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Abstract
The acquisition of syntactic categories is a crucial step in the process of
acquiring syntax. At this stage, before a full grammar is available, only sur-
face cues are available to the learner. Previous computational models have
demonstrated that local contexts are informative for syntactic categoriza-
tion. However, local contexts are affected by sentence-level structure. In this
paper, we add sentence type as an observed feature to a model of syntac-
tic category acquisition, based on experimental evidence showing that pre-
syntactic children are able to distinguish sentence type using prosody and
other cues. The model, a Bayesian Hidden Markov Model, allows for adding
sentence type in a few different ways; we find that sentence type can aid
syntactic category acquisition if it is used to characterize the differences in
word order between sentence types. In these models, knowledge of sentence
type permits similar gains to those found by extending the local context.

Keywords: Language acquisition, Syntactic categories, Bayesian modeling,
Computational modeling, Sentence prosody.

Introduction

An essential early step in syntax acquisition is learning to group words into categories
such as nouns or verbs according to their syntactic functions. Like other aspects of syntax
acquisition, this task is unsupervised: a child is not told that a given utterance consists of,
say, a determiner followed by a noun. Instead categories must be formed on the basis of
implicit information about the syntactic similarity of words. Characterizing the nature and
amount of the implicit information available to children as they acquire language is essential
for any theory of language acquisition. Computational modeling plays an important role
here, by demonstrating that there is (or is not) sufficient information in a learner’s input
for an idealized learner to reach certain conclusions about the structure of language, such
as the underlying syntactic categories of words.
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Syntactic categories are defined as a set of words that can fill the same (or highly
similar) grammatical roles, i.e., that are syntactically similar. A key aspect of syntactic
similarity is the distributional similarity between words, i.e., words that appear in the same
surface contexts (similar distributions) tend to belong to the same syntactic categories.
Distributional similarity is clearly weaker than full syntactic similarity, but it is used to
avoid the circular problem of needing a grammar defined over syntactic categories to decide
the syntactic category of a given word (although this process can be used once a fairly
comprehensive grammar is in place to bootstrap individual unknown words).

The distributional hypothesis (Maratsos & Chalkley, 1980) posited that children use
distributional information to bootstrap grammar. Empirical studies have provided evidence
for this view, demonstrating that infants are sensitive to distributional context before they
are likely to have an adult-like grammar (before 18 months): infants can distinguish nonce
nouns from adjectives based on the distributional context alone (Booth & Waxman, 2003)
and can construct distribution-dependent grammatical paradigms for both natural and ar-
tificial languages (Gerken, Wilson, & Lewis, 2005; Gómez & Lakusta, 2004; Thothathiri,
Snedeker, & Hannon, 2011).

Likewise, computational methods for automatically inducing syntactic categories use
distributional information heavily, when not exclusively (P. F. Brown, Pietra, deSouza,
Lai, and Mercer (1992), Cartwright and Brent (1997), Clark (2003), Harris (1946), Mintz
(2003), and many others). The distributional context of a word in these models is defined
using a few surrounding items (words or categories). This captures the immediate context,
which is sufficient to learn reasonable categories, and avoids exploding the number of model
parameters.

However, non-local syntactic effects play a role as well. In this paper, we add a form of
non-local, sentence-level context to models using only local context, to investigate whether
the added context improves performance. Specifically, we add sentence type as a known
feature to the local context, i.e., whether the local context is within a question, declarative
sentence, short fragment, etc. Sentence type often affects sentence structure and word order,
and thereby can change the nature of local contexts. Taking sentence type into account
may thus lead to clustering on the basis of more informative context distributions. An
improvement in performance would indicate that this new information is useful to language
learners, but it could also decrease performance if it is too noisy or does not correlate with
syntactic category sequences.

Our enhanced models assume that children are aware of different sentence types and
can make use of them at the stage of learning syntactic categories. A great deal of evidence
from language development supports this assumption. Sentence types are strongly signaled
by prosody in most languages (Hirst & Cristo, 1998). Prosody is, along with phonotactics,
the first step in language learning; areas in the brains of three month olds are already sen-
sitive to the prosody of the surrounding language (Homae, Watanabe, Nakano, Asakawa,
& Taga, 2006) and experiments with newborn infants have demonstrated their ability to
distinguish their native language using prosody alone (Mehler et al., 1988). Two month olds
use prosody to remember heard utterances (Mandel, Jusczyka, & Kemler Nelson, 1994).
Notably Mandel, Kemler Nelson, and Jusczyk (1996) showed that natural sentence level
prosody aided memory of word order in two month old infants, which is essential for re-
membering and using distributional information.
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Infants are aided in language learning by the fact that intonation (pitch) contours of
child and infant directed speech (CDS) are especially well differentiated between sentence
types, more than in adult directed speech (Fernald, 1989; Daniel N. Stern, Spieker, &
MacKain, 1982). It is specifically the pitch contours of CDS that infants prefer over adult
directed speech (Fernald & Kuhl, 1987) — the same contours that signal sentence type.
CDS tends to be more interactive (as measured by the proportion of questions) than adult
directed speech (Fernald & Mazzie, 1991; Newport, Gleitman, & Gleitman, 1977), resulting
in a greater variety of frequent sentential prosody patterns and potentially making sentential
prosody a more salient feature at the beginning of language learning (D. N. Stern, Spieker,
Barnett, & MacKain, 1983). Visual cues, particularly the speaker’s facial expression, can
also be used to distinguish between questions and statements (Srinivasan & Massaro, 2003).

Infants’ awareness of sentence types can be demonstrated by their sensitivity to the
pragmatic function signaled by sentence type. For example, mothers will stop asking ques-
tions if infants do not react appropriately, as when the mother is interacting with time-
delayed video feed of the infant (Murray & Trevarthen, 1986). Since CDS is characterized
by a high proportion of questions, this demonstrates that in normal caretaker-child inter-
actions infants as young as three months are ‘holding up’ their side of the conversation in
some basic sense. Infants produce appropriate intonation melodies to communicate their
own intentions at the one word stage, before they develop productive syntax (H. L. Balog
& Brentari, 2008; Galligan, 1987; Snow & H. Balog, 2002). Children also exhibit adult-like
behavior when using prosody to distinguish between otherwise identical Mandarin questions
and declarative sentences in an on-line fashion (Zhou, Crain, & Zhan, 2012).

