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Abstract

We evaluate the predictions of two theories of syntactic processing complastity
pendency locality theory (DLT) and surprisal, against the Dundeeusprphich
contains the eye-tracking record of 10 participants reading 51,000 vebrusys-
paper text. Our results show that DLT integration cost is not a significacligtor
of reading times for arbitrary words in the corpus. However, DLT sashidly pre-
dicts reading times for nouns and verbs. We also find evidence for ititagi@ost
effects at auxiliaries, not predicted by DLT. For surprisal, we dematesthat an
unlexicalized formulation of surprisal can predict reading times for amyitneords
in the corpus. Comparing DLT integration cost and surprisal, we find tleatvib
measures are uncorrelated, which suggests that a complete theory ilioniee
corporate both aspects of processing complexity. We conclude thatasjeag
corpora, which provide reading time data for naturally occurring, cantdized
sentences, can complement experimental evidence as a basis for tloégmies
cessing complexity.
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1. Introduction

Research on human sentence processing has traditionally focusedtantigyambiguity,
based on the observation that certain locally ambiguous constructionsliffaséty for the human
sentence processor. Such difficulty manifests itself typically in the form @kased processing
time (e.g., elevated reading times on the disambiguating region).

While disambiguation is an important source of difficulty in human sentenceepsow,
difficulty can also arise in unambiguous sentences. A classic examplelaieerelauses, which
have been investigated extensively in the literature on syntactic procebfioglty. Experimental
results show that English subject relative clauses as in (1-a) are gagiecess than object relative
clauses as in (1-b). Experimentally, this difficulty is evidenced by the fattréading times for the
verb attackedare shorter for subject relative clauses than for object relative etafi§ing & Just,
1991).

D a. The reporter who attacked the senator admitted the error.
b. The reporter who the senator attacked admitted the error.

Findings such as these have motivated processing theories that déyrmt eenbiguity resolution,
but instead capture the complexity involved in computing the syntactic depeirddretween the
words in a sentence. One such theory is Dependency Locality Theafy),(Proposed by Gibson
(1998, 2000). A central notion in DLT imtegration costa distance-based measure of the amount
of processing effort required when the head of a phrase is integratedts syntactic dependents.
DLT is able to capture the subject/object relative clause asymmetry in (1glbasna wide range of
other complexity results, including processing overload phenomena sumnger embedding and
cross-serial dependencies.

More recently, Hale (2001) proposed surprisal as an alternativeureeasprocessing com-
plexity. Intuitively, the surprisal of a word in a sentential context cqrogmls to the probability
mass of the analyses that are not consistent with the new word. Sumgdgates a probabilistic
notion of linguistic structure (utilizing transitional probabilities or probabilistiargmars), and has
its theoretical foundation in information theory (Levy, 2008). It can benghto capture a range of
complexity effects, including the subject/object relative clause asymmettgircgarden path ef-
fects, speed-up effects in verb-final contexts, and word ordenamgtries in German (Hale, 2001;
Levy, 2008). Another more recent incarnation of surprisal Gibs(2096) approach, which com-
bines top-down syntactic predictions with bottom-up lexical predictions.

A number of other theories of syntactic processing complexity exist, inclugimgmic sys-
tem models (e.g., McRae, Spivey-Knowlton, & Tanenhaus, 1998; Ta&bi@nenhaus, 1999) and
neural net models (e.g., EIman, 1991). However, in the present papewjll focus on DLT and
surprisal, as these two approaches are maximally different from eaeh bitlparticular, they make
complementary assumptions about the source of processing complexitg.iDiegration cost cap-
tures the cost incurred when a head has to be integrated with the defsetigdmprecede it. Sur-
prisal, on the other hand, accounts for the cost that results when tiestword is not predicted by
the preceding context. Therefore, integration cost can be regasdet@ckward looking cost (past
material has to be held in memory and integrated), while surprisal is a forlwakihg cost (syn-
tactic predictions have to be discarded if they are no longer compatible witlhuthentword). This
observation leads to a general empirical prediction, viz., that integratisinacwl surprisal should
be uncorrelated, and should account for complementary aspectsdoigeane data. The present
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paper will test this prediction.

While DLT and surprisal have been evaluated against a range ofimqueal results, so far
no broad coveragevaluation of theories of syntactic processing complexity has been caruted
Existing studies rely on lab experiments, which have the advantage of ghengxperimenter full
control over the experimental setup and the materials, and are of estdbidiability and validity.
However, this approach also has its drawbacks. It typically involvesrimgeptation of artificially
constructed sentences containing a narrow range of syntactic stsicilse, the same structures
occur many times in a given experiment, raising the possibility of habituationtefethe devel-
opment of strategies in participants. The sentences to be tested are eftentpd in isolation, i.e.,
without an appropriate textual context, potentially leading to behavior thatéseht from normal
reading. Finally, only a small number of items can be tested in the typical playghistic exper-
iment. DLT and surprisal effects have successfully obtained in suckxgarimental setting, but
these methodological limitations leave open the possibility that the effects arerrabsent when
arbitrary words in large amounts of naturalistic, contextualized text arsidered.

The aim of the present paper is to address this problem and provided towerage evalua-
tion of DLT and surprisal on the Dundee Corpus, a large collection obpaper text for which the
eye-movement record of 10 participants is available. From this corpasge of eye-tracking mea-
sures can be computed, which can then be evaluated against the predittioeories of syntactic
complexity. Such broad coverage studies yield results that hold for tatiracontextualized text,
rather than for isolated example sentences artificially constructed by @syghists. They have al-
ready been applied successfully to individual phenomena, such aghifeetsobject relative clause
asymmetry (Demberg & Keller, 2007). The aim of the present paper is 1@ 8fat corpus studies
can also be used to systematically test theories of syntactic processing xityn@ach studies
provide a source of evidence that corroborates experimental relsultalso yields new theoretical
insights, as it makes it possible to evaluate multiple theoretical predictors tgauis other on a
large, standardized data set.

2. Background
2.1. Dependency Locality Theory

According to Gibson’s (1998, 2000) Dependency Locality Theorycessing complexity is
caused by the cost of the computational resources consumed by tlesgwocTwo distinct cost
components can be distinguished:iidegration costassociated with integrating new input into the
structures already built at a given stage in the computation, anchéipory costnvolved in the
storage of parts of the input that may be used in parsing later parts of an ktgre, we will focus
on integration cost, as “reasonable first approximations of comprehetisies can be obtained
from the integrations costs alone, as long as the linguistic memory storagésussdexcessive at
these integration points” (Gibson, 1998, p. 19f). This is a safe assunfptionr studies, as we use
corpora of carefully edited newspaper text, which are unlikely to incoessive storage costs (in
contrast to artificially constructed experimental materials). Gibson’s definitfantegration is as
follows:

(2) Linguistic Integration Cost
The integration cost associated with integrating a new input heaslith a head h that
is part of the current structure for the input consists of two parts: (@9t dependent on
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the complexity of the integration (e.g. constructing a new discourse réfepos (2) a
distance-based cost: a monotone increasing function I(n) energy Bhlty of the number
of new discourse referents that have been processed singashlast highly activated. For
simplicity, it is assumed that I(n) = n EUs. (Gibson, 1998, p. 12f)

According to this definition, integration cost is dependent on two factins, Ehe type of element to
be integrated matters: new discourse referents (e.g., indefinite NPSsaimed to involve a higher
integration cost than old/established discourse referents, identifiesbhgyms. Second, integration
cost is sensitive to the distance between the head being integrated anddheaditaches to, where
distance is calculated in terms of intervening discourse referents.

As an example, consider the subject vs. object relative clause examp)est the embedded
verb attackedin (1-a), two integrations take place: the gap generated by the relatimeymevho
needs to be integrated with the verb. The cost for this is 1(0), as zeraliz®ourse referents have
been processed since the gap was encountered. In addition, the ewbeddattackedneeds to
be integrated with its preceding subject. Again, this is a free integration s;mdescourse referent
occurs between the verb and the subject NP. However, there is aocdmtiliding a new discourse
referent (the embedded verb its@/fleading to a cost of I(1). The total costattackedis therefore
I(1). Thisis illustrated in Figure 1, which depicts the dependencies théiglteand the integration
costs per word that are incurred.

SRC:

) The reporter who attacked the senator admitted the
Disc.ref. X X X X

Integ. Cost1(0) I(1) 1(0) 1I(1) 1(0) I(1) I(L)+I(3) 1(0) I(1)

, The reporter who the senator attacked admitted the
Disc.ref.

X X X X
Integ. Cost1(0) (1) 1(0) 1(0) I(1) I(L)+I(2)(L)+(3) 1(0) I(L

Figure L An example of integration cost computations: subjecttiadaclauses (SRC) vs. object relative
clauses (ORC), with word-by-word markup for discourse mexfié and integration costs. The links between
the words represent syntactic dependencies.

At the verbattackedin the object relative clause, three structural integrations take place:
(1) integration with the subject Nfhe senatorno integration costs occur since no new discourse
referents occur in between the verb and the NP, (2) an empty categotiyefaelative pronoun
is integrated, but again, the integration is local and no costs occur, (3)bjeet position empty
category is co-indexed with the preceding relative promwtio. There is an integration cost of 1(2)
for this step due to the two discourse refereatsackedandthe senatomhich occurs in between.

1DLT assumes that verbs introduce event discourse referents.
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In addition, there is a cost of I(1) for constructing the discourse eefeitattacked which leads to
a total integration cost of 1(1) + 1(2) at the embedded word of the ob@ative clause. So overall,
DLT predicts that the verb of object relative clauses is more difficult ta@se than that of subject
relative clauses.

