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Abstract

This article deals with gradience in human sentence processing. We redew th
experimental evidence for the role of experience in guiding the decisithg gen-
tence processor. Based on this evidence, we argue that the grastentdr observed
in the processing of certain syntactic constructions can be traced backaotbunt
of past experience that the processor has had with these construttionsdeling
terms, linguistic experience can be approximated using large, balanqaataowe
give an overview of corpus-based and probabilistic models in the literttatdave
exploited this fact, and hence are well placed to make gradient predictomg a
processing behavior. Finally, we discuss a number of questions megate rela-
tionship between gradience in sentence processing and gradient graatityatiad
come to the conclusion that these two phenomena should be treated separately
conceptual and modeling terms.

1 Introduction

Gradience in language comprehension can be manifest inietywarf ways, and have
various sources of origin. Based on theoretical and engliresults, one possible way of
classifying such phenomena is whether they arise frongtammaticalityof a sentence,
perhaps reflecting the relative importance of various stitaonstraints, or arise from
processingnamely the mechanisms which exploit our syntactic knogaeidr incremen-
tally recovering the structure of a given sentence. Moshefdhapters in this volume are
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concerned with the former: how to characterize and explaggtadient grammaticality
of a given utterance, as measured, for example, by judgnoemiserningacceptability
While the study of gradient grammaticality has a long histarthe generative tradition
(Chomsky, 1955, 1964), recent approaches such as the MistrPabgram (Chomsky,
1995) do not explicitly allow for gradience as part of thergraar.

In this chapter, we more closely consider the phenomergradient performance
how can we explain the variation in processing difficulty,raflected for example in
word-by-word reading times? Psycholinguistic researchitiantified two key sources of
processing difficulty in sentence comprehension: localigmty and processing load. In
the case of local, or temporary ambiguity, there is abundsaittence that people adopt
some preferred interpretation immediately, rather thdaydeg interpretation. Should the
corresponding syntactic analysis be disconfirmed by theesea’s continuation, reanal-
ysis is necessary, and is believed to be an important comtrilbo observable difficulties
in processing. It is also the case, however, that proceshifigulties are found in com-
pletely unambiguous utterances, such as center embeddetusts. One explanation of
such effects is that, despite being both grammatical anthbigauous, such sentences re-
guire more cognitive processing resources (such as workiigiory) than are available.

While these phenomena have been well studied, both emjyrigadl theoretically,
there has been little attempt to model relative processiffiguty: why some sentences
are more difficult than others, and precisely how difficuktythare. Quantitative models,
which can predict real-valued behavioral measures arelegsrtommon. We argue, how-
ever, that one relatively new class of models offers comalgle promise in addressing this
issue. The common distinguishing feature of the models weuds here is that they are
experience-based he central idea behind experienced-based models ishteahécha-
nisms which people use to arrive at an incremental inteapiget of a sentence are cru-
cially dependent on relevant prior experience. Generglaking, interpretations which
are supported by our prior experience are preferred to tiadseh are not. Furthermore,
since experience is generally encoded in models as somedbretative likelihood, or
activation, it is possible for models to generate real-dlugraded predictions about the
processing difficulty of a particular sentence.

We begin by reviewing some of the key psycholinguistic emmEmotivating the need
for experience-based mechanisms, before turning to a ssmu of recent models. We
focus our attention here on probabilistic models of humanmtesece processing, which
attempt to assign a probability to a given sentence, as wdlb alternative parse inter-
pretations for that sentence. Finally, we will discuss tationship between probabilis-
tic models of performance (gradient processing complgxégd probabilistic models of
competence (gradient grammaticality). A crucial consegeeof the view we propose
is that the likelihood of a (partial) structure is only meagful relative to the likelihood
of competing (partial) structures, and does not provideralependently useful charac-
terization of the grammaticality of the alternatives. Thwes argue that a probabilistic
characterization of gradient grammaticality should baeydifferent from a probabilistic
performance model.



2 Therole of experiencein sentence processing

People are continually faced with the problem of resolvimg ambiguities that occur in
the language they hear and read (Altmann, 1998). Compugdtibaories of human lan-
guage comprehension therefore place much emphasis @igbethmsfor constructing
syntactic and semantic interpretations, andsinategiedor deciding among alternatives,
when more than one interpretation is possible (Crocker, 198 fact that people un-
derstand languagmcrementally integrating each word into their interpretation of the
sentence as it is encountered, means that people are oftad fto resolve ambiguities
before they have heard the entire utterance. While it is ¢legtrmany kinds of informa-
tion are involved in ambiguity resolution (Gibson & Pearlten, 1998), much attention
has recently been paid to the rolelioiguistic experiencerhat is to say, to what extent do
the mechanisms underlying human language comprehendioonegrevious linguistic
encounters to guide them in resolving an ambiguity theyenly face?

