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Abstract

An ongoing issue in visual cognition concerns the roles played by low- and high-level 

information in guiding visual attention, with current research remaining inconclusive 

about the interaction between the two. In this study, we bring fresh evidence into this 

long-standing debate by investigating visual saliency and contextual congruency during 

object naming (Experiment 1), a task in which visual processing interacts with language 

processing.  We then compare the results of this experiments to data of a memorization 

task using the same stimuli (Experiment 2).  In Experiment 1, we find that both saliency 

and congruency influence visual and naming responses, and interact with linguistic 

factors. In particular, incongruent objects are fixated later and less often than congruent 
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ones. However, saliency is a significant predictor of object naming, with salient objects 

being named earlier in a trial. Furthermore, the saliency and congruency of a named 

object interact with the lexical frequency of the associated word and mediate the time-

course of fixations at naming. In Experiment 2, we find a similar overall pattern in the 

eye-movement responses, but only the congruency of the target is a significant predictor, 

with incongruent targets fixated less often than congruent targets. Crucially, this finding 

contrasts with claims in the literature that incongruent objects are more informative than 

congruent objects by deviating from scene context, and hence need a longer processing. 

Overall, this study suggests that different sources of information are interactively used to 

guide visual attention on the targets to be named, and raises new questions for existing 

theories of visual attention.

Keywords: Eye-movements; object naming; scene understanding; cross-modal 

processing; visual guidance.
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Introduction

Research in visual cognition has demonstrated that the allocation of visual attention is 

influenced by both low-level properties of the scene percept and high-level conceptual 

knowledge related to it. Low-level properties are perceptual features of a scene (e.g., 

color) and can be quantified using measures such as saliency (Itti & Koch, 2000). 

Conversely, high-level knowledge refers to semantic properties of the scene, such as the 

category that objects belong to (Zelinsky & Schmidt, 2009) and, more generally, 

contextual information conveyed by a scene (Brooks, Rasmussen, & Hollingworth, 2010; 

Eckstein, Drescher, & Shimozaki, 2006). Depending on the type of task performed, visual 

attention might rely more on stimulus- or knowledge-based features (Hayhoe & Ballard, 

2005; Einhauser, Rutishauser, & Koch, 2008). In particular, saliency is a good predictor 

of visual attention when there are no specific target objects set by the task. During free-

viewing (Parkhurst, Law, & Niebur, 2002) or memorization (Underwood & Foulsham, 

2006), saliency can predict up to the first five fixations better than chance. However, 

during tasks where visual attention is cued to a specific target (e.g., visual search), 

saliency is a poor predictor of performance (Henderson, Brockmole, Castelhano, & 

Mack, 2007; Einhauser, Rutishauser & Koch, 2008; Henderson, Malcolm, & Schandl, 

2009). In this case, low-level information has to be modulated by contextual information 

to make better predictions of fixation location (e.g., PEDESTRIANS are often found on 
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the STREET, Torralba, Oliva, Castelhano, & Henderson, 2006, Ehinger, Hidalgo-Sotelo, 

Torralba & Oliva, 2009). 

Understanding the bi-directional interplay between saliency and context has critical 

implications for developing and refining theories of visual cognition. Two theoretical 

positions have been advocated in the literature so far, representing extreme ends of the 

bottom-up/top-down debate of visual attention guidance: First, the stimulus-driven 

approach based on a bottom-up architecture of the visual system assumes that target 

selection is driven by the low-level features of the incoming scene percept (Walther & 

Koch, 2006). In this framework, the recognition of objects becomes collateral to the fact 

that salient regions correlate with the presence of objects (Elazary & Itti, 2008). 

Alternatively, the knowledge-based approach, exemplified by the Cognitive Relevance 

Framework (Henderson et al., 2009), assumes that locations are targeted according to 

their contextual relevance in relation to the task performed. Cognitive relevance is 

derived from target information in conjunction with the scene context in which the target 

occurs (Malcolm & Henderson, 2010; Castelhano & Heaven, 2010).

Research continues to elucidate the interplay between saliency and contextual 

information in gaze guidance (Foulsham & Underwood, 2011), and the definition and 

applicability of both concepts are subject to revision (Baluch & Itti, 2011); especially 
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when these factors are observed in the context of real-world behavior (Tatler, Hayhoe, 

Land, & Ballard, 2011). 

Real-world contexts are often dynamic, and it is clear that a combination of bottom-up 

and top-down information is used to optimize the allocation of visual attention by 

minimizing uncertainty, hence maximizing the likelihood of achieving the goals set by 

the task.  

However, the debate surrounding saliency and context stems from conflicting evidence 

found in studies that investigate their interaction and their impact on visual attention 

during static-picture viewing.

 For example, Underwood et al. (2008) investigated the bottom-up/top-down interplay by 

utilizing an odd-object task in which participants were given a scene containing a 

contextually incongruous object (i.e., an object that violates the contextual expectation of 

a scene, such as a COW on a SKI SLOPE).  In recognition tasks, odd objects are 

identified less readily than congruous objects (e.g., Davenport & Potter, 2004), but, 

paradoxically, various studies indicate that incongruent objects attract fixations earlier 

(e.g, Loftus & Mackworth, 1978; Underwood, Humphrey, & Cross, 2007; Bonitz & 

Gordon, 2008;  but see De Graef, Christiaens, and Ydewalle, 1990; Henderson, Weeks & 

Hollingworth, 1999; and Vo & Henderson, 2009, 2011). 
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Thus, despite the inhibited recognition performance of incongruent objects, their 

contextual incompatibility seems to attract visual attention earlier than congruent objects. 

In order to explain this paradox, Underwood et al. (2008) argued that in the studies which 

found effects of contextual incongruence, incongruent objects might have been more 

salient than congruous ones, meaning that early fixations to the target object would be 

due to low- rather than high-level features. This intuition stemmed from previous work 

by the authors (Underwood & Foulsham 2006), where saliency and congruency were also 

manipulated but not in a controlled and systematic way1. In order to formally test this 

hypothesis, Underwood, et al. (2008) asked participants to complete a comparative visual 

search task in which they had to spot a changed object in two otherwise identical, side-

by-side scenes. Critically, the saliency and contextual congruency of the target object was 

manipulated independently, and the time to first fixate the object was measured. The 

results showed contextually incongruous objects (e.g., a tin of tomatoes in a washing 

machine) were fixated earlier, but saliency had no effect. 

Interestingly, these results are at odds with what the same authors observed  in previous 

work. Underwood and Foulsham (2006) found that semantic incongruency boosted the 

first fixation to the incongruent object only during memorization, but not in search. 

Again, only in memorization, they also found an effect of visual saliency: a salient object 

1 Only congruency was tested through a rating task, where participants were asked to rate how likely (1-
9) an object was to occur with the rest of the scene. 
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was fixated earlier than a non-salient object. The effect of saliency, however, did not 

interact with semantic incongruency in any of the two tasks. Underwood et al. (2008) did 

not discuss the difference with their previous work, and instead speculated that the 

paradox between the visual system's inhibition for recognizing incongruous objects, but 

apparent facilitation in having visual attention drawn to these same objects, could be due 

to participants' pre-attentively2 locating objects in a scene whose low-level features 

deviate from the overall gist. For example, Li, Van Rullen, Koch, and Perona (2002) 

found that certain objects could be identified without attention; however, later research by 

Evans and Treisman (2005) argued that the recognition without attention found by Li et 

al. (2002) might be due to the target objects’ intermediate distinctive features which are 

detected without having to operate attentional binding. Moreover, within the context of 

feature-driven attentional allocation, the idea that there is a pre-attentive stage of 

attention appears to be contentious. Studies on predictive processes of visual search, in 

fact, suggest that initial processing might be driven by re-configuration strategies tuning 

the visual system to prioritize features of the incoming stimuli that are useful to perform 

the task at hand (e.g., Di Lollo, Kawahara, Zuvic, & Visser, 2001; Enns and Lleras, 

2008). Furthermore, problems with defining a pre-attentive early stage of visual 

processing emerge also when looking at electro-physiology data, where areas other than 

V1 are found to be active already after 30 ms from the onset of the visual percept (see 

Foxe and Simpson, 2002).

