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Abstract

We evaluate the predictions of two theories of syntactic processing complexity, de-
pendency locality theory (DLT) and surprisal, against the Dundee corpus, which
contains the eye-tracking record of 10 participants reading 51,000 wordsof news-
paper text. Our results show that DLT integration cost is not a significant predictor
of reading times for arbitrary words in the corpus. However, DLT successfully pre-
dicts reading times for nouns and verbs. We also find evidence for integration cost
effects at auxiliaries, not predicted by DLT. For surprisal, we demonstrate that an
unlexicalized formulation of surprisal can predict reading times for arbitrary words
in the corpus. Comparing DLT integration cost and surprisal, we find that the two
measures are uncorrelated, which suggests that a complete theory will need to in-
corporate both aspects of processing complexity. We conclude that eye-tracking
corpora, which provide reading time data for naturally occurring, contextualized
sentences, can complement experimental evidence as a basis for theoriesof pro-
cessing complexity.
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1. Introduction

Research on human sentence processing has traditionally focused on syntactic ambiguity,
based on the observation that certain locally ambiguous constructions posedifficulty for the human
sentence processor. Such difficulty manifests itself typically in the form of increased processing
time (e.g., elevated reading times on the disambiguating region).

While disambiguation is an important source of difficulty in human sentence processing,
difficulty can also arise in unambiguous sentences. A classic example are relative clauses, which
have been investigated extensively in the literature on syntactic processingdifficulty. Experimental
results show that English subject relative clauses as in (1-a) are easierto process than object relative
clauses as in (1-b). Experimentally, this difficulty is evidenced by the fact that reading times for the
verb attackedare shorter for subject relative clauses than for object relative clauses (King & Just,
1991).

(1) a. The reporter who attacked the senator admitted the error.
b. The reporter who the senator attacked admitted the error.

Findings such as these have motivated processing theories that do not rely on ambiguity resolution,
but instead capture the complexity involved in computing the syntactic dependencies between the
words in a sentence. One such theory is Dependency Locality Theory (DLT), proposed by Gibson
(1998, 2000). A central notion in DLT isintegration cost, a distance-based measure of the amount
of processing effort required when the head of a phrase is integratedwith its syntactic dependents.
DLT is able to capture the subject/object relative clause asymmetry in (1), as well as a wide range of
other complexity results, including processing overload phenomena such as center embedding and
cross-serial dependencies.

More recently, Hale (2001) proposed surprisal as an alternative measure of processing com-
plexity. Intuitively, the surprisal of a word in a sentential context corresponds to the probability
mass of the analyses that are not consistent with the new word. Surprisalrequires a probabilistic
notion of linguistic structure (utilizing transitional probabilities or probabilistic grammars), and has
its theoretical foundation in information theory (Levy, 2008). It can be shown to capture a range of
complexity effects, including the subject/object relative clause asymmetry, certain garden path ef-
fects, speed-up effects in verb-final contexts, and word order asymmetries in German (Hale, 2001;
Levy, 2008). Another more recent incarnation of surprisal Gibson’s(2006) approach, which com-
bines top-down syntactic predictions with bottom-up lexical predictions.

A number of other theories of syntactic processing complexity exist, includingdynamic sys-
tem models (e.g., McRae, Spivey-Knowlton, & Tanenhaus, 1998; Tabor& Tanenhaus, 1999) and
neural net models (e.g., Elman, 1991). However, in the present paper,we will focus on DLT and
surprisal, as these two approaches are maximally different from each other. In particular, they make
complementary assumptions about the source of processing complexity. DLT’s integration cost cap-
tures the cost incurred when a head has to be integrated with the dependents that precede it. Sur-
prisal, on the other hand, accounts for the cost that results when the current word is not predicted by
the preceding context. Therefore, integration cost can be regarded as a backward looking cost (past
material has to be held in memory and integrated), while surprisal is a forward-looking cost (syn-
tactic predictions have to be discarded if they are no longer compatible with the current word). This
observation leads to a general empirical prediction, viz., that integration cost and surprisal should
be uncorrelated, and should account for complementary aspects of reading time data. The present
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paper will test this prediction.
While DLT and surprisal have been evaluated against a range of experimental results, so far