Based on these experimental results, we conclude that children who are at the point of
learning syntax — at two to three years of age — are well equipped to use sentential prosody
as part of their armory of potentially relevant input features. The current work investigates
whether it would be advantageous for them to do so, given a classic computational model
of syntactic category learning. To this end we annotate a corpus of child directed speech
with sentence types, and extend the model to enable it to use these features.

We are not aware of previous work investigating the usefulness of sentence type in-
formation for syntactic category acquisition models. However, sentence types (identified by
prosody) have been used to improve the performance of speech recognition systems. Specifi-
cally, Taylor, King, Isard, and Wright (1998) found that using intonation to recognize dialog
acts (which to a large extent correspond to sentence types) and then using a specialized
language model for each type of dialog act led to a significant decrease in word error rate.

In this paper we first examine the corpus data motivating our use of sentence types in
syntactic category learning, and describe how we label sentence types. We then experiment
with three different ways of incorporating sentence type into a token-based tagging model,
the Bayesian Hidden Markov Model (BHMM). Our results demonstrate that sentence type
is a beneficial feature for representing word order (or more precisely, syntactic category
order).

Data

One of the first detailed investigations of CDS (Newport et al., 1977) found that it
differs from adult directed speech in a number of key ways; for example, child directed
utterances are significantly shorter and more intelligible than adult directed speech, with
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fewer false starts and corrections. This emphasizes the need to use realistic (i.e., CDS)
corpora when modeling acquisition: the linguistic environment in which children acquire
language is unlike the standard corpora used in computational linguistics.

More immediately relevant to our current work is the fact that CDS is far more
diverse in terms of sentence type than either adult written or spoken language. Whereas
adult directed speech is largely made up of declarative utterances, CDS includes many more
questions and imperative statements (Fernald &Mazzie, 1991; Newport et al., 1977). Indeed,
one of the arguments for the utility of CDS (Gleitman, Newport, & Gleitman, 1984) is that
it is the range and the complexity of input that enables a learner to delimit the linguistic
space, that is, to successfully separate grammatical sentences from non-grammatical. If a
learner was given an overly constrained language to begin with, she could construct wrong
hypotheses that would not admit the more complex adult language she would be faced with
later on.

The data we we use come from childes (MacWhinney, 2000), a collection of corpora
shared by language development researchers. We use the Eve corpus (R. Brown, 1973) and
the Manchester corpus (Theakston, Lieven, Pine, & Rowland, 2001). The Eve corpus is a
longitudinal study of a single US American child from the age of 1;6 to 2;3 years, whereas
the Manchester corpus follows a cohort of 12 British children from the ages of 2 to 3. We
remove all utterances with any unintelligible words or words tagged as quote (about 5% of
all utterances and between 2 and 3% of CDS utterances). Corpus statistics are presented in
Table 1. The Manchester corpus is over twenty times as large as the Eve corpus; by inferring
and evaluating our models on both corpora we can investigate the effects of data set size.

Sentence types are not annotated in these corpora, so we use simple heuristics to label
the sentences with their sentence type. The Cambridge Grammar of the English Language
(Huddleston & Pullum, 2002) identifies the following five clause types:

Declarative I have eaten the plums in the icebox.

Closed Interrogative/yes/no questions Were you saving them for breakfast?

Open Interrogative/wh-questions Why were they so cold?

Exclamatory What a sweet fruit!

Imperative Please forgive me!

We use these clause types as a starting point. (To stress that we are labeling a full
utterance/sentence, we will use the term sentence type rather than clause type.) We do
not use the exclamatory sentence type due to its scarcity in the corpus; it is also difficult
to identify automatically. Additionally, we add a short utterance category to distinguish
probable fragments (verb-less clauses). The resulting sentence types with their identifying
characteristics are:

Open Interrogative/wh-questions (W): Utterances ending with a question mark and
beginning (in the first two words) with a ‘wh-word’ (one of who, what, where, when,
why, how, which).
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Table 1
Summary of Eve and Manchester corpora

Eve Manchester
All CDS only All CDS only

Utterances 25295 14450 582375 318349
Mean Length 4.68 5.38 4.66 4.31
Word Tokens 118372 77766 2713672 1371936
Word Types 2235 1995 11739 11030

Table 2
Number of child-directed utterances by sentence type and average utterance length in paren-
theses.
Sentence Type Eve Manchester
wh-Questions 2273 (4.03) 33461 (4.72)
Other Questions 2577 (4.41) 74327 (5.80)
Declaratives 6181 (5.79) 99318 (5.83)
Short Utterances 2752 (1.27) 95518 (1.28)
Imperatives 665 (5.30) 15725 (5.17)

Closed Interrogative/yes/no questions (Q): Utterances ending with a question mark
but not beginning with a wh-word. This includes tag questions and echo questions with
declarative (unmarked) word order.

Imperative (I): Utterances with an imperative-mood verb in the first two words1.

Short (S): One- or two-word non-question utterances, typically interjections and frag-
ments.

Declarative (D): All remaining utterances.

It would be preferable to use audio cues to categorize utterances, especially with re-
gard to the difference between declaratives, closed interrogatives, and imperatives (since
short utterances are easily identified by their length, and wh-words are a reliable cue for
open interrogatives). Unfortunately the speech data is not available for our corpora, so we
must approximate the audio cues available to children with the above orthographic (punctu-
ation) and lexical-syntactic (wh-word and verb identification) cues. Note that the childes
annotation guidelines state that all utterances with question-characteristic intonation must
be transcribed with a question mark, even if the utterance is syntactically declarative (You
ate the plums?). In any case, even prosody data would not include all the cues available to
the child such as visual cues, facial expressions, and so on.

Table 2 gives the number of each type of utterance in each corpus. Notably, while
declaratives are the largest category, they make up only about a third of total utterances,
while questions make up a further third of all utterances. (In contrast, questions make up

1Since the corpus we use, childes, does not annotate the imperative mood, we use all utterances with
a ‘base’ verb in the first two words without a pronoun or noun preceding it (e.g. well go and get your
telephone).
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only 3% of the Wall Street Journal corpus of news text (Marcus, Santorini, Marcinkiewicz, &
Taylor, 1999) and 7% of the Switchboard corpus of adult conversations (Godfrey, Holliman,
& McDaniel, 1992).)

Note that these sentence-labeling heuristics are rather coarse and prone to noise. This
is in line with the noisy input that children receive, presumably leading to errors on their
part as well. Any model must be equally robust against noise and miscategorization. We
hand-checked a subset of the Eve (section 10, the dev section) to verify our sentence type
heuristics. Of 497 sentences, only 10 (2%) were misclassified2.