2 The authors used the term pre-attentively when referring to the early stage of gist processing. In this 
paper, we will not make a distinction between different attentional stages.  
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 An alternative way to explain the mechanisms of contextual expectation guiding visual 

attention, which does not distinguish between attentive stages of processing, is predictive 

coding (see Clark, 2012, for a synthesis of this perspective). The predictive coding 

account explains the interaction between top-down representational knowledge and 

bottom-up perceptual information in terms of error correction (e.g., Rao & Ballard, 1999, 

Hinton, 2007, Friston 2010). At the core of predictive coding is a hierarchical generative 

network model, in which the expected information, e.g., the fact that a CUP is usually 

found on a TABLE, is actively utilized to interpret and integrate incoming information. If 

the incoming information matches, the representation is consolidated; if it does not 

match, the representation is updated using the prediction error. Within this framework, an 

incongruent object violating contextual expectations, e.g., a CUP in a BATHTUB, 

triggers a prediction error. This error is used to update our contextual expectations, i.e., 

CUP can be also found in BATHTUBS. For visual attention, this would imply longer 

search latencies for the indentification of incongruent objects, as there are many 

contextually congruent objects interfering with its identification, i.e., attention will be 

allocated on the most likely objects available in the context. Such interference between 

contextually congruent objects would also mediate how much it would be attended, e.g., 

total fixation duration, observed on the incongruent object. In particular, a shorter total 

fixation duration is expected on the incongruent object. As attentional resources are 

primarily allocated to contextually congruent objects, an incongruent object would 

be less likely re-fixated.
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Our study focuses on the interaction between saliency and congruency, rather than on 

temporal stages of visual attention, so we will not enter directly into the controversy 

about pre-attentive processes when interpreting our results. However, we will draw 

parallels between what we observe and the predicting coding framework, as it offers a 

natural way to interpret our results. 

In the present study, we aim to recreate the manipulation of saliency and contextual 

congruency used in Underwood et al.’s (2008) study in order to address the bottom-

up/top-down issue without some of the limitations of Underwood et al.’s results: The 

absence of saliency effects in their study might be due to the comparative nature of the 

search task, which encouraged participants to judge the contextual similarity of the two 

scenes rather than rely on differences in low-level information in order to identify the 

changed object. Furthermore, this effect could have been reinforced by the co-presence of 

both scenes, which led participants to develop a precise comparative scanning strategy 

(Gajewski & Henderson, 2005; Underwood, 2009). 

Here we utilize an object naming task, in which participants had to name five objects 

within a scene image (Experiment 1), in order to investigate how attentional guidance is 

modulated by contextual and image features when search objects are naming targets. 

Moreover, we compare the eye-movement responses in this task with responses observed 
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during memorization (Experiment 2), which is a task commonly used in the literature on 

contextual effects in visual attention (e.g., Henderson, et. al., 1999, Underwood & 

Foulsham, 2006). 

In the object naming task, mechanisms of linguistic encoding exploit the available visual 

information to select naming targets. This makes it possible to observe how low- and 

high-level information of the scene is attended and used to generate the naming 

sequences. The naming task has also other methodological advantages over previously 

used tasks. First, it does not require two scenes to be displayed side-by-side, thus we 

avoid inducing a comparative scanning strategy.  Second, object naming overcomes 

another important limitation of Underwood et al. (2008) and other related studies in the 

literature: saliency and context have always been studied in purely visual tasks, in which 

only mechanisms of visual attention are actively engaged. In many realistic cognitive 

tasks, however, visual attention has to cooperate with other modalities (motor control, 

auditory processing, language processing) to achieve specific goals (e.g., Hayhoe & 

Land, 2005). This cooperation inevitably must draw upon both low- and high-level visual 

information; an interaction of the two types of information, and other information 

involved (linguistic in our study) is therefore more likely to manifest. 

In language production tasks, visual attention retrieves information to be used when 

uttering words or sentences. The relevant linguistic material, such as the nouns referring 
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to the visual objects, is selected based upon the scene information provided by the visual 

system. Note that we are not making the claim that visual attention is directly involved in 

the retrieval of lexical information, but rather pointing out that visual attention is used to 

operate the first selection of the objects to be named; and that this selection is modulated 

by linguistic properties of the objects being attended. We therefore assume a cross-modal 

architecture in which information is accessed, shared and exchanged synchronously 

across different modalities. Moreover, when we discuss visual attention and language 

processing, we are not ascribing to them any goal or intention, rather we elucidate their 

cross-modal interaction.

Given this architecture and the information flow it entails, it seems reasonable to assume 

that low- and high-level visual mechanisms interact closely in a language production task 

such as object naming. This motivates our use of object naming in the present paper as a 

means of uncovering the interaction between saliency and contextual congruency; and to 

examine the role played by language processing in it. 

Naming is a well-studied task in psycholinguistics, where it is used to investigate the 

linguistic mechanisms underlying language production (e.g., Levelt, Vorberg, Meyer, 

Pechmann, & Havinga, 1991; Meyer, Sleiderink, & Levelt, 1998; Griffin & 

Oppenheimer, 2006), as well as more generally to study the role of contextual 

information (e.g., Bartram, 1974; Snodgrass, 1980; Potter, Kroll, Yachzel, Carpenter, & 
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Sherman, 1986; Griffin & Bock, 1998; Damian, Vigliocco, & Levelt, 2001; Hocking, 

McMahon, & Zubicaray, 2009). Psycholinguistic results have given rise to an interactive 

account of naming, in which several types of constraints, linguistic and non-linguistic, 

mediate the selection of lexical items and influence the associated response times. On 

one hand, linguistic information such as lexical frequency (Meyer et al., 1998, Almeida, 

et al., 2007) or word length (Zelinsky & Murphy, 2000) modulates the associated gaze 

duration (less frequent or longer words correlate with longer gaze durations). On the 

other hand, the linguistic act of naming is constrained by the sentential context in which it 

is situated (Griffin & Bock, 1998), as well as by the semantics of surrounding objects 

(Damian et al., 2001; Hocking et al., 2009). Evidence for this is also found in more 

complex production tasks, such as scene description, which is influenced by low-level 

visual information (e.g., the cueing of a location through a brief flash, Gleitman, January, 

Nappa, & Trueswell, 2007) or by high-level semantic properties of objects (e.g., animacy, 

Coco & Keller, 2009).

However, none of the existing studies in either the visual cognition or the 

psycholinguistic literature directly investigates the interaction of visual saliency and 

contextual congruency during object naming. We use this simple linguistic task to shed 

light on the interaction between these factors, which are fundamental to scene 

understanding, and to investigate how linguistic mechanisms can mediate their access and 

use. The goal is to provide new evidence on how visual attention and language 
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processing exploit multi-modal information to build a common workspace, share 

resources, and draw joint inferences to tackle a contextually situated linguistic task.  The 

insights obtained could form a first step towards an integrated theory of cross-modal 

processing that explains how multi-modal information is concurrently accessed and 

synchronously employed to perform cognitive tasks.

The current study investigates the interplay between low-level visual information 

(saliency) and high-level control (contextual congruency) during object naming 

(Experiment 1). In a follow-up experiment, we then compare the eye-movement 

responses observed during naming with the results of a memorization task (Experiment 

2). 

Experiment 1

Participants were asked to name five objects in a naturalistic scene. Each scene contained 

an object of interest whose saliency and congruency were manipulated. We hypothesize 

that both sources of information have to be integrated in order to optimally select objects 

to be named. In contrast to goal-directed tasks (e.g., search), a naming task is not cued to 

a single target object; instead, every object is a potential target. Therefore, the relevance 

of an object is determined solely by the viewer. The viewer can rely on an object's 

saliency, contextual congruency, or on both.  
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The viewer can also use linguistic knowledge in combination with these other two 

sources of information to select the object to name.  Thus, a visually salient object could 

be fixated more often than a less salient one, just by virtue of its low-level properties 

(e.g., Elazary & Itti, 2008), leading to greater chance of it being named. This expectation 

would challenge a strict interpretation of goal-oriented theories of visual guidance (e.g., 

Einhauser, Rutishauser & Koch, 2008), in which objects are selected on the basis of the 

contextual information provided by the scene when a task demands top-down control. 

However, naming objects demands an extensive processing of contextual information, as 

objects that are contextually similar are likely to be co-activated (Huettig and Altmann, 

2005), hence facilitating their naming. Moreover, the importance of contextual co-

occurrence is also observed as a facilitating factor during visual search (e.g., Mack and 

Eckstein, 2011, Hwang, Wang, & Pomplun, 2011).

 For these reasons, we expect cognitive relevance, and the co-occurrence statistics on 

which it draws, to be a crucial component of naming. In particular, contextually 

congruent objects are more likely to be attended and consequently selected for naming.

