seems to us more comrtrsial than cumulativity and
ranking, which seem to be more generally accepted progesfigradient data. As LOT
only relies on cumulativity and ranking, we will not discubke other properties here.

3 Linear Optimality Theory

Linear Optimality Theory as proposed by Keller (2000) is atelef gradience that makes
predictions about the relative grammaticality of lingidgsstructures. It builds on core
concepts from Optimality Theory, a framework that is attikgecfor this purpose as it is
equipped with a notion of competition that makes it possfblenalize the interaction
of linguistic constraints. Furthermore, OT provides a aotof constraint ranking that
makes it possible to account for the fact that constrairfferdn strength, i.e., that some
constraints are more important than others for the overall-ftermedness of a given
linguistic structure.

Although LOT borrows central concepts (such as constraimking and competition)
from Optimality Theory, it differs in two crucial respectsom existing OT-based ac-
counts. Firstly, it relies on the assumption that constranks are represented as sets of
numeric weights, instead of as partial orders. Secondigstimes that the grammaticality
of a given structure is proportional to the sum of the weiglithe constraints it violates.
This means that OT’s notion of strict domination is replagath an linear constraint
combination scheme (hence the name Linear Optimality Fhéor

Only a limited number of components of the OT architectueeadiected by the switch
to LOT. The changes concern ortEval, the function that evaluates the harmony of a

LAn anonymous reviewer points out that cumulativity coulsbabe implemented using the mechanism
of local constraint conjunction used in standard OT, whastnicts cumulativity to particular local domains.
Local conjunction has the advantage that the occurrencarofifative effects is still under the control of
the linguist: a local conjunction must be defined explicitly



candidate, anBank, the ranking component. LOT does not affect assumptionseroimg
the input and the generation functi@en, the two components of an OT grammar that
determine which structures compete with each other. Als@tnstraint componeon,
i.e., formal apparatus for representing constraints andidates is unaffected. The LOT
approach is neutral in these respects, and compatible wéttliverse assumptions put
forward in the OT literature.

However, LOT's versions oHEval and Rank entail changes in the way the optimal
candidate is computed, as well as requiring a new type ofingnkrgumentation, i.e., a
method for establishing constraint ranks from a set of lisitiexamples. It will be shown
that this type of ranking argumentation is considerablypténthan the one classically
assumed in OT. Also, well understood algorithms exist faomating this type of ranking
argumentation.

3.1 Violation profiles and harmony

The most prominent pattern in the experimental data predeoy Keller (2000) is the
cumulativity of constraint violations, i.e., the fact that the degree rmdaceptability of a
structure increases with the number of constraint viofettia incurs. Cumulativity was
in evidence in data on extraction, binding, gapping, anddwader. Keller (2000) also
shows that cumulativity effect extends from multiple vitdas of different constraints to
multiple violations of the same constraint.

The other pervasive pattern in Keller's (2000) data isridmeking of constraints, i.e.,
the fact that constraint violations differ in the degree p&aceptability they cause. Con-
straint ranking was observed in data on extraction, bindjagping, and word order.

The LOT model of gradient grammaticality derives from thege fundamental find-
ings about constraint cumulativity and constraint rankimgo hypotheses implement
these two results. The first hypothesis deals with condtranking:

(1) Ranking Hypothesis
The ranking of linguistic constraints can be implementedbgotating each con-
straint with a numeric weight representing the reductioagoeptability caused by
a violation of this constraint.

Note that this notion of constraint ranks as numeric weighitsiore general than the
notion of ranks standardly assumed in Optimality Theorgn8ard OT formulates con-
straint ranks as binary ordering statements of the fGirms> Co, meaning that constraint
C, is ranked higher than the constraffit Such statements do not make any assumptions
regardinghow much higher the ranking oC; is compared to the ranking @&,. Such
information is only available once we adopt a numeric cohogponstraint ranking.

In the remainder of this paper, we will adopt the followingténological convention.
The term constrainiveight will be used to refer to the numeric annotation that our model
assigns to a constraint. The term constraamk will be employed to refer to the relative
weight of two constraints in our model: we say that a constrautranks another con-
straint if it has a greater weight (see also Definition (9plgl This usage is justified by
the fact that Standard OT ranks (i.e., constraint ordejiags a special case of ranks as
defined in Linear Optimality Theory (this will be shown in $iea 4.1).
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Once numeric constraint weights have been postulated, wbralb acceptability of
a structure can be computed based on the weights of the aomstthat the structure
violates. We will assume that simple summation is sufficientompute the degree of
acceptability of a structure from the weights of the coristeathat the structure violates.
This will account straightforwardly for the cumulativityf oonstraint violations observed
experimentally. Keller (2000) demonstrates that this apph achieves a good model fit
on his experimental data.