no broad coverageevaluation of theories of syntactic processing complexity has been carriedout.
Existing studies rely on lab experiments, which have the advantage of givingthe experimenter full
control over the experimental setup and the materials, and are of established reliability and validity.
However, this approach also has its drawbacks. It typically involves the presentation of artificially
constructed sentences containing a narrow range of syntactic structures. Also, the same structures
occur many times in a given experiment, raising the possibility of habituation effects or the devel-
opment of strategies in participants. The sentences to be tested are often presented in isolation, i.e.,
without an appropriate textual context, potentially leading to behavior that is different from normal
reading. Finally, only a small number of items can be tested in the typical psycholinguistic exper-
iment. DLT and surprisal effects have successfully obtained in such an experimental setting, but
these methodological limitations leave open the possibility that the effects are rare or absent when
arbitrary words in large amounts of naturalistic, contextualized text are considered.

The aim of the present paper is to address this problem and provide a broad coverage evalua-
tion of DLT and surprisal on the Dundee Corpus, a large collection of newspaper text for which the
eye-movement record of 10 participants is available. From this corpus, a range of eye-tracking mea-
sures can be computed, which can then be evaluated against the predictions of theories of syntactic
complexity. Such broad coverage studies yield results that hold for naturalistic, contextualized text,
rather than for isolated example sentences artificially constructed by psycholinguists. They have al-
ready been applied successfully to individual phenomena, such as the subject/object relative clause
asymmetry (Demberg & Keller, 2007). The aim of the present paper is to show that corpus studies
can also be used to systematically test theories of syntactic processing complexity. Such studies
provide a source of evidence that corroborates experimental results,but also yields new theoretical
insights, as it makes it possible to evaluate multiple theoretical predictors against each other on a
large, standardized data set.

2. Background

2.1. Dependency Locality Theory

According to Gibson’s (1998, 2000) Dependency Locality Theory, processing complexity is
caused by the cost of the computational resources consumed by the processor. Two distinct cost
components can be distinguished: (i)integration costassociated with integrating new input into the
structures already built at a given stage in the computation, and (ii)memory costinvolved in the
storage of parts of the input that may be used in parsing later parts of an input. Here, we will focus
on integration cost, as “reasonable first approximations of comprehension times can be obtained
from the integrations costs alone, as long as the linguistic memory storage usedis not excessive at
these integration points” (Gibson, 1998, p. 19f). This is a safe assumptionfor our studies, as we use
corpora of carefully edited newspaper text, which are unlikely to incur excessive storage costs (in
contrast to artificially constructed experimental materials). Gibson’s definition of integration is as
follows:

(2) Linguistic Integration Cost
The integration cost associated with integrating a new input head h2 with a head h1 that
is part of the current structure for the input consists of two parts: (1) acost dependent on



EVIDENCE FROM EYE-TRACKING CORPORA 4

the complexity of the integration (e.g. constructing a new discourse referent); plus (2) a
distance-based cost: a monotone increasing function I(n) energy units (EUs) of the number
of new discourse referents that have been processed since h1 was last highly activated. For
simplicity, it is assumed that I(n) = n EUs. (Gibson, 1998, p. 12f)

According to this definition, integration cost is dependent on two factors. First, the type of element to
be integrated matters: new discourse referents (e.g., indefinite NPs) are assumed to involve a higher
integration cost than old/established discourse referents, identified by pronouns. Second, integration
cost is sensitive to the distance between the head being integrated and the head it attaches to, where
distance is calculated in terms of intervening discourse referents.

As an example, consider the subject vs. object relative clause example in (1). At the embedded
verb attackedin (1-a), two integrations take place: the gap generated by the relative pronounwho
needs to be integrated with the verb. The cost for this is I(0), as zero newdiscourse referents have
been processed since the gap was encountered. In addition, the embedded verbattackedneeds to
be integrated with its preceding subject. Again, this is a free integration since no discourse referent
occurs between the verb and the subject NP. However, there is a cost for building a new discourse
referent (the embedded verb itself1), leading to a cost of I(1). The total cost atattackedis therefore
I(1). This is illustrated in Figure 1, which depicts the dependencies that arebuilt, and the integration
costs per word that are incurred.

            x                  x                  x             x                  x

The reporter who   the senator attacked admitted  the   error.
          x                           x           x               x                x
 I(0)   I(1)  I(1) I(0)    I(0) I(1)+I(2)   I(0)  I(1)Integ. Cost

Integ. Cost
Disc.ref.