Additionally, Underwood et al.’s (2008) account hypothesizes that the incongruent target 

object will have shorter latencies to first fixation than the congruent target objects, as it is 
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rapidly identified as deviant already during scene gist processing. In contrast, the 

interpretation of the Cognitive Relevance Framework predicts no difference in search 

latencies, i.e., the time until first fixation, between incongruent and congruent objects, as 

the scene gist will direct gaze without knowledge of each object's properties. A naming 

task benefits from contextual expectations, as words for semantically related objects are 

more easily retrieved from the lexicon and spelled out, than words for objects deviating 

from the context. Thus, we expect an incongruent object to be looked at, for the first time 

(search latency), later than a congruent object. Visual attention would be directed first to 

objects fitting the contextual congruency of the scene. This expectation would be 

compatible with the predictive coding framework: attention is initially captured by 

contextually congruent objects which interfere with one another in representational space, 

hence delaying the identification of the incongruent object.  Visual saliency, however, is 

expected to compensate for this incongruency effect, by boosting search latency. So, a 

visually salient, incongruent object, should be identified at the same speed of  a non-

salient congruent object. As visual saliency boosts target identification, then a visually 

salient, and contextually congruent object should be the quickest to be looked at.

Moreover, if congruent objects are more likely targets, they should be attended  for longer 

(e.g., total gaze) than incongruent objects. Contextually congruent objects compete for 

attentional resources, hence reducing the overall number of fixations on the incongruent 

object. Furthermore, the fact that the semantics of incongruent objects deviate from the 
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other objects in the context makes them more memorable, hence demanding less 

attentional processing. This effect, thus, is expected to carry over in the memorization 

task presented in Experiment 2.  On this measure, we do not expect visual saliency to 

mediate its processing, as the low-level properties of the object do not modulate its 

semantic relation within the scene. Thus, a salient incongruent object would be looked at 

for the same amount of time, as a non-salient incongruent object.  

Finally, since language processing is also directly implicated in the evaluation and 

linguistic selection of the target objects, we expect properties of this information stream 

to exert an influence on the responses observed, in line with previous work (e.g., 

Zelinsky and Murphy, 2000). Moreover, if the resolution of the task is really performed 

by drawing, cross-modally, on various sources of information, we expect saliency and 

congruency to interact with linguistic properties of the objects to be named, such as their 

lexical frequency, known to play a key role during naming (e.g., Levelt, Schriefers, 

Vorberg, Meyer, Pechmann, & Havinga, 1991).

Method

Participants were presented with photo-realistic scenes and asked to name five objects in 

each scene. They said the names of these objects out loud, and the speech recording was 

time-locked with participants' eye-movements. The scenes used in the experiment were 
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Figure 1. The left panel gives an example of an annotated photo-realistic scene used in the experiment. 

In this example, the object of interest is the LADLE or HAT. The right panel shows the experimental 

manipulation of Saliency and Congruency. The competitor objects are NAPKIN and PLATE.

created based on photographs obtained from the LabelMe database (Russell, Torralba, 

Murphy, & Freeman, 2008), which were selected to contain only inanimate objects3; refer 

to Figure 1 for an example of materials and experimental conditions.

In each scene, an object of interest and two competitors were inserted using Photoshop. 

Saliency (Salient, Non-Salient) and Congruency (In-Context, Out-of-Context) of the 

object of interest were manipulated. Each scene was fully annotated with polygons 

marking the outlines of objects.  On average, scenes contained M = 14.07, SD = 6.17 

3 Some scenes came from Google Images.
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annotated objects. The polygons were used to map fixation coordinates into the 

corresponding objects.

The saliency of the object of interest was manipulated by changing its color, 

brightness/contrast, and hue/saturation with Photoshop. Moreover, the position of the 

object was sometimes slightly modified to boost its saliency with respect to the 

background. As it is known that visual saliency can be estimated in different ways, and 

that this can consequently result into different accuracy score when predicting visual 

responses across tasks (Borji, et al. 2012),  we verified the effectiveness of the saliency 

manipulation  using both Itti and Koch's (2000) and Torralba et al.'s (2006) models (in the 

latter case, only the saliency part of the model was used, not the context part). Note, 

moreover, that our manipulation strictly relates to a single object of interest and it is 

purely methodological:  we do not make any claim about predicting visual responses in a 

scene based on saliency models. The object of interest was regarded as salient when the 

saliency values returned by both models were higher than those of the competitor objects. 

A t-test was used to confirm that salient objects (M = 0.47, SD = 0.34) had significantly 

higher saliency scores than non-salient objects (M = 0.07, SD = 0.11; t(199) = 14.14, p < 

0.0001). In the non-salient condition, the saliency of the object of interest (M = 0.03, SD 

= 0.1) was significantly less than those of the competitors (M = 0.07, SD = 0.09; t(211) = 

2.5, p < 0.05).
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Contextual congruency was manipulated by replacing the object of interest with one that 

intuitively did not fit the scene context. The effectiveness of this manipulation was 

checked using Allison, Keller, and Coco's (2012) model of object context, which predicts 

how well an object fits with a set of other objects based on label co-occurrence counts 

derived from LabelMe.  The model employs a distribution over the set of labels in the 

scene to generate a continuous measure of object fit in a scene. It explains the observation 

of sets of objects through latent scene types, which can be thought of as simple clusters of 

objects which are likely to co-occur.

The object of interest was regarded as incongruent when its context score according to 

the Allison et al. (2012) model was lower than that of the competitors. A t-test confirmed 

that incongruent objects had significantly lower context scores (M = 0.16, SD = 0.1) than 

congruent ones (M = 0.64, SD = 0.2; t(43) = 10.95, p < 0.0001). 

The position of the object of interest was counterbalanced by rotating it in three different 

locations of the scene (Left, Middle, Right) for each condition, in order to account for 

possible directional and central biases (Tatler, 2007; Tatler & Vincent, 2008). Moreover, 

the counterbalancing significantly reduces the possibility that the effects observed are 

scene-specific. This resulted in a total of 12 versions of each scene (four conditions in 

three positions). A total of 28 different scenes were used for the experiment, as well as 28 

fillers. The fillers were scenes drawn from the same database and also manipulated using 
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Photoshop to prevent participants from being able to distinguish fillers and experimental 

materials. In particular, we pasted a range of different objects, which varied both in 

saliency and in their congruency with the other objects in the scene. This was done to 

insure that the participants will not strategically detect the experimental trials by, for 

example, remembering that they always contained three pasted objects. Figure 1 gives an 

example of a scene used, together with the objects of interest corresponding to the four 

experimental conditions.

Twenty-four native speakers of English, all students of the University of Edinburgh, were 

each paid five pounds for taking part in the experiment. Informed consent was obtained 

from each participant prior to the experiment, and the task was explained using written 

instructions. The experiment took approximately 20 minutes to complete.

Each participant saw all fillers and each of the 28 experimental scenes in one condition. 

Items were distributed across participants in a Latin-square design to ensure that each 

condition was presented equally often to each participant. The order of fillers and 

experimental items was randomized. The items were preceded by four practice trials that 

served to familiarize participants with the task.

An Eyelink II head-mounted eye-tracker was used to monitor participants’ eye-

movements with a sampling rate of 500 Hz. Participants sat at approximately 50 cm from 
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a 21” Multiscan monitor, where scenes were presented at a resolution of 800 x 600 pixels, 

which subtend 31.26 degrees of visual angle on the horizontal axis, and 25.19 degrees on 

the vertical one. The object of interest, on which saliency and congruency were 

manipulated, subtended an average of 3.97 degrees of visual angle on the horizontal axis, 

and 3.20 degrees on the vertical one. Participants’ speech was recorded with a lapel 

microphone.

Only the dominant eye was tracked. At the beginning of each trial, participants looked at 

a fixation cross on the center of the screen, and drift correction was performed. The scene 

then appeared at which point participants were free to move their eyes; 1500 ms later an 

audible beep was played, indicating that they could start naming objects.  Participants 

were told simply to name objects as quickly or slowly as they wanted, as long as they 

waited until after the beep.  This was to dissuade participants from naming the first five 

objects they saw and instead ponder more carefully the five objects they felt were to be 

named. There was no time limit for the trial duration and to pass to the next trial 

participants pressed a button on a response pad.

Data Analysis

We investigated the data in two different sets of analyses. The first set focused on visual 

responses, examining eye-movement measures on the target object from scene onset (i.e., 
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including the preview time). Our aim was to address the controversy surrounding effects 

of saliency and context by reporting eye-movement measures that have also been used in 

previous research (e.g., Loftus & Mackworth, 1978; Underwood & Foulsham 2006; 

Underwood et al., 2008; Vo & Henderson, 2009). The second set of analyses focused on 

the linguistic responses, especially on the impact that visual, linguistic and attentive 

features have on the act of naming, and on the order of mention.