During his or her lifetime, the speaker of a language acchnggslistic experience.
Certain lexical items are encountered more often than atlserse syntactic structures
are used more frequently, and ambiguities are often reddlve particular manner. In
lexical processing, for example, the influence of experdaclear: high frequency words
are recognized more quickly than low frequency ones (Gargj@980), syntactically am-
biguous words are initially perceived as having their midstly part of speech (Crocker &
Corley, 2002), and semantically ambiguous words are agsoorath their more frequent
sense (Duffy et al., 1988).

Broadly, we define a speaketisguistic experiencavith a given linguistic entity as
the number of times the speaker has encountered this emtityeipast. Accurately mea-
suring someone’s linguistic experience would (in the l)nnéquire a record of all text
or speech that person has ever been exposed to. Additiptiehe is the issue of how
experience is manifest in the syntactic processing meshanthe impracticality of this
has lead to alternative proposals for approximating lisficiexperience, such as norming
experiments or corpus studies.

Verb framesare an instance of linguistic experience whose influencesatesice pro-
cessing has been researched extensively in the literdthesframes of a verb determine
the syntactic complements it can occur with. For exampkeydrbknowcan appear with
a sentential complement (S frame) or with a noun phrase camgaht (NP frame). Norm-
ing studies can be conducted in which subjects are preswitiedragments such as (1)
and complete them to form full sentences.

(1) Theteacher knew._.

Subjects might complete the fragment usthg answer(NP frame) orthe answer
was falsgS frame). Verb frame frequencies can then be estimatecedssttpuencies with
which subjects use the S frame or the NP frame (Garnsey d€i98l7). An alternative to
the use of completion frequencies is the use of frequenditsed in a free production
task, where subjects are presented only with a verb, ands&esldo produce a sentence
incorporating this verb (Connine et al., 1984).

An alternative technique is to extract frequency informatfrom acorpus a large
electronic collection of linguistic material. Aalancedcorpus (Burnard, 1995; Francis
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et al., 1982), which contains representative samples df teott and speech in a broad
range of genres and styles, is often assumed to provide amoxapytion of human lin-
guistic experience. In our examples, all instancekrmiwcould be extracted from a cor-
pus, counting how often the verb occurs with the NP and theu@édt

Additionally, however, there is the issue of how experieisaaanifest in the syntactic
processing mechanism. A simple frequentist approach woelain that all our experience
has equal weight, whether an instance of exposure occleresetconds ago, or ten years
ago. This is true for the kinds of probabilistic models wecdiss here. Thus an interesting
difference between corpus estimates and norming studibatishe former approximates
the experience presented to a speaker, while the lattectetiee influence of that ex-
perience on a speaker’s preferences. Results in the literdroadly indicate that frame
frequencies obtained from corpora and norming studies elrgbty correlated (Lapata
et al., 2001; Sturt et al., 1999). It should be borne in mirayéver, that corpus frequen-
cies vary as a function of the genre of the corpus (Roland &f3ky 1998 compared text
and speech corpora) and also verb senses play a role (Roldocagsky, 2002).

Once language experience has been measured using normaogpois studies, the
next step is to investigate how the human language processsrexperience to resolve
ambiguities in real time. A number of studies have demortexdrthe importance déxical
frequencies. These frequencies can be categorical (eegmost frequent part of speech
for an ambiguous word, Crocker & Corley 2002), morphologi@ag)(, the tendency of a
verb to occur in a particular tense, Trueswell 1996), syitde.g., the tendency of a verb
to occur with a particular frame, as discussed above, Faat #082; Garnsey et al. 1997;
Trueswell et al. 1993), or semantic (e.g., the tendency @fuario occur as the object of a
particular verb, Garnsey et al. 1997; McRae et al. 1998;d?infy et al. 2000). It has been
generally argued that these different types of lexicaldestries form a set of interacting
constraints that determine the preferred parse for a giesesce (MacDonald, 1994;
MacDonald et al., 1994; Trueswell & Tanenhaus, 1994).

Other researchers (Brysbaert & Mitchell, 1996; Mitchelbét 1996) have taken the
stronger view that the human parser not only makes use afdeiiequencies, but also
keeps track ostructuralfrequencies. This view, known as tiening Hypothesisstates
that the human parser deals with ambiguity by initially sétey the syntactic analysis
that has worked most frequently in the past (see Fig. 1).

The fundamental question that underlies both lexical andttral experience mod-
els is thegrain problem What is the level of granularity at which the human sentence
processor “keeps track” of frequencies? Does it count &xiiequencies or structural
frequencies (or both), or perhaps frequencies at an indiates level, such as the fre-
guencies of individual phrase structure rules? The ladsuaption underlies a number
of experience-based models that are based on probabdstitext free grammars (see
Fig. 2 for details). Furthermore, at the lexical level, aianfie frequencies for verbs forms
counted separately (e.gnow, knew, knows, .) or are they combined into a set of total
frequencies for the verb’s base form (the lemkneow) (Roland & Jurafsky, 2002)?