To account for the cumulativity of constraint weights, LQOdrrhulates the Linearity
Hypothesis in (2):

(2) Linearity Hypothesis
The cumulativity of constraint violations can be implenmezhby assuming that the
grammaticality of a structure is proportional to the wegghsum of the constraint
violations it incurs, where the weights correspond to c@ist ranks.

The hypotheses in (1) and (2) can be made explicitly by foatmd a numeric model
that relates constraints ranks and degree of grammayicaliis relies on the notion of
a grammar signature, which specifies the constraint set la@dgsociated weights for
a grammar. (Note that this definition, and all subsequens,oaee independent of the
formulation of the constraints proper; the LOT account ig @f constraint interaction,
not of actual linguistic constraints.)

(3) Grammar Signature
A grammar signature is a tupl€, w) whereC = {C;,Cy,,...,Cy} is the constraint
set, andv(C) is a function that maps a constra@jtc C on its constraint weighiy;.

Relative to a grammar signature, a given candidate streidias a constraint violation
profile as defined in (4). The violation specifies which caaists are violated by the
structure and how often. This is a useful auxiliary notioattwill be relied on in further
definitions.

(4) Violation Profile
Given a constraint se€ = {C3,C,...,C,}, the violation profile of a candidate
structureSis the functionv(S C;) that mapsS on the number of violations of the
constrainC; € C incurred byS.

Based on Definitions (3) and (4), the harmony of a structurercav be defined using a
simple linear model:

(5) Harmony
Let (C,w) be a grammar signature. Then the harmbi) of a candidate structure
Swith a violation profilev(S G;) is given in (6).

(6) H(9=-YWGCIVSG)

Equation (6) states that the harmony of a structure is thati@ygof the weighted sum of
the constraint violations that the structure incurs. liialy, the harmony of a structure
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describes its degree of well-formedness relative to a geegrof constraints. This notion
corresponds closely to the definition of harmony assumedandard OT (Prince and
Smolensky, 1997, p. 1607) or Harmonic Grammar (Smolensky. £1992, p. 14).

The assumption is that all constraint weights are positige,thatw; > 0 for alli. This
means that only constraint violations influence the harnadraystructure. Constraint sat-
isfactions will not change the harmony of the structurel(iding cases where a constraint
is vacuously satisfied because it is not applicable). Thagraption is in accordance with
Keller's (2000) experimental results, in which only coastis violations were found to
affect acceptability. This will discussed further in Seat#.2.

3.2 Constraint competition and optimality

Based on the definitions of violation profile and harmony ps®d in the preceding sec-
tion, LOT’s notion of grammaticality can now be specifieda@maticality is computed
in terms of the relative harmony of two candidates in the seamglidate set:

(7) Grammaticality
Let S andS, be candidate structures in the candidateRséthenS; is more gram-
matical thar if H(S;) > H(S). This can be abbreviated 8 > $.2

A crucial difference between harmony and grammaticalityofes from Definition (7).
Harmony is an absolute notion that describes the overalHeghedness of a structure.
Grammaticality, on the other hand, describes the relatiMermedness of a structure
compared with another structure. While it is possible to caraghe harmony of two
structures across candidates sets, the notion of gramatigtics only well-defined for
two structures that belong to the same candidate set (hare she same input). There-
fore, Definition (7) (and the subsequent Definition (8)) pdevarelative notion of well-
formedness, in line with the optimality theoretic traditio

Based on the definition of grammaticality in (7), we can defmeoptimal structure
in a candidate set as the one with the highest relative grdicelity.

(8) Optimality
A structureSyy is optimal in a candidate s&if St > Sfor everySe R.

A notion of constraint rank can readily be defined in LOT basadhe relative weight
of two constraints (see also the terminological note on sark weights in Section 3.1
above):

(9) Constraint Rank
A constraintC; outranks a constrai@; if w(Cq) > w(Cy). This can be abbreviated
asCy > C,.