Search latency, that is the time from scene onset until a fixation lands for the first time on 

the object of interest, was used. Even if an object naming is not a search task, we align 

with the terminology of previous literature where such a measure has been used. This 

measure, as noted, has led to inconsistent results in the literature (e.g., Underwood et al., 

2008; Vo & Henderson, 2009). Note that the search is not cued to a specific target in this 

experiment. Search latencies therefore refer to the object of interest, i.e., the object on 

which the experimental manipulation was carried out. This definition of search latency is 

identical to the one adopted by Underwood and Foulsham (2006) in their search task4 

where the manipulation of congruency and saliency was not on the cued target, but on 

other objects present in the scene.  

We also analyze first fixation duration and total gaze duration on the object of interest. 

We expect salient objects to be fixated longer, for the first time, than non-salient objects, 

as they carry more low-level information, which can be exploited by language processing 

4 Underwood and Foulsham (2006) call this measure time prior to fixation.
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for naming. A visually salient object is more informative than a non-salient one, hence 

more  attention is allocated to fully extract  the information associated with it.  Obviously, 

this claim holds when the identity of a visually salient object can be recognized, and its 

linguistic denotation can be retrieved. The implication of this argument is that there might 

be visually salient regions in the scene that cannot be actually recognized as objects, and 

therefore will not be viable candidates for naming. However, if incongruent objects are 

semantically more informative than congruent objects, then they should be looked at 

overall (total gaze) for a shorter period of time, as they deviate from the overall context 

their information can more easily memorized. Within the predictive coding framework, 

an incongruent object is  more distant in representational space the than congruent 

objects. Thus, congruent objects are expected to interfere with one another by attracting 

attention. This should  result in an overall decrease of fixations on the incongruent object. 

By interference, we mean that congruent objects would receive a similar level of co-

activation, which would, in turn, attract attentional resources on them. In practice, we 

expect less re-fixations to the incongruent object as a result of co-activation of 

contextually congruent objects. If this logic is correct, then we should observe the same 

effect in Experiment 2, which employs a memorization task. Notice, this expectation 

contrasts  previous studies that used the out-of-context object paradigm, where 

incongruent objects are found to be fixated for longer than congruent objects (De Graef, 

Christiaens, and D’Ydewalle, 1990; Henderson, Weeks & Hollingworth, 1999; Loftus & 

Mackworth, 1978; Underwood et al., 2008; Vo & Henderson, 2009, 2011). 
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Secondly, we look at time-course measures and investigate how visual saliency and 

contextual congruency modulate temporal aspects of object naming. We consider a 

window of 1000 ms before and after naming divided into 80 intervals of 25 ms each. For 

each time interval, we calculate the empirical logit of fixations (Barr, 2008): 

emplog(y) = log((y + 0.5)/(N – y + 0.5))

where y is a fixation to the object of interest (0, 1), and N is the total number of fixations 

to the other objects in the scene within each interval. 

In order to capture the non-linear trend of fixations over time, we adopt the growth curve 

analysis approach (Mirman, Dixon, & Magnuson, 2008), in which Time is represented 

through orthogonal polynomials. We chose second order polynomials (Linear and 

Quadratic), as their associated coefficients can still have a plausible interpretation 

(interpretation becomes challenging, if not impossible, for polynomials of higher order).

The second analysis focuses on naming measures, with the aim of identifying features 

that predict object naming. For each object in each trial of the experiment, we code 

whether the object was mentioned (1 = Mentioned, 0 = Not Mentioned) or looked at (1 = 

Looked At, 0 = Not Looked At). In case a fixation lands outside of the annotated 

polygon, we rely on the Euclidean distance from the center of mass of the object. An 
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object is counted as looked at when the visual angle between the center of mass and the 

fixation position is smaller than 2 degrees, i.e., the size of the fovea.

Each list of mentioned objects was manually transcribed, and the onset and offset of each 

word was marked. On average, participants started naming 1588 ± 854 ms after the beep, 

each word had a duration of 775 ± 226 ms and there was an interval of 883 ± 1750 ms 

between words. Participants most likely did not promptly begin naming at the beep, as 

they needed to evaluate which objects they attended to during the preview were worth 

mentioning. In order to correctly associate eye-movements on objects with the words 

mentioned, we transcribed the words uttered in a given scene using the labels of the 

corresponding annotated objects (different participants might have used different words 

to denote the same object, e.g., desk, table).

We investigate which visual and linguistic factors predict mentioning and looking during 

naming. The visual factors we consider are: the saliency of the object (Walther & Koch, 

2006, Torralba, et. al., 2006), its area in pixel square, and its contextual fit. Both saliency 

(Salient, Non-Salient) and congruency (In-Context, Out-of-Context) are coded as 

categorical variables.  The linguistic factors we used were the log-transformed frequency 

of the word associated with the object (obtained from the CELEX-2 database, Baayen, 

Piepenbrock, & Gulikers, 1996) and the length of the word being produced when naming 

the object (in milliseconds). 
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Since we asked participants to name five objects, we also investigate how the impact of 

these factors changes over the different instances of naming. Here, we focus on the 

objects mentioned, and use the position of naming (from 1 to 5) as the dependent 

measure.

All analyses were performed under the statistical framework of linear mixed effects 

modeling (LME) as implemented by the R package lme4 (Baayen, Davidson, & Bates, 

2008). In LME, the dependent measure is modeled as a linear function of different 

predictors (fixed effects), and the variance implicit in the multilevel structure of the data 

is accounted for by grouping based on the random variables of the design. We perform 

model selection to obtain a minimal mixed-effects model. We compare nested models 

based on the log-likelihood improvement using chi-square tests.

For example, a model with only a random intercept on participants (depM ~ (1 | 

Participant); in the syntax of R's lme4 package), is compared to a model with a random 

intercept also on trials (depM ~ (1 | Participant) + (1 | Trial)). If the log-likelihood of the 

second model, i.e., the one with the additional parameter (fixed or random) is 

significantly better than that of the first model, we retain it, otherwise we keep the first 

model. We start by building the random structure of the model, then we proceed adding 

fixed effects, e.g., Saliency, and uncorrelated random slopes on it (e.g., 0 + Saliency | 
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Participant). The inclusion of a random slope accounts for the variability of a fixed effect 

(here: Saliency) with respect to the grouping level of a random effects (here: 

Participants). We then include interactions but consider only those which do not violate 

the subset criterion, i.e., interactions are generated from the subset of main effects 

included in the model. Factors are included in order of the log-likelihood improvement 

they bring to the model (the variable which most improves the model fit is included the 

first, etc.). All factors were centered, i.e., the mean of the factor values across all data 

points was computed, and then this mean was subtracted from the individual data points. 

This results, for example,  in values of 0.5 and -0.5 for a categorical variable with two 

factors (or close to these values if there are slight imbalances in the design due to missing 

values).   

We report and discuss the LME model coefficients of the best fitting model. The tables 

therefore only list those predictors that were retained in the best model. The predictors in 

the table are ordered following the inclusion order obtained through model selection. 

Furthermore, for illustrative purposes, we plot the mean of the model fitted values 

together with the observed mean. If the mean of the model fit falls within the standard 

error, it means that the model is accurately capturing the data pattern. Note, as the model 

produces estimates, the mean fit will not always match the observed mean. 
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Figure 2. Interaction plots (means and standard error) for different eye-movement measures across 

experimental conditions in Experiment 1: Saliency (No-Salient, Salient); Context (In-Context; Out-of-

Context).  Asterisks indicate predicted values according to the LME model. 

Results and Discussion

Visual Responses. Figure 2 plots the eye-movement measures across the different 

experimental conditions. Each figure also includes the predicted values for each condition 

based on the best linear mixed effect model after selection.

In Figure 2(a), we plot search latency, i.e., the time elapsing from the onset of the scene 

to the first fixation on the object of interest. Here, we find a main effect of Saliency: a 

28

a) Search Latency: the time spent before 
landing onto the ROI

b) First fixation: the fixation duration on the 
ROI during its first inspection

 

c) Total gaze: Sum of all fixations on ROI

 



Table 1: Coefficients for the mixed effects model analysis of Mention in Experiment 1. The dependent 

measures are: search latency, first fixation duration, and total gaze duration. The centered predictors 

are Saliency (Salient, -0.5, Non-Salient = 0.5) and Context (In-Context = 0.5, Out-of-Context = -0.5)

Search Latency

Predictor Coefficient
           (Intercept) 2007.8***

Saliency 747.7*
Search Latency  (Full Model)

Predictor Coefficient
(Intercept) 2031.9***
Saliency -437.7*
Context 249.8º

Saliency:Context -832.2**
First Fixation

Predictor Coefficient
(Intercept) 285.48**
Saliency -28.47*

Total Gaze

Predictor Coefficient
(Intercept) 1227***

Context 240.01***
º p < 0.10,  * p < 0.05, ** p < 0.01, *** p < 0.001

Salient object is looked at sooner than a Non-Salient one. While the plot seems to 

indicate an interaction between Saliency and Context, this interaction was not included in 

the model during model selection. This is because of the way the step-wise forward 

model selection operates. Since the main effect of Context failed to be included in the 

model, i.e., it was not significant, any interaction with Context could not be included 

either to respect the subset criterion (refer to the previous section for details on model 

selection). We therefore also fitted a full model, which includes Context as a main effect 
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and an interaction with Saliency. This model (also given in Table 1) shows that 

incongruent objects are inspected for the first time later, if they are not salient.

