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Abstract

This paper provides an overview of Linear Optimality Theory (LOT), a variant
of Optimality Theory (OT) designed for the modeling of gradient acceptability judg-
ment data. We summarize the empirical properties of gradient data that have been
reported in the experimental literature, and use them to motivate the design of LOT.
We discuss LOT’s notions of constraint competition and optimality, as well as a new
formulation of ranking argumentation, which makes it possible to apply standard pa-
rameter estimation techniques to LOT. Then the LOT model is compared to Standard
OT, to Harmonic Grammar, and to recently proposed probabilistic versions ofOT.

1 Introduction

This paper provides an overview of Linear Optimality Theory(LOT), a variant of opti-
mality theory initially proposed by Keller (2000) to model gradient linguistic data. It is
important to note that LOT is a framework designed to accountfor gradient judgment
data; as has been argued elsewhere in this volume (Crocker andKeller, 2006), gradience
in processing data and in corpus data has different properties from gradience in judgment
data, and it is unlikely that the two types of gradience can beaccounted for in a single,
unified framework.

The remainder of the paper is structured as follows. In Section 2, we summarize the
empirical properties of gradient judgments that motivate the design of LOT. Section 3 de-
fines the components of an LOT grammar, and introduces the LOTnotions of constraint
competition and optimality. Based on this, ranking argumentation is defined, an algorithm
for computing constraint ranks is introduced, and a measureof model fit in LOT is de-
fined. Finally, Section 4 provides a comparison with other variants of OT, particularly with
Standard OT and with Harmonic Grammar. This section also contains a survey of more
recent developments, such as Probabilistic OT and variantsof OT based on maximum
entropy models.
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2 Empirical properties of gradient judgments

Reviewing experimental data covering a range of syntactic phenomena in several lan-
guages, Sorace and Keller (2005) identify a number of sources of gradience in grammar.
The two central experimental findings according to Sorace and Keller (2005) are that con-
straints are ranked and that constraint violations are cumulative. Constraint ranking means
that some constraint violations are significantly more unacceptable than others. Cumula-
tivity means the multiple constraint violations are significantly more unacceptable than
single violations. These properties seem to be fundamentalto the explanation of gradient
linguistic judgments and therefore should form the basis ofa model of gradience in gram-
mar. Cumulativity also accounts for the ganging up of constraints: multiple violations of
lower ranked constraints can be as unacceptable as a single violation of a higher ranked
constraint. Experimental results reported by Keller (2000) show that a ganging up effect
can be observed for constraints on word order, extraction, and gapping.

Sorace and Keller (2005) list a range of other properties of gradient data: context
effects, crosslinguistic effects, and developmental optionality. They claim that these prop-
erties make it possible to classify linguistic constraintsinto soft and hard constraints.
While this is an interesting claim, it seems to us more controversial than cumulativity and
ranking, which seem to be more generally accepted properties of gradient data. As LOT
only relies on cumulativity and ranking, we will not discussthe other properties here.

3 Linear Optimality Theory

Linear Optimality Theory as proposed by Keller (2000) is a model of gradience that makes
predictions about the relative grammaticality of linguistic structures. It builds on core
concepts from Optimality Theory, a framework that is attractive for this purpose as it is
equipped with a notion of competition that makes it possibleformalize the interaction
of linguistic constraints. Furthermore, OT provides a notion of constraint ranking that
makes it possible to account for the fact that constraints differ in strength, i.e., that some
constraints are more important than others for the overall well-formedness of a given
linguistic structure.

Although LOT borrows central concepts (such as constraint ranking and competition)
from Optimality Theory, it differs in two crucial respects from existing OT-based ac-
counts. Firstly, it relies on the assumption that constraint ranks are represented as sets of
numeric weights, instead of as partial orders. Secondly, itassumes that the grammaticality
of a given structure is proportional to the sum of the weightsof the constraints it violates.
This means that OT’s notion of strict domination is replacedwith an linear constraint
combination scheme (hence the name Linear Optimality Theory).1

Only a limited number of components of the OT architecture are affected by the switch
to LOT. The changes concern onlyHEval, the function that evaluates the harmony of a

1An anonymous reviewer points out that cumulativity could also be implemented using the mechanism
of local constraint conjunction used in standard OT, which restricts cumulativity to particular local domains.
Local conjunction has the advantage that the occurrence of cumulative effects is still under the control of
the linguist: a local conjunction must be defined explicitly.
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candidate, andRank, the ranking component. LOT does not affect assumptions concerning
the input and the generation functionGen, the two components of an OT grammar that
determine which structures compete with each other. Also the constraint componentCon,
i.e., formal apparatus for representing constraints and candidates is unaffected. The LOT
approach is neutral in these respects, and compatible with the diverse assumptions put
forward in the OT literature.