Note that Gibson assumes that the integration cost function is identity, i.e=, m(rHlowever,
other functions are possible here; we will return to this issue in Section 3.2.

2.2. Surprisal

An alternative measure of syntactic complexity has been proposed by2@&@g)(in the form
of surprisal. Surprisal is compatible with a parallel parser, which buildscgires incrementally,
i.e., it constructs all possible syntactic analyses compatible with the input striagvord-by-word
basis? Intuitively, surprisal measures the change in probability mass as struptedictions are
disconfirmed when a new word is processed. If the new word disconfiredictions with a large
probability mass (high surprisal), then high processing complexity is pretlicteresponding to
increased reading time. If the new word only disconfirms predictions with d pnodability mass
(low surprisal), then we expect low processing complexity and redwezsdimg time.

Returning to (1), we expect differences in surprisal between (Ind)(&4-a). Hale (2001)
demonstrates that the mean surprisal for the object relative clause ig ltiigimefor the subject
relative clause, i.e., that on average, the words in the object relativeectaquire hypotheses with
a greater probability mass to be disconfirmed than in the subject relativeecl@ugprisal theory
therefore predicts that object relative clauses are harder to prélta@sssubject relative clauses,
which is in line with experimental findings (but see Levy, 2008, for addilioglative clause results
using surprisal).

Technically, surprisal can be defined using the conditional probaBi(ityw; - - - wy), i.e., the
probability of a tre€l given the sentence prefix - - - wg. This is the probability that is the correct
tree, given that the string of wonsh to wordwy has been encountered. Surprisal is then defined as
the change in the conditional probability distribution frewato wy, 1. As Levy (2008) shows, this
can be formalized using the Kullback-Leibler divergence (relative egjrorhe Kullback-Leibler
divergence between two probability distributidgndQ is defined as:

®) DPIQ) = 3 Pli)log g

The surprisal at encountering wovek, 1 then corresponds to the Kullback-Leibler divergence be-
tweenP(T |wy ---Wi11), i.€., the probability distribution of all syntactic trees that are consistent with
wordsws - - W1, andP(T |ws - - - W), the probability distribution of the trees that are compatible
with the prefixwy - - - wg:

P(T|w1---Wi1)

2 =9 P(T|wyg---Wki1)lo

( ) S(+l Z ( | 1 k+1) g P<T|W1 K Wk)

This expression can be simplified using the following fact:
P(T, wy - - w) P(T)

(3) P(T|wy---wy) = P(Wp - W) :P(Wl"'Wk)

2While surprisal is compatible with a fully parallel parser, it does not neamély require one. It is possible to compute
the probabilities of a limited set of analyses and then use these to trackesharte probability distribution. In fact, the
Roark (2001) parser used in this paper performs beam-searctddes not compute all possible analyses, and thus we
reply on such a limited-parallelism version of surprisal.
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This equation holds because we know that each tree contains the wordsv; - - - wy, therefore
P(T,wy---wk) = P(T). We can now substitute Equation (3) into Equation (2). We can then sim-
plify the definition of surprisal using the fagty % =1 (the probabilities of all syntactic
trees given a particular prefix sum up to one), and performing some Hsfiigyard logarithmic
transformations:

P(T)
P(wy Wiy 1) P(ws - - - W)
4)  Sea og T ket) — g jog LT
Z P(w: Wk+1 P(Wl(msz) P(Wy -+ Wgi1)

P(Wl Wii1)

= —log P(Wy--- W)

—logP (W1 |wy - - - W)
This derivation shows that the surpri€l 1 at wordwy, 1 corresponds to the negative logarithm of
the conditional probability ofw, 1 given the sentential contewt; - - - wi. This is an important sim-
plification, as it means that surprisal can be computed without making eegeg®nal assumptions
(i.e., the syntactic tre& does not figure in the definition of surprisal). In practice this means that
a number of ways of computing surprisal are possible, utilizing either simplegpilistic models
of language (such asgram models) or more sophisticated ones, such as probabilistic cordext-fr
grammars (PCFGS).

Surprisal can be reformulated in terms of fhrefix probabilitiesof wordswy andwy, 1, which
can be obtained easily from a PCFG. The prefix probability of a wards obtained by summing
the probabilities of all tree$ that span fronw; to w:

(B) P(wi---wy) = Z P(T,w - - W)

The formulation in Equation (4) is therefore equivalent to a formulation tkas yrefix probabili-
ties:

P(Wy -« Wi 1)

(6) S(+1 Iog (W . 'Wk)

=log Z P(T,wy---wg) —log Z P(T,wy---W1)

SurprisalS; 1 at wordwy, 1 thus corresponds to the difference between the logarithm of the prefix
probabilities of wordwy andw1. We give an example that illustrates how prefix probabilities
can be computed using a PCFG. In a PCFG, each context-free grammar anleotated with its
probability, as in Figure 2. The rule probabilities are then used to calculagaéifi® probability of

a word.

For example, ifwy 1 is the wordwhoin the example in Figure 2, then the prefix probability
S1P(T,wi---We1) is the sum over the probabilities of all possible trees that include the prefix
w1 - - - Wi, 1, Where each tree probability is computed as the product of all the ruleahateded
to build the tree (Figure 2 shows only one such tree).

2.3. Non-syntactic Predictors

It is well-known that reading times in eye-tracking data are influencedmlgtay high-level,
syntactic variables but also by a number of low-level variables, both litigaises and oculomotor
ones (see Rayner, 1998, for a review). The low-level linguistic veetalmclude word frequency
(more frequent words are read faster), word length (shorter wem@lsead faster), and the position
of the word in the sentence (later words are read faster). It has adsofband that the frequency
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S
NP VP
—
NP SBAR
/\
D‘T N‘N WHNP S
The reporter V\‘/p -
|
who

Example Rule Rule probability
The reporterwho ... S» VP NP p=0.6
The reporterwho ... NP> NP SBAR p=0.004
The reporter NP— DT NN p=05
The DT— the p=0.7
reporter NN— reporter p =0.0002
who . .. SBAR— WHNP S p=0.12
who WHNP— WP p=0.2
who WP — who p=0.8

Figure 2 Example derivation of prefiXhe reporter wh@nd rules from a probabilistic context free grammar
(PCFG) that would be needed in order to calculate its prefiboability.

of the previous word influences reading time at the present word, ipie@sly due to spill-over
effects and, to a smaller extent, that the following word influences readingptirtige current word,
which is interpreted as a parafoveal preview effect. Oculomotor vasgabtude previous fixation
(indicating whether or not the previous word has been fixated), laustémde (how many character
intervene between the current fixation and the previous fixation), adihiguposition (which letter
in the word the fixation landed on).

Together with variation between readers, these low-level variablesattar a sizable pro-
portion of the variance in the eye-movement record. There are also aemwhwell-known corre-
lations between the independent variables: short words are usuallyfraquent than long words,
the fixation landing position depends on word length, etc.

Recently, it has also been shown that information about the sequentiektoha word can
influence reading times. In particular, McDonald and Shillcock (2003&3qmt data extracted from
an eye-tracking corpus (a smaller corpus than the Dundee Corpusesgdhat show that forward
and backward transitional probabilities are predictive of first fixatiod frst pass durations: the
higher the transitional probability, the shorter the fixation time.

By forward transitional probabilityMcDonald and Shillcock (2003b) refer to the conditional
probability of a word given the previous woR(wi|wi_1). This captures the predictability of the
current word given a one-word context. For example, the probabilitthefwordin given that
the previous word waiterestedis higher than the probability oh if the last word wasdog
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The backward transitional probabilitys the conditional probability of a word given the next word
P(wk|wi+1). This provides an estimate of how predictable the current word is givenetkieword,
e.g., of how probable it is to saéeterestedor dog currently, given the next word ig. A possible
interpretation of why material that is further back in the text can benefitulrest word and lead to
shorter reading times for words with high backward transitional probabibtiepreview effects and
backward saccades. These corpus results are backed up by desadtestrating the role of forward
transitional probabilities in controlled reading experiments (McDonald & Shikc8003a; but see
Frisson, Rayner, & Pickering, 2006, who equate transitional probahitityCloze predictability).

It is interesting to note that the forward transitional probabiffyvi|wi_1) is a simple form
of surprisal, viz., one that takes into account only the previous werd, rather than the whole
prefixws - - -Wi_1 (See Equation (4)). Another difference is that forward transitionababilities are
estimated using word bigrams, while surprisal is typically estimated using syriictenerated
probabilities, based on Equations (5) and (6). We will return to this issueeircdimtext of our
discussion of surprisal in the Dundee Corpus in Section 5.

In the current paper, we are interested primarily in syntactic procesfiectesuch as the
ones captured by DLT integration cost and surprisal. We therefore tteenake sure that these
metrics account for variance in the eye-movement recorded that is ptired by the low-level
linguistic and oculomotor variables discussed above. Technically, thiseacheved by running
hierarchical mixed effect models which include both the low-level and thee-keigel variables as
predictors, as well as partitioning out subject variance. This will be dettail&ection 3.1.2.

3. Experiment 1: Integration Cost

The aim of this experiment is to provide a broad-coverage test of Gib$aldlr by inves-
tigating whether integration cost is a significant predictor of eye-trackingsores obtained on a
corpus of naturally occurring, contextualized text.

3.1. Method
3.1.1. Data

For our data analysis, we used the English portion of the Dundee Cdfpusédy & Pynte,
2005), an English language eye-tracking corpus based on textsTihenindependentewspaper.
The corpus contains 20 texts, each comprising approximately the same nofmaeds, split into
40 five-line screens. The corpus consists of 51,502 tokend 9,776 types in total. It is annotated
with the eye-movement records of 10 English native speakers, whaeadlthe whole corpus, and
answered a set of comprehension questions after each text. Thesackyeg data were acquired
using a Dr. Boise eye-tracker, which recorded the movements of theayghtvith a sampling rate
of 1 ms and a spatial accuracy of 0.25 characters. (See Kennedy &, P05, for further details
on the Dundee Corpus.)