3 Probabilistic models of sentence processing

Theories of human syntactic processing have traditior@ddiyn played the importance
of frequency (Fodor & Frazier, 1978; Marcus, 1980; Pritth#992), focusing rather on
the characterization of more general, sometimes languayensal, processing mecha-
nisms (Crocker, 1996). An increasing number of models, heweéncorporate aspects of
linguistic experience in some form or other. This is conaafly attractive, as an empha-
sis on experience may help to explain some of the rathelirsgyilyet often unaddressed,
properties of human sentence processing:

e Efficiency:The use of experience-based heuristics, such as choosngdlling
that was correct most often in the past, helps explain rapidsgemingly effortless
processing, despite massive ambiguity.

e Coverage:ln considering the full breadth of what occurs in linguistixperience,
processing models will be driven to cover more linguistiepbmena, and may look
quite different from the toy models which are usually depeld.

e PerformanceWide-coverage experience-based models can offer an extparof
how people rapidly and accurately understand most of thgulage they encounter,
while also explaining the kinds gfathologieswhich have been the focus of most
experimental and modeling research.

e RobustnessHuman language processing is robust to slips of the tongstuei-
cies, and minor ungrammaticalities. The probabilistic hetsms typically associ-
ated with experience-based models can often provide denstkrpretations even
in the face of such noise.

e Adaptation:The human language processor is finely tuned to the linguastriron-
ment it inhabits. This adaptation is naturally explaine@nécessing mechanisms
are the product of learning from experience.

Approaches in the literature differ substantially in howyrexploit linguistic experi-
ence. Some simply permit heterogeneous linguistic canssréo have “weights” which
are determined by frequency (MacDonald et al., 1994; Taagslet al., 2000), others
provide probabilistic models of lexical and syntactic pesing (Crocker & Brants, 2000;
Jurafsky, 1996), while connectionist models present yetrthér paradigm for modeling
experience (Christiansen & Chater, 1999, 2001; EIman, 198431

Crucially, however, whether experience is encoded via #eeqies, probabilities, or
some notion of activation, all these approaches share #wee tisht sentences and their
interpretations will be associated with some real-valuezghsure ofgoodnessnamely
how likely or plausible an interpretation is, based on ouompexperience. The appeal of
probabilistic models is that they acquire their paramefiens data in their environment,
offering a transparent relationship between linguistipexience and a model’s behavior.

Probabilistic models typically combine a symbolic compaitdat generates linguis-
tic structures (for example part of speech sequences caslynitrees) with a probabilistic



component that assigns probabilities to these structiites probabilities receive a cog-
nitive interpretation; typically a high probability is assed to correlate with a low pro-
cessing effort. This suggests that the human sentencegsaceill prefer the structure
with the lowest processing effort when faced with a syntaatnbiguity (see Fig. 1 for
an example). Variants of this general framework underly trposbabilistic models in the
literature (Brants & Crocker, 2000; Corley & Crocker, 2000; Gkecc& Corley, 2002;
Crocker & Brants, 2000; Hale, 2001; Jurafsky, 1996; Narapafaaurafsky, 1998). Be-
fore considering models of human processing in more detailfirst quickly summarize
the ideas that underlie probabilistic parsing.

3.1 Probabilistic grammarsand parsing

A probabilistic grammar consists of a set of symbolic ruleg( context free grammar
rules) annotated with rule application probabilities. 3&@robabilities can then be com-
bined to compute the overall probability of a sentence, oafoarticular syntactic analysis
of a sentence. The rule probabilities are typically derifrech a corpus, a large, annotated
collection of text or speech. In cognitive terms, the corpais be regarded as an approx-
imation of the language experience of the user; the proitiakik reflection of language
use, i.e., they provide a model of linguistic performance.

Many probabilistic models of human sentence processingased on the framework
of probabilistic context free grammars (PCFGs, see Mannin§cfiitze 1999, for an
overview). PCFGs augment standard context free grammarsrimtaing grammar rules
with rule probabilities. A rule probability expresses thileelihood of the lefthand side of
the rule expanding to its righthand side. As an example,idenshe rule VP— V NP
in Fig. 2a. This rule says that a verb phrase expands to a v#dwkd by a noun phrase
with a probability of 0.7.

In a PCFG, the probabilities of all rules with the same lefthaide have to sum to
one:

2) ViZP(Ni - =1
J

whereP(N' — ZJ) is the probability of a rule with the lefthand sitié and the righthand
sider. For example, in Fig. 2a the two rules VP V NP and VP— VP PP share the
same lefthand side (VP), so their probabilities sum to one.