BHMM models with sentence types

In this section we add sentence type as an observed variable to a simple part of
speech induction model, the Bayesian Hidden Markov Model (BHMM) (Goldwater & T. L.
Griffiths, 2007). The HMM has long been a standard model for part of speech induction
(Merialdo, 1994); reformulating it as a Bayesian model avoids some of the problems with
standard maximum likelihood estimation and leads to more accurate clusters. (See T. Grif-
fiths, Kemp, and Tenenbaum (2008) for an introduction to Bayesian methods from a cogni-
tive modeling perspective.) Both the Bayesian and classic HMM assign part of speech labels
to a sequence of word tokens, rather than word types (such as the models of Redington,
Chater, and Finch (1998) and Clark (2001)). This enables the model to deal with homo-
graphs in a natural way. It also ensures complete coverage of the data (all tokens must be
tagged), whereas many type-based models limit themselves to only the most frequent items.

Modeling the underlying structure of a sentence as a sequence of part of speech labels
is a particularly simplified view of syntax, removing the hierarchical structure inherent to
language. However, this simplification seems appropriate for the first stages of acquisition,
when learners encounter short sentences with simple syntax. Most computational models
of syntax acquisition or grammar induction assume that syntactic categories are available
(either annotated or learned by a separate method) and induce a grammar over syntactic
categories rather than lexical items (Klein & Manning, 2004; Perfors, Tenenbaum, & Regier,
2011). A simpler model such as the HMM and its variants can demonstrate what can be
learned before full grammatical structure is in place.

We first present an overview of the BHMM and introduce our notation (but see
Goldwater and T. L. Griffiths (2007) for complete details); we then add sentence type
evidence to the BHMM in three ways and describe the ensuing models.

BHMM

HMMs are a classic model used to assign ‘labels’ (hidden state identities, in this
case parts of speech) to a sequence of observations (word tokens). They are defined by
two probability distributions: the transition distribution, which gives the probability of
transitioning to a tag given the surrounding context (tags), and the emission distribution,
which gives the probability of a particular word given its tag. The transition distribution

2The misclassified sentences were: 8 imperatives classified as declaratives (mostly sentences of the form
Eve please listen); one declarative sentence that is clearly a question in context but was not annotated with
a question mark; one declarative sentence that was mistagged as an imperative due to an annotation error
(people tagged as a verb).
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characterizes the sequence of words, or rather tags, and thus can represent a low-level, local
syntax concerned with word order (but not movement or long distance dependencies). The
emission distributions characterize the set of words that are likely to appear as a given part
of speech, i.e., the categorization of the words into categories.

Like a standard HMM, the Bayesian HMM makes the independence assumption that
the probability of word wi depends only on the current tag ti, and the probability of tag ti
depends only on the previous tags. The number of previous tags included in the context is
known as the order of the model: a first-order model, also known as a bigram model, uses a
single previous tag as conditioning context to determine the transition probability, whereas
a second-order (trigram) model uses the two previous tags as context.

The trigram transition and emission distributions are written as:

ti|ti−1 = t′, ti−2 = t′′, τ(t′,t′′) ∼ Mult(τ(t′,t′′)) (1)
wi|ti = t, ω(t) ∼ Mult(ω(t)) (2)

where τ(t′,t′′) are the parameters of the multinomial distribution over following tags given
previous tags (t′, t′′) and ω(t) are the parameters of the distribution over outputs given
tag t. The generative process associated with the BHMM assumes that these parameters
have in turn been drawn from symmetric Dirichlet priors with hyperparameters α and β,
respectively:

τ(t′,t′′)|α ∼ Dirichlet(α) (3)
ω(t)|β ∼ Dirichlet(β) (4)

Using these Dirichlet priors allows the multinomial distributions to be integrated out, lead-
ing to the following conditional posterior distributions:

P (ti|t−i, α) =
nti−2,ti−1,ti + α

nti−2,ti−1 + Tα
(5)

P (wi|ti, t−i,w−i, β) = nti,wi + β

nti +Wtiβ
(6)

where t−i = t1 . . . ti−1, all tags but ti, and likewise w−i = w1 . . . wi−1, all words but wi.
nti−2,ti−1,ti and nti,wi are the number of occurrences of the trigram (ti−2, ti−1, ti) and the
tag-word pair (ti, wi) in t−i and w−i. T is the size of the tagset and Wt is the number of
word types emitted by t. The hyperparameters function as a type of smoothing, with α and
β providing pseudo-counts.

Clearly, the Markov independence assumption made in the HMM/BHMM, namely
that a small context window is sufficient to determine the hidden label, is too strong in
natural language contexts, but adding more context leads to an unwieldy and sparse model.
One of the important questions for the models presented here is whether sentence types can
proxy for larger context windows.

BHMM with sentence types

The BHMM depends solely on local information for tagging. However global infor-
mation — such as sentence types — can play a role in syntax at the tag sequence level,
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Figure 1. Graphical model representation of the BHMM-T, which includes sentence type as
an observed variable on tag transitions (but not emissions).

by requiring shifts in word order. Hence they are likely to be informative for a tagger by
enriching the impoverished local context representation.

In order to incorporate sentence type information into the BHMM, we add an observed
variable to each time-step in the model with the value set to the current sentence type3.
Given that the BHMM consists of two principal distributions, there are two straightforward
ways that sentence type could be incorporated into the BHMM: either by influencing the
transition probabilities or the emission probabilities. The former would reflect the effect of
sentence type on word order, whereas the latter would investigate whether sentence type
affects the set of words categorized as a single part of speech. We discuss both, as well as
their combination.

BHMM-T. In the first case, transitions are conditioned not only on previous con-
text, as in the BHMM, but also on the context’s sentence type. This leads different sentence
types to assign different probabilities to the same sequence of tags, so that, for example,
PRONOUN will be more likely to be followed by a VERB in declaratives than in imperatives.
(Note however that the estimated tag clusters will not necessarily correspond to gold tags.)
By separating out the transitions, the model will have more flexibility to accommodate word
order changes between sentence types.

Formally, the observed sentence type si−1 is added as a conditioning variable when
choosing ti, i.e., we replace line 1 from the BHMM definition with the following:

ti|si−1 = s, ti−1 = t′, ti−2 = t′′, τ(s,t′,t′′) ∼ Mult(τ(s,t′,t′′)) (7)

We refer to this model, illustrated graphically in Fig. 1, as the BHMM-T (for transitions).
The BHMM-T has a larger number of parameters than the BHMM, which has T o+1 +

TV (where T is the number of tags, o is the model order, and V is the size of the vocabulary)
parameters, whereas the BHMM-T has ST o+1+TV (S being the number of sentence types)4.