Before carrying out our analyses, we excluded all cases in which ¢nd was the first or
last one of the line, and also all cases where the word was followed by kirash of punctuation.
This eliminates wrap-up effects that occur at line breaks or at the erehtdrsces. Furthermore, we
excluded all words that were in a region of four or more adjacent witraishad not been fixated,

3The token number refers to tokens as tokenized in the Dundee Comureé®entation to the participants, i.e., punc-
tuation marks are attached to the words. If words and punctuation ma&rkeanted separately, then there are a bit more
than 56k words in the corpus.
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since such regions were either not read by the participant or subjeettaolass due to tracking
errors. This left us with 385,467 words.

The fixation sequence obtained from the eye-tracking experiments camabezed by com-
puting a range of eye-tracking measures (see Rayner, 1998, fameaview). The most commonly
used ones are first fixation duration, first pass duration, and totdingéame.First fixation dura-
tionis the length of the first fixation that lands on a region. This measure is aftenmraed to reflect
lexical access, but also oculomotor processes and visual propéditiesregion First pass duration
(also known agjaze duratioiis the sum of all fixations on a region between first entering the region
and first leaving it. This measure is thought to be indicative of early syntacticemantic process-
ing (as well as lexical access). Thatal reading timeof a region is the sum of all fixations on a
region, including refixations of the region after it was left. This measursssm@ed to be indicative
of textual integration processes (as well as lexical and syntactic/semamtiesging).

For the regression analyses reported in this article, we only included wWarsks which had
a non-zero reading time for a given measure (i.e., only those words thatnweskipped). For first
fixation duration and first pass duration, we thus had 200,684 data panit40,157 data points
in the total duration analysésThe reader is referred to the Appendix for details regarding data
preprocessing.

3.1.2. Statistical Analysis

The statistical analyses in this paper were carried out using linear mixattsfhodels (Pin-
heiro & Bates, 2000). These models can be thought of as a generalipétiopar regression that
allows the inclusion of random factors (such as participants or items) aswéhied factors. The
fixed factors can be discrete (such as whether the previous wordxaged) or continuous (such as
word frequency). More specifically, we used hierarchical linear madekcts models, which make
it possible to partition the variance to be accounted for into a number of Iquaitcipants were
entered as a separate level in the model, following Richter’s (2006) recodatiens for the treat-
ment of reading time data (this is a generalization of an approach initially pedpog Lorch &
Myers, 1990; for alternative proposals using mixed models, see BaBgeidson, & Bates, 2008).

A separate mixed effects model was computed for each of the three daperatiables
(first fixation duration, first pass duration, and total reading time). BHewing low-level predictor
variables were entered into each of the models: word length in charalcgssansformed word
frequency, forward transitional probability, backward transitionalability, word position in the
sentence, whether the previous word was fixated or not, launch distamtéxation landing posi-
tion. In addition, one or more predictor variables were included that septed the target measure,
i.e., integration cost or surprisal.

Minimal models were obtained by entering all predictors and all possibleybingaractions
between them into the model and then simplifying the model using the Akaikeratan Criterion
(AIC). The AIC is a measure that optimizes model fit by taking into accourditheunt of variance
explained as well as the number of degrees of freedom. This procedsuees that a model is ob-
tained which achieves the greatest fit to the data with the minimum number of predgidtbles.
In the remainder of the paper, we will give the coefficients and signifiedewels for those predic-
tors that remain in the minimal model. All of these coefficients are statistically signtfigvith the
possible exception of main effects, which are only removed from the minimal Infdtiere is no

4By data point we mean the word reading times according to the relevasuneea
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significant interaction that depends on them.

3.1.3. Implementation

Non-syntactic PredictorsThe non-syntactic predictors used were word length in charac-
ters (WORDLENGTH), word position in the sentence ESTENCEPOSITION), whether the pre-
vious word was fixated (PEVIOUSWORDFIXATED), the distance between the previous fixa-
tion and the current fixation AUNCHDISTANCE), and the position of the character on which
the eye lands in the word @NDINGPOSITION). These values can be read off directly from
the Dundee Corpus. The predictors logarithmic word frequencyoRWFREQUENCY), loga-
rithmic word frequency of the previous word RBVIOUSWORDFREQUENCY), forward transi-
tional probability (FORWARDTRANSITIONALPROBABILITY), and backward transitional probabil-
ity (BACKWARDTRANSITIONALPROBABILITY) need to be estimated from a training corpus. We
used the British National Corpus (BNC) (Burnard, 1995) and estimatiggam and bigram proba-
bilities using the CMU-Cambridge Language Modeling Toolkit (Clarkson &ddesld, 1997). For
the bigram model, many of the bigrams from the Dundee Corpus were netvelasin the BNC
training data. To avoid having to assign a bigram zero probability just Isedadid not occur in the
training data, we smoothed the bigram probabilities, i.e., some of the probabili/ohise seen
events was redistributed to unseen events. We used the Witten-Bell smoaikihgd (Witten &
Bell, 1991), which is predefined in the CMU Toolkit.

Integration Cost It is not feasible to manually compute values for the predictor integration
cost (INTEGRATIONCOST) for the whole Dundee Corpus, given its size. We therefore relied on
automatic methods which can handle a large amount of data (but are potentiatip@ne). We
parsed the corpus with an automatic parser and implemented a function teahese parses to
assign integration cost values to the words in the corpus. The parsewaseMinipar (Lin, 1998),

a broad-coverage dependency parser for English. Minipar is effigied has good accuracy: an
evaluation with the SUSANNE corpus (Sampson, 1995) shows that it ashéout 89% precision

and 79% recall on dependencies (Lin, 1998) on SUSANNE. A depmydearser was chosen be-
cause the dependency relationships that it returns are exactly whategaamcalculate integration

costs (see Figure 1 for an example).

In our implementation, integration costs are composed of the cost of (afrectirsy a dis-
course referent and (b) the number of discourse referents that between a head and its de-
pendent, excluding the head and the dependent themselves. Thissalisii@urse referents to be
identified in the corpus; we used the approximation that all words that hagmanal or verbal part
of speech are discourse referents. Using part of speech tagaesbig the parser also allows us to
differentiate between auxiliaries, modals and full verbs, and to automaticahyifg nouns that are
parts of compound nouns.

Itis important to note that two versions of integration cost exist in the literature based on
Gibson’s (2000) DLT, and the earlier version based on Gibson’sgll&tactic prediction locality
theory, a predecessor of DLT. The difference between the two vexsialy concerns nouns; in
this paper, we assume the Gibson (2000) version of integration cosgtthee conducted some
experiments with the 1998 version, see Section 4.3). DLT has later beardegtand revised to
provide a more extensive account of noun phrases (e.g., Warren $oil2002), but this revised
version of DLT has not been formalized, and thus would be hard to implemigmbut making
additional assumptions.
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We evaluated our integration cost implementation using a short text that head haed-
annotated with integration cost values. This evaluation gives us an estimabgvafell our auto-
matic annotation tool performs. We found that the integration cost valugmagsautomatically to
the 764 words in the evaluation text were correct 83% of the time. Furthéysssiaevealed that
the automatically assigned integration cost values were significantly codelgite the manually
assigned ones (Pearson’s- 0.697,p < 0.001). This result needs to be regarded as a lower bound.
Unlike the Dundee Corpus, the evaluation text was not a newspaper g&hkerRit was a manually
constructed story created in order to contain sentences with high integcasonThe sentences in
the evaluation text are often long and complicated, and therefore hardlyzamwith our automatic
tool. Mean integration cost in the evaluation text was 0.7, while in the Dundgai€d was 0.55.

3.2. Results

In Experiments 1 and 2, we will only consider results for first pass duratio detail. The
results for first fixation durations and total times are broadly similar, and wilf de discussed
briefly. We will return to this in Experiment 3, which provides a comparisothefresults for the
three eye-tracking measures for a model that contains all the predidedsin this paper (see
Section 5.3).

Tables 1 and 2 show the coefficients and significance levels obtained wheimg hierar-
chical linear mixed effects models on first pass durations extracted fre@tindee Corpus. Both
models include all the non-syntactic predictors and integration cost, arel aeenputed over all
words in the corpus. The difference between them is that in Table 1 agliqgiors were included as
main effects only, i.e., no interactions between predictors were includediniéractions between
predictors also have explanatory power, but it is informative to firssicter a mixed effect model
without these interactions. We use this simpler model to explain how to interpretraffects mod-
els; many of the previously established findings in the reading literatureoaferoed by our data.
Table 1 shows an intercept of approximately 275 ms. This can be regasdéé base reading time
of a word, to which the value for each predictor multiplied by the coefficienttiat predictor is
added to obtain the predicted reading time for that word.

For example, the coefficient of BRDLENGTH is approximately 15 ms, which means that
for each letter of the word, an additional 15 ms are added to the word$gpee reading time.
The fact that the coefficient of WRDLENGTH is positive means that longer words have longer
reading times, a basic finding in the reading literature. We also observeghtiveecoefficient for
logarithmic word frequency (WRDFREQUENCY), which means that more frequent words are read
faster than less frequent words.