The probability of a parse tree generated by a PCFG is compstéte product of its
the rule probabilities:

3 Pt)= [] PN=Q
(N=Q)eR

whereR s the set of all rules applied in generating the parsettree

It has been suggested that the probability of a grammar raldets how easy this
rule can be accessed by the human sentence processorKyui#36). Structures with
greater overall probability should be easier to constract] therefore preferred in cases
of ambiguity. As an example consider the PCFG in Fig. 2a. Traswgnar generates two
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parses for the the sentendehn hit the man with the booKhe first parsé; attaches the
prepositional phraseith the bookio the noun phrase (low attachment), see Fig. 2b. The
PCFG assigng the following probability, computed as the product of thelmbilities

of the rules used in this parse:

(4 P(t1) = 1.0x02x0.7x1.0x02x0.6x10x10x0.5
x1.0x 0.6 x 1.0 x 0.5=0.00252

The alternative parde, with the prepositional phrase attached to the verb phiaga (
attachment, see Fig. 2c¢) has the following probability:

(5) P(tz) = 10x02x03x07x1.0x10x0.6x10x0.6
x1.0x0.5x 1.0x 0.5=0.00378

Under the assumption that the probability of a parse is a oreasf processing ef-
fort, we predict that, (high attachment) is easier to process thgras it has a higher
probability.

In applying PCFGs to the problem of human sentence processmgnportant ad-
ditional property must be taken into account: incremetytalihat is, people face a local
ambiguity as soon as they hear the fragmaotin hit the man with .and must decide
which of the two possible structures is to be preferred. Enisils that the parser is able
to computeprefix probabilities for sentence initial substrings, as the $&si comparing
alternative (partial) parses. Existing models provide rageaof techniques for comput-
ing and comparing such parse probabilities increment8lipiits & Crocker, 2000; Hale,
2001; Jurafsky, 1996). For the example in Fig. 2, however,pfreference fot, would
be predicted even before the final NP is processed, sincadhalplity of that NP is the
same for both structures.

As noted earlier, a key aspect of PCFGs is that the rule prbtiabican be learned
from training data using a number of different learning aidons. One example is maxi-
mum likelihood estimation, which estimates the probapdita rule based on the number
of times it occurs in a training corpus annotated with pamsed. An alternative is the ex-
pectation maximization (EM) algorithm, which uses an urdated training corpus, i.e.,
a corpus that is not marked up with parse trees. The EM algordomputes a set of rule
probabilities that make the sentences in the corpus malbitilely for a given grammar
(Baum, 1972).

Note that the move from CFGs to PCFGs also raises a number ofathgutational
problems, such as the problem of efficiently computing thestnppobable parse for a
given input sentence. Existing parsing schemes can beeatitpP CFGs, including shift-
reduce parsing (Briscoe & Carroll, 1993) and left-cornerspay (Stolcke, 1995). These
approaches all use the basic Viterbi algorithm (ViterbioZpfor efficiently computing
the best parse generated by a PCFG for a given sentence.



3.2 Probabilistic models of human behavior

Jurafsky (1996) suggests using Bayes’ Rule to combinetstialqrobabilities generated
by a probabilistic context free grammar with other probigbi information. The model
therefore integrates multiple sources of experience irgimgle, mathematically founded
framework. As an example consider again the fragment in)en a speaker reads or
hearsknow he or she has the choice between two syntactic readingdying either an
S complement or an NP complement.

Jurafsky’s model computes the probabilities of these twadiregs based on two
sources of information: the overall structural probapibf the S reading and the NP read-
ing, and the lexical probability of the vekmowoccurring with an S or an NP frame. The
structural probability of a reading is independent of thdipalar verb involved; the frame
probability, however, varies with the verb. This predidtattin some cases lexical proba-
bilities can override structural probabilities.

Jurafsky’s model is able to account for a range of parsinfepeaces reported in the
psycholinguistic literature. However, it might be crided for its limited coverage, i.e.,
for the fact that it uses only a small lexicon and grammar, uadly designed to account
for a handful of example sentences. In the computationguistics literature, on the
other handproad coveragearsers are available that compute a syntactic structure fo
arbitrary corpus sentences with an accuracy of about 90%r(zka 2000). Psycholin-
guistic models should aim for similar coverage, which isadlg part of human linguistic
performance.

This issue has been addressed by Corley & Crocker’s (20000lwoeerage model
of lexical category disambiguation. Their approach usegiaim model to incrementally
compute the probability that a string of wordsg ... w, has the part of speech sequence
to...t, as follows:

(6) P(to...th,Wp...Wp) ~ ﬁ P(wi |t P(ti[ti—1)

Here, P(w;t;) is the conditional probability of wordy; given the part of speect,
andP(tj|ti_1) is the probability oft; given the previous part of speeth;. This model
capitalizes on the insight that many syntactic ambigultige a lexical basis, as in (7):

(7) The warehouse prices/makes.