This result indicates that the saliency of objects is actively utilized by the visual system to 

guide attention in order to select objects that could be interesting for naming. Moreover, 

the saliency of an object compensates for the delay due to incongruence by boosting its 

visual appearance. In fact, incongruent objects are inspected for the first time later, i.e., it 

took longer to identify the target object from scene onset, but only if it is not salient. This 

result contrasts with previous research showing that saliency effects are overridden by the 

cognitive evaluation of the scene information (e.g., Einhauser et al., 2008). It also 

contrasts with previous studies in which incongruency shortened search latencies in a 

memory task (but not in a search task; Underwood & Foulsham 2006), and in a 

comparative search task (Underwood, et. al., 2008). Furthermore, an interaction between 

visual saliency and contextual congruency was not found in either of these previous 

studies.  If an object is recognized as incongruent during initial scene gist processing, 

such object should be quickly attended. On the contrary, our results show that eye-

movements are mostly directed to contextually congruent objects, particularly if they are 

visually salient.  The Cognitive Relevance Framework is consistent with such results, as 

objects which do not fit the contextual congruency of the scene have longer latencies to 

first inspection. Specifically, it seems that contextually related objects are more quickly 

identified (Mack & Eckstein, 2011, Hwang, et at. 2011), hence facilitating also their 

evaluation as potential naming targets. This result is also compatible with the predictive 
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coding framework, where the identification of an incongruent object is delayed as a result 

of the interference between congruent objects competing for attentional resources.

In Figure 2(b), we plot first fixation duration, defined as the time spent on the object of 

interest during the first fixation.   We confirm a main effect of Saliency: salient objects 

are fixated longer than non-salient objects. A salient object carries more low-level 

information than a non-salient one, thus visual attention is allocated for a longer period of 

time to extract relevant information before moving on to the next object; refer to Table 1 

for the list of coefficients.

In Figure 2(c), we plot total gaze, which is the sum of all fixations on the object of 

interest during the whole trial. We find a main effect of Context: out-of-context objects 

have shorter total gaze duration than In-Context objects. This finding contrasts with 

previous literature, where incongruous objects have been claimed to attract more 

attention than congruous objects, as they are contextually more informative. In a cross-

modal task such as naming, relevance is evaluated as the product of linguistic and visual 

factors. Thus an out-of-context object might be visually more informative as it differs 

from the overall scene context. However, at the same time, an incongruent object is not 

semantically related to the other objects in the scene, which might make it harder to 

name. The naming of congruent objects, on the other hand, is boosted by the contextual 

co-presence of related objects. Contextually congruent objects interfere with each other in 
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Figure 3. Naming Curve for Experiment 1: time course plot of fixation probability (empirical logit) on 

the object of interest across conditions before and after naming (from -1000 ms to 1000 ms). The 

empirical observations are represented as points, while the lines represent LME predicted values.

the representational space. This competition subtracts attentional resources from the 

incongruent object, which is more distant in representational space than congruent 

objects. Moreover, more broadly, as an incongruent object is more informative than a 

congruent object because it does not interfere with the contextually congruent objects, it 

would require a less intense visual processing to be memorized. If this assumption is 
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Table 2: Coefficients for the mixed effects model analysis of the empirical logit of fixation probability 

in Experiment 1. The standardized and centred predictors are Time (Linear, Quadratic; 80 slices of 25 

ms each), Region (Before = 0.5; After = -0.5),  Saliency (Salient = 0.5, Non-Salient = -0.5); Context 

(In-Context = 0.5; Out-of-Context = -0.5) and Rank (continuous variable 1–5).

Predictor Coefficient
(Intercept)     -4.649***

Region     -0.482***
Time-Linear     -3.889***

Time-Quadratic                 - 0.181
Rank 0.022

Context                 - 0.009
Saliency                   0.128

Region:Time-Quadratic    -3.187***
Rank:Time-Quadratic     -0.079***

Region:Context      0.181***
Rank:Saliency                  -0.013
Rank:Context 0.002

Region:Rank:Context     -0.058***
Region:Context:Saliency     -0.269***
Rank:Context:Saliency 0.076
Region:Rank:Saliency      -0.035***

º p < 0.10,  * p < 0.05, ** p < 0.01, *** p < 0.001

correct, we should see an identical effect of congruency also during memorization 

(Experiment 2). 

Finally, in Figure 3, we graph fixation probability on the object of interest (empirical 

logit), before and after naming, across the four experimental conditions. We also include 

a numeric variable coding the position in which the naming occurred (Rank: 1-5) to show 

how the impact of visual saliency and contextual congruency changes with different 

instances of naming.
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We will discuss the coefficients of those predictors that were significant after model 

selection, as tabulated in Table 2. Positive coefficients indicate an increasing probability 

of fixating the target object, whereas negative coefficients indicate a decreasing 

probability. Note that for an interaction with multiple terms, the sign of the coefficient 

(positive vs. negative) is obtained by multiplying the coefficient of the interaction with 

the values of the factors that participate in the interaction (recall that factors are centered, 

i.e., take on values of +/-0.5). For example, if we are interested in whether a Congruent 

object (Context =  0.5) was fixated more or less Before being named (Region = 0.5), then 

we multiply the coefficient for that interaction with the values of the factors we are 

interested in (i.e., 0.181 * 0.5 * 0.5).  

We find main effects of Region (Before naming has less fixation than After), and Time-

Linear, with fixation probability decreasing over time. Given our experimental design, 

important effects will show up as interactions, rather than main effects. There is a 

positive interaction of Region and Context, with Out-of-Context objects fixated less often 

Before being named (two-way interaction Region:Context), especially when the object is 

named at a higher Rank (three-way interaction Region:Rank:Context). We also find an 

interaction of Region and Time-Quadratic: fixation probability first increases, and then 

falls again before naming, hence the quadratic slope. A quadratic slope is found also with 

Rank (two-ways interaction, Rank:Time-Quadratic), which indicates that fixation 

probability falls after naming more rapidly for objects named at later ranks. Possibly, 
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visual attention is shifted more quickly to other naming targets, as they are uttered, to 

optimize the the allocation of attentional resources. 

Turning to Saliency and Context, we find that Salient objects are fixated more often if 

they are In-Context, especially Before being named (three-way interaction 

Region:Context:Saliency). Moreover, there are fewer fixations on salient objects when an 

object is named at later ranks, and this effect is especially prominent in the region Before 

naming (three-way interaction Region:Rank:Saliency). As we shall see in the analysis of 

features predictive of naming, salient objects are named at earlier ranks (see Table 4). 

This means that the probability of fixating a salient object decreases across different 

instances of naming, as it becomes less likely that it will be named.

When comparing the results on visual responses with Underwoord and Foulsham's (2006)

study, where saliency and congruency were investigated in a memory and search task, we 

find some similarities but also many differences. The authors found that during 

memorization a visually salient object is fixated earlier (search latency), but not longer 

than the less visually salient object. Moreover, incongruent objects were fixated earlier 

when non-salient, and fixated for longer than congruent objects (first fixation), regardless 

of their saliency.  During search, saliency had no influence on fixation, and the only 

positive result was an interaction, whereby a salient object was fixated earlier when an 

incongruent object was present in the scene. They interpret this interaction as evidence 
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that incongruent objects are  rapidly detected during the processing of gist, and visual 

attention is oriented to  the most conspicuous object as a reaction to it.  Note, however, 

that this interaction was indirect, as Underwood and Foulsham (2006) did not 

systematically manipulate visual saliency and contextual congruency on the same target 

object. We found earlier search latency for salient object in line with the result of their 

memory task. However, we found that initial fixations on salient objects are longer, 

rather than shorter, compared to  non-salient objects. We argued that saliency is used to 

evaluate whether a target is worth being mentioned. We find that incongruent objects are 

looked at later, and less frequently than congruent objects, contrasting with Underwood 

and Foulsham (2006) and Underwood, et. al. (2008). We argued that an incongruent 

object might be visually more informative, but at the same time its lack of context might 

make it harder to name. Differently from both studies, we find an interaction between 

visual saliency and contextual congruency, whereby the likelihood of attending an 

incongruent object increases when such object is visually salient. This indicates that both 

types of information are concurrently evaluated when guiding visual attention during a 

naming task.