3Arguably sentence type only needs to be included in the model once per sentence, rather than at each
time-step, since sentence type never changes within a sentence. However, since sentence type is an observed
variable, replicating it has no effect, and it makes the notation clearer.

4Since probability distributions are constrained to sum to one, the last parameter in each distribution is
not a free variable, and so the true number of necessary emission parameters is T (V − 1) (and likewise for
transition parameters), but we omit this technicality in favor of clarity.
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BHMM-E. Analogously, we can add sentence type as a conditioning variable in
the emission distribution by replacing line 2 from the BHMM with

wi|si = s, ti = t, ω(s,t) ∼ Mult(ω(s,t)) (8)

This model, the BHMM-E (for emissions), results in models in which each sentence type has
a separate distribution of probable words for each tag, but the transitions between those
tags are shared between all sentence types, as in the BHMM. This does not correspond
well to the word-order effect that sentence type has in many languages, but may capture
vocabulary differences between sentence types, if these exist.

The model size is T o+1 + STV , which in practice is significantly larger than the
BHMM-T model, given V � T > S and model orders of one and two (bigram and trigram
models).

BHMM-ET. The combination of the two, BHMM-T plus BHMM-E, is also possi-
ble. In the BHMM-ET, sentence type conditions both transition and emission probabilities.
Each sentence type now has a separate set of transition and emission distributions (both
transitions and emissions are conditionally independent given sentence type). Without any
shared information, tags are not in any sense equivalent between sentence types, so this
model is equivalent to inferring a separate BHMM on each type of sentence, albeit with
shared hyperparameters.

Introducing the sentence type parameter as an extra conditioning variable in these
models has the consequence of splitting the counts for transitions, emissions, or both. The
split distributions will therefore be estimated using less data, which could degrade perfor-
mance if sentence type is not a useful predictor of tag sequences or tag-word pairings. This
will be especially vital to the performance of the BHMM-ET, without any shared informa-
tion at all. If the separate models in the BHMM-ET match the BHMM’s performance, this
would indicate that sentence type is as reliable an indicator of tagging information as a large
amount of additional data from other sentence types. However, it is cognitively implausible
for there to be no sharing of information at all between sentence types: this model serves
principally as a measure of sentence type informativeness.

Our prediction is that sentence type is more likely to be useful as a conditioning
variable for transition probabilities (BHMM-T) than for emission probabilities (BHMM-
E). For example, the auxiliary inversion in questions is likely to increase the probability
of the AUX → PRONOUN transition, compared to declaratives. Knowing that the sentence is
a question may also affect emission probabilities, e.g. it might increase the probability the
word you given a PRONOUN and decrease the probability of I ; one would certainly expect wh-
words to have much higher probability in wh-questions than in declaratives. However, many
other variables also affect the particular words used in a sentence (principally, the current
semantic and pragmatic context). We expect that sentence type plays a relatively small role
compared to these other factors. The ordering of tags within an utterance, on the other
hand, is primarily constrained by sentence type, especially in the short and grammatically
simple utterances found in child-directed speech.

English experiments

Procedure
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Corpora. We use the Eve and Manchester corpora from childes for our exper-
iments. From both corpora we remove all utterances spoken by a child; the remaining
utterances are nearly exclusively CDS.

Although our model is fully unsupervised (meaning the gold standard tags are never
visible to the model), files from the chronological middle of each corpus are set aside for
development and testing evaluation (Eve: file 10 for development, 11 for testing; Manchester:
file 16 from each child for development, file 17 for testing). The remainder of each corpus
is used for inference only, and is never evaluated. The BHMM is thus inferred using either
(dev+remainder) or (test+remainder) datasets, with only the inferred tags in either the dev
or test portion being evaluated.

The motivation behind this evaluation regime is to ensure that the model structures we
investigate generalize to multiple settings. In most previous unsupervised modeling work,
results are reported for the entire corpus. However, since different model structures and
(hyper)parameterizations may be explored during development, this methodology still leaves
open the possibility that the final model structure may be better suited to the particular
corpus being used than to others. To avoid this issue, we set aside a separate test dataset
that is only used for the final evaluation.

Both corpora have been tagged using the relatively rich childes tagset, which we
collapse to a smaller set of thirteen tags: adjectives, adverbs, auxiliaries, conjunctions, deter-
miners, infinitival-to, nouns, negation, participles, prepositions, pronouns, verbs and other
(communicators, interjections, fillers and the like). Wh-words are tagged as adverbs (why,
where, when and how), pronouns (who and what), or determiners (which).

Each sentence is labeled with its sentence type using the heuristics described earlier.
Dummy inter-sentence markers are added, so transitions to the beginning of a sentence will
be from the inter-sentence hidden state (which is fixed). The inter-sentence markers are
assigned a separate dummy sentence type.

In our experiments, we experiment with coarser sentence type categorizations as well
as the full five types. This enables us to discover which sentence types are most informative
for the tagging task. Specifically, we try:

QD in which all questions (wh- and other) are collapsed to one question category and all
other utterances are collapsed to declaratives.

WQD in which the question categories are separated but the non-questions are in a single
category.

SWQD as above, but with short (declarative) utterances distinguished from other non-
question utterances.

ISWQD in which all five sentence types are separated: imperatives, short utterances, wh-
questions, other questions, and declaratives.