In what follows, we will illustrate the definitions for harmg, grammaticality, and op-
timality. Consider an example grammar with the constrali{sCy, and Cs, and the
constraints weights given in Table 1. This table also spexifin example candidate set
S, ...,$ and gives the violation profiles for these candidates. Thenbay for each of
these structures can be computed based on Definition (5).

2This usage differs from the standard OT usage, where hamwdering is denoted by=*", not “>”.
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Table 1: Example violation profile and harmony scores

C|C |G
we) |l 43| 1| H(©S
Sl * * —4
SZ * *% _5
S -1
S * 4

The structureSs maximizes harmony, i.e., it incurs the least serious viotaprofile.

It is therefore the optimal structure in the candidate set, it is more grammatical than
all other candidate structures. The structugsand S; are both less grammatical than
S. S and & receive the same harmony scores, but for different reasnisecause it
incurs a high-ranked violation &1, S; because it accumulates violations@f andCs.
The structures; is less grammatical tha®, as it incurs an additional violations 6§. In
total, we obtain the following grammaticality hierarct® > {S;, &} > S.

This examples illustrates the three central propertieen$traint interaction that were
identified in Section 2. The first property is thenking of constraintsSs incurs a violation
of Cz, while & incurs a violation ofZ;. ThatSs is more grammatical tha$, is accounted
for by the fact thaC; has a higher weight thabg, i.e., the rankingC; > Cg holds. This
is a situation that was observed many times in the experimhdata presented by Keller
(2000).

Furthermore, the example illustrates how thuenulativity of constraint violations is
modeled.S; incurs single violations o€, andCs. The structures, also incurs a single
violation of Cy, but a double violation o€3;. As a consequencé& is more grammati-
cal thanS,. Cumulativity effects such as these encountered frequentfeller's (2000)
experimental data.

Finally, Table 1 illustrates thganging up of constraint violations. The structur&s
and$, have different constraint profile§; violates the constrair@;, while S; violates
the two constraint€, andCs, which are both lower ranked tha®y. However,S; and
S, are equally grammatical because the two constraiatandCs gang up against,,
leading to the same harmony score in both structures. Agamempirical patters is in
evidence in Keller's (2000) experimental data.

Note that standard optimality theoretic evaluation of thedidate set in Table 1 leads
to a different harmonic orderings > S > $ > . If we assume a naive extension of
Standard OT, then this order corresponds to the grammiyicatier of the candidates.
The naive extension assumes the strict domination of caingt; and therefore fails to
model ganging up effects. Under this approach, there is ssipitity for a joint violation
of C, andCs to be as serious as a single violatiorGaf due to the rankin@, > C, > Ca.
Hence the naive extension of Standard OT fails to accourthé®ganging up effects that
were observed experimentally.



3.3 Ranking argumentation and parameter estimation

Optimality Theory employs so-calla@nking arguments to establish constraint rankings
from data. A ranking argument refers to a set of candidategires with a certain con-
straint violation profile, and derives a constraint rankfngm this profile. This can be
illustrated by the following example: assume that two stitesS; andS, have the same
constraint profile, with the following exceptioB; violates constraint;, but satisfie€,.
StructureS,, on the other hand, violates constraiat but satisfie€;. If S; is acceptable
butS; is unacceptable, then we can conclude that the rar®ng C; holds (see Prince
and Smolensky 1993, 106).

In the general case, the fact tiatis acceptable bu, is unacceptable entails that
each constraint violated I is outranked by at least one constraint violatedshy(See
Hayes 1997, for a more extensive discussion of the inferpatterns involved in ranking
argumentation in Standard OT.)

The LOT approach allows a form of ranking argumentation tielies on gradient
acceptability data instead of the binary acceptabilitygjuénts used in Standard OT. A
ranking argument in Linear Optimality Theory can be consed based on the difference
in acceptability between two structures in the same cantelidat, using the following
definition:

(10) Ranking Argument
Let S and$, be candidate structures in the candidateRsetith the acceptability
differenceAH. Then the equation in (11) holds.

(11) H(S)-H(S) =AH

This definition assumes that the difference in harmony bet@& andS, is accounted
for by AH, the acceptability difference between the two structufé$.can be observed
empirically, and measured, for instance, using magnitigdienation judgments (Sorace
and Keller, 2005). Drawing on the definition of harmony in,(Ejfuation (11) can be
transformed to:

(12) 3 W(C)(V(SCi) ~V(,G)) = ~AH

This assumes th& and$; have the violation profiles(S;) andv(S) and are evaluated
relative to the grammar signatuf€, w).