We also find that the presence of a fixation on the previous waré {ROUSWORDFIXATED)
reduces reading time by 25 ms, i.e., fixation time is longer when the previouswasdkipped.
There is also an effect of landing positionALDING POSITION), whose negative coefficient indi-
cates that reading time decreases with increasing landing positions, abdapproximately 10 ms
per character. It has been claimed that readers speed up while theythnowgh a sentence (Fer-
reira & Henderson, 1993). Our data support this, since we obtain a sagdtive coefficient for the
position of the word within the sentenceH$TENCEPOSITION), which means later words are read
faster. There was no significant effect of launch distanceufilcHDISTANCE), which probably
indicates that any variation in reading time due to launch distance is alreathireegpby RREVI-
OUSWORDFIXATED and LANDINGPOSITION. (Recall that non-significant predictors are removed
by our model fitting procedure, that is whyalUNCHDISTANCE does not appear in Table 1.)
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Predictor Coefficient  Significance
(INTERCEPY) 27525 rxk
WORDLENGTH 14.69 ikl
WORDFREQUENCY —-1216 i
PREVIOUSWORDFREQUENCY —-5.76 o
PREVIOUSWORDFIXATED —24.65 ok
LANDINGPOSITION —9.99 ikl
SENTENCEPOSITION —0.23 ok
FORWARDTRANSITIONALPROBABILITY —-0.54 *
BACKWARDTRANSITIONALPROBABILITY 3.41 ok
INTEGRATIONCOST —2.28 Fkk

*p<0.05,*p<0.01, ** p<0.001

Table 1: First pass durations for all words in the Dundee Gerpoefficients and their significance levels for
a model that includes all predictors only as main effects.

For forward transitional probability (FRWARDTRANSITIONALPROBABILITY), we ob-
served a negative coefficient, which means that words with high trandifiwobability are read
faster, in line with McDonald and Shillcock’s (2003b) results. HowevdiileMMcDonald and Shill-
cock (2003b) also find a negative coefficient for backward transitiprobability, while in our data
BACKWARDTRANSITIONALPROBABILITY shows a small positive coefficient, which means that
words with higher backwards transitional probability show slightly highadieg times.

While the coefficients for the non-syntactic predictors have plausible metpons that
are consistent with the previous literature on reading, the result for thgratien cost predictor
(INTEGRATIONCOST) is disappointing: we obtained a significant negative coefficient, whicmmea
that higher integration cost leads to shorter reading time, contrary to tdepos of DLT.

The same significant predictors were obtained when we ran mixed effesélsntor first
fixation duration and in total reading times (we omit the tables here), with orepéra: for first
fixations, there was no effect of word length and no effect of integnatast.

One potential explanation for the lack of an effect of integration cost neathé fact that
(following Gibson), we assumed identity as our integration cost function|(in@ 5 n. It is possible
that there is a logarithmic relationship between integration cost and readingetignesimilar to that
between frequency and reading time). We tested this by re-running thesisnaported in Table 1
with the integration cost function I(n) = log(n+1). However, again a sigaift negative coefficient
for INTEGRATIONCOSTwas obtained (though model fit improved slightly).

We now return to Table 2, which lists the results for a mixed effects model thitdes all
predictors as main effects and all binary interactions between prediatuisyas optimized by re-
moving all predictors that do not improve model fit (see Section 3.1.2). €kelts are broadly
similar to those obtained using main effects only, with the exception that launtdncés is
now a significant, negative predictor. However, we find significant atgon in this model which
makes the coefficients harder to interpret. For example, contrary to &fjges frequency now
has a positive coefficient. This needs to be interpreted in the context oktiaive coefficient of
WORDLENGTH:WORDFREQUENCY, the interaction between word length and frequency.

This interaction means that short, frequent words have longer reading {positive co-
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Predictor Coefficient  Significance
(INTERCEPY) 16806 rxk
WORDLENGTH 29.64 ikl
WORDFREQUENCY 7.54 i
PREVIOUSWORDFREQUENCY -5.67 o
PREVIOUSWORDFIXATED —25.62 ok
LANDINGPOSITION 1.92 o
LAUNCHDISTANCE —-1.35 ok
SENTENCEPOSITION -0.21 o
FORWARDTRANSITIONALPROBABILITY —2.00 ok
BACKWARDTRANSITIONALPROBABILITY 2.14 ok
INTEGRATIONCOST -2.01 ok
WORDLENGTH:WORDFREQUENCY -3.87 o
WORDLENGTH:LANDINGPOSITION -1.71 whk

*p < 0.05, *p<0.01, *** p<0.001

Table 2: First pass durations for all words in the Dundee Gsrpoefficients and their significance levels for
a model that includes all predictors as main effects andiadirly interactions, minimized using the AIC.

efficient of WORDFREQUENCY) than less frequent words with equal lengtExamples include
abbreviations, or expressions suc¥s Among longer words, more frequent ones are read faster,
as expected (negative coefficient ofo&# DL ENGTH:WORDFREQUENCY). Similarly, we observe a
significant negative coefficient for the interaction of word length anditzg position. The inter-
pretation is analogous to that of thedNDLENGTH:WORDFREQUENCY interaction: the positive
effect of landing position on reading time is reversed for longer words.

Crucially, the coefficient for integration cost is negative also in the moa@giticludes all pre-
dictors an all binary interactions. Again, this runs against the DLT predic¢kiat higher integration
cost should lead to higher reading times.

When we fitted mixed models for first fixation times and total times, we again fowsktime
pattern of results as for first pass time, with the exception thatniie sRATIONCOST effect was
not significant in first fixations.

3.3. Discussion

In this experiment, we fitted mixed effect models on the reading times for allsvarthe
Dundee Corpus, and found that integration cost is a significant negatdictor of reading time,
i.e., that higher integration cost values correspond to shorter reading tiorgsary to the prediction
of DLT. This result can be explained by the fact that DLT only providgsagtial definition of
syntactic processing complexity: integration costs are only assigned t® mouhverbs. All other
words have an integration cost of zero, while there are very few noumerbs with an integration
cost of zero (only non-head nouns in compounds).

We therefore further investigated the relationship between reading time &gdtion cost.
We re-ran the mixed effects model in Table 2 on all words in the corpus atadied integration

SMore precisely, the coefficient of frequency becomes negativevéwds with two letters or more, a$ + 2¢f < 0,
wherecs andcys are the coefficients of WRDFREQUENCY and WORDLENGTH:WORDFREQUENCY, respectively.
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cost as a factor, i.e., as a discrete predictor. When the DLT predictierehggred into the regression
as categorical values, separate coefficients are estimated for eachtiotegost value.

These separate coefficients allow us to assess the influence of wordawirttegration cost
of zero: the negative overall coefficient for integration cost as diwoous variable may be due
to the fact that words with integration cost O are problematic, becausellnoit them may be
covered hy the theory. Therefore it is interesting to see whether there asexall positive trend
for words that are assigned an integration cost. Figure 3 plots integraigirvalues against their
model coefficients and shows a general trend of higher integrationvatsts corresponding to
greater coefficients (i.e., increased reading times), as predicted byTbETigure also shows that
the coefficients for integration cost values one to nine are negative, egedlding times for words
with these integration cost values is shorter than the reading time for wordgevitintegration cost
(which the model takes as the base value and assigns a coefficienbpfHeis finding indicates
that words with integration cost O can still generate difficulty, but that thigcdify is not captured
by DLT, which only makes predictions for nouns and verbs. This ressit means that the current
coverage of DLT is clearly not sufficient for naturally occurring texod#lwords in the corpus have
integration cost values between zero and Riffehis explains why we found an overall negative
coefficient of integration cost in Table 2 (whemTIEGRATIONCOST was entered as a continuous
predictor), even though higher integration cost values generallysmorel to higher reading times
in Figure 3.

20 30
|

10
|

Coefficient

-10

0 2 4 6 8 10 12

Integration Cost

Figure 3 Coefficients for the factor integration cost in a mixed effemodel on the words in the Dundee
Corpus.

As Figure 3 shows, the average residual reading time of words with zesgration cost is
higher than those of words with slightly higher integration cost. Since DLTittoally only makes

6n fact, the largest influence on the regression coefficient comasvirords with integration cost 0 (approx. 125,000
fixated words) and integration cost 1 (approx. 84,000 fixated words)
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predictions for verbs and nouns, it would be interesting to find out at wtier word types a sim-
ilar cost might be incurred. To test whether some types of words take didagead than others
after factoring out low level effects, we computed residual reading tinmethe Dundee Corpus
by building a mixed effects model that contains all the non-syntactic predjcad subtracted the
reading times predicted by this model for the observed reading times. Wezedalyese data by
partitioning them according to the words’ parts of speech (POS). Welfthat adjectives, preposi-
tions, sentence adjectives, and expletives have mean residual réiagdsdarger than zero, which
means they are read slower than would be expected according to wott,l&eguency, and the
other non-syntactic predictors. The data suggests that it could be mgresextend DLT in a way

that makes it possible to also assign an integration cost to those word desegor

4. Experiment 2: Integration Cost for Verbs and Nouns

In Experiment 1, we obtained a negative coefficient for integration wb&n we fitted a
mixed effects model to predict reading times for all words in the Dundee uSo\¥e concluded
that this finding is due to the fact that DLT does not make integration codiqpiens for words
other than verbs and nouns. In the present experiment, we will explsratkhfurther by providing
a detailed analysis of integration costs for nouns and verbs.

4.1. Method

Data, statistical analysis, and implementation used were the same as in Expériment

4.2. Results

Again, we will only consider results for first pass durations in detail; tlaelee is referred to
Experiment 3 (see Section 5.3) for a more detailed comparison of resufisstdixation durations,
first past times, and total times.

Nouns We first fitted a mixed effects model for the first pass durations for aththums in the
Dundee Corpus (49,761 data points for the early measures, 57,569ailats for total durations)
that included all predictors as main effects and all binary interactions, minimigag the AIC.
Integration cost was not a significant, positive predictor of reading timesmtodel.