Disc.ref.

The reporter who attacked the senator admitted  the   error.

SRC:

ORC:

I(1)+I(3)

 I(0)  I(1) I(0) I(1) I(0) I(1) I(1)I(0)I(1)+I(3)

Figure 1. An example of integration cost computations: subject relative clauses (SRC) vs. object relative
clauses (ORC), with word-by-word markup for discourse referent and integration costs. The links between
the words represent syntactic dependencies.

At the verbattackedin the object relative clause, three structural integrations take place:
(1) integration with the subject NPthe senator: no integration costs occur since no new discourse
referents occur in between the verb and the NP, (2) an empty category for the relative pronoun
is integrated, but again, the integration is local and no costs occur, (3) theobject position empty
category is co-indexed with the preceding relative pronounwho. There is an integration cost of I(2)
for this step due to the two discourse referents,attackedandthe senatorwhich occurs in between.

1DLT assumes that verbs introduce event discourse referents.
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In addition, there is a cost of I(1) for constructing the discourse referent atattacked, which leads to
a total integration cost of I(1) + I(2) at the embedded word of the object relative clause. So overall,
DLT predicts that the verb of object relative clauses is more difficult to process than that of subject
relative clauses.

Note that Gibson assumes that the integration cost function is identity, i.e., I(n)= n. However,
other functions are possible here; we will return to this issue in Section 3.2.

2.2. Surprisal

An alternative measure of syntactic complexity has been proposed by Hale (2001) in the form
of surprisal. Surprisal is compatible with a parallel parser, which builds structures incrementally,
i.e., it constructs all possible syntactic analyses compatible with the input string on a word-by-word
basis.2 Intuitively, surprisal measures the change in probability mass as structural predictions are
disconfirmed when a new word is processed. If the new word disconfirmspredictions with a large
probability mass (high surprisal), then high processing complexity is predicted, corresponding to
increased reading time. If the new word only disconfirms predictions with a small probability mass
(low surprisal), then we expect low processing complexity and reduced reading time.

Returning to (1), we expect differences in surprisal between (1-b) and (1-a). Hale (2001)
demonstrates that the mean surprisal for the object relative clause is higher than for the subject
relative clause, i.e., that on average, the words in the object relative clause require hypotheses with
a greater probability mass to be disconfirmed than in the subject relative clause. Surprisal theory
therefore predicts that object relative clauses are harder to processthan subject relative clauses,
which is in line with experimental findings (but see Levy, 2008, for additional relative clause results
using surprisal).

Technically, surprisal can be defined using the conditional probabilityP(T|w1 · · ·wk), i.e., the
probability of a treeT given the sentence prefixw1 · · ·wk. This is the probability thatT is the correct
tree, given that the string of wordw1 to wordwk has been encountered. Surprisal is then defined as
the change in the conditional probability distribution fromwk to wk+1. As Levy (2008) shows, this
can be formalized using the Kullback-Leibler divergence (relative entropy). The Kullback-Leibler
divergence between two probability distributionsP andQ is defined as:

D(P||Q) = ∑
i

P(i) log
P(i)
Q(i)

(1)

The surprisal at encountering wordwk+1 then corresponds to the Kullback-Leibler divergence be-
tweenP(T|w1 · · ·wk+1), i.e., the probability distribution of all syntactic trees that are consistent with
wordsw1 · · ·wk+1, andP(T|w1 · · ·wk), the probability distribution of the trees that are compatible
with the prefixw1 · · ·wk:

Sk+1 = ∑
T

P(T|w1 · · ·wk+1) log
P(T|w1 · · ·wk+1)

P(T|w1 · · ·wk)
(2)