Typically, a single ranking argument is not enough to rar&kabnstraints of a given
grammar. Rather, we need to accumulate a sufficiently laegj@fsranking arguments,
based on which we can then deduce the constraint hierarctme @frammar. To obtain a
maximally informative set of ranking arguments, we taketlal candidate structures in
a given candidate set and compute a ranking argument forgaachf candidates, using
Definition (12).

The number of ranking arguments that a sek@fandidates yields is given in (13);
note that this is simply the number of all unordered pairs¢ tha be generated from a set
of k elements.

k% —k
(13) n= >




Now we are faced with the task of computing the constraingivsi of a grammar from
a set of ranking arguments. This problem can be solved byrdegathe set of ranking
arguments as a system of linear equations. The solutiomi®system of equations will
then provide a set of constraint weights for the grammais idea is best illustrated using
an example. We consider the candidate set in Table 1 andhuleteall ranking arguments
generated by this candidate set (hefds used as a shorthand fa(C;), the weight of
constrainC;):

(14) S-S Owr+Iwa+1Iws—0wy —Iw, —2w3 = —((—4)—(-5)) = -1
S-S Owg+1wo+ 1wz —0wg —Owo — 1wz = —((—4)—(-1)) = 3
S-St Owp+Iwp+ 1wz —Iwp — 0w, —Owg = —((—4)—(-4)) = 0
S-S Owg+ 1wy +2w3 —0wyg — 0w — 1wz = (( 5) ( 1)) 4
S-S Owp+Iwp+2wz — 1w — 0w, — 0wz = —((—5)—(—4)) 1
S-S Owp+0wz+1wg — 1wy — 0wz —0wg = —((=1)—(-4)) = -3

This system of linear equations can be simplified to:

(15) —ws = -1
Wo = 3
Wo+W3—Wp = 0
W2 + W3 = 4
Wo+2W3 —Wp = 1
W3 — Wy = -3

We have therefore determined thvat = 3 andws = 1. The value ofwv; can be easily be
obtained from any of the remaining equations:= w, +wsg = 4.

This example demonstrates how a system of linear equatiagdllows from a set
of ranking arguments can be solved by hand. However, suchraahapproach is not
practical for large systems of equations as they occur ilist&aranking argumentation.
Typically, we will be faced with a large set of ranking argumtee generated by a candidate
set with many structures, or by several candidate sets.

There are a number of standard algorithms for solving systefilinear equations,
which can be utilized for automatically determining the stwaint weights from a set of
ranking arguments. One example is Gaussian Eliminatioalgorithm which delivers an
exact solution of a system of linear equations (if there is)otf we are dealing with ex-
perimental data, then the set of ranking arguments derioed & given data set will often
result in an inconsistent set of linear equations, whichmaehat Gaussian Elimination is
not applicable. In such a case, the algorithm of choice ist8gquare Estimation (LSE),
a method for solving a system of linear equations even if yis¢esn is inconsistent. This
means that LSE enables us to estimate the constraint waifjatsLOT grammar if there
is no set of weights that satisfy all the ranking argumengty (in contrast to Gaussian
elimination). LSE will find an approximate set of constraiveights that maximizes the
fit with the experimentally determined acceptability ssor& more detailed explanation
of LSE and its application to LOT is provided by Keller (2000)



4 Comparison with other Optimality Theoretic ap-
proaches

4.1 Standard Optimality Theory

Linear Optimality Theory preserves key concepts of Stashdptimality Theory. This
includes the fact that constraints are violable, even in@tim@l structure. As in Stan-
dard OT, LOT avails itself of a notion of constraint rankimgrésolve constraint conflicts;
LOT's notion of ranking is quantified, i.e., richer than th&edn Standard OT. The second
core OT concept inherited by LOT is constraint competitibhe optimality of a candi-
date cannot be determined in isolation, but only relativetteer candidates it competes
with. Furthermore, LOT uses ranking arguments in a similaywas Standard OT. Such
ranking arguments work in a competitive fashion, i.e., base the comparison of the
relative grammaticality of two structure in the same caatkdset. As in Standard OT,
a comparison of structures across candidate sets is hotleftied; two structures only
compete against each other if they share the same input.