When the data set was restricted further, viz., to nouns with non-zeragatitag cost (45,038
and 51,613 data points respectively), a significant, positive coeffifdeiritegration cost was ob-
tained. Furthermore, we found that model fit improves slightly when usintpteithmic integra-
tion cost function I(n) = log(n + 1) compared to when using a linear one. ddefficients of this
model are listed in Table 3. The significant positive coefficient for inti@gmnacost in this model
means that nouns with higher integration cost take longer to read.

We fitted mixed models for first fixation durations and total times, and foundahe set
of significant predictors, with the following exceptions: for first fixatiptisere was no signifi-
cant effect of WORDLENGTH, and the effect of NTEGRATIONCOST was small, and there were no
significant interactions. For total timesyTEGRATIONCOST narrowly failed to reach significance
(p=10.07).

We further investigated why the effect of integration cost on nouns whspresent if nouns
with zero integration cost were excluded. This is particularly puzzling asrdres that nouns re-
ceive an integration cost of zero; there is only way for this to happen iedheus: the first word
of noun-noun compounds and pronouns. We re-ran the model in Tablg Bicluded pronouns (an
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Predictor Coefficient  Significance
(INTERCEPY) 12824 rxk
WORDLENGTH 30.90 ikl
WORDFREQUENCY 14.50 o
PREVIOUSWORDFIXATED —18.05 ikl
LANDINGPOSITION —-4.18 ok
LAUNCHDISTANCE -1.91 o
SENTENCEPOSITION —-0.12 *
FORWARDTRANSITIONALPROBABILITY -3.27 ok
BACKWARDTRANSITIONALPROBABILITY 3.96 ok
log(INTEGRATIONCOST) 5.86 *
WORDLENGTH:WORDFREQUENCY —4.98 bl
WORDLENGTH:LANDINGPOSITION —-1.02 bkl

*p<0.05,*p<0.01, ** p<0.001

Table 3: First pass durations for nouns (with non-zero iragn cost) in the Dundee Corpus: coefficients
and their significance levels for a model that includes a@bjtors as main effects and all binary interaction,
minimized using AlC.

additional 4,840 data points for the early measures, 6,108 data points fodtoddions), despite
their integration cost of zero. Again, a significant, positive coefficidrintegration cost was ob-
tained. First parts of compounds were relatively frequent in the Dundgaus: there were 7,121
data points for total durations and 6,118 data points for the early measulasgje proportion of
these cases consisted of proper names (such people’s names or titles).

Verbs Just as for nouns, we fitted a mixed effects model for the first passidus for all the
verbs in the Dundee Corpus (the model again included all main effectdldnday interactions).
No significant, positive coefficient for integration cost was obtained inrtioslel. We re-ran the
model with verbs that exhibit a non-zero integration cost, and with a logaritmsiiead of a linear
integration cost function. Again, integration cost was not a significasitige predictor of reading
time.

We then fitted a model that included the part of speech of the verb asiatpredhe rationale
behind this is that verb reading time differs by part of speech, e.g., infleeds are read more
slowly than infinitives. This model only included verbs with non-zero intégracosts and used
a logarithmic integration cost function. We found that integration cost wagrdfisant, positive
predictor of reading time (though the size of the coefficient was smaller trarofins).

In order to further investigate the integration cost effect that we foonddrbs, we computed
residual reading times for this data set (see Section 3.3). On the residgeatisen fitted a model
that includes a predictor that indicates the part of speech of the dapeth@e is integrated at a
given verb (or sequence of parts of speech if multiple dependentstaggated). The coefficients
in this model indicate which dependents lead to higher or lower integration, cestsTable 4. We
observe that, as predicted by DLT, the integration of nouns (parts ecbplN, NNP, NNS) or
adverbs (part of speech RB) leads to longer reading times, unlesdgtase an auxiliary (AUX)
that occurs before the verb. The auxiliary thus seems to facilitate integi@timouns at the verb.
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Dependents Coefficient Significance N
PRP-AUX-NN —81.45 o 15
PRP-AUX —76.24 ** 13
NNP-AUX-AUX —6241 o 21
RP —62.34 * 12
NNP-AUX —5952 * 17
PRP-MD —56.44 * 17
NNS-AUX-AUX —35.65 * 57
NNS-MD-AUX —30.75 *x 110
PRP-AUX-PR-PAUX  —29.72 ok 184
NN-MD-AUX —25.35 ok 153
PRP-AUX —22.64 *xk 700
PRP-AUX-RB —2175 * 133
AUXG —20.26 * 121
NNP-AUX —19.05 o 301
TO-PRP -16.97 *xk 723
NNP 1201 o 1372
NN-RB 2226 * 127
AUX-NNP 66.11 * 15
VBP 67.69 * 10
RB 7588 o 15
NN-NNS 7643 kk 25
PRP-MD-PRP-MD-JJ 108 * 65

Table 4: First pass durations for verbs (with non-zero irdégn cost) in the Dundee Corpus: coefficients for
the verbal dependents and their significance levels for aahfiited on residual reading times. Abbreviations
in the table refer to part of speech tags used by the Penndmn&etmnotation: AUX: auxiliary, PRP: personal
pronoun, NN: singular or mass noun, NNP: proper noun, serg@P: particle, MD: modal, NNS: plural
noun, RB: adverb, AUXG: auxiliary present participle, TQepositionto, JJ: adjective, VBP: non-third
person singular present verb.

4.3. Discussion

In Experiment 1, we saw that DLT integration cost does not constitute adbroverage
theory of syntactic complexity, in the sense that integration cost failed to enasrg significant,
positive predictor of reading time on the whole of the Dundee Corpus. \fWethgsized that this is
due to the fact that DLT only makes partial integration cost predictions, feznouns and verbs
only. In the present experiment, we investigated this further by analyzangetformance of DLT
on verbs and nouns in more detail.

We showed that integration cost is a significant, positive predictor ofrrgaine on nouns
with a non-zero integration cost, and thus supports the hypothesis in DhWevér, this result
reflects only effects on a small amount of the data: In its standard forns¢@jl2000), DLT does
not make very interesting predictions for nouns. By default, all noums &a integration cost of one,
because a discourse referent is built. The only cases in which noomeagive an integration cost
of greater than one are in constructions suctegsest for permissignvherepermissioris analyzed
as the head of the NP, genitive constructions the Nation’s criminalsand copula constructions.
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In the latter, nouns are considered to be the head of the phrase andietibgrvertbe This means
that the integration cost for the noun depends on the number of discmfegents intervening
between the noun artzk

We also investigated the two cases in which DLT assigns an integration coeioaio nouns.
The first case is pronouns, which DLT assumes to constitute old disc@iesents, not incurring a
cost. We extended our model by including pronouns (as the only nounge&nhintegration cost),
and still found that integration cost was a significant, positive predictuiciprovides evidence for
the DLT assumption that pronouns carry zero integration cost. The dexame of zero integration
cost is noun-noun compounds, for which DLT assume that the first imawins no integration cost.
However, when we fitted a model on all nouns (including the ones with z¢ggriamtion cost), we
failed to obtain a significant coefficient for integration cost. This indicatasttie DLT assumption
of cost-freeness for the first noun of a noun-noun compounds isrgato Rather, we have to as-
sume that a discourse referent is already being established when tm{irsin the compound is
encountered, i.e., this noun should incurs a non-zero cost.

At this point, it becomes important which version of DLT is used to compute iateyr cost
values. In contrast to the Gibson (2000) version used in this paper,ibs®165(1998) version of
DLT assigns higher integration costs to nouns that occur after their head im order to test how
crucial this assumption is, we implemented the 1998 version and conducteahtieeesperiments
as with the 2000 version, but this failed to yield an improved fit on our data set.

In addition to looking at nouns, we also investigated the relationship betveegling times
and integration cost for verbs and were able to show that integratioriscassignificant positive
predictor of verb reading times. However, the coefficient was small coedpi@ that found for
nouns; also, this result was only obtained for a model that includes tkeqiapeech of the verbs
as an additional predictor. This indicates that integration cost only has kh @reaall effect on
reading time for verbs, and that this effect is variable across partseeftsp

As verb integration cost is at the heart of DLT (which predicts only limitedagam in noun
integration cost, see above), we investigated this result further. We fittedda! on the residual
reading times that included the parts of speech of the dependents to batedegt the verb as
a predictor. This analysis revealed the following pattern (see Table 4jtiymcoefficients were
obtained for the integration of nominal dependents (indicating that this integiaads to increase
reading time), while negative coefficients were obtained for the integrafi@uxiliaries (which
means that this integration decreases reading time). In this context, it is tintgras note that
Warren and Gibson (2002) found a reading time effect for auxiliariesilfaries following definite
NPs were read more slowly than auxiliaries following pronouns. This r@s@glbnsistent with our
findings in the Dundee Corpus, i.e., that auxiliaries, and not just main v&nbgv integration cost
effects. However, Warren and Gibson (2002) interpret their findgg spillover effect.

5. Experiment 3: Surprisal

Experiments 1 and 2 indicate that there is evidence that DLT integration @ptéslictor of
reading time in the Dundee Corpus. However, DLT cannot be regagiadeoad coverage model,
as we found integration cost effects only if we limited our models to verbs andswith non-zero
reading times. The present experiment has the aim of evaluating suigsisal alternative model
of syntactic processing complexity. Unlike DLT, surprisal is designed toenmatkdictions for all
words in a corpus, on the basis of a probabilistic grammar. We will test twsiores of surprisal
(lexicalized and unlexicalized), and compare them against non-syntashalmlistic predictors of
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reading time (forward and backward transitional probability). Finally, wik also investigate a
possible relationship between surprisal and integration cost.