Inference. We follow Goldwater and T. L. Griffiths (2007) in using a collapsed
Gibbs sampler to perform inference over the BHMM and its variants. Gibbs samplers are a
standard batch inference method for Bayesian models and are designed to produce samples
from the posterior distribution of interest—here, the distribution over tag assignments given
the observed word sequences P (t|w, α, β) ∝ P (w|t, β)P (t|α). The sampler is initialized by
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PBHMM (t|t−i,w, α, βt) ∝
nt,wi + βt
nt + V βt

×
nti−2,ti−1,t + α

nti−2,ti−1 + Tα
(9)

PBHMM−E(t|t−i,w, s, α, βt) ∝
nsi,t,wi, + βt
nsi,t + V βt

×
nti−2,ti−1,t + α

nti−2,ti−1 + Tα
(10)

PBHMM−T (t|t−i,w, s, α, βt) ∝
nt,wi + βt
nt + V βt

×
nti−2,ti,si−1,ti + α

nsi−1,ti−2,ti−1 + Tα
(11)

PBHMM−ET (t|t−i,w, s, α, βt) ∝
nsi,t,wi, + βti
nsi,t + V βt

×
nti−2,ti−1,si−1,t + α

nsi−1,ti−2,ti−1 + Tα
(12)

Figure 2. Trigram Gibbs sampling equations for the four model variants. nt,wi is the number
of occurrences of tag t with word wi (and analogously for trigram transition counts); t−i
indicates that these counts do not include the current value of ti. Transition factors for
trigrams (ti−1, t, ti+1) and (t, ti+1, ti+2) are not shown but must be included (see Goldwater
and T. L. Griffiths (2007)).

assigning a random tag to each word, and then runs iteratively over the corpus, resampling
the tag assignment for each word from the posterior distribution defined by the current
tag assignments for all other words, P (ti|t−i, w, α, β) (where t−i represents the other tag
assignments). It can be shown that this procedure will eventually converge to producing
samples from the true posterior distribution over all tags (S. Geman & D. Geman, 1984).
The equations used to resample each word’s tag assignment in each model are shown in
Fig. 2.

In order to minimize the amount of prior information given to the model, we also
optimize the hyperparameters α and β using using a Metropolis-Hastings sampling step,
following Goldwater and T. L. Griffiths (2007). The hyperparameter over emission distri-
butions, β, is estimated separately for each tag distribution, whereas α is constrained to be
the same for all transition distributions.

We set the number of hidden states (corresponding to tag clusters) to the number of
gold tags in the corpus (i.e., 13).

We run the Gibbs sampler for 10000 iterations, with hyperparameter resampling and
simulated annealing. (On the Manchester corpus, due to its size, we only manage 5000
iterations.) The final sample is used for evaluation purposes. Since Gibbs sampling is a
stochastic algorithm, we run all models multiple times and report average values for all
evaluation measures as well as confidence intervals at the 95% level. Significance is measured
using the non-parametric Wilcoxon signed-rank test.

Evaluation measures. Evaluation of fully unsupervised part of speech tagging is
known to be problematic, due to the fact that the part of speech clusters found by the
model are unlabeled, and do not automatically correspond to any of the gold standard part
of speech categories. Commonly used evaluation measures, such as one-to-one and many-
to-one accuracy, suffer from “the problem of matching” (Meila, 2007): their greedy ‘winner
takes all’ approach means that all unmatched items are rated as equally bad, despite the
fact that a cluster with members of only two gold classes is intuitively better than a cluster
that is made up of many gold classes.
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For evaluation we thus use V-measure (VM; Rosenberg and Hirschberg, 2007), which
avoids this issue5. VM uses the conditional entropy of clusters and categories to evaluate
clusterings. It is analogous to the F-measure commonly used in NLP, in that it is the
harmonic mean of two measures analogous to precision and recall, homogeneity (VH) and
completeness (VC). VH is highest when the distribution of categories within each cluster is
highly skewed towards a small number of categories, such that the conditional entropy of
categories C given the clusters K, H(C|K), is low. Conversely, VC measures the conditional
entropy of the clusters within each gold standard category, H(K|C), and is highest if each
category maps to a single cluster so that each model cluster completely contains a category.

V H = 1− H(C|K)
H(C)

V C = 1− H(K|C)
H(K)

VM = 2× V H × V C
V H + V C

Like the standard F-measure, VM ranges from zero to one (rescaled to 0-100). It is invariant
with regards to both the number of items in the dataset and to the number of clusters used,
and consequently it is suitable for comparing results across different corpora.

Results and discussion

We now present results for the three BHMM variants discussed in the previous section:
a model in which both transitions and emission distributions are separated by sentence type,
the BHMM-ET; a model in which only emission distributions are separated by sentence
type and transitions are shared, the BHMM-E; and the converse, the BHMM-T, in which
transitions are separated and emission distributions are shared. We find that these models
perform in very different ways, demonstrating the effect of sentence type on word order
rather than word usage.

BHMM-ET: sentence-type-specific sub-models

By including a sentence type indicator in both the transition and emission distribu-
tions, the BHMM-ET separates both transition and emission probabilities by sentence type,
effectively creating separate sub-models for each sentence type. The resulting tags are thus
not equivalent between sentence types, i.e., the tag TAG-9 used in a declarative sentence is
not the ‘same’ TAG-9 as used in questions, since they have distinct transition and emission
distributions. Consequently, when evaluating the tagged output each sentence type must be
evaluated separately, to avoid conflating incompatible clusterings.

Baseline BHMM and BHMM-ET results for the Eve corpus, split by sentence type,
are in Fig. 3 and 4. We see that in this relatively small corpus, as expected, splitting the
sentence types results in decreased performance as compared to the baseline BHMM, in
which all counts are shared. Only the declaratives, the most frequent sentence type, provide
enough information on their own to match (and in the dev settings exceed) the baseline
performance.

Fig. 5 and 6 show results for the much larger Manchester corpus. The BHMM-ET
models here perform much closer to the baseline, due to the larger amount of data available
to each sentence type sub-model. Each of the sentence types contain enough information to

5We also calculated many-to-one accuracy and found that it was highly correlated with VM.
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Figure 3. Performance of bigram BHMM and variants by sentence type on the Eve corpus:
Mean VM and 95% Confidence Intervals (N = 10). Values that differ significantly from
baseline (BHMM) are marked with ∗ (p < 0.05, two-tailed) or ∗∗ (p < 0.01, two-tailed).

learn approximately equivalent taggers using either only single sentence type data or the
full data set. The exceptions are the short utterances models, which continue to suffer from
the lack of sufficiently informative contexts.

BHMM-E: sentence-type-specific emissions

We now turn to the BHMM-E, in which emission probability distributions are
sentence-type-specific, but transition probabilities are shared between all sentence types.
In this model a given sequence of tags is equally likely among all sentence types, but those
tags can correspond to different words in different sentence types.

Returning to Fig. 3 and 4 (Eve corpus) and Fig. 5 and 6 (Manchester corpus), we see
that for almost every sentence type, the BHMM-E performs worse than both the BHMM-
ET and the baseline BHMM. The negative effect of the split emissions is most striking on
the Manchester corpus, where small dataset size cannot be a problem. Whereas with the
BHMM-ET we might posit that, given enough data, sentence-type-specific models would
learn an equivalent model to the shared baseline model (apart from the short utterance
distinction), here we see that adding the sentence type feature to only the emissions is
actively harmful.
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Figure 4. Performance of trigram BHMM and variants by sentence type on the Eve corpus:
Mean VM and 95% Confidence Intervals (N = 10). Values that differ significantly from
baseline (BHMM) are marked with ∗ (p < 0.05, two-tailed) or ∗∗ (p < 0.01, two-tailed).