The crucial difference between LOT and Standard OT is thetfat in LOT, con-
straint ranks are implemented as numeric weights and aybtfarward linear constraint
combination scheme is assumed. Standard Optimality Theamthen be regarded as a
special case of LOT, where the constraint weights are chivsan exponential fashion
so as to achieve strict domination (see the Subset Theorddt)). The extension of
Standard OT to LOT is crucial in accounting for the cumuligiof constraint violations.
The linear constraint combination schema also greatly Hiiepthe task of determining
a constraint hierarchy from a given data set. This problempbi reduces to solving a
system of linear equations, a well-understood mathemgticdlem for which a set of
standard algorithms exists (see Section 3.3).

Another advantage is that LOT naturally accounts for ogliy, i.e., for cases where
more than one candidate is optimal. Under the linearity kiypsis, this simply means
that the two candidates have the same harmony score. Sutlaticsi can arise if the
two candidates have the same violation profile, or if theyeldifferent violation profiles,
but the weighted sum of the violation is the same in both cddespecial mechanism
for dealing with constraint ties are required in Linear Ohidlis an advantage over Stan-
dard OT, where the modeling of optionality is less straigivfard (see Asudeh 2001, for
a discussion).

An OT grammar can be formulated as a weighted grammar if tihstcaint weights
are chosen in an exponential fashion, so that strict domimatf constraints is assured.
This observation is due to Prince and Smolensky (1993, p.20@also applies to Linear
Optimality Theory. Therefore, the theorem in (16) holdse(teader is referred to Keller
(2000) for a proof).

(16) Subset Theorem
A Standard Optimality Theory grammaG with the constraint setC =
{C1,Cy,...,Cy} and the rankindC, > C,_1 > ... > C; can be expressed as a
Linear Optimality Theory gramma®’ with the signaturg/C,w) and the weight
functionw(G;) = b', whereb — 1 is an upper bound for multiple constraint viola-



tions inG.

Note that the Subset Theorem holds only if there is an uppendb — 1 that limits the
number of multiple constraint violations that the grami@allows. Such an upper bound
exists if we assume that the number of violations incurreédogh structure generated by
G is finite. This might not be true for all OT constraint systems

4.2 Harmonic Grammar

Harmonic Grammar (Legendre et al., 1990a,b, 1991; Smojeaskl., 1992, 1993) is
predecessor of OT that builds on the assumption that contstrare annotated with nu-
meric weights (instead of just being rank-ordered as in@&ehOT). Harmonic Grammar
(HG) can be implemented in a hybrid connectionist-symbaihitecture and has been
applied successfully to gradient data by Legendre et a@{a®). As Prince and Smolen-
sky (1993, p. 200) point out, “Optimality Theory.[] represents a very specialized kind
of Harmonic Grammar, with exponential weighting of the doaisits”.

Linear Optimality Theory is similar to HG in that it assumemstraints that are anno-
tated with numeric weights, and that the harmony of a streagicomputed as the linear
combination of the weights of the constraints it violatekefie are, however, two differ-
ences between LOT and HG: (a) LOT only models constrainatimhs, while HG models
both violations and satisfactions; and (b) LOT uses stahigast square estimation to de-
termine constraint weights, while HG requires more powedraining algorithms such as
backpropagation. We will discuss each of these differencasgn.

LOT requires that all constraints weights have the same(sigly positive weights are
allowed, see Section 3.1). This amounts to the claim that comhstraint violations (but
not constraint satisfactions) play a role in determiningghammaticality of a structure. In
HG, in contrast, arbitrary constraint weights are possibée, constraint satisfactions (as
well as violations) can influence the harmony of a structlires means that HG allows
to define a grammar that contains a constr@intith the weightw and a constrair®’ that
is the negation o€ and has the weightw. In such a grammar, both the violations and
the satisfactions df influence the harmony of a structure.

The issue of positive weights has important repercussiarnhié relationship between
Standard OT and LOT: Keller (2000) proves a Superset Thedthnatrstates that an arbi-
trary LOT grammar can be simulated by a Standard OT grammidr stiatified hierar-
chies. The proof crucially relies on the assumption thatafistraint weights are of the
same sign. Stratified hierarchies allow us to simulate tlitiach of constraint violations
(they correspond to multiple violations in Standard OTY, tkey do not allow us to sim-
ulate the subtraction of constraint violations (which wbhe required by constraints that
increase harmony). This means that the Superset Theoresnndddrold for grammars
that have both positive and negative constraints weightd)ey are possible in Harmonic
Gramma.