 

Naming objects requires to access and use visual information differently than both 

memorization and search. Similar to memorization, in the naming task targets are not 

cued, but at the same time, a pool of search targets has to be selected for naming. 
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In the naming task, salient objects are likely to be selected as targets (as no object is 

cued), but at the same time contextual information of the scene becomes important to 

finalize the selection of targets from the pool of possible objects. 

In the next section, we will see that the way in which bottom-up and top-down 

information is visually processed has direct consequences for  which objects are selected 

for naming, and for their order of mention.

Linguistic Responses. As mentioned in the Data Analysis section, each annotated object 

in each trial was coded as mentioned (0, 1) or looked at (0, 1). We find a small number of 

cases where an object is mentioned but not looked at (1.8%). It seems that some objects 

are recognized parafoveally, even though we tried to account for this when coding the 

data. An analysis of the eye-tracking data indicates that when an object was named but 

not fixated, the nearest fixation fell with 4.1 ± 2.5º visual angle from the target centroid. 

The highest percentage of objects was both looked at and mentioned (35.9%). There was 

almost an equal number of objects that were not looked at and not mentioned (30.8%) 

and looked at and not mentioned (31.5%).

As a next step, we determined which visual and linguistic features are predictive of 

naming, regardless of whether the named object is the object of interest, a competitor, or 

another object in the scene. We predicted Mention (0, 1) as a function of visual, 
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Table 3: Coefficients for the mixed effects model analysis of Mention in Experiment 1. The 

standardized and centered predictors are the size of object (Area), the duration of the gaze on the 

object (Gaze), the log frequency of the word uttered (LogFrequency), the mean Saliency of the object, 

and the probability of the the object being fixated during preview (Preview).

Predictor Coefficient
(Intercept)    -0.086**

Gaze      -1.156***
Area      -0.511***

Saliency                    0.580***
LogFrequency                   -0.173*

Preview                    0.702***
Area:LogFrequency                   -3.068***

Area:Saliency       3.073***
Area:Preview  -1.252*

Saliency:LogFrequency      0.603**
Gaze:Saliency                   -1.104**

Area:Saliency:Preview    29.687**
Gaze:Saliency:Preview  -15.461*

º p < 0.10,  * p < 0.05, ** p < 0.01, *** p < 0.001

linguistic, and attentional factors in a linear mixed effect model. The visual factors were 

saliency of the objects, its area5, and its contextual fit.

 The linguistic factor was the frequency of the name of the object as estimated from the 

CELEX database. We also included as control variables the gaze duration on the object 

and the probability of looking at the object during preview (see Data Analysis for details 

on how the factors were computed).

Table 3 lists the coefficients of the resulting mixed model. Positive coefficients here 

indicate a higher probability of naming that object, whereas negative coefficients indicate 

5  Area was included also in previous analysis, but excluded during model selection.
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a lower probability. We find that gaze duration and saliency are positive predictors of 

naming, while the area of the object and the log-frequency of the word used for naming 

are negative predictors (main effects: Gaze, Saliency, Area and LogFrequency). 

Moreover, having looked at the object during the preview time increases the probability 

of naming it (main effect: Preview). When looking at the interactions, we find that large 

objects with high saliency are named more often (two-ways interaction Area:Saliency), 

especially when the object was previewed (three-way interaction Area:Saliency:Preview). 

Longer gazes on salient objects are predictive of naming only if the object has been 

previewed (three-ways interaction Gaze:Saliency:Preview). In fact, a salient object, 

which has longly being fixated, it is actually less likely to be named (two-ways 

interaction Gaze:Saliency).  Finally, a lexically frequent object is more likely to be 

mentioned if it is salient (two-ways interaction Saliency:LogFrequency), but not if it is 

large (two-ways interaction Area:LogFrequency).

The first implication of these results is that the saliency affects positively the likelihood 

of naming an object: a finding that challenges purely top-down approaches to visual 

cognition during goal-oriented tasks (e.g., Einhauser et al., 2008; Henderson et al., 2009). 

In contrast to the psycholinguistic finding that lexical access, and consequent naming, is 

boosted by lexical frequency (Almeida et. al. 2007), we find that frequent objects are less 

likely to be named. Presumably, many frequent objects (e.g., STREET) are not visually 

interesting; this is confirmed by the negative interaction with area. Lexical frequency, 
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Table 4: Coefficients for the mixed effects model analysis of  Rank (1–5) in Experiment 1. The 

standardized and centered predictors are the size of object (Area), the duration of the word named 

(WordDuration), the log corpus frequency of the word uttered (LogFrequency), the mean Saliency of 

the object, and the probability of having looked at the object during preview (Preview).

Predictor Coefficient
(Intercept)      2.245***

WordDuration                   0.056
Area                   0.983

LogFrequency                  -0.047
Preview                  -3.415***
Saliency                  -0.221**

Area:LogFrequency                  11.693**
Saliency:LogFrequency   1.041º

WordDuration:Area  14.670*
º p < 0.10,  * p < 0.05, ** p < 0.01, *** p < 0.001

however, is also modulated by saliency: a lexically frequent object becomes more 

interesting if it is also salient. This provides evidence for an interaction between linguistic 

and low-level visual information, and shows that lexical access is not independent of 

perceptual and conceptual variables involved in the context (but see Almeida et al., 

2007). In addition to this, our data also confirms that visual information attended to at the 

early stages of the trial is important for predicting naming: objects targeted during the 

preview are likely to be named. This effect is more pronounced if such objects are 

visually salient and have a large area.

Naming objects is a task that demands the integration of different sources of information. 

However, the influence of these different sources, and the way in which they are 

accessed, could change over the course of the trial. It is possible that factors guiding the 

naming at earlier ranks no longer exert influence at later ranks. We therefore consider 
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only those cases in which an object was named, and use Rank, i.e., the position on which 

naming occurred, as the dependent measure. For this analysis we also included as a 

covariate the duration of the word being uttered. Here, positive coefficients refer to later 

instances of naming, whereas negative coefficients to earlier instances.

We found negative effects of Preview and Saliency: previewed objects are less likely to 

be named at later stages of naming (see Table 4). This indicates that the probability of 

previewing an object is predictive only during early naming, e.g., first or second object 

named. In the same vein, salient objects are named at earlier rather than later ranks. We 

still found a marginal interaction between saliency and word frequency (two-ways 

interaction Saliency:LogFrequency), indicating that more frequent and highly salient 

objects are more likely to be produced even at later ranks. However, objects named later 

tend to have a large area and are associated with highly frequent words (two-ways 

interaction Area:LogFrequency). Once the most visually and linguistically interesting 

objects have been named, language processing is directed to large background objects to 

continue the naming task. It seems clear that the way cross-modal information is accessed 

changes across naming instances. In particular, the effect of saliency on naming tends to 

decay, but probably this result comes about because there are fewer highly salient objects 

in the scene to be named. A similar reasoning can be applied to preview probability. The 

objects with the highest probability during the preview are spelled out as soon as naming 

begins. After this, the visual system turns to previously unattended objects to keep 
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sourcing material for the ongoing process of naming. Finally, we also observed an 

interaction between area and word-duration, whereby object with a large area, which are 

also associated to long words, are produced only at later ranks (two-ways interaction 

WordDuration:Area). In order to optimize naming efficiency, participants spell-out 

background objects which have short names earlier, before resorting to background 

objects, which are associated with longer names.

We failed to find a significant effect of contextual congruency in the analysis of either the 

mention or the rank data. This could be because both analyses included all objects, rather 

than just the target objects.6 We therefore ran additional analyses of both the mention and 

the rank data but included only the target objects. The results confirm that contextual 

congruency does not play any role in the naming patterns, i.e., the contextual variable is 

not included as significant during model selection. We conclude that while visual 

attention focuses on congruent objects (as our analysis of fixation latencies and duration 

showed), congruent and incongruent objects have the same likelihood of being selected 

as naming candidates.  

To summarize our results, we find that visual saliency had a clear effect during a naming 

task, both on the likelihood of mentioning a certain object and on the probability of 

fixating it. Salient objects are mentioned earlier than non-salient ones, suggesting that the 

6 There is only one out-of-context object that could be mentioned for every five naming instances, i.e., 
there are more congruent objects that can be named compared to incongruent once. Thus, the 
incongruent condition is unbalanced when considering the full dataset.
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more objects that have been named, the smaller the effect of saliency becomes. An 

alternative explanation is that the selection of objects to be named demands that visual 

attention is allocated  to non-salient objects once it has used up the salient ones. Note that 

the effect of saliency we found is not predicted by theories of visual attention that assume 

strong top-down control during goal-directed tasks. When looking at the effect of context, 

we found that incongruent objects are looked at less often than congruent objects. 