However, LOT’s versions ofHEval andRank entail changes in the way the optimal
candidate is computed, as well as requiring a new type of ranking argumentation, i.e., a
method for establishing constraint ranks from a set of linguistic examples. It will be shown
that this type of ranking argumentation is considerably simpler than the one classically
assumed in OT. Also, well understood algorithms exist for automating this type of ranking
argumentation.

3.1 Violation profiles and harmony

The most prominent pattern in the experimental data presented by Keller (2000) is the
cumulativity of constraint violations, i.e., the fact that the degree of unacceptability of a
structure increases with the number of constraint violations it incurs. Cumulativity was
in evidence in data on extraction, binding, gapping, and word order. Keller (2000) also
shows that cumulativity effect extends from multiple violations of different constraints to
multiple violations of the same constraint.

The other pervasive pattern in Keller’s (2000) data is theranking of constraints, i.e.,
the fact that constraint violations differ in the degree of unacceptability they cause. Con-
straint ranking was observed in data on extraction, binding, gapping, and word order.

The LOT model of gradient grammaticality derives from thesetwo fundamental find-
ings about constraint cumulativity and constraint ranking. Two hypotheses implement
these two results. The first hypothesis deals with constraint ranking:

(1) Ranking Hypothesis
The ranking of linguistic constraints can be implemented byannotating each con-
straint with a numeric weight representing the reduction inacceptability caused by
a violation of this constraint.

Note that this notion of constraint ranks as numeric weightsis more general than the
notion of ranks standardly assumed in Optimality Theory. Standard OT formulates con-
straint ranks as binary ordering statements of the formC1 ≫C2, meaning that constraint
C1 is ranked higher than the constraintC2. Such statements do not make any assumptions
regardinghow much higher the ranking ofC1 is compared to the ranking ofC2. Such
information is only available once we adopt a numeric concept of constraint ranking.

In the remainder of this paper, we will adopt the following terminological convention.
The term constraintweight will be used to refer to the numeric annotation that our model
assigns to a constraint. The term constraintrank will be employed to refer to the relative
weight of two constraints in our model: we say that a constraint outranks another con-
straint if it has a greater weight (see also Definition (9) below). This usage is justified by
the fact that Standard OT ranks (i.e., constraint orderings) are a special case of ranks as
defined in Linear Optimality Theory (this will be shown in Section 4.1).
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Once numeric constraint weights have been postulated, the overall acceptability of
a structure can be computed based on the weights of the constraints that the structure
violates. We will assume that simple summation is sufficientto compute the degree of
acceptability of a structure from the weights of the constraints that the structure violates.
This will account straightforwardly for the cumulativity of constraint violations observed
experimentally. Keller (2000) demonstrates that this approach achieves a good model fit
on his experimental data.

To account for the cumulativity of constraint weights, LOT formulates the Linearity
Hypothesis in (2):

(2) Linearity Hypothesis
The cumulativity of constraint violations can be implemented by assuming that the
grammaticality of a structure is proportional to the weighted sum of the constraint
violations it incurs, where the weights correspond to constraint ranks.

The hypotheses in (1) and (2) can be made explicitly by formulating a numeric model
that relates constraints ranks and degree of grammaticality. This relies on the notion of
a grammar signature, which specifies the constraint set and the associated weights for
a grammar. (Note that this definition, and all subsequent ones, are independent of the
formulation of the constraints proper; the LOT account is one of constraint interaction,
not of actual linguistic constraints.)

(3) Grammar Signature
A grammar signature is a tuple〈C,w〉 whereC = {C1,C2, . . . ,Cn} is the constraint
set, andw(Ci) is a function that maps a constraintCi ∈C on its constraint weightwi.

Relative to a grammar signature, a given candidate structure has a constraint violation
profile as defined in (4). The violation specifies which constraints are violated by the
structure and how often. This is a useful auxiliary notion that will be relied on in further
definitions.

(4) Violation Profile
Given a constraint setC = {C1,C2, . . . ,Cn}, the violation profile of a candidate
structureS is the functionv(S,Ci) that mapsS on the number of violations of the
constraintCi ∈ C incurred byS.

Based on Definitions (3) and (4), the harmony of a structure can now be defined using a
simple linear model:

(5) Harmony
Let 〈C,w〉 be a grammar signature. Then the harmonyH(S) of a candidate structure
S with a violation profilev(S,Ci) is given in (6).

H(S) = −∑
i

w(Ci)v(S,Ci)(6)

Equation (6) states that the harmony of a structure is the negation of the weighted sum of
the constraint violations that the structure incurs. Intuitively, the harmony of a structure
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describes its degree of well-formedness relative to a givenset of constraints. This notion
corresponds closely to the definition of harmony assumed in Standard OT (Prince and
Smolensky, 1997, p. 1607) or Harmonic Grammar (Smolensky etal., 1992, p. 14).