BHMM-T: sentence-type-specific transitions

Lastly, we evaluate the BHMM-T, which shares emission probabilities among sentence
types and uses sentence-type-specific transition probabilities. This describes a model in
which all sentence types use the same set of tags, but those tags can appear in different
orders in different sentence type. Since this situation corresponds best to the behavior of
sentence type in English and many other languages — word order changes according to
sentence type, but word usage does not — we expect the BHMM-T to perform the best of
all the sentence type BHMM models, and to improve over the baseline BHMM.

In the bigram models (Fig. 3 for the Eve corpus and Fig. 5 for the Manchester
corpus) we see the BHMM-T either match or improve upon the baseline BHMM in all
sentence types, apart from short utterances. Models trained on the Manchester corpus
improve significantly over the baseline on all other sentence types. Models trained on the
smaller Eve corpus show more mixed results, with the most constrained sentence types
(wh-questions and imperatives) showing significant improvement over the baseline.

Trigram models (Fig. 4 and 6) also differ by dataset size. On the smaller dataset, we
find no consistent difference in performance between BHMM-T and baseline; notably short
utterances also match baseline performance (unlike in bigram models). Given more data,
the Manchester-trained models significantly outperform the baseline on two sentence types,
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Figure 5 . Performance of bigram BHMM and variants by sentence type on the Manchester
corpus: Mean VM and 95% Confidence Intervals (N = 10). Values that differ significantly
from baseline (BHMM) are marked with ∗ (p < 0.05, two-tailed) or ∗∗ (p < 0.01, two-tailed).

and match on the others. Imperatives, the least frequent sentence type, suffer a decline in
performance; there may simply not be enough data to estimate good trigram transition
distributions, even with shared emissions.

Trigram models must estimate significantly more parameters than bigram models;
adding sentence type increases the number of parameters still further. Where BHMM-T
matches and exceeds baseline performance, adding sentence type is creating split transition
distributions that are more or equally accurate to the fully shared distribution, despite
being estimated on far less data. This demonstrates the potential effectiveness of sentence
type information for transitions.

Not all sentence types seem to be useful: bigram models perform poorly on short
utterances, due to the limited context; the baseline model makes use of transfer from other
sentence types. Rare sentence types such as imperatives are difficult to learn, particularly for
trigam models. These differences indicate that it may be advantageous to only distinguish
certain sentence types.

Fig. 7 (Eve) and Fig. 8 (Manchester) show the results of BHMM-T models trained on
data sets using a variety of less fine-grained sentence types, as described earlier. The shared
emission distributions in the BHMM-T allow us to evaluate the corpus as a whole, given a
single clustering for all sentence types.
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Figure 6 . Performance of trigram BHMM and variants by sentence type on the Manchester
corpus: Mean VM and 95% Confidence Intervals (N = 10). Values that differ significantly
from baseline (BHMM) are marked with ∗ (p < 0.05, two-tailed) or ∗∗ (p < 0.01, two-tailed).

On the Eve dataset we see a difference in baseline performance between the dev and
test sets that is not reflected in the BHMM-T models; the test set is easier for the baseline
than the dev set. In the BHMM-T, all sentence types apart from declaratives do slightly
better on the test set as well, but because declaratives are so frequent, BHMM outperforms
BHMM-T significantly on the test set. We suspect this is due to peculiarities in the test
data portion: if we evaluate (as is common with unsupervised models) on the full dataset
used for inference at test time (i.e., the full corpus apart from the development section), we
get results that are more similar to the dev-only results, where nearly all BHMM-T variants
significantly improve over the baseline, both in trigram and bigram models.

We were unable to ascertain what the relevant characteristics of the dev and test set
was that caused the difference in performance, but note that both the dev and test set are
small (approximately two thousand tokens) so some variation is to be expected.

Examining the sentence type variants, on the Eve datasets we see bigram models
do best with data annotated with three sentence types, two question types and a general
declaratives sentence type (WQD), whereas trigrams benefit from a simpler question/other
(QD) distinction. On the Manchester corpus, bigram models also perform best with the
WQD split, but nearly all bigram BHMM-T models improve significantly over the baseline,
regardless of the exact sentence type distinctions used. Trigram BHMM-T are less consis-
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Figure 7 . BHMM-T performance on the Eve corpus: Mean VM and 95% Confidence Inter-
vals (N = 10). Values that differ significantly from baseline (BHMM) are marked with ∗
(p < 0.05, two-tailed) or ∗∗ (p < 0.01, two-tailed).

tently better than the baseline, but also do not perform worse. The best performance is
achieved when using the full set of sentence types (ISWQD). However, the larger amount
of data used to infer trigram tag sequences leads to all models performing approximately
equally well, with or without sentence type information.

When trained on the Eve corpus, the trigram BHMM-T does not have sufficient data
to accurately infer categories when the transitions are split between too many sentence
types, and performs best with only two sentence types. On the other hand, when more data
is available, the trigram BHMM-T is able to estimate good parameters for all five sentence
types: the models trained on the Manchester corpus with all sentence types outperform
all the others. The improvement over the baseline and other models is slight, however,
indicating that sentence type is providing minimal additional information in this case.

In contrast, when evaluated on the Eve development corpus, the bigram model with
the best set of sentence type labels (WQD) performs as well as the trigram model without
sentence types. In this case, sentence-type-specific bigram transitions are as informative
as transitions with twice as much local context information, leading to a model with fewer
parameters but equal performance. However, it is important to note that even in cases where
sentence type does not seem to add additional information in the transition distribution,
it never decreases performance (as it did when added to the emission distribution). This
indicates that at worst, sentence type carries the same information (but no more) as the
context history already available in the BHMM.
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Figure 8. BHMM-T performance on the Manchester corpus: Mean VM and 95% Confidence
Intervals (N = 10). Values that differ significantly from baseline (BHMM) are marked with
∗ (p < 0.05, two-tailed) or ∗∗ (p < 0.01, two-tailed).

In summary, based on experiments using English corpora we have found that sepa-
rate emission distributions between sentence type are harmful (BHMM-ET and BHMM-E),
whereas separate transitions for sentence types may be helpful. This is in line with our
predictions, based on the fact that in English sentence types primarily affect word order.