These fragments are ambiguous between a reading in vgnichs or makesis the
main verb or part of a compound noun. After being trained oargd corpus, the model
predicts the most likely part of speech foprices correctly accounting for the fact that
people understangricesas a noun, butnakesas verb (Crocker & Corley, 2002; Frazier
& Rayner, 1987; MacDonald, 1993). Not only does the modebant for a range of
disambiguation preferences rooted in lexical categoryiguity, it also explains why, in
general, people are highly accurate in resolving such anitieg.

It must be noted that Corley and Crocker’s model is not a full ed@d syntactic pro-
cessing, as it only deals with lexical category disambigmaHowever, more recent work
on broad coverage parsing models has extended this appmadhsyntactic processing
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based on PCFGs (Crocker & Brants, 2000). This research deratasthat when such
models are trained on large corpora, they are indeed ablecouat for human disam-
biguation behavior such as that discussed by Jurafskytd®el@ork also demonstrates
that broad coverage probabilistic models maintain highral/accuracy even under strict
memory and incremental processing restrictions (Brants &cer, 2000).

Finally, it is important to stress that the kind of probadtii models we outline here
emphasizes lexical and syntactic information in estinggtie probability of a parse struc-
ture. To the extent that a PCFG is lexicalized, with the heaghoh phrase being projected
upwards to phrasal nodes (Collins, 1999), some semantimmafiton may also be implic-
itly represented in the form of word co-occurrences (e.gadihead co-occurrences). In
addition to being incomplete models of interpretation fsléxical dependency probabil-
ities are poor at modeling the likelihood of plausible bupnmbable structures. Proba-
bilistic parsers in their current form are therefore onlypegpriate for modeling syntactic
processing preferences. Probabilistic models of humarasgainterpretation and plau-
sibility remain a largely unexplored area of research.

3.3 Towards quantitative models of performance

So far, probabilistic models of sentence processing hale lmen used to account for
qualitative data about human sentence processing (e jgretict whether a garden path
occurs). By quantifying the likelihood of competing stnuictl alternatives, however, such
models would appear to offer some hope for more quantita@oeunts of gradient be-
havioral data. (e.g., to predict the strength of a gardeh)pat general terms, this would
entail that the probability assigned to a syntactic stngcisito be interpreted as a measure
of the degree of processing difficulty triggered by this stie. Gradient processing dif-
ficulty in human sentence comprehension can be determirpatienentally, for example
by recording reading times in self-paced reading studiezyetracking experiments. An
evaluation of a probabilistic model should therefore bedtared by correlating the prob-
ability predicted by the model for a given structure withdeg times (and other indices
of processing difficulty).

This new way of evaluating processing models raises a nuoflagrestions. Most im-
portantly, we need an explidinking hypothesisvhich specifies which quantity computed
by the model would be expected to correlate with human peigsiata. One possible
measure of processing difficulty would be the probabilittiaaf alternative analyses
(Crocker & Brants, 2000; Jurafsky, 1996). That is, in additto prediction the highest
probability parse to be the easiest, we might expect the aosivitching to a less pre-
ferred parse to be correlated with the probability ratiotwd preferred parse with respect
to the alternative.

Hale (2003) suggest another interesting alternative, awiding a probabilistic treat-
ment of processing load. Specifically, he claims that thedwayr word processing com-
plexity is dominated by the amount offormationthe word contributes concerning the
syntactic structure. Formally, he characterizes this imseof entropy reductionas de-
termined during incremental parsing with a probabilistiagmar. Hale’s model is thus
in stark contrast with the previous probabilistic parsimga@unts, in that he does not as-
sume that switching from a preferred parse to an altern&itlee primary determinant of



processing cost. Rather, it is the extent to which a giverdweduces uncertainty during

parsing which is correlated with reading time data. To ddtde’s model has been evalu-
ated on rather different kinds of structures than the prdiséib parsers discussed above.
Reconciliation of the probabilistic disambiguation vessutropy reduction approaches —
and their ability to qualitatively model reading time dateemains an interesting area for
future research.

3.4 Evidence against likelihood in sentence processing

Experience-based models often assume some frequenay-laaskiguity resolution
mechanism: prefer the interpretation which has the highlesiihood of being correct,
namely the higher relative frequency. One well-studied igunby is prepositional phrase
attachment:

(8) John hit the mandp with the book ].

Numerous on-line experimental studies have shown an dvamflerence for high
attachment, i.e., for the association of the PP with the (eidp, as the instrument abit)
(Ferreira & Clifton, 1986; Rayner et al., 1983). Corpus anasysiowever, reveal that low
attachment (e.qg., interpreting the PP as a modifighefmar) is about twice as frequent
as attachment to the verb (Hindle & Rooth, 1993). Such ewdgnesents a challenge
for the Tuning Hypothesiswhich relies on such purely structural frequencies, buy ma
be accounted for by lexical preferences for specific verlasgfan & McClelland, 1988).
Another problem for structural tuning comes from three sélative clause attachments
analogous to that in Fig. 1, but containing an additional N&cahment site:

(9) [high The friend ] of [nigthe servant ] of | the actress Jdcwho was
on the balcony ] died.