This expression can be simplified using the following fact:

P(T|w1 · · ·wk) =
P(T,w1 · · ·wk)

P(w1 · · ·wk)
=

P(T)

P(w1 · · ·wk)
(3)

2While surprisal is compatible with a fully parallel parser, it does not necessarily require one. It is possible to compute
the probabilities of a limited set of analyses and then use these to track changes in the probability distribution. In fact, the
Roark (2001) parser used in this paper performs beam-search, i.e., does not compute all possible analyses, and thus we
reply on such a limited-parallelism version of surprisal.
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This equation holds because we know that each tree inT contains the wordsw1 · · ·wk, therefore
P(T,w1 · · ·wk) = P(T). We can now substitute Equation (3) into Equation (2). We can then sim-
plify the definition of surprisal using the fact∑T

P(T)
P(w1···wk+1)

= 1 (the probabilities of all syntactic
trees given a particular prefix sum up to one), and performing some straightforward logarithmic
transformations:

Sk+1 = ∑
T

P(T)

P(w1 · · ·wk+1)
· log

P(T)
P(w1···wk+1)

P(T)
P(w1···wk)

= 1· log
P(w1 · · ·wk)

P(w1 · · ·wk+1)
(4)

= − log
P(w1 · · ·wk+1)

P(w1 · · ·wk)
= − logP(wk+1|w1 · · ·wk)

This derivation shows that the surprisalSk+1 at wordwk+1 corresponds to the negative logarithm of
the conditional probability ofwk+1 given the sentential contextw1 · · ·wk. This is an important sim-
plification, as it means that surprisal can be computed without making representational assumptions
(i.e., the syntactic treeT does not figure in the definition of surprisal). In practice this means that
a number of ways of computing surprisal are possible, utilizing either simple probabilistic models
of language (such asn-gram models) or more sophisticated ones, such as probabilistic context-free
grammars (PCFGs).

Surprisal can be reformulated in terms of theprefix probabilitiesof wordswk andwk+1, which
can be obtained easily from a PCFG. The prefix probability of a wordwk is obtained by summing
the probabilities of all treesT that span fromw1 to wk:

P(w1 · · ·wk) = ∑
T

P(T,w1 · · ·wk)(5)

The formulation in Equation (4) is therefore equivalent to a formulation that uses prefix probabili-
ties:

Sk+1 = − log
P(w1 · · ·wk+1)

P(w1 · · ·wk)
= log∑

T

P(T,w1 · · ·wk)− log∑
T

P(T,w1 · · ·wk+1)(6)

SurprisalSk+1 at wordwk+1 thus corresponds to the difference between the logarithm of the prefix
probabilities of wordwk and wk+1. We give an example that illustrates how prefix probabilities
can be computed using a PCFG. In a PCFG, each context-free grammar ruleis annotated with its
probability, as in Figure 2. The rule probabilities are then used to calculate theprefix probability of
a word.

For example, ifwk+1 is the wordwho in the example in Figure 2, then the prefix probability
∑T P(T,w1 · · ·wk+1) is the sum over the probabilities of all possible trees that include the prefix
w1 · · ·wk+1, where each tree probability is computed as the product of all the rules thatare needed
to build the tree (Figure 2 shows only one such tree).

2.3. Non-syntactic Predictors

It is well-known that reading times in eye-tracking data are influenced not only by high-level,
syntactic variables but also by a number of low-level variables, both linguistic ones and oculomotor
ones (see Rayner, 1998, for a review). The low-level linguistic variables include word frequency
(more frequent words are read faster), word length (shorter wordsare read faster), and the position
of the word in the sentence (later words are read faster). It has also been found that the frequency
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S

NP

NP

DT

The

NN

reporter

SBAR

WHNP

WP

who

S

· · ·

VP

· · ·

Example Rule Rule probability
The reporter who . . . S→ VP NP p = 0.6
The reporter who . . . NP→ NP SBAR p = 0.004
The reporter NP→ DT NN p = 0.5
The DT→ the p = 0.7
reporter NN→ reporter p = 0.0002
who . . . SBAR→ WHNP S p = 0.12
who WHNP→