Cognitively, separate emission distributions would be hard to justify, since they result
in non-corresponding syntactic categories between sentence types. In these models, each
sentence type has a separate set of syntactic categories, which means that e.g. cat and
mouse must be clustered together separately for each sentence type. Such models, in which
categories are replicated multiple times and differ between sentence types, clearly do not
make efficient use of limited input data.

Unlike the words making up syntactic categories, word order does change between
sentence types in many languages, and taking this into account by learning separate word
orders for each sentence type seems to be an effective strategy. Here we found that the
choice of sentence type categories matters, and is dependent on the amount of input data
available: with larger amounts of data, finer sentence type categories can be used.

Cross-linguistic experiments

In the previous section we found that sentence type information improved syntactic
categorization in English. In this section, we evaluate the BHMM’s performance on two
languages other than English, and investigate whether sentence type information is useful
across languages.
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Table 3
Counts of sentence types (average utterance length in words) in Spanish and Cantonese data
sets (without test and dev sets).
Sentence Type Spanish (Ornat) Cantonese (LWL)
Total 8759 (4.29) 12544 (4.16)
wh-Questions 1507 (3.72) 2287 (4.80)
Other Questions 2427 (4.40) 3568 (4.34)
Declaratives 4825 (4.41) 6689 (3.85)

Nearly all human languages distinguish between closed yes/no-questions and declar-
atives in intonation. Open questions are most commonly marked by rising intonation (Hirst
& Cristo, 1998). Wh-questions do not always have a distinct intonation type, but they are
signaled by the presence of members of the small class of wh-words.

We use tagged corpora for Spanish and Cantonese from the childes collection: the
Ornat corpus (Ornat, 1994) and the Lee Wong Leung (LWL) corpus (Lee et al., 1994)
respectively. We describe each corpus in turn below; Table 3 lists their relative sizes.

Spanish. The Ornat corpus is a longitudinal study of a single child between the
ages of one and a half and nearly four years, consisting of 17 files. Files 08 and 09 are used
for testing and development. We collapse the Spanish tagset used in the Ornat corpus in a
similar fashion to the English corpora. There are 11 tags in the final set: adjectives, adverbs,
conjuncts, determiners, nouns, prepositions, pronouns, relative pronouns, auxiliaries, verbs,
and other.

Spanish wh-questions are formed by fronting the wh-word (but without the auxiliary
verbs added in English); yes/no-questions involve raising the main verb (again without the
auxiliary inversion in English). Spanish word order in declaratives is generally freer than En-
glish word order. Verb- and object-fronting is more common, and pronouns may be dropped
(since verbs are marked for gender and number). Note that verb-fronted declaratives will
have the same structure as closed questions. This suggests that there will be fewer clear
differences between transition distributions in the various sentence types.

Cantonese. The LWL corpus consists of transcripts from a set of eight children
followed over the course of a year, totaling 128 files. The ages of the children are not
matched, but they range between one and three years old. Our dataset consists of the first
500 utterances of each file, in order to create a data set of similar size as the other corpora
used. Files from children aged two years and five months are used as the test set; files from
two years and six months make up the development set.

The tagset used in the LWL, which we use directly, is larger than the collapsed English
tagset. It consists of 20 tags: adjective, adverb, aspect marker, auxiliary or modal verb,
classifier, communicator, connective, determiners, genitive marker, preposition or locative,
noun, negation, pronouns, quantifiers, sentence final particle, verbs, wh-words, foreign word,
and other. We remove all sentences that are encoded as being entirely in English but leave
single foreign, mainly English, words (generally nouns) in a Cantonese context.

Cantonese follows the same basic SVO word order as English, but with a much
higher frequency of topic-raising. Questions are not marked by different word order. In-
stead, particles are inserted to signal questioning. These particles can signal either a yes/no-
question or a wh-question; in the case of wh-questions they replace the item being questioned

19



Bigram
dev

Bigram
test

Trigram
dev

Trigram
test

40

42

44

46

48

50

*

*

V
M

BHMM WQD

Figure 9. BHMM-T performance on the Spanish (Ornat) corpus: Mean VM and 95% Confi-
dence Intervals (N = 10). Values that differ significantly from baseline (BHMM) are marked
with ∗ (p < 0.05, two-tailed) or ∗∗ (p < 0.01, two-tailed).

(e.g., playing-you what?), without wh-raising as in English or Spanish. Strictly speaking the
only syntactic change in transitions would thus be an increase in transitions to and from
the wh-particles in questions. However, there may be other systematic differences between
questions and declaratives.

Results. We inferred BHMM and BHMM-T models in the same manner as with
the English corpora (10 runs each, 10000 iterations, with simulated annealing and hyper-
parameter estimation).

Due to inconsistent annotation and lack of familiarity with the languages, we used only
three sentence types: open/wh-questions, other questions, and declaratives. Punctuation
was used to distinguish between questions and declaratives. wh-questions were identified by
using a list of wh-words for Spanish; the Cantonese corpus included a wh-word tag.

In English, the BHMM-T was able to improve performance by taking into account the
distinct word orders characteristic of the different sentence types. Spanish does not show
the same improvement (Fig. 9). The estimated BHMM-T models do not differ significantly
from the baseline BHMM; however they have much higher variance. This indicates that
the BHMM-T is harder to estimate, presumably because the separate transitions merely
introduce more parameters without offering the same benefits as in English. Given that
sentence type does not affect word order in the same way in Spanish as in English, this is
an unsurprising result.

In Cantonese, we see a significant improvement for the bigram BHMM-T (Fig. 10).
This is despite the fact that Cantonese has relatively little word order marking of questions;
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Figure 10. BHMM-T performance on the Cantonese (LWL) corpus: Mean VM and 95%
Confidence Intervals (N = 10). Values that differ significantly from baseline (BHMM) are
marked with ∗ (p < 0.05, two-tailed) or ∗∗ (p < 0.01, two-tailed).

the BHMM-T was able to make use of the extra information. The tagging of wh-questions
improves most in the BHMM-T in bigram Cantonese models, but declaratives and other
questions also improve slightly. Trigram BHMM-T models do not outperform the baseline;
as in the larger English models, sentence type does not add significant new information to
the trigram context history.

As in English, none of the Spanish or Cantonese BHMM-T models perform signifi-
cantly worse than the BHMM baseline. Even when sentence type is not an entirely reliable
signal to word order, the separately estimated transitions still match the performance of
shared transitions.