The second difference between HG and LOT concerns paraesttaration. An HG
model can be implemented as a connectionist network, angatteaneters of the model
(the constraint weights) can be estimated using standawtbaionist training algorithms.
An example is provided by the HG model of unaccusativityfgagvity in French pre-
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sented by Legendre et al. (1990a,b) and Smolensky et al2]19%is model is im-
plemented as a multilayer perceptron and trained using #o&gdropagation algorithm
(Rumelhart et al., 1986).

It is well known that many connectionist models have an exjaivt in conventional
statistical techniques for function approximation. Mlalier perceptrons, for instance,
correspond to a family of non-linear statistical modelssla@wvn by Sarle (1994). (Which
non-linear model a given perceptron corresponds to depamds architecture, in partic-
ular the number and size of the hidden layers.) The parameter multilayer perceptron
are typically estimated using backpropagation or simiaining algorithms.

On the other hand, a single-layer perceptron (i.e., a p&a@epvithout hidden lay-
ers) corresponds to multiple linear regression, a stanstatdtical technique for approx-
imating a linear function of multiple variables. The pardens (of both a single-layer
perceptron and a linear repression model) can be compuied least square estimation
(Bishop, 1995). This technique can also be used for pararestienation for LOT models
(see Section 3.3). Note that LOT can be conceived of as antasfanultiple linear re-
gression. The difference between LOT and conventionaliplellinear regression is that
parameter estimation is not carried directly on data to lmeacted for (the acceptability
judgments); rather, a preprocessing step is carried oth@judgment data to compute a
set of ranking arguments, which then form the input for trgression.

To summarize, the crucial difference between HG and LOTas i is a non-linear
function approximator, while LOT is a linear function apgimator, i.e., a variant of
linear regression. This means that a different set of pat@nestimation algorithms is
appropriate for HG and LOT, respectively.

4.3 Probabilistic Optimality Theory

Boersma and Hayes (2001) propose a probabilistic varia@ipaimality Theory (POT)
that is designed to account for gradience both in corpusirrgies and in acceptability
judgments. POT stipulates a continuous scaleoastraint strictness. Constraints are an-
notated with numerical strictness values; if a constr@nhas a higher strictness value
that a constrain€,, thenC; outranksCy. Boersma and Hayes (2001) assusnababilis-
tic constraint evaluation, which means that at evaluation time, a small amount of rando
noise is added to the strictness value of a constraint. Aslaetuencere-rankings of
constraints are possible if the amount of noise added tottlitness values exceeds the
distance between the constraints on the strictness scale.

For instance, assume that two constraitit&ndC, are ranked; > Cy, selecting the
structureS; as optimal for a given input. Under Boersma and Hayes'’s (R@pproach,
a re-ranking ofC; andC; can occur at evaluation time, resulting in the opposite iramnk
Co > C;. This re-ranking might result in an alternative optimal dalateS,. The prob-
ability of the re-ranking that makes optimal depends on the distance betw&srand
C> on the strictness scale (and on the amount of noise addect tstrilbtness values).
The re-ranking probability is assumed to predict the degfeggrammaticality ofS,. The
more probable the re-rankin@ > C;, the higher the degree of grammaticality $f;
if the rankingsC; > C, andC, > C; are equally probable, the®, andS, are equally
grammatical.
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Table 2: Data that cannot be modeled in Probabilistic OT ¢kiygtical frequencies or
acceptability scores), from Keller and Asudeh (2002)

finput/ | C3 | C1 | Co | Freq./Accept.
S * 3
S o 2
S * 1

Table 3: Data that cannot be modeled in Probabilistic OT ¢kiygtical frequencies or
acceptability scores), from Keller and Asudeh (2002)

finput/ | C1 | C | Freq./Accept.
S * 4
S o 3
83 *%% 2
S * 1

The POT framework comes with its own learning theory in therf@f the Gradual
Learning Algorithm (Boersma, 1998, 2000; Boersma and Ha3@31). This algorithm is
a generalization of Tesar and Smolensky’s (1998) Constizmtotion Algorithm in that
it performs constraint promotion as well as demotion. Thadsal Learning Algorithm
incrementally adjusts the strictness values of the coimésran the grammar to match the
frequencies of the candidate structures in the training.dBlie fact that the algorithm
relies on gradual changes makes it robust to noise, which &teactive property from a
language acquisition point of view.