Fixations on incongruent objects are boosted only when the objects are visually salient. 

This indicates that fixations during naming are guided by a combination of bottom-up 

and top-down information. However, when looking at the linguistic pattern of naming, 

we find that only bottom-up information seems to play a role. In fact, an incongruent 

object has the same likelihood of mention as a congruent one.  

The present experiment employed a novel task, viz, object naming. While this task has 

conceptual advantages over purely visual tasks (the cross-modal nature of naming is 

likely to encourage the interaction of both top-down and bottom-up processes, as we 

argued in the Introduction), it has the disadvantage of not being directly comparable to 

results in the existing literature, which were obtained using more standard tasks like 

visual search or memorization. This makes it hard to ascertain whether the results we 

found in Experiment 1 were task-specific, or generalize to other tasks. Therefore, in a 

follow-up experiment, we looked at eye-movement responses during a memorization task 

using the same set of stimuli and experimental conditions. A comparison of visual 

43



responses between the two tasks makes it possible to disentangle the influence of 

language processing on visual attention from effects exerted by saliency and congruency 

in non-linguistic tasks such as memorization.  

Experiment 2

We tested how the saliency and the contextual congruency of an object influence eye-

movement responses during the memorization of scenes in preparation for a recall task. 

In essence, the logic of this experiment is similar to the studies of Underwood and 

Foulsham (2006) and Henderson, et. al. (1999), where memory was tested in preparation 

for a recognition test and no particular object was cued as being of special importance to 

the participants.

 These studies have shown that salient objects are looked at faster than non-salient objects 

(Underwood & Foulsham, 2006), and that total gaze duration on incongruent objects is 

longer than on congruent objects (Henderson, et. al., 1999). Both studies did not find an 

interaction between saliency and congruency. 

Method and Data Analysis

Twenty-four native speakers of English, all students of the University of Edinburgh, were 

asked to preview each scene for five seconds, after which it was removed, and they had to 
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recall as many objects as possible. Their recall responses were recorded using a lapel 

microphone. When participants could remember no further objects for a given scene, they 

had to press a button on the keypad to go to the next trial. The task was explained using 

written instructions, and the participants were paid five pounds for their participation. 

The experiment employed the same design as Experiment 1, crossing the factors Saliency 

and Congruency. It also re-used the scenes of Experiment 1, which contained an object of 

interest whose saliency and congruency were manipulated. The presentation of trials 

followed the same procedure as Experiment 1, and we used the same apparatus to 

monitor eye-movement responses. 

The analysis will exclusively focus on the eye-movement measures on the target object 

during the five second preview. Thus, we will not include in the analysis any eye-

movement data recorded during recall phase. In particular, we analyze search latency, that 

is the time from scene onset until a fixation lands for the first time on the object of 

interest, first fixation duration and total gaze duration on the object of interest. 

We analyze our dependent measures using linear-mixed effects models, as explained in 

Experiment 1. As we are interested in the interaction between saliency and congruency, 

we will report directly only full-models containing both the predictors Saliency and 

Context as main effects and in interaction7. 

7  We also used model selection and did not found any significant interaction, in any of the measures 
investigated. 
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Figure 4. Interaction plots (means and standard errors) for different eye-movement measures across 

experimental conditions in Experiment 2: Saliency (No-Salient, Salient); Context (In-Context; Out-of-

Context).  Asterisks indicate predicted values according to the LME model. 

Results and Discussion

Figure 4 plots means and standard errors of the eye-movement measures on the target 

object across experimental conditions, and includes the predicted values of the linear 

mixed-effects models.

On search latency plotted in Figure 4(a), we find similar trends to what we saw in 

Experiment 1 (refer to Figure 1); however, none of the predictors reach significance. 
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a) Search Latency: the time spent before 
landing onto the ROI

b) First fixation: the fixation duration on the 
ROI during its first inspection

c) Total Gaze: Sum of all fixations on ROI



Table 5: Coefficients for the mixed effects model analysis of different eye-movement measures in 

Experiment 2. The dependent measures are: search latency, first fixation duration, and total gaze 

duration. The centered predictors are Saliency (Salient, -0.5, Non-Salient = 0.5) and Context (In-

Context = 0.5, Out-of-Context = -0.5) 

Search Latency  (Full Model)

Predictor Coefficient
(Intercept)  1082.63***
Saliency 23.19
Context -16.37

Saliency:Context -205.94º
First Fixation (Full Model)

Predictor Coefficient
(Intercept) 286.65***
Saliency 2.89
Context 20.39

Saliency:Context    7.861 
Total Gaze (Full Model)

Predictor Coefficient
(Intercept) 564.25***
Saliency -41.24
Context  63.59*

Saliency:Context   33.18º 
º p < 0.10,  * p < 0.05, ** p < 0.01, *** p < 0.001

Participants tend to identify salient objects more rapidly, especially when they are 

incongruent (marginal two-ways interaction: Saliency and Context). Incongruent objects 

are not identified any faster than congruent objects. 

When looking at first fixation duration plotted in Figure 4(b), there is a trend of longer 

first looks to congruent objects, which appears to be reduced when such object is also 

salient.  However, none of the predictors reach significance.
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Finally, when looking at the total gaze duration plotted in Figure 4(c), we find a 

significant main effect of Context, whereby incongruent objects are looked at less than 

congruent objects; this effect is partially compensated for by saliency, as indicated by the 

marginal interaction in Table 5.  This finding corroborates what we observed in 

Experiment 1, and contrasts with the study of Henderson, et. al. (1999), where 

incongruent objects were looked at longer than congruent objects in a memorization task. 

An explanation for our finding is that incongruent objects are more informative than 

congruent objects and thus need less attention in order to be memorized. From a 

predictive coding perspective, an incongruent object is semantically more distant in 

representational space than congruent objects. This implies that congruent objects 

interfere with each other on the representational space, decreasing their likelihood to be 

accurately remembered. An incongruent object instead escapes the interference in such 

representational space, as it triggers a prediction error, and this makes it easier to 

remember.  In line with Underwood and Foulsham (2006), saliency seems to attract 

earlier and longer first fixations to the object of interest (though this tendency did not 

reach statistical significance). 

To summarize, we observed very similar patterns in memorization and object naming, in 

all three measure we looked at. However, we found a significant effect of Context only 

for total gaze duration. This result is quite important, as it contrasts from previous 
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research on the topic, and shows that incongruent objects are attended overall less than 

congruent objects, both during object naming and memorization. This finding might 

indicate that the informativeness of an incongruent object makes the object easier to 

remember, which in turn implies a less extensive visual processing. More attention is 

required to distinguish, and remember, semantically related objects, as they are closer in 

the representational space than an object deviating from the common context.   More 

research is needed to more specifically test whether the memorability of an object 

increases or decreases according to its contextual fit, and whether the effect varies for 

cueing versus non-cueing paradigms. Moreover, the memory for verbal recall task might 

trigger similar inspection strategies as a purely object naming task, i.e., attend as many 

objects as possible to recall/name them later.  Perhaps a comparison of object naming 

with a visual search task would help highlighting the actual difference between purely 

visual and linguistically mediated tasks. Both search latency and first fixation duration, 

instead, were not significantly mediated by the predictors Saliency and Context. This fact 

might be caused by the time pressure under which the participants performed the 

memorization task. As the preview time was restricted to five seconds, participants 

presumably tried to scan as many objects as possible before the scene was removed. The 

pressure to look at a wide range of objects in preparation for recall might have increased 

the variance in the search latency and first fixation duration measures for the objects of 

interest. As search latency and first fixation are both measures of first object 

identification, a pressure of moving onto other targets might have influenced the 
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participants on the time available to evaluate what object should have been look first, i.e., 

search latency, and for how long, i.e., first fixation duration. 

General Discussion

Scene understanding requires access to both low-level (stimulus-based) and high-level 

(knowledge-based) visual information. However, there are conflicting views regarding 

when these two types of information are utilized to guide visual attention. A bottom-up 

theory of visual processing assumes that low-level features guide visual attention (e.g., 

Itti & Koch, 2000). Top-down approaches, such as the Cognitive Relevance Framework 

(Henderson et al., 2009), in contrast, posit that high-level contextual information is the 

main source of attentional control during scene understanding, leaving low-level 

information to play only a minimal role for a given task.  It is likely that the divergent 

results are due to the different experimental tasks used, and especially one crucial factor 

seems to be the presence of an explicit target object: A search task involves a target 

object that has been cued ahead of the trial, while a memorization task does not. It seems 

likely that setting a target changes the way in which context is processed, as visual 

attention is then more susceptible to the semantic content of the scene, such as the co-

occurrence of objects (e.g., a BALL is usually found on the FLOOR). Even though 

Underwood et al. (2008) tried to address this issue by manipulating visual saliency and 

contextual congruency in a comparative search task, the results remain inconclusive as 

50



their task is highly structured, and it seems likely that participants develop specialized 

scanning strategies (Underwood, 2009).