While corpus analysis suggest a preferenceléw > middle > high attachment
(though such structures are rather rare), experimentdeege suggests an initial pref-
erence folow > high > middle(with middle being in fact very difficult) (Gibson et al.,
1996a,b). A related study investigating noun phrase catijoim ambiguities (instead of
relative clause) for such three site configurations rewkalsimilar asymmetry between
corpus frequency and human preferences (Gibson &i1&eth 1999).

Finally, there is recent evidence against lexical verb ggreferences:

(10) The athlete realizeds[[np her shoes/goals | were out of reach ].

Reading times studies have shown an initial preferencenterpretingher goalsas

a direct object (Pickering et al., 2000), even when the vernnare likely to be followed
by a sentence complement (see also Sturt et al. 2001, foemsgdagainst the use of
such frame preferences in reanalysis). These findings rbgidken as positive support
for the Tuning Hypothesis, since object complements areerfrequent than sentential
complements overall (i.e., independent of the verb). Riogeet al. (2000), building on
previous theoretical work (Chater et al., 1998), suggedtttteaparser may in fact still be
using an experience-based metric, but not one which magslikelihood alone.
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4 Probabilistic models of gradient grammaticality

As argued in detail in the previous section, probabilistiangmars can be used to con-
struct plausible models of human language processingdb@séhe observation that the
disambiguation decisions of the human parser are guidecxpgrience. This raises the
guestion whether experience-based models can also beodedeor other forms of lin-
guistic behavior, such as gradient grammaticality judgisierhis issue will be discussed
in this section.

4.1 Probabilitiesvs. degrees of grammaticality

We might want to conjecture that probabilistic models susHP&€FGs can be adapted
S0 as to account for gradient grammaticality, with proliaibd being reinterpreted as de-
grees of grammaticality. The underlying assumption of sartlpproach is that language
experience (approximated by the frequencies in a balanagalis) not only determines
disambiguation behavior, but also determines (or at led#kiances) the way speakers
make grammaticality judgments. The simplest model wouldreewhere the probability
of a syntactic structure (as estimated from a corpus) icthreorrelated with its degree
of grammaticality. This means that a speaker, when requoedake a grammaticality
judgment for a given structure, will draw on his or her expade with this structure to
make this judgment. Manning (2003) outlines a probabidlistodel of gradient grammat-
icality that comes close to this view. (However, he also agkedges that such a model
would have to take the context of an utterance into accoortsdo factor out linguisti-
cally irrelevant factors, including world knowledge.)

Other authors take a more skeptical view of the relationbeigveen probability and
grammaticality. Keller (2000b), for instance, argues thatdegree of grammaticality of
a structure and its probability of occurrence in a corpustaredistinct concepts, and it
seems unlikely they can both be modeled in the same pros@abiiiamework. A related
point of view is put forward by Abney (1996), who states thpat]é must also distin-
guish degrees of grammaticality, and indeed, global gosslnieom the probability of
producing a sentence. Measures of goodness and probalditynathematically similar
enhancements to algebraic grammars, but goodness alos@aoibgetermine probability.
For example, for an infinite language, probability mustradtely decrease with length,
though arbitrary long sentences may be perfectly good” @&bhth996, 14). He also gives
a number of examples for sentences that have very improdaltiperfectly grammatical
readings. A similar point is made by Culy (1998), who argued the statistical distri-
bution of a construction does not bear on the question of hdnat is grammatical or
not.

Riezler (1996) agrees that probabilities and degrees ofigraticality are to be treated
as separate concepts. He makes this point by arguing tlat ilakes the notion of degree
of grammaticality seriously for probabilistic grammartsete is no sensible application to
the central problem of ambiguity resolution any more. A @oitistic grammar model
cannot be trained so that the numeric value is assigned twuetwte can function both
as a well-formedness score (degree of grammaticality) arad@obability to be used for
ambiguity resolution.

11



Keller & Asudeh (2002) present a similar argument in the egnof Optimality The-
ory (OT). They point out that if an OT grammar were to modelhbobrpus frequencies
and degrees of grammaticality, then this would entail thatgrammar incorporates both
performance constraints (accounting for frequency effeabhd competence constraints
(accounting for grammaticality effects). This is highlydasirable in an OT setting, as it
allows the crosslinguistic re-ranking of performance anthpetence constraints. Hence
such a combined competence/performance grammar prebdatt€rosslinguistic differ-
ences can be caused by performance factors (e.g., mematgtions). Clearly, this is a
counterintuitive consequence.

A further objection to a PCFG approach to gradient grammitijda as follows. As-
signing probabilities (and thus degrees of grammaticaldygradient structures requires
the grammar to contain rules used in “ungrammatical” stmeg (which are of zero or
low probability). It might not be plausible to assume thatlstules are part of the mental
grammar of a speaker. However, any realistic grammar ofrayuoccurring language
(i.e., a grammar that covers a wide range of constructioastes, domains, and modal-
ities) has to contain a large number of low-frequency rulegaay, simply in order to
achieve broad coverage and robustness. We can thereform@dsat these rules are also
being used to generate structures with a low degree of graicatity.