There are, however, a number of problems with the POT approas Keller and
Asudeh (2002) point out, POT cannot model cases of harmaninding, as a illustrated
in Table 2: candidat&; is harmonically bound by candida®, which means that there is
no re-ranking of the constraints that would m&geoptimal. AsS, can never be optimal,
its frequency or acceptability is predicated to be zero,(n@ other candidate can be
worse, even if it violates additional constraints). An exdenwhere this is clearly incorrect
is S3 in Table 2, which violates a higher ranked constraint anéss lacceptable (or less
frequent) thars,.

A second problem with POT identified by Keller and Asudeh @06 cumulativity.
This can be illustrated with respect to Table 3: here, caatdif; violates constrainC,
once and is more acceptable tt&nwhich violatesC, twice. S in turn is more acceptable
than S, which violatesC, three times. A model based on constraint re-ranking cannot
account for this, as a re-ranking 6% will not change the outcome of the competition
betweers,, S, andSs. Essentially, this is a special case of harmonic boundinglitng
only one constraint.

There is considerable evidence that configurations sucheasrtes illustrated in Ta-
bles 2 and 3 occur in real data. Keller (2000) reports actdfigudgment data for word
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Table 4: Data that cannot be modeled in PQilypothetical frequencies or acceptability
scores)

finput/ | C3 | C; | Co | Freq./Accept.
S * 2
& * * 1
S * 1

order variation in German that instantiates both patte@s; and Boberg’s (1997) fre-
guency data for coronal stop deletion in English instaeigdhe cumulative pattern in
Table 3. ager and Rosenbach (2004) show that cumulativity is inistict in both fre-
guency data and acceptability data on genitive formatioBriglish. None of these data
sets can be modeled by POT, and thus constitute seriousscexamples to this approach.
In Linear Optimality Theory, on the other hand, such casesampletely unproblematic,
due to the linear combination scheme assumed in this framkewo

In a recent paper, Boersma (2006) acknowledges that cakasmbnic bounding and
cumulativity as illustrated in Tables 2 and 3 pose a problenPOT. In response to this,
he proposes a variant of POT, which we will call PO POT, the acceptability of a
candidateSis determined by carrying out a pairwise comparison betw&and each of
the other candidates in the candidate set; the accepyabil® then corresponds to the
percentage of comparisons tt8ins 3 As an example, take the tableau in Table 2. Here,
S1 wins againsts; andSs, hence his acceptability value ig2= 100%.S, wins against
S but loses againg, so its acceptability is A2 = 50%.Ss loses against both candidates,
and thus receives an acceptability value of 0%.

In POT, the relative grammaticality of a candidate correspondtstoptimality theo-
retic rank in the candidate set. This is not a new idea; inifacequivalent to the definition
of relative grammaticality in terms auboptimality, initially proposed by Keller (1997).
The only difference is that in POTsuboptimality is determine based on a POT notion
of harmony, instead of using the standard OT notion of hagnas assumed by Keller
(1997). However, there are a number of conceptual probleitistihis proposal (which
carry over to POT), discussed in detail by Mler (1999) and Keller (2000).

In addition to that, there are empirical problems with theTP&pproach. POTcor-
rectly predicts the relative acceptability of the exampielable 2 (as outlined above).
However, other counterexamples can be constructed e&siy assumeganging up ef-
fects. In Table 4, the combined violation @ andC; is as serious as the single violation
of C3, which means that the candidatgsand S are equally grammatical. Such a situ-
ation can not be modeled in PQBsS, will win againstS; (becauseCs outranksCy),
henceS; is predicted to be more grammatical th&g As discussed in Section 2, ganging
up effects occur in experimental data, and thus pose a reblgm for POT.

In contrast to POT and POTLOT can model ganging up effects straightforwardly,
as illustrated in Section 3.2. This is not surprising: thdaghes in LOT grammars are

3More precisely, it is the POT probability of winning, aveeagover all pairwise comparisons, but this
difference is irrelevant here.
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estimated so that they correspond in a linear fashion to ticemability scores of the
candidates in the training data. The strictness bands in@@I POT) grammars, on the
other hand, are estimated to match the frequencies of catiedich the training data; it is
not obvious why such a model should correctly predict acdsfity scores, given that it
is trained on a different type of data.