In the present study, we examined the interplay between stimulus-based and knowledge-

based information on attentional guidance, and linguistic performance, during an object 

naming task, and compared the eye-movement responses in such a task with those in a 

memorization task.  We hypothesized that visual attention and language processing have 

to share information across modalities to achieve object naming. Thus, an interaction 

between low- and high-level information of the visual scene is expected to take place and 

manifest itself both in visual and linguistic responses. Naming objects is a simple 

language production task for which a large experimental literature exists in 

psycholinguistics. It is clear from that literature that linguistic responses are mediated by 

contextual constraints, both linguistic and non-linguistic (e.g., Bartram, 1974; Snodgrass, 

1980; Meyer et al., 1998; Griffin & Bock, 1998; Hocking et al., 2009). Moreover, unlike 

search, a naming task does not explicitly set a specific target object beforehand, but 

requires participants to perform an implicit selection of targets according to the visual 

and linguistic information available. Thus naming is a task that puts visual saliency and 

contextual congruency directly in competition, making it ideal for investigating how 

these two types of information are processed when choosing objects to name. Moreover, 

the task also makes it possible to examine how linguistic information (such as word 

frequency) interacts with saliency and context during the process of naming. If object 
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naming is performed through a cross-modal processing of various sources of information, 

we expected interactions to emerge and support target-selection with the goal of mention. 

When analyzing the visual responses, we found that search latency was longer for 

incongruent objects. In line with the Cognitive Relevance Framework, an incongruent 

object is not readily inspected after scene onset as it does not fit the cognitive top-down 

constraints imposed by the task goals. Selecting objects to name, in fact, demands a 

contextual evaluation of the scene (e.g., a kitchen scene is likely to contain a SPOON and 

a PLATE), which is known to be involved in such tasks (Damian, et. al. 2002). This 

effect is also compatible within the predictive coding framework (e.g., Hinton 2007), 

according to which contextually related objects share representational space attracting 

attention overt them, and consequently delaying the identification of the incongruent 

object. However, the effect of context disappears when the incongruent object is visually 

salient. This finding is consistent with what was observed by Underwood and Foulsham 

(2006), who found that the presence of an incongruent object in the scene boosted looks 

to a salient object also in the scene. However, our finding  also significantly differs from 

Underwood and Foulsham (2006), as in our study, the manipulation of congruency and 

saliency were applied to the same target object and not to separate non-target objects. 

This made it possible to evaluate how the joint contribution of congruency and saliency 

properties of an object modulates visual responses.
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Importantly, our results contrast with a strong interpretation of top-down guidance during 

goal-oriented tasks, which holds that visual saliency is not expected to play a role. 

Moreover, when looking at first fixation duration, we find that salient objects are looked 

at longer than non-salient ones. This result suggests that the visual saliency of an object 

enhances its likelihood of being looked at and subsequently selected as a linguistic target 

to be named. This result also differed from that of Underwood and Foulsham (2006), who 

did not find any effect of saliency on the first fixation. Finally, we also find that 

incongruent targets are overall (i.e., in total fixation duration) looked at significantly less 

than congruent targets, which is at variance with the idea that incongruency increases 

visual informativeness. Rather, in a naming task, an incongruent object is less important 

because it is linguistically irrelevant given the scene context. Moreover, an incongruent 

object might be also more memorable, as this effect of contextual incongruency was 

replicated in the follow-up memorization study, discussed in more detail below. The 

memorability of an incongruent target might be a consequence of the fact that, as it is 

deviantit does not interfere in representational space with congruent objects, hence 

making it more likely to be remembered.

When analyzing the linguistic responses, we found that the visual saliency of the object 

of interest affects naming patterns.  Saliency was a significant predictor of whether an 

object is named or not, with salient objects more likely to be named. Saliency had its 

greatest effect when naming begins, i.e., after a 1500 ms preview. An analysis of the 
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naming sequence revealed that salient objects were also named earlier than non-salient 

objects.  Crucially, however, we did not find contextual congruency to play a role in 

determining whether an object is named, or at which position in the naming sequence it 

occurs. Incongruent objects had the same likelihood to be named as congruent ones. 

While visual attention focuses on congruent objects during naming (as evidenced by our 

analysis of search latencies and fixation durations), the language processor seems to show 

no preference for congruent objects as potential naming candidates.

 

These findings allow us to construct a timeline of naming: language processing sources 

salient objects from the visual system first, which makes them naming targets to 

prioritize.  This interpretation is compatible with low-level information being processed 

during early stage visual processing. Then, visual attention is allocated mainly to 

contextually relevant objects, and further naming targets are selected from this pool.  This 

result stems from the fact that incongruent objects are looked at later because they are 

inconsistent with the context of the scene, and hence they tend to be excluded from the 

naming pool. Thus, the remaining targets selected to finalize the naming task are 

predominantly non-salient, often background objects (large area). At this stage, 

contextual congruency no longer plays a role, and congruent and incongruent objects 

have the same likelihood of being selected for naming.  
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The aim of the naming experiment reported in this paper was to investigate how context 

and saliency interact to guide visual attention. The use of a linguistic task, however, 

enabled us to also determine the impact of linguistic factors on naming. We found that 

objects with more frequent names are less likely to be named; furthermore, frequency 

interacts with the visual properties of the objects being named. In particular, we found 

that salient or large objects that are lexically frequent are more likely to be named. From 

a linguistic perspective, this result suggests that the lexical frequency of the word used to 

refer to the visual object is not sufficient to decide whether an object has to be named. 

Rather, it seems that lexical frequency has to interact with other properties of the object, 

such as its visual saliency, to make it a viable naming candidate. It is a standard result in 

psycholinguistics that frequent words are retrieved more quickly during lexical decision 

and naming. However, our results indicate that speed of retrieval is not the main 

determinant for an object being selected for naming. Rather, such selection is 

accomplished by combining linguistic information with both low- and high-level visual 

information.

In order to test whether the effects we observed in our naming experiment were particular 

to naming (Experiment 1), we also looked at eye-movement responses during a 

memorization task using the same experimental materials (Experiment 2). The 

memorization task also ensures comparability with previous work on saliency and object 

congruency, some of which has used memorization (Underwood & Foulsham, 2006, 
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Henderson, et. al., 1999).  Experiment 2 found trends comparable with the object naming 

study, but failed to achieve statistical significance for search latency and first fixation 

duration. In particular, there was a trend of looking at salient objects earlier and longer 

for the first time, in line with results by Underwood and Foulsham (2006). This result 

suggests that salient information tends to be activated at earlier stages of visual 

processing. We argued that the failure to find significant effects in these measures might 

be due to the task demands: Since participants had a fixed preview time of five seconds, 

which put them under time pressure to memorize as many objects as possible. Such time 

pressure (which was not present in the naming study, where the scene remained visible 

until the participants ended the trial) might have increased the variance of first pass 

measures, i.e., search latency and first fixation duration, on the object of interest. The 

rationale behind this argument is that search latency and first fixation are both measures 

of initial object identification. So, in a task demanding scenes to be widely inspected and 

memorized for object recall, participants did not have enough time to evaluate which 

object should have been looked first (search latency) and how much should have been 

attended (first pass).   However, on total gaze duration, we replicated what we found 

during object naming: incongruent objects were fixated overall less than congruent 

object. This finding contrasts with the study of Henderson, et al. (1999), which found the 

opposite effect,. This could suggest that incongruent objects, as they deviate from the 

scene context, are more memorable than congruent objects and hence need to be attended 

less. More research is needed to elucidate the effect of congruency on memorability of 
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objects. Overall, we did not find any significant interactions between saliency and 

congruency in Experiment 2, which might indicate that during a purely visual task, these 

two types of information are selectively used, rather than interactively, as Experiment 1 

demonstrated for naming.

Understanding which factors determine an object’s importance in a scene has significant 

implications beyond visual cognition. In computer vision, for instance, the accuracy of 

object detectors or automatic image annotation could be improved by accurately 

evaluating the visual and linguistic features involved. In future work, we plan to utilize 

the insights gained in the present work to design models and algorithms that are able to 

integrate visual and linguistic information in a similar fashion to what humans do when 

they perform naming tasks.
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