The assumption is that all constraint weights are positive,i.e., thatwi ≥ 0 for all i. This
means that only constraint violations influence the harmonyof a structure. Constraint sat-
isfactions will not change the harmony of the structure (including cases where a constraint
is vacuously satisfied because it is not applicable). This assumption is in accordance with
Keller’s (2000) experimental results, in which only constraints violations were found to
affect acceptability. This will discussed further in Section 4.2.

3.2 Constraint competition and optimality

Based on the definitions of violation profile and harmony proposed in the preceding sec-
tion, LOT’s notion of grammaticality can now be specified. Grammaticality is computed
in terms of the relative harmony of two candidates in the samecandidate set:

(7) Grammaticality
Let S1 andS2 be candidate structures in the candidate setR. ThenS1 is more gram-
matical thanS2 if H(S1) > H(S2). This can be abbreviated asS1 > S2.2

A crucial difference between harmony and grammaticality follows from Definition (7).
Harmony is an absolute notion that describes the overall well-formedness of a structure.
Grammaticality, on the other hand, describes the relative ill-formedness of a structure
compared with another structure. While it is possible to compare the harmony of two
structures across candidates sets, the notion of grammaticality is only well-defined for
two structures that belong to the same candidate set (i.e., share the same input). There-
fore, Definition (7) (and the subsequent Definition (8)) provide arelative notion of well-
formedness, in line with the optimality theoretic tradition.

Based on the definition of grammaticality in (7), we can definethe optimal structure
in a candidate set as the one with the highest relative grammaticality.

(8) Optimality
A structureSopt is optimal in a candidate setR if Sopt > S for everyS ∈ R.

A notion of constraint rank can readily be defined in LOT basedon the relative weight
of two constraints (see also the terminological note on ranks vs. weights in Section 3.1
above):

(9) Constraint Rank
A constraintC1 outranks a constraintC2 if w(C1) > w(C2). This can be abbreviated
asC1 ≫C2.

In what follows, we will illustrate the definitions for harmony, grammaticality, and op-
timality. Consider an example grammar with the constraintsC1, C2, andC3, and the
constraints weights given in Table 1. This table also specifies an example candidate set
S1, . . . ,S4 and gives the violation profiles for these candidates. The harmony for each of
these structures can be computed based on Definition (5).

2This usage differs from the standard OT usage, where harmonic ordering is denoted by “≻”, not “>”.
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Table 1: Example violation profile and harmony scores

C1 C2 C3

w(C) 4 3 1 H(S)

S1 * * −4
S2 * ** −5
S3 * −1
S4 * −4

The structureS3 maximizes harmony, i.e., it incurs the least serious violation profile.
It is therefore the optimal structure in the candidate set, i.e., it is more grammatical than
all other candidate structures. The structuresS1 andS4 are both less grammatical than
S3. S1 andS4 receive the same harmony scores, but for different reasons;S4 because it
incurs a high-ranked violation ofC1, S1 because it accumulates violations ofC2 andC3.
The structureS2 is less grammatical thanS1, as it incurs an additional violations ofC3. In
total, we obtain the following grammaticality hierarchy:S3 > {S1,S4} > S2.

This examples illustrates the three central properties of constraint interaction that were
identified in Section 2. The first property is theranking of constraints.S3 incurs a violation
of C3, while S4 incurs a violation ofC1. ThatS3 is more grammatical thanS4 is accounted
for by the fact thatC1 has a higher weight thanC3, i.e., the rankingC1 ≫ C3 holds. This
is a situation that was observed many times in the experimental data presented by Keller
(2000).

Furthermore, the example illustrates how thecumulativity of constraint violations is
modeled.S1 incurs single violations ofC2 andC3. The structureS2 also incurs a single
violation of C2, but a double violation ofC3. As a consequence,S1 is more grammati-
cal thanS2. Cumulativity effects such as these encountered frequentlyin Keller’s (2000)
experimental data.

Finally, Table 1 illustrates theganging up of constraint violations. The structuresS1

andS4 have different constraint profiles:S4 violates the constraintC1, while S1 violates
the two constraintsC2 andC3, which are both lower ranked thanC1. However,S1 and
S4 are equally grammatical because the two constraintsC2 andC3 gang up againstC1,
leading to the same harmony score in both structures. Again,this empirical patters is in
evidence in Keller’s (2000) experimental data.