4.4 Maximum entropy models

The problems with POT have led a number of authors to proptesmative ways of deal-
ing with gradience in OT. Goldwater and Johnson (2003yed (2004), andayer and
Rosenbach (2004) propose a probabilistic variant of OT dbasethe machine learning
framework ofmaximum entropy models, which is state of the art in computational linguis-
tics (e.g., Abney 1997; Berger et al. 1996). In Maximum Epyr®T (MOT) as formulated
by Jager (2004), the probability of a candidate structure,(@ean input-output paifo, i))

is defined as:

(A7) p(oli) = 5 exB Y rici(1.0)
J

Here,rj denotes the numeric rank of constrajntvhile R denotes the ranking vector, i.e.,
the set of ranks of all constraints. The functigfi, o) returns the number of violations of
constraintj incurred by input-output paifi,0). Zgr(i) is a normalization factor.

The model defined in (17) can be regarded as an extension ofdsOiitroduced in
Section 3.1. It is standard practice in the literature ordgnat grammaticality to model
not raw acceptability scores, but log-transformed, noizeal acceptability data (Keller,
2000). This can be made explicit by log-transforming théhiehd side of (6) (and drop-
ping the minus and renaming the variabte j). The resulting formula is then equivalent
to (18).

(18) H(S) = exp(3 W(CV(S.C)))
J

A comparison of (17) and (18) shows that the two models havarallpl structure:
w(Cj) =rj andv(S,Cj) = ¢j(i,0) (the input-output structure of the candidates is im-
plicit in (18)). Both models are instances of a more genexalify of models referred to
as log-linear models. There is, however, a crucial diffeeebetween the MOT definition
in (17) and the LOT definition in (18). Equation (18) does matliide the normalization
factorZg(i), which means that (18) does not express a valid probabiltyibution. The
normalization factor is not trivial to compute, as it invetysumming over all possible
output formso (see Goldwater and Johnson 2003, aaglel 2004, for details). This is the
reason why LOT can assumes a simple learning algorithm baséehst square estima-
tion, while MOT has to rely on learning algorithms for maximentropy models, such as
generalized iterative scaling, or improved iterative sxp(Berger et al., 1996). Another
crucial difference between MOT and LOT (pointed out by Gadtley and Johnson 2003)
is that MOT is designed to be trained on corpus data, while iSGlesigned to be trained
on acceptability judgment data.
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5 Conclusions

This paper introduced Linear Optimality Theory (LOT) as rabdf gradient grammat-
icality. Although this model borrows central concepts (s@&s constraint ranking and
competition) from Optimality Theory, it differs in two criad respects from Standard OT.
Firstly, LOT assumes that constraint ranks are represeagatimeric weights (this fea-
ture is shared with Probabilistic OT and Maximum Entropy 68e Sections 4.3 and 4.4).
Secondly, LOT assumes that the grammaticality of a givemctire is proportional to
the sum of the weights of the constraints it violates, whiakanms that OT’s notion of
strict domination is replaced with an linear constraint amation scheme (this feature is
shared with Maximum Entropy OT, see Section 4.4).

We also outlined a learning algorithm for LOT (see Sectid).3rhis algorithm takes
as its input a grammar (i.e., a set of linguistic constraiatsd a training set, based on
which it estimates the weights of the constraints in the gnam The training set is a
collection of candidate structures, with the violationfgdeoand the grammaticality score
for each structure specified. Note that LOT is not intende@ asodel of human lan-
guage acquisition: it cannot be assumed that the learneadwEss to training data that
are annotated with acceptability scores. The sole purpbgeed.OT learning algorithm
is to perform parameter fitting for LOT grammars, i.e., toatetine an optimal set of
constraint weights for a given data set.

LOT is able to account for the properties of gradient strregudiscussed in Section 2.
Constraint ranking is modeled by the fact that LOT annotatessiraints with numeric
weights representing the contribution of a constraint ® @imacceptability of a struc-
ture. Cumulativity is modeled by the assumption that the elegrf ungrammaticality of
a structure is computed as the sum of the weights of the @nsthe structure violates.
Once ranking and cumulativity are assumed as part of the LOdem other properties of
gradient linguistic judgments follow without further stilations.
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