5.1. Method

Data and statistical analysis were the same as in Experiments 1 and 2. Ftatogidhe sur-
prisal values for the words in our corpus, we parsed the Dundeeu€aevjth an incremental parser
which returns a prefix probability for each word in the corpus, i.e., thbgodity in Equation (5).
We can then use Equation (6) to obtain the surprisal value for a wergk we subtract the loga-
rithmic prefix probability forwy1 from the logarithmic prefix probability fowy. The parser used
was Roark’s (2001) incremental top-down parser. This is a probabifiatiger trained on the Penn
Treebank (Marcus, Santorini, & Marcinkiewicz, 1993), a corpusmflish text manually annotated
with phrase structure trees. Only the Wall Street Journal section of the Feebank was used for
training. The parser achieves a broad coverage of English text atghiy laccurate, with a preci-
sion and recall of 85.7% for labeled brackets reported by Roark (2@&lthe Dundee Corpus also
consists of newspaper text comparable to the Wall Street Journal texatber was trained on, we
can expect a similar performance on the Dundee Corpus.

We estimated surprisal in two different ways. The first version was fulticldized, i.e., it
takes into account the exact words of a string when calculating struetnddlexical probabilities.
This lexicalized version was obtained using the default configuration drRtaek parser. The sec-
ond version was unlexicalized, i.e., only used the structural probabilittes uflexicalized model
does not take into account word frequency or the probability of a werdgoassigned a specific
POS tag (i.e., there are no lexical rules of t¥pe- wrote). This structural version of surprisal helps
us to factor out frequency effects, but is also limiting in that no subcategmn information is
available to the model for calculating structural probabilities, as this informasi@montained in
the lexical rules. To use the Roark parser for calculating an unlexicalieesdon of surprisal, we
replaced each word by its own part-of-speech tag and trained thea parflee POS tag sequences.
This eliminates the effect of word frequencies.

5.2. Results

Table 5 shows the coefficients and significance levels obtained wheimguamixed effects
model on first pass durations in the Dundee Corpus. As in ExperimensIntddel was computed
over all words in the corpus, and included all non-linguistic predictovgedisas lexicalized surprisal
(LEXICALIZED SURPRISAL), unlexicalized surprisal (NLEXICALIZED SURPRISAL), and forward
and backward transitional probability

Table 5 shows unlexicalized surprisal is a significant, positive prediofoesading time (high
surprisal leads to longer reading time). The coefficient folLEXICALIZED SURPRISAL is small,
but this has to be interpreted in the context of the range of this predictorathes for unlexicalized
surprisal range from 0.04 to 18.1, with a mean surprisal of 2.45.

Lexicalized surprisal (EXICALIZED SURPRISAL) does not figure in Table 5, which means
that it was not a significant predictor of reading time, and was eliminated fhenmodel during
model selection. However, forward transitional probability was a sigmificggative predictor of
reading time (higher probability means lower reading time), and backwarsltiaral probability
has a positive coefficient. As detailed in Section 2.3, forward transitionaigbility can be regarded
as a simple form of surprisal that only takes into account the immediate cdfitexpreceding
word). This indicates that lexicalized surprisal does not explain angvee in the eye-movement
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Predictor Coefficient  Significance
(INTERCEPY) 13567 rxk
WORDLENGTH 29.77 ko
WORDFREQUENCY 857 i
PREVIOUSWORDFIXATED -17.70 ok
LANDINGPOSITION 113 *k
LAUNCHDISTANCE —-1.63 ok
SENTENCEPOSITION —0.20 ok
FORWARDTRANSITIONALPROBABILITY -1.60 ok
BACKWARDTRANSITIONALPROBABILITY 2.06 ok
UNLEXICALIZED SURPRISAL 1.03 bkl
WORDLENGTH:WORDFREQUENCY -4.01 ok
WORDLENGTH:LANDINGPOSITION —1.66 ekl

*p<0.05,*p<0.01, ** p<0.001

Table 5: First pass durations for all words in the Dundee Gerpoefficients and their significance levels for
a model that includes all predictors as main effects, anblia#lry interaction, minimized using the AIC.

record over and above what is explained by forward transitionalgiitity and unlexicalized sur-
prisal.

We also fitted mixed effect models for first fixation durations and total timeschwalso
showed an effect of unlexicalized surprisal, and the absence of lieeidaurprisal. Also the other
significant factors listed in Table 5 were significant for first fixations &otdl times, except for
fact that the interaction of WRDLENGTH and LANDINGPOSITION was not significant for first
fixations; also all effect sizes were much smaller for this measure.

5.3. Discussion

This experiment showed that surprisal can function as a broad-ag®enodel of syntactic
processing complexity: we found that unlexicalized surprisal was a signifi positive predictors
of reading time on arbitrary words in the Dundee Corpus. This sets salrppart from integration
cost, which does not make predictions for all words in the corpus, angtfich we only obtained
significant effects on verbs and nouns.

We failed to find a corresponding effect for lexicalized surprisal. Thikcates that forward
transitional probability and structural surprisal taken together are b@#eictors of reading times
in the Dundee Corpus than lexicalized surprisal, which combines these twoporents. Forward
transitional probability can be regarded as a simple approximation of sairfsise Section 2.3),
and our results indicate that this approximation is sufficient, at least whemieg to predicting the
reading times in the corpus.

Unlexicalized surprisal, on the other hand, takes structural probabilitiesatount, but dis-
regards lexical probabilities, and therefore is a significant predictorading time, even if forward
transitional probability is also entered into the model. We conclude that stalistunprisal is able
to explain a component in the reading time data that neither lexicalized surpiasatansitional
probabilities, nor any of the other non-syntactic predictors can expldiis.i$ evidence for Hale’s
(2001) and Levy’s (2008) hypothesis that the incremental disconfirmafieyntactic hypotheses
by the parser can explain processing complexity.
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This raises the more general question of overlap between the variousneeas syntactic
processing complexity investigated in this paper. To address this issuegm@uted correlations
between integration cost and the different incarnations of surprisatéliized and unlexicalized
surprisal, forward and backward transitional probabilities), and vii@gluency. The result is given
in Table 6; all correlations are statistically significant except for the pa@RAMREQUENCY-
UNLEXICALIZED SURPRISAL (even small correlations are significant due to the large number of
observations). As expected, forward and backward transitionddatitity are highly correlated.
Furthermore, the lexicalized measures (lexicalized surprisal and traradifimbabilities) are highly
correlated with word frequency. The high correlation between lexicaboegrisal and forward tran-
sitional probability confirms the intuition that these two measures are in factiboginnations of
surprisal, but of a different level of granularity. On the other hamaicsural surprisal is not sig-
nificantly correlated with the other measures, including word frequenauéh there is a weak
correlation with lexicalized surprisal). This confirms that unlexicalized ssep really captures
structural probability effects, without taking lexical probabilities into asdorucially, Table 6
also shows that integration cost is orthogonal to surprisal and the odugrency-based predictors:
there is no strong correlation betweenTEGRATIONCOST and any of the other predictors. This
is supporting evidence for our hypothesis that both DLT and surpragatuce relevant aspects of
processing difficulty, but that these aspects are complementary, since&icribes difficulty in-
curred through memory load effects and reactivating previous materiakgrate it into the current
context, whereas surprisal captures the predictability of the contextfzmpes in the maintained
interpretations.

This finding holds even if we compute correlations only for the verbs in thedea Corpus
(not shown in the table): the correlation between integration cost andicali@ed surprisal is ap-
proximately 005 for verbs, while the correlation between integration cost and lexicatiagatisal
is approximately @1 for verbs. This confirms that integration cost and surprisal aregaal: if
there was a relationship between them, it should manifest itself on verbgylas are the words
with the largest variation in integration cost (compared to nouns, which mastky &n integration
cost of one, and the other words in the corpus, which have an integmaiiinof zero; see also
Section 4.3).

Finally, we fitted a mixed effects model that includes lexicalized and unlexickdiagorisal,
forward and backward transitional probability, as well as integration. dasillustrate the differ-
ences between various eye-movement measures, we fitted separate rmoélieds pass duration
(the measure discussed so far), and additionally first fixation time, anditotal The results are
given in Table 7. We will first discuss first pass times, which showed thegjiation cost, unlex-
icalized surprisal, lexicalized surprisal, as well as forward and backwansitional probability
are all significant predictors of reading time. However, the coefficiémtegration cost was neg-
ative, confirming that integration cost is not a broad-coverage predift@ading time (as shown
in Experiment 1). Furthermore,HXICALIZED SURPRISAL, While significant, has a small negative
coefficient, meaning that words with higher lexicalized surprisal showdongading times. This
is compatible with the model in Table 5, which failed to find a significant effectroéxicalized
surprisal.

Turning to the results for first fixation times (see Table 7), we again fousigraficant neg-

"Note that these models are based on different subsets of the datattsindata sets include all words that have
non-zero reading time. This means that total times have more data poistddiiion to first pass and first fixations all
those that were not fixated in first pass, but at some later pass.
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INTEGR WORD LEX UNLEX FORWTRANS
CosT FREQ SURPRIS SURPRIS ProB
WORDFREQUENCY —0.25
LEXSURPRISAL 017 -0.57
UNLEXSURPRISAL —0.07 004 036
FORWTRANSPROB —0.20 062 —0.66 —-0.10
BACKTRANSPROB —0.26 062 —0.53 004 068

Table 6: Correlation coefficients (Pearsorybetween the predictors, for fixated wordé £ 237,163).

ative effect of forward transitional probability, and a significant pusitffect of backward transi-
tional probability. Unlexicalized surprisal was a positive predictor oflireg time, while integration
cost and lexicalized surprisal were removed by the model selectionquoedecause they were
non-significant. As in the previous experiments, the coefficients foffifkation times were smaller
than the ones for first pass times.