Note that standard optimality theoretic evaluation of the candidate set in Table 1 leads
to a different harmonic ordering:S3 > S1 > S2 > S4. If we assume a naive extension of
Standard OT, then this order corresponds to the grammaticality order of the candidates.
The naive extension assumes the strict domination of constraints, and therefore fails to
model ganging up effects. Under this approach, there is no possibility for a joint violation
of C2 andC3 to be as serious as a single violation ofC1, due to the rankingC1 ≫C2 ≫C3.
Hence the naive extension of Standard OT fails to account forthe ganging up effects that
were observed experimentally.
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3.3 Ranking argumentation and parameter estimation

Optimality Theory employs so-calledranking arguments to establish constraint rankings
from data. A ranking argument refers to a set of candidate structures with a certain con-
straint violation profile, and derives a constraint rankingfrom this profile. This can be
illustrated by the following example: assume that two structuresS1 andS2 have the same
constraint profile, with the following exception:S1 violates constraintC1, but satisfiesC2.
StructureS2, on the other hand, violates constraintC2, but satisfiesC1. If S1 is acceptable
but S2 is unacceptable, then we can conclude that the rankingC2 ≫C1 holds (see Prince
and Smolensky 1993, 106).

In the general case, the fact thatS1 is acceptable butS2 is unacceptable entails that
each constraint violated byS1 is outranked by at least one constraint violated byS2. (See
Hayes 1997, for a more extensive discussion of the inferencepatterns involved in ranking
argumentation in Standard OT.)

The LOT approach allows a form of ranking argumentation thatrelies on gradient
acceptability data instead of the binary acceptability judgments used in Standard OT. A
ranking argument in Linear Optimality Theory can be constructed based on the difference
in acceptability between two structures in the same candidate set, using the following
definition:

(10) Ranking Argument
Let S1 andS2 be candidate structures in the candidate setR with the acceptability
difference∆H. Then the equation in (11) holds.

H(S1)−H(S2) = ∆H(11)

This definition assumes that the difference in harmony between S1 andS2 is accounted
for by ∆H, the acceptability difference between the two structures.∆H can be observed
empirically, and measured, for instance, using magnitude estimation judgments (Sorace
and Keller, 2005). Drawing on the definition of harmony in (5), Equation (11) can be
transformed to:

∑
i

w(Ci)(v(S1,Ci)− v(S2,Ci)) = −∆H(12)

This assumes thatS1 andS2 have the violation profilesv(S1) andv(S2) and are evaluated
relative to the grammar signature〈C,w〉.

Typically, a single ranking argument is not enough to rank the constraints of a given
grammar. Rather, we need to accumulate a sufficiently large set of ranking arguments,
based on which we can then deduce the constraint hierarchy ofthe grammar. To obtain a
maximally informative set of ranking arguments, we take allthe candidate structures in
a given candidate set and compute a ranking argument for eachpair of candidates, using
Definition (12).

The number of ranking arguments that a set ofk candidates yields is given in (13);
note that this is simply the number of all unordered pairs that can be generated from a set
of k elements.

n =
k2− k

2
(13)
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Now we are faced with the task of computing the constraint weights of a grammar from
a set of ranking arguments. This problem can be solved by regarding the set of ranking
arguments as a system of linear equations. The solution for this system of equations will
then provide a set of constraint weights for the grammar. This idea is best illustrated using
an example. We consider the candidate set in Table 1 and determine all ranking arguments
generated by this candidate set (herewi is used as a shorthand forw(Ci), the weight of
constraintCi):

S1−S2 : 0w1 +1w2 +1w3−0w1−1w2−2w3 = −((−4)− (−5)) = −1
S1−S3 : 0w1 +1w2 +1w3−0w1−0w2−1w3 = −((−4)− (−1)) = 3
S1−S4 : 0w1 +1w2 +1w3−1w1−0w2−0w3 = −((−4)− (−4)) = 0
S2−S3 : 0w1 +1w2 +2w3−0w1−0w2−1w3 = −((−5)− (−1)) = 4
S2−S4 : 0w1 +1w2 +2w3−1w1−0w2−0w3 = −((−5)− (−4)) = 1
S3−S4 : 0w1 +0w2 +1w3−1w1−0w2−0w3 = −((−1)− (−4)) = −3

(14)

This system of linear equations can be simplified to:

−w3 = −1
w2 = 3
w2 +w3−w1 = 0
w2 +w3 = 4
w2 +2w3−w1 = 1
w3−w1 = −3

(15)

We have therefore determined thatw2 = 3 andw3 = 1. The value ofw1 can be easily be
obtained from any of the remaining equations:w1 = w2 +w3 = 4.

This example demonstrates how a system of linear equations that follows from a set
of ranking arguments can be solved by hand. However, such a manual approach is not
practical for large systems of equations as they occur in realistic ranking argumentation.
Typically, we will be faced with a large set of ranking arguments, generated by a candidate
set with many structures, or by several candidate sets.