Conclusion

We have investigated whether sentence type can be a useful cue for models of syn-
tactic category acquisition. The structure of the BHMM made it possible to distinguish
between adding sentence types to either the parameters governing the order of syntactic
categories in an utterance (transition distributions), or to the parameters describing the
words making up the syntactic categories (emission distributions). We found that, as ex-
pected, adding sentence type to emission distributions resulted in degraded performance due
to the decreased amount of data available to estimate each separate sentence type emission
distribution; additionally these models are awkward since they create separate sets of clus-
ters for each sentence type. This is contrary to syntactic categories as they are generally
understood and leads to a representation with high levels of redundancy. Hence we dismiss
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this model structure for syntactic category acquisition.
Our models with sentence-type-specific transitions demonstrate that sentence type

can be an informative cue for word and tag order, especially in models with limited amounts
of local context. The amount of input data available to the model and the number of
model parameters affected which set of sentence types performed best; further research is
necessary to characterize these interactions more precisely. However, we showed that at
the very least sentence-type-specific distributions never found worse syntactic clusters than
shared distributions, and in many cases found better clusters. Arbitrarily adding parameters
— and thereby splitting distributions — in unsupervised models is unlikely to improve
performance, due to ensuing data sparsity, unless the parameter is genuinely useful (unlike
supervised models, in which unhelpful parameters will be ignored). This problem arose
when the sentence type parameter was added to the emission distribution. On the other
hand, adding this parameter to the transition distribution resulted in an larger number of
distributions estimated on smaller amounts of data, but these models were able to recover or
improve on the original performance. This demonstrates that the sentence type parameter
added useful additional information to the model in this setting.

Sentence type as an additional feature for syntactic category learning is not limited
to the BHMM structure. Models that use frames (sets of surrounding words) as features
for distributional categorization (Mintz, 2003; St Clair, Monaghan, & Christiansen, 2010)
could extend the frame description to include the sentence type the frame appears in.
Other models represent individual context words independently, using a vector of word co-
occurrences as features for clustering (Christodoulopoulos, Goldwater, & Steedman, 2011;
Redington et al., 1998; Toutanova & Johnson, 2007). In this case each context word would
have to be annotated with the current sentence type, in order to separate the contexts by
sentence type. Adding sentence type to these models could improve accuracy. For example,
one of the most common frames in Mintz (2003) is do_want, which in declaratives is nearly
always filled with not and in questions with you; separating this frame by sentence type
would prevent these words from being clustered together.

Recently, two models of online learning of categories have been presented (Chrupala
& Alishahi, 2010; Parisien, Fazly, & Stevenson, 2008), both of which allow for learning an
unlimited number of categories. These models both use independent occurrences of context
words as features and could be easily extended to use context words plus sentence type, as
outlined above. Adding sentence type to these models could allow us to track the usefulness
of sentence type during the learning process, unlike the static model we presented here.
Based on our results on data sets of different sizes, we hypothesize that initially using
coarser sentence types will be advantageous, but as more data is seen, more fine-grained
sentence types will become helpful.

Our study has shown that computationally there may be an advantage to a represen-
tation of word/syntactic category order that includes sentence type information. This result
naturally leads to the question of whether human learners do in fact have such a linguistic
representation. Experimental work has demonstrated infants’ awareness of adjacent con-
texts as cues for categorization at 12 months (Gómez & Lakusta, 2004). At this stage, they
are also clearly aware of prosody, both in its function to signal dialog pragmatics as well
as using it as a feature for storage of heard phrases (Mandel, Kemler Nelson, & Jusczyk,
1996). However, it has yet to be shown that infants’ representation of early syntax, when
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they are learning syntactic categories, allows for a link between prosody and word order,
i.e., that infants can make use of the fact that different prosodies may signal different word
orders. An artificial language learning experiment for learning categories, similar to Gómez
and Lakusta’s (2004) study, but in which transitions probabilities are manipulated along
with prosody cues, could provide evidence for infants’ ability (or otherwise) to link word
order and prosody. Crucially, infants would also have to be able to ignore prosody when it is
not informative, given that the link between word order and prosody is language dependent
and only informative in certain contexts.

The model we have presented for making this link between sentence type prosody
and word order is brittle: the different sentence types share no information about transi-
tions. A more realistic model would interpolate between sentence-type-specific transition
distributions, where these are more informative, and general distributions, where sentence
type information is lacking, in order to be more robust to issues of data sparsity. It would
also make use of the fact that some transitions are often shared between sentence types
(i.e., nouns are often preceded by determiners in both questions and declaratives). In future
work we will investigate adding this flexibility to the model. However, our work has demon-
strated that adding a link between sentence type prosody and word order at minimum does
not add noise, and in many cases is a source of additional information.

The Bayesian probabilistic modeling methodology gives us a principled way to add
components to a model, either as observed variables representing input readily available to
the learner, or as latent variables to be learned. Here, we explored a model in which the
additional information (sentence type) was treated as observed, on the assumption that
infants could use prosody to determine sentence type before beginning to learn syntactic
categories. However, it is probably more plausible to assume that, since the relationship
between prosody and sentence type needs to be learned, sentence type information may
be only partially available when syntactic category acquisition begins. This suggests that
ultimately we will need to consider learning sentence types and syntactic categories as a
joint learning problem, where partial information about each task constrains the learning of
the other. Bayesian models such as ours are a particularly apt way to model joint learning,
with different latent variables used to represent different types linguistic information. Re-
cent Bayesian models have shown that joint learning can be highly successful in areas such
as syntax/semantics (Kwiatkowski, Goldwater, Zettelmoyer, & Steedman, 2012; Maurits,
Perfors, & Navarro, 2009), syntax/morphology (Sirts & Alumäe, 2012) and phonetic/lexical
learning (Elsner, Goldwater, & Eisenstein, 2012; N. H. Feldman, Griffiths, Goldwater, &
Morgan, in submission; N. Feldman, T. Griffiths, & Morgan, 2009). We are also beginning
to see experimental evidence supporting the cognitive plausibility of joint learning (N. Feld-
man, Myers, White, Griffiths, & Morgan, 2011). Although our models as they stand do not
perform joint learning, nevertheless we feel they support this general program by empha-
sizing that multiple sources of information can improve learning, and suggesting what some
of those sources could be. Ultimately, a complete model of language acquisition will need to
consider interactions between all aspects of language. The models presented in this paper
provide an example of the potential utility of this holistic, integrative approach to language
acquisition.
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