The results for total time (see also Table 7) replicated the results for figst pgain forward
and backward transitional probability, integration cost, and lexicalizeduatekicalized surprisal
were significant predictors. The coefficients for integration cost amgrisal were negative, also
replicating the findings for first pass times.

First Fix First Pass Total Time
Predictor Coef Sig Coef Sig Coef Sig
(INTERCEPY) 19325 *** 143.17 *** 196.15 ***
WORDLENGTH 174 ** 2954 ** 2373 ***
WORDFREQUENCY —2.57 *** 7.05 *** 4 .49 Fx*
PREVIOUSWORDFIXATED —6.42 ** 1772 ** 2751 ***
LANDINGPOSITION rem - 123 ** n/a —
LAUNCHDISTANCE —181 ** 162 *** n/a -
SENTENCEPOSITION —-0.05 ** 020 *** 026 ***
FORWARDTRANSITIONALPROBABILITY —206 ** 214 ** 245 ***
BACKWARDTRANSITIONALPROBABILITY 0.45 ** 1.55 #*** 155 **
log(INTEGRATIONCOST) rem - =537 ** _£99 ***
LEXICALIZED SURPRISAL rem - =073 ** 116 ***
UNLEXICALIZED SURPRISAL 0.39 *** 1.39 *** 2.18 x**
WORDLENGTH:WORDFREQUENCY —-0.47 ** 386 ** 415 ***
WORDLENGTH:LANDINGPOSITION rem — =167 *** 0.13 -

*p < 0.05, *p<0.01, ** p<0.001

Table 7: First fixation times, first pass durations, and totaé for all words in the Dundee Corpus coeffi-
cients and their significance levels for a model that inchudleth surprisal and integration cost as predictors,
minimized using the AIC. Predictors marked “n/a” are not laggble for this measure; Predictors marked
“rem” were removed from the regression because they didigatfecantly reduce the AIC.
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6. General Discussion

In this paper, we evaluated two theories of syntactic processing compleptyst reading
time data extracted from a large eye-tracking corpus: Gibson’s (1988))2Dependency Locality
Theory (DLT) and Hale’s (2001) surprisal. We selected these twooaghies for our investigation
because they make complementary theoretical assumptions: DLT's integcagorcaptures the
cost incurred when a head has to be integrated with the dependentsstbedeit. Surprisal, on the
other hand, accounts for the cost that results when the current wood isedicted by the preceding
context.

This paper evaluated integration cost and surprisal using a broadagevapproach, i.e., we
investigated whether the two theories provide accurate predictions fitneaytwords in naturalistic,
contextualized text (as opposed to artificially constructed experimentaliaigatgrresented out of
context and repeated many times). For this investigation we used the readimatanie the Dundee
corpus, a large corpus of newspaper text annotated with eye-moveatant

We found that DLT’s integration cost was not able to provide reading tirediptions for
the Dundee corpus as a whole. This was largely due to the fact that Di/Tassigns integration
cost values to verbs and nouns; this means that the majority of words in ijkesdoave an inte-
gration cost of zero. However, we were able to show that integrationi€assignificant predictor
of reading time if the verbs and nouns in the corpus are analyzed sdpavstealso identified
limitations of DLT's treatment of nouns. One example is the assumption that thiedira in noun-
noun compounds carries zero integration cost. This is incompatible with switsewhich indicate
that the integration cost should be spread over the whole compound. ffuotiee we observed that
DLT only makes a restricted range of predictions for nouns: with few gtiaes, all head nouns
are assigned an integration cost of one. Arguably, this limits the power ahéoey in explaining
reading time data for noun phrases in a corpus, which are often compgiexpioblem could be
address by extending DLT along the lines suggested by Warren andn3@302). They provided
evidence that processing complexity at the verb varies with the refergntipérties of the NP to
be integrated, as expressed by the NP’s position on the GivennesscHie(@&undel, Hedberg, &
Zacharski, 1993). They find that complexity increases from prontamames to definite NPs to
indefinite NPs. Warren and Gibson (2002) suggest that a continuoggdtiten cost metric needs
to be developed that takes the givenness status of the integrated NP imtimiaddis would result
in a wider range of integration cost values for the nouns in the DundeguSopotentially making
it possible to explain more variance in the reading time record.

When we tested DLT predictions against the verbs in the Dundee corpusuwd evidence
that the integration cost definition for auxiliaries needs to be revisedsytedh integrate an auxiliary
and a nominal dependent exhibit a reduced integration cost comparetbothat only integrate a
nominal dependent. This result has an interesting implication for DLT. Onrtbénand it confirms
the DLT assumption that an integration cost is incurred at the verb when abdépendents are
integrated. On the other hand, it shows that this does not extend to dasesan auxiliary precedes
the main verb. A possible explanation is that the relevant integration costiisauored at the main
verb, but at the auxiliary itself, which integrates nominal dependents argiticurs a non-zero
integration cost (DLT assume that auxiliaries are cost-free). When tkigaay is then integrated
with the main verb, it facilitates integration (hence the negative coefficiemtheamain work of
the integration of the nominal dependents has already happened at ilianauXote that this
assumption is compatible with syntactic theories such as Head-driven F3trasture Grammar
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(Pollard & Sag, 1994), which assume that auxiliaries inherit the subagagon frame of the main
verb, and that dependents are unified (integrated) into the subcatdgorizame at the auxiliary.

At this point, it is worth considering a more radical departure from DLEswmptions. Inte-
gration cost is standardly defined in terms of the number of discoursenggentervening between
a head and its dependents, but alternatives have been proposed in#terétd-or example, Alex-
opoulou and Keller (2007) show that two types of extraction figphrases can differ in process-
ing complexity, even though they involve the same number of intervening dseoeferents. Based
on this result, they argue that the number of intervening syntactic hedlsr(than discourse refer-
ents) is the crucial factor for determining integration cost. This is a hypisthiest could be tested
against the Dundee Corpus. A head-based definition of integratiowoosd results in different
complexity predictions for a large number of words in the corpus, possikiyitiag in a better fit
with the reading time data. We leave this as an issue for future research.

In the second part of this paper, we evaluated the predictions of HARCH ] surprisal mea-
sure on the Dundee corpus. We computed surprisal in two ways: lexidalizprisal was estimated
using a probabilistic parser that utilizes lexical (word-based) probabitisegell as structural (rule-
based) probabilities. Unlexicalized surprisal was estimated using a pghegesnly has access to
structural probabilities. We found that only structural surprisal wagmifecantly positive predictor
of reading times. This finding can be explained by the fact that lexicalizgdtisal is highly cor-
related with word frequency and transitional probability (transitional plolity can be seen as a
simple approximation of lexicalized surprisal). Therefore, lexicalizedrsapfails to explain any
additional variance in the eye-movement record. Unlexicalized surphiealever, is uncorrelated
with word frequency and transitional probability and is able accounts fwartof the variance in
reading time that no other predictor captures. This result shows thaticalierd surprisal is a good
candidate for a broad-coverage model of syntactic processing coityplegenerates accurate nu-
merical predictions for all types of words in the corpus, not just formsoand verbs, as integration
cost does.

Our findings regarding lexicalized surprisal indicate that a fully lexicalipatsing model
does not offer an advantage over an unlexicalized one. HowevedRis not mean that there is
no role for lexical information in modeling reading times. The experimental litezattfers broad
evidence for the fact that sentence processing relies on lexical infiommauch as subcategorization
frame frequencies (e.g., Garnsey, Pearlmutter, Myers, & Lotocky7;19@ieswell, Tanenhaus, &
Kello, 1993) and thematic role preferences (e.g., Garnsey et al., 1R®%@éyiAg, Traxler, & Crocker,
2000). Recent probabilistic models of human sentence processingtievpted to integrate such
information with the structural probabilities generated by a parser (Naeay& Jurafsky, 2002;
Pad, 2007). It seems likely that these models (which are effectively unlézécbmodel augmented
with a limited form of lexical information) would yield a more accurate accoumeafling times in
the Dundee Corpus.

Our surprisal results are corroborated by Ferrara Boston, HaleglkReatil, and Vasishth’s
(2008) work using the Potsdam Sentence Corpus. They found thadealleed surprisal is a sig-
nificant predictor of reading times, even though the Potsdam Sentenpestdiffers in a number
of ways from the Dundee corpus: it uses a different language (Ggrara it consists of uncon-
nected sentences, which were manually constructed for experimenpases; rather than taken
from naturally occurring text. Also, it is smaller in terms of items (144 sentgndes larger in
terms of participants (272 participants) than the Dundee corpus. It iStherencouraging that our
results are consistent with Ferrara Boston et al.’s (2008), in spite & twrpus differences. Ferrara
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Boston et al. (2008) did not test lexicalized surprisal or integration @osheir data set, but they
compared two versions of unlexicalized surprisal, estimated either usingtextdree grammar
(i.e., in the same way as in the present paper), or using a dependenuypgran both cases, the
surprisal estimates were a significant predictor of reading times.

The analyses reported in this paper were carried out on first-pagmgetimes computed
from the Dundee corpus. We also investigated another early measstdiXfition durations) and a
late measure (total times). The results for these two measures are very sintilardoes for first
pass, except that first pass showed no effect of integration c@st,ieverbs are considered sepa-
rately. Unlexicalized surprisal, on the other hand, was a significaniqioedn all three measures.
This finding could indicate that integration cost is associated with later ges&s comprehension
(that do not manifest themselves in first fixations), while surprisal iscéat®al with both early and
late processes (including lexical access, which is often thought to ketedlin first fixation times).
This result is corroborated by Ferrara Boston et al. (2008), whoralsort that unlexicalized sur-
prisal is a significant predictor for all the eye-tracking measures thégdétheir analysis involved
eight different measures).

Another central finding of the present paper was the fact that safjaisl integration cost are
uncorrelated, both for arbitrary words in the corpus, and for vefdrsihich DLT makes the bulk of
its predictions). This result suggests that a complete theory of sentestspmg complexity needs
to include two mechanisms: a backward-looking one as proposed by DtTa #orward-looking
one as proposed by surprisal. When a new word is processed it imautgpes of processing cost:
the cost of integrating material that has been processed previously witlethe/ord, and the cost
of discarding alternative syntactic predictions that are not compatible withetveword. The first
type of cost corresponds to locality effects that have been obsertedseévely in the literature
(see Gibson, 1998 for an overview). The second type of costsmorals to anti-locality effects
which have been reported recently (Konieczny, 2000; Vasishth & Le&@86). In order to capture
both types of cost (and yield broad-coverage results on an eyearigaotirpus), we need to develop
a unified model that encompasses both the prediction of upcoming materighersdibsequent
verification and integration processes (for a first step towards sucldalreee Demberg & Keller,
2008).

Another point to consider is the fact that the predictions of both DLT amprisal depend
on the grammar formalism that they are operating on. In DLT, syntactic stasc(head—dependent
relations) determine the amount of integration cost that is incurred by a geguence of words.
While there are many clear cases of what constitutes the head, the depandehe relation be-
tween them can be subject to debate in the linguistic literature. In the cuapet,pve assumed that
the dependency structures output by Minipar form the basis of the ini@gst computations (see
Section 3.1.3). Minipar uses one particular codification of dependerayrgar (Sampson, 1995),
and it is therefore conceivable that our results would change if we comhjmitsgration cost using
a parser that makes a different set of representational assumptions.

Itis important to note that surprisal also requires representationaigsiuns. The definition
of surprisal in Equation (4) does not mention syntactic structures expliefdywever, in order to
compute the conditional probability in this equation, prefix probabilities have wbbained, which
requires summing over all possible analyses of a string. The number aadftypese analyses
will differ between grammatical frameworks, which entails that represemiatiassumptions do
play a role for surprisal. In the present paper, we only investigatedregatigtions of one type of
syntactic representations, viz., those of Roark’s (2001) parserhvgeicerates Penn Treebank-style
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structures. Itis possible that other syntactic models will yield differergrigal estimates and fit the
reading time data more closely, or model different aspects of the data.l{@hibeen investigated
by Ferrara Boston et al., 2008, who compare dependency and ggtrastire versions of surprisal,
as detailed above.)

Apart from its theoretical contribution, this paper also makes a methodolaging&ibution.
To our knowledge, this is the first time that theories of sentence procelawebeen tested on
broad-coverage data extracted from an eye-tracking cérpus believe that our corpus-based ap-
proach constitutes an important new method for evaluating models of semimuassing. Such
models are currently tested exclusively on data obtained for isolated, iattyficonstructed sen-
tences in controlled lab experiments. The validity of the models can be erthemesiderably if we
are able to show that they scale up to model reading data from an eyexgackpus, which con-
tains naturally occurring, contextualized sentences. Furthermore, ¢hefileye-tracking corpora
has the advantage of convenience and flexibility: it makes it possible to atbityary syntactic
constructions, provided that they occur sufficiently frequently in thepesrThere is no need to run
a new experiment for every construction or every hypothesis to betigagsd.

While the corpus-based approach has great potential, there are limitasiovedlaThe fact
that naturally occurring sentences are used means that it is much moreldi@icontrol for con-
founding factors. In the present paper, we have attempted to includeteltfally confounding
factors as co-variates in mixed effects models, thus controlling for the nmfeuef these factors.
However, it is possible that there are some confounds that we have t@iléentify, and therefore
they could introduce artifacts in our models. In an experimental setting, prexiexenter will often
construct materials so that they are matched across conditions, i.e., thecesnaly differ in the
aspects that the experimenter wants to manipulate, an are identical in all @yerThis reduces
the possibility that there are confounding factors that have not been tat@account. Another
limitation of the corpus-based approach is data sparseness. No carpbe 60 big that it contains
all syntactic structures that an experimenter might want to get data onx&ompde, if we want to
investigate prepositional phrase attachment, then there is a good chanitetbare enough rele-
vant sentences in the Dundee Corpus. If we want to investigate retklaéide clauses, on the other
hand, then probably there are not enough tokens. This situation is exse i we want to study
structures that are ungrammatical or cause serious processing disr(giixh as multiple center
embeddings). These probably do not occur in the corpus at all. To surnenexperimental data
and corpus data have complementary strengths and weaknessespalddbghused in conjunction
to maximize the evidence for or against a given theoretical position.
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Appendix: Technical Details in Processing the Dundee Corpus
Skipping

The Dundee corpus has a relatively high skipping rate: 45% for fisst pgading and 35% for
total reading times. This is higher than previously reported numbers, eygh&srt and Vitu (1998)
found a skipping rate of only just over one third in first pass readingré&fore, many words have
a reading time value 0. If we included these data points into our regress@ysyould heavily
influence the data. This is particularly problematic since the meaning of skippivayd is not the
same as the meaning of a very short fixation (closed to 0 ms). Therefiditee segressions in this
article were run on fixated words only, and skipping was dealt with in aragpdogistic regression,
which included a binary response variable that specified whether awasdixated or not. We here
only reported the regressions on fixated words because they are rfareative.

Track Losses

The rate of track losses is relatively high in the corpus. We define a traskal® a sequence
of four adjacent words that are not fixated. Out of the half a million tredakerds (approx. 50,000
words x 10 participants), 7.3% of the data points are invalid due to track losses.ie/ecthem
for the regression analyses because the large proportion of tragslosiserwise could lead to
substantial distortion of the results, in particular for estimating skipping dnhdatmon probabilities.

Spill-Over

Spill-over effects are delays on the target word caused by procedifficglty in the preced-
ing work. We try to capture spill-over effects by including the frequernfaye previous word, a flag
that indicates whether the previous word was fixated or not, and launeimdésas predictors in our
models.

Issues Specific to Corpus Data

Newspaper text contains many types of words that are usually notpiiesgpecifically de-
signed psycholinguistic experiment items, such as numbers and specedteins. We found these
words to require special treatment. For example, in our frequency statjatigsh we estimated
based on word occurrences in the British National Corpus (BNC), sftgping off punctuation),
we found an unexpectedly high number of short words with low fregiesn@ general we expect
that length is negatively correlated with word frequency). We also fabiatithese low frequency
words were skipped with higher probability than expected, and recéaeer fixations. This in-
dicated that some words were assigned to an inappropriate frequerssy Wa dealt with this
problem by excluding all words that contain numbers, special chagasteh as punctuation and
hyphens, and acronyms (words with more than one capital letter). Traigarin the word length
of rare words is then considerably lower, and both skipping probability fesation numbers be-
come monotonous functions, with the rare words skipped least often atdditand regressed to)
most often.

An alternative treatment of the problematic words would be to change theudrey as-
signments. For instance, a psycholinguistic reason for changing theefreguwf digits would be
that they are probably considered as a class of signs in the human sooeesl therefore should
be annotated with their class frequency. Compounds with hyphens on #rehatid should not be
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annotated with the frequency for the whole compound, as there is evidetieeliterature on com-
pound reading that the reading durations of compounds are primarilyndepeon the frequency
of the first part of the compound (Juhasz, Starr, Inhoff, & Plack@32.

Alignment of Tokenizations

Tokenization in the Dundee corpus is often different from the tokenizaised by the
parsers. Therefore, it is necessary to realign the parsed text withuhdd® corpus segmentation.
If a word in the Dundee corpus corresponds to multiple words in the paesesibn, we have to
combine the theories’ predictions for those two words into a single prediaticthét token, or split
up the Dundee token into two bits. We here decided to combine the predictiotwdalifferent
words into a single value and use the Dundee corpus tokenization.

For both surprisal and integration cost, we decided to combine predictjosistbmarization
(instead of, e.g., computing the average). Surprisal captures the aofqurobability mass of anal-
yses that are not compatible with the current input given the prefix. Tardswvhich are one token
in the Dundee corpus (likere’ll) carry the same information as two separate adjacent tokess (
and’ll, and thus rule out the same structures, such that the surprigad’ibis exactly the same as
the surprisal ofve plus the surprisal ifl (see Equation (7)).

(1) Sa1+Sa2 = —logP(Wiia|wy - Wk) + —10gP (Wi 2|Wy - - - Wit 1)
_logP(wy---Wii1)  logP(wy - Wi 2)
P(wy - - - W) P(Wy - Wit1)

= —logP(wy-- Wi 1) +logP(wy - --wg) —

logP(wy - - - Wi 2) +10gP(Wq - - Wiy 1)
= logP(w1 - - W) —logP(wy - - - Wic;.2)
P(W1- - - Wiy2)

P(wy--- W)
= —logP(Wicy1, Wics 2| W - - - W)
= Scriki2

Similarly, we also decided to add up integration costs, because the relenxantity is the combined
integration cost of the two components, which means that averaging wotllterem appropriate
measure.
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Figure 4 The first column shows word length distributions, skippprgbability and numbers of fixation
on a word for words of different frequency classes. The sdamsiumn matches the plots from the first
column, but the data set of the second column excludes alswoith symbols that are not characters, such
as numbers, punctuation, compounds with a hyphen or spsgizd.