There are a number of standard algorithms for solving systems of linear equations,
which can be utilized for automatically determining the constraint weights from a set of
ranking arguments. One example is Gaussian Elimination, analgorithm which delivers an
exact solution of a system of linear equations (if there is one). If we are dealing with ex-
perimental data, then the set of ranking arguments derived from a given data set will often
result in an inconsistent set of linear equations, which means that Gaussian Elimination is
not applicable. In such a case, the algorithm of choice is Least Square Estimation (LSE),
a method for solving a system of linear equations even if the system is inconsistent. This
means that LSE enables us to estimate the constraint weightsof an LOT grammar if there
is no set of weights that satisfy all the ranking arguments exactly (in contrast to Gaussian
elimination). LSE will find an approximate set of constraintweights that maximizes the
fit with the experimentally determined acceptability scores. A more detailed explanation
of LSE and its application to LOT is provided by Keller (2000).
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4 Comparison with other Optimality Theoretic ap-
proaches

4.1 Standard Optimality Theory

Linear Optimality Theory preserves key concepts of Standard Optimality Theory. This
includes the fact that constraints are violable, even in an optimal structure. As in Stan-
dard OT, LOT avails itself of a notion of constraint ranking to resolve constraint conflicts;
LOT’s notion of ranking is quantified, i.e., richer than the one in Standard OT. The second
core OT concept inherited by LOT is constraint competition.The optimality of a candi-
date cannot be determined in isolation, but only relative toother candidates it competes
with. Furthermore, LOT uses ranking arguments in a similar way as Standard OT. Such
ranking arguments work in a competitive fashion, i.e., based on the comparison of the
relative grammaticality of two structure in the same candidate set. As in Standard OT,
a comparison of structures across candidate sets is not well-defined; two structures only
compete against each other if they share the same input.

The crucial difference between LOT and Standard OT is the fact that in LOT, con-
straint ranks are implemented as numeric weights and a straightforward linear constraint
combination scheme is assumed. Standard Optimality Theorycan then be regarded as a
special case of LOT, where the constraint weights are chosenin an exponential fashion
so as to achieve strict domination (see the Subset Theorem in(16)). The extension of
Standard OT to LOT is crucial in accounting for the cumulativity of constraint violations.
The linear constraint combination schema also greatly simplifies the task of determining
a constraint hierarchy from a given data set. This problem simply reduces to solving a
system of linear equations, a well-understood mathematical problem for which a set of
standard algorithms exists (see Section 3.3).

Another advantage is that LOT naturally accounts for optionality, i.e., for cases where
more than one candidate is optimal. Under the linearity hypothesis, this simply means
that the two candidates have the same harmony score. Such a situation can arise if the
two candidates have the same violation profile, or if they have different violation profiles,
but the weighted sum of the violation is the same in both cases. No special mechanism
for dealing with constraint ties are required in Linear OT. This is an advantage over Stan-
dard OT, where the modeling of optionality is less straightforward (see Asudeh 2001, for
a discussion).

An OT grammar can be formulated as a weighted grammar if the constraint weights
are chosen in an exponential fashion, so that strict domination of constraints is assured.
This observation is due to Prince and Smolensky (1993, p. 200) and also applies to Linear
Optimality Theory. Therefore, the theorem in (16) holds (the reader is referred to Keller
(2000) for a proof).

(16) Subset Theorem
A Standard Optimality Theory grammarG with the constraint setC =
{C1,C2, . . . ,Cn} and the rankingCn ≫ Cn−1 ≫ . . . ≫ C1 can be expressed as a
Linear Optimality Theory grammarG′ with the signature〈C,w〉 and the weight
function w(Ci) = bi, whereb−1 is an upper bound for multiple constraint viola-

9



tions inG.

Note that the Subset Theorem holds only if there is an upper boundb−1 that limits the
number of multiple constraint violations that the grammarG allows. Such an upper bound
exists if we assume that the number of violations incurred byeach structure generated by
G is finite. This might not be true for all OT constraint systems.

4.2 Harmonic Grammar

Harmonic Grammar (Legendre et al., 1990a,b, 1991; Smolensky et al., 1992, 1993) is
predecessor of OT that builds on the assumption that constraints are annotated with nu-
meric weights (instead of just being rank-ordered as in Standard OT). Harmonic Grammar
(HG) can be implemented in a hybrid connectionist-symbolicarchitecture and has been
applied successfully to gradient data by Legendre et al. (1990a,b). As Prince and Smolen-
sky (1993, p. 200) point out, “Optimality Theory [. . .] represents a very specialized kind
of Harmonic Grammar, with exponential weighting of the constraints”.

Linear Optimality Theory is similar to HG in that it assumes constraints that are anno-
tated with numeric weights, and that the harmony of a structure is computed as the linear
combination of the weights of the constraints it violates. There are, however, two differ-
ences between LOT and HG: (a) LOT only models constraint violations, while HG models
both violations and satisfactions; and (b) LOT uses standard least square estimation to de-
termine constraint weights, while HG requires more powerful training algorithms such as
backpropagation. We will discuss each of these differencesin turn.

LOT requires that all constraints weights have the same sign(only positive weights are
allowed, see Section 3.1). This amounts to the claim that only constraint violations (but
not constraint satisfactions) play a role in determining the grammaticality of a structure. In
HG, in contrast, arbitrary constraint weights are possible, i.e., constraint satisfactions (as
well as violations) can influence the harmony of a structure.This means that HG allows
to define a grammar that contains a constraintC with the weightw and a constraintC′ that
is the negation ofC and has the weight−w. In such a grammar, both the violations and
the satisfactions ofC influence the harmony of a structure.

The issue of positive weights has important repercussions for the relationship between
Standard OT and LOT: Keller (2000) proves a Superset Theoremthat states that an arbi-
trary LOT grammar can be simulated by a Standard OT grammar with stratified hierar-
chies. The proof crucially relies on the assumption that allconstraint weights are of the
same sign. Stratified hierarchies allow us to simulate the addition of constraint violations
(they correspond to multiple violations in Standard OT), but they do not allow us to sim-
ulate the subtraction of constraint violations (which would be required by constraints that
increase harmony). This means that the Superset Theorem does not hold for grammars
that have both positive and negative constraints weights, as they are possible in Harmonic
Grammar.

The second difference between HG and LOT concerns parameterestimation. An HG
model can be implemented as a connectionist network, and theparameters of the model
(the constraint weights) can be estimated using standard connectionist training algorithms.
An example is provided by the HG model of unaccusativity/unergativity in French pre-
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sented by Legendre et al. (1990a,b) and Smolensky et al. (1992). This model is im-
plemented as a multilayer perceptron and trained using the backpropagation algorithm
(Rumelhart et al., 1986).

It is well known that many connectionist models have an equivalent in conventional
statistical techniques for function approximation. Multilayer perceptrons, for instance,
correspond to a family of non-linear statistical models, asshown by Sarle (1994). (Which
non-linear model a given perceptron corresponds to dependson its architecture, in partic-
ular the number and size of the hidden layers.) The parameters of a multilayer perceptron
are typically estimated using backpropagation or similar training algorithms.

On the other hand, a single-layer perceptron (i.e., a perceptron without hidden lay-
ers) corresponds to multiple linear regression, a standardstatistical technique for approx-
imating a linear function of multiple variables. The parameters (of both a single-layer
perceptron and a linear repression model) can be computed using least square estimation
(Bishop, 1995). This technique can also be used for parameter estimation for LOT models
(see Section 3.3). Note that LOT can be conceived of as a variant of multiple linear re-
gression. The difference between LOT and conventional multiple linear regression is that
parameter estimation is not carried directly on data to be accounted for (the acceptability
judgments); rather, a preprocessing step is carried out on the judgment data to compute a
set of ranking arguments, which then form the input for the regression.

To summarize, the crucial difference between HG and LOT is that HG is a non-linear
function approximator, while LOT is a linear function approximator, i.e., a variant of
linear regression. This means that a different set of parameter estimation algorithms is
appropriate for HG and LOT, respectively.

4.3 Probabilistic Optimality Theory

Boersma and Hayes (2001) propose a probabilistic variant ofOptimality Theory (POT)
that is designed to account for gradience both in corpus frequencies and in acceptability
judgments. POT stipulates a continuous scale ofconstraint strictness. Constraints are an-
notated with numerical strictness values; if a constraintC1 has a higher strictness value
that a constraintC2, thenC1 outranksC2. Boersma and Hayes (2001) assumeprobabilis-
tic constraint evaluation, which means that at evaluation time, a small amount of random
noise is added to the strictness value of a constraint. As a consequence,re-rankings of
constraints are possible if the amount of noise added to the strictness values exceeds the
distance between the constraints on the strictness scale.

For instance, assume that two constraintsC1 andC2 are rankedC1 ≫C2, selecting the
structureS1 as optimal for a given input. Under Boersma and Hayes’s (2001) approach,
a re-ranking ofC1 andC2 can occur at evaluation time, resulting in the opposite ranking
C2 ≫ C1. This re-ranking might result in an alternative optimal candidateS2. The prob-
ability of the re-ranking that makesS2 optimal depends on the distance betweenC1 and
C2 on the strictness scale (and on the amount of noise added to the strictness values).
The re-ranking probability is assumed to predict the degreeof grammaticality ofS2. The
more probable the re-rankingC2 ≫ C1, the higher the degree of grammaticality ofS2;
if the rankingsC1 ≫ C2 andC2 ≫ C1 are equally probable, thenS1 andS2 are equally
grammatical.
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Table 2: Data that cannot be modeled in Probabilistic OT (hypothetical frequencies or
acceptability scores), from Keller and Asudeh (2002)

/input/ C3 C1 C2 Freq./Accept.
S1 * 3
S2 * * 2
S3 * 1

Table 3: Data that cannot be modeled in Probabilistic OT (hypothetical frequencies or
acceptability scores), from Keller and Asudeh (2002)

/input/ C1 C2 Freq./Accept.
S1 * 4
S2 ** 3
S3 *** 2
S4 * 1

The POT framework comes with its own learning theory in the form of the Gradual
Learning Algorithm (Boersma, 1998, 2000; Boersma and Hayes, 2001). This algorithm is
a generalization of Tesar and Smolensky’s (1998) ConstraintDemotion Algorithm in that
it performs constraint promotion as well as demotion. The Gradual Learning Algorithm
incrementally adjusts the strictness values of the constraints in the grammar to match the
frequencies of the candidate structures in the training data. The fact that the algorithm
relies on gradual changes makes it robust to noise, which is an attractive property from a
language acquisition point of view.

There are, however, a number of problems with the POT approach. As Keller and
Asudeh (2002) point out, POT cannot model cases of harmonic bounding, as a illustrated
in Table 2: candidateS2 is harmonically bound by candidateS1, which means that there is
no re-ranking of the constraints that would makeS2 optimal. AsS2 can never be optimal,
its frequency or acceptability is predicated to be zero (i.e., no other candidate can be
worse, even if it violates additional constraints). An example where this is clearly incorrect
is S3 in Table 2, which violates a higher ranked constraint and is less acceptable (or less
frequent) thanS2.

A second problem with POT identified by Keller and Asudeh (2002) is cumulativity.
This can be illustrated with respect to Table 3: here, candidateS1 violates constraintC2

once and is more acceptable thanS2, which violatesC2 twice.S2 in turn is more acceptable
thanS3, which violatesC2 three times. A model based on constraint re-ranking cannot
account for this, as a re-ranking ofC2 will not change the outcome of the competition
betweenS1, S2, andS3. Essentially, this is a special case of harmonic bounding involving
only one constraint.

There is considerable evidence that configurations such as the ones illustrated in Ta-
bles 2 and 3 occur in real data. Keller (2000) reports acceptability judgment data for word
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Table 4: Data that cannot be modeled in POT′ (hypothetical frequencies or acceptability
scores)

/input/ C3 C1 C2 Freq./Accept.
S1 * 2
S2 * * 1
S3 * 1

order variation in German that instantiates both patterns.Guy and Boberg’s (1997) fre-
quency data for coronal stop deletion in English instantiates the cumulative pattern in
Table 3. J̈ager and Rosenbach (2004) show that cumulativity is instantiated in both fre-
quency data and acceptability data on genitive formation inEnglish. None of these data
sets can be modeled by POT, and thus constitute serious counterexamples to this approach.
In Linear Optimality Theory, on the other hand, such cases are completely unproblematic,
due to the linear combination scheme assumed in this framework.

In a recent paper, Boersma (2006) acknowledges that cases ofharmonic bounding and
cumulativity as illustrated in Tables 2 and 3 pose a problem for POT. In response to this,
he proposes a variant of POT, which we will call POT′. In POT′, the acceptability of a
candidateS is determined by carrying out a pairwise comparison betweenS and each of
the other candidates in the candidate set; the acceptability of S then corresponds to the
percentage of comparisons thatS wins.3 As an example, take the tableau in Table 2. Here,
S1 wins againstS2 andS3, hence his acceptability value is 2/2 = 100%.S2 wins against
S3 but loses againstS1, so its acceptability is 1/2= 50%.S3 loses against both candidates,
and thus receives an acceptability value of 0%.

In POT′, the relative grammaticality of a candidate corresponds toits optimality theo-
retic rank in the candidate set. This is not a new idea; in factit is equivalent to the definition
of relative grammaticality in terms ofsuboptimality, initially proposed by Keller (1997).
The only difference is that in POT′, suboptimality is determine based on a POT notion
of harmony, instead of using the standard OT notion of harmony, as assumed by Keller
(1997). However, there are a number of conceptual problems with this proposal (which
carry over to POT′), discussed in detail by M̈uller (1999) and Keller (2000).

In addition to that, there are empirical problems with the POT′ approach. POT′ cor-
rectly predicts the relative acceptability of the example in Table 2 (as outlined above).
However, other counterexamples can be constructed easily if we assumeganging up ef-
fects. In Table 4, the combined violation ofC1 andC2 is as serious as the single violation
of C3, which means that the candidatesS2 andS3 are equally grammatical. Such a situ-
ation can not be modeled in POT′, asS2 will win againstS3 (becauseC3 outranksC1),
henceS2 is predicted to be more grammatical thanS3. As discussed in Section 2, ganging
up effects occur in experimental data, and thus pose a real problem for POT′.

In contrast to POT and POT′, LOT can model ganging up effects straightforwardly,
as illustrated in Section 3.2. This is not surprising: the weights in LOT grammars are

3More precisely, it is the POT probability of winning, averaged over all pairwise comparisons, but this
difference is irrelevant here.
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estimated so that they correspond in a linear fashion to the acceptability scores of the
candidates in the training data. The strictness bands in POT(and POT′) grammars, on the
other hand, are estimated to match the frequencies of candidates in the training data; it is
not obvious why such a model should correctly predict acceptability scores, given that it
is trained on a different type of data.

4.4 Maximum entropy models

The problems with POT have led a number of authors to propose alternative ways of deal-
ing with gradience in OT. Goldwater and Johnson (2003), Jäger (2004), and Jäger and
Rosenbach (2004) propose a probabilistic variant of OT based on the machine learning
framework ofmaximum entropy models, which is state of the art in computational linguis-
tics (e.g., Abney 1997; Berger et al. 1996). In Maximum Entropy OT (MOT) as formulated
by J̈ager (2004), the probability of a candidate structure (i.e., of an input-output pair(o, i))
is defined as:

pR(o|i) =
1

ZR(i)
exp(∑

j
r jc j(i,o))(17)

Here,r j denotes the numeric rank of constraintj, while R denotes the ranking vector, i.e.,
the set of ranks of all constraints. The functionc j(i,o) returns the number of violations of
constraintj incurred by input-output pair(i,o). ZR(i) is a normalization factor.

The model defined in (17) can be regarded as an extension of LOTas introduced in
Section 3.1. It is standard practice in the literature on gradient grammaticality to model
not raw acceptability scores, but log-transformed, normalized acceptability data (Keller,
2000). This can be made explicit by log-transforming the lefthand side of (6) (and drop-
ping the minus and renaming the variablei to j). The resulting formula is then equivalent
to (18).

H(S) = exp(∑
j

w(C j)v(S,C j))(18)

A comparison of (17) and (18) shows that the two models have a parallel structure:
w(C j) = r j and v(S,C j) = c j(i,o) (the input-output structure of the candidates is im-
plicit in (18)). Both models are instances of a more general family of models referred to
as log-linear models. There is, however, a crucial difference between the MOT definition
in (17) and the LOT definition in (18). Equation (18) does not include the normalization
factorZR(i), which means that (18) does not express a valid probability distribution. The
normalization factor is not trivial to compute, as it involves summing over all possible
output formso (see Goldwater and Johnson 2003, and Jäger 2004, for details). This is the
reason why LOT can assumes a simple learning algorithm basedon least square estima-
tion, while MOT has to rely on learning algorithms for maximum entropy models, such as
generalized iterative scaling, or improved iterative scaling (Berger et al., 1996). Another
crucial difference between MOT and LOT (pointed out by Goldwater and Johnson 2003)
is that MOT is designed to be trained on corpus data, while LOTis designed to be trained
on acceptability judgment data.
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5 Conclusions

This paper introduced Linear Optimality Theory (LOT) as model of gradient grammat-
icality. Although this model borrows central concepts (such as constraint ranking and
competition) from Optimality Theory, it differs in two crucial respects from Standard OT.
Firstly, LOT assumes that constraint ranks are representedas numeric weights (this fea-
ture is shared with Probabilistic OT and Maximum Entropy OT,see Sections 4.3 and 4.4).
Secondly, LOT assumes that the grammaticality of a given structure is proportional to
the sum of the weights of the constraints it violates, which means that OT’s notion of
strict domination is replaced with an linear constraint combination scheme (this feature is
shared with Maximum Entropy OT, see Section 4.4).

We also outlined a learning algorithm for LOT (see Section 3.3). This algorithm takes
as its input a grammar (i.e., a set of linguistic constraints) and a training set, based on
which it estimates the weights of the constraints in the grammar. The training set is a
collection of candidate structures, with the violation profile and the grammaticality score
for each structure specified. Note that LOT is not intended asa model of human lan-
guage acquisition: it cannot be assumed that the learner hasaccess to training data that
are annotated with acceptability scores. The sole purpose of the LOT learning algorithm
is to perform parameter fitting for LOT grammars, i.e., to determine an optimal set of
constraint weights for a given data set.

LOT is able to account for the properties of gradient structures discussed in Section 2.
Constraint ranking is modeled by the fact that LOT annotates constraints with numeric
weights representing the contribution of a constraint to the unacceptability of a struc-
ture. Cumulativity is modeled by the assumption that the degree of ungrammaticality of
a structure is computed as the sum of the weights of the constraint the structure violates.
Once ranking and cumulativity are assumed as part of the LOT model, other properties of
gradient linguistic judgments follow without further stipulations.
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