4.2 Probabilistic grammarsand gradient acceptability data

The previous section reviewed a number of arguments reggtte relationship between
probabilities (derived from corpus frequencies) and degi@& grammaticality. However,
none of the authors cited offers any experimental resuitsqgous data) to support their
position; the discussion remains purely conceptual. A remab empirical studies have
recently become available to shed light on the relationbbiveen probability and gram-
maticality.

Keller (2003) studies the probability/grammaticalitytdistion based on a set of gra-
dient acceptability judgments for word order variation ier@an. The data underlying
this study were gathered by Keller (2000a), who used an erpetal design that crossed
the factors verb order (initial or final), complement ordsulgject first or object first),
pronominalization, and context (null context, all focusbct focus, and object focus
context). Eight lexicalizations of each of the orders werdged by a total of 51 native
speakers using a magnitude estimation paradigm (Bard,et396). The results show
that all of the experimental factors have a significant eféecjudged acceptability, with
the effects of complement order and pronominalization ntetéd by context. A related
experiment is reported by Keller (2000b), who uses dittaresiverbs (i.e., complement
orders including an indirect object) instead of transitwves.

Keller (2003) conducts a modeling study using the matepélkeller (2000a) and
Keller (2000b), based on the syntactically annotated Negraus (Skut et al., 1997).
He trains a probabilistic context-free grammar on Negra @ewehonstrates that the sen-
tence probabilities predicted by this model correlateisicamtly with acceptability scores
measured experimentally. Keller (2003) also shows thatdineslation is higher if a more
sophisticated lexicalized grammar model (Carroll & Root®98) is used.

This result is not incompatible with the claim that there idieergence between the
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degree of acceptability of a sentence and its probabilitycolurrence, as discussed in the
previous section. The highest correlation Keller (200pprés is .64, which corresponds
to 40% of the variance accounted for. However, this is addewn a data set (Experi-
ment 1) which contains a contrast between verb final (fulpngmatical) and verb initial
(fully ungrammatical) sentences; it is not surprising tad@CFG trained on a corpus of
fully grammatical structures (but not on ungrammatical9)rean make this distinction
and thus achieves a fairly high correlation. On a corpus of verb final structures that
show relatively small differences in acceptability (Expent 2), a much lower (though
still significant) correlation of .23 is achieved. This agsponds to only 5% of the vari-
ance accounted for, which means that the PCFG only models lh mmportion of the
variance. In other words, Keller's (2003) results indidéizt the degree of grammaticality
of a sentences is largely determined by factors other tlsgorabability of occurrence (at
least as modeled by a PCFG).

A related result is reported by Kempen & Harbusch (2004), adp@n deal with word
order variation in German. They compare 24 word orders abthby scrambling the ar-
guments of ditransitive verbs (their data contained allsge permutations of subject,
direct object, and indirect object, with zero or one of thguaments pronominalized).
Frequencies were obtained for these 24 orders from twoemritbrpora and one spoken
corpus and compared against gradient grammaticality jushgsnfrom Keller’'s (2000b)
study. The results are surprising in that they show thattiemuch less word order vari-
ation than expected; just four orders account for the vagonitya of corpus instances.
Furthermore, Kempen & Harbusch (2004) demonstrate what tiven thefrequency-
grammaticality gapall the word orders that occur in the corpus are judged aklyig
grammatical, but some word orders that never occur in thpuonevertheless receive
grammaticality judgments in the medium range. In other wptbis result is consistent
with Keller's (2003) finding: it confirms that there is only anperfect match between
the probability of a structure (as estimated from its corfseguency) and its degree of
grammaticality (as judged by a native speaker). Kempen &ttsech (2004) explain the
frequency-grammaticality gap in terms of sentence pradocthey postulate aanoni-
cal rule that governs word order during sentence production. Thgmeht patterns can
then be explained with the additional assumption that tinggg@ants in a grammaticality
judgment task estimate how plausible a given word orderis@sutcome of incremental
sentence production (governed by the canonical rule).

Featherston (2004) presents another set of data that sigati®h the relationship
between corpus frequency and grammaticality. The lingughenomenon he investi-
gates is object co-reference for pronouns and reflexivesam@n (comparing a total
of 16 co-reference structures, e.tup; ihmy *him.ACC him.DAT’, ihn; sich ‘him.ACC
REFL.DAT’). In a corpus study, Featherston (2004) finds thay one of these 16 co-
reference structures is reasonably frequent; all otheicires occur once or zero times
in the corpus. Experimentally obtained grammaticalityadsttow that the most frequent
structure is also the one with the highest degree of grancalayi. However, there is a
large number of structures that also receive high (or meyignaammaticality judgments,
even though they are completely absent in the corpus. Thidtrs fully compatible with
the frequency-grammaticality gap diagnosed by Kempen &tisch (2004). Like them,
Featherston (2004) provides an explanation in terms oksestproduction, but one that
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assumes a two-stage architecture. The first stage invdieesumulative application of
linguistic constraints, the second stage involves the @tditive selection of a surface
string. Grammaticality judgments are made based on theubofghe first stage (hence
constraints violation are cumulative, and there are migltqutput forms with a similar

degree of grammaticality). Corpus data, on the other hamdperduced as the output
of the second stage (hence there is no cumulativity, and asiyall number of optimal

output forms can occur).

5 Conclusion

There is clear evidence for the role of lexical frequencgetf in human sentence process-
ing, particularly in determining lexical category and vérbme preferences. Since many
syntactic ambiguities are ultimately lexically basedgedtrevidence for purely structural
frequency effects, as predicted by thening Hypothesigemains scarce (Jurafsky, 2002).

Probabilistic accounts offer natural explanations foiidakand structural frequency
effects, and a means for integrating the two. This integratwhich is crucial to obtain
a coherent model of frequency effects in human parsing, egnan the large body of
research on lexicalized parsing that exists in computatitinguistics (e.g., Carroll &
Rooth 1998; Charniak 2000; Collins 1999). Probabilistic Medéso offer good scalabil-
ity and a transparent representation of symbolic strustarel their likelihood. Further-
more, they provide an inherently gradient characteriratibsentence likelihood, and the
relative likelihood of alternative interpretations, prising the possibility of developing
truly quantitative accounts of experimental data. As na&adier, however, probabilistic
models of semantic interpretation remains a relativelyxpfeged area, and is a weakness
in the current state of research.

More generally, however, experience-based models notaffeéy an account of spe-
cific empirical facts, but can more generally be viewedadi®nal (Anderson, 1990). That
is, their behavior typically resolves ambiguity in a mantteat has worked well before,
maximizing the likelihood of correctly understanding agumus utterances. This is con-
sistent with the suggestion that human linguistic perforoesis indeed highly adapted to
its environment and the task rapidly of correctly underdiag language (Chater et al.,
1998; Crocker, to appear). It is important to note howeveat #uch adaptation based
on linguistic experience does not necessitate mechanigmshvare strictly based on
frequency-based estimations of likelihood (PickeringletZz®00). Furthermore, different
kinds and grains of frequencies may interact or be combinezbmplex ways (McRae
etal., 1998).

It must be remembered, however, that experience is not tleedsebterminant of am-
biguity resolution behavior (Gibson & Pearimutter, 1998pt only are people clearly
sensitive to immediate linguistic and visual context (Tdreus et al., 1995), some pars-
ing behaviors are almost certainly determined by altevegbrocessing considerations,
such as working memory limitations (Gibson, 1998). Any ctetgaccount of gradience
in sentence processing must explain how frequency of expeei linguistic and non-
linguistic knowledge, and cognitive limitations are masif in the mechanisms of the
human sentence processor.
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An even greater challenge to the experience-based view$epted by gradient gram-
maticality judgments. A series of studies is now availahbgt tompares corpus frequen-
cies and gradient judgments for a number of linguistic pinegwa (Featherston, 2004,
Keller, 2003; Kempen & Harbusch, 2004). These studies atdithat there is no straight-
forward relationship between the frequency of a structumekits degree of grammatical-
ity, which indicates that not only experience, but also ggeaaf processing mechanisms
(most likely pertaining to sentence production) have toriw®ked in order to obtain a
plausible account of gradient grammaticality data.
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Figure 1: Evidence from relative clause (RC) attachment gmtyi has been taken to
support an experience-based treatment of structural digamtion. Such constructions
are interesting because they do not hinge on lexical pretee When reading sentences
containing the ambiguity depicted above, English subjdetaonstrate a preference for
low-attachment (wheréhe actresawill be further described by the R@ho ...), while
Spanish subjects, presented with equivalent Spanishremgeprefer high-attachment
(where the RC concerribe servant (Cuetos & Mitchell, 1988). Th&uning Hypothesis
was proposed to account for these findings (Brysbaert & Mitch996; Mitchell et al.,
1996), claiming that initial attachment preferences stidag resolved according to the
more frequent structural configuration. Later experimduatther tested the hypothesis,
examining subjects’ preferences before and after a pefibdaweeks in which exposure
to high or low examples was increased. The findings confirrnatdven this brief period
of variation in “experience” influenced the attachment prefices as predicted (Cuetos
et al., 1996).
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Figure 2: An example for the parse trees generated by a piiatielcontext free grammar
(PCFG). (a) The rules of a simple PCFG with associated ruleiggin probabilities.
(b) and (c) The two parse trees generated by the PCFG in (&)daentencdohn hit the

man with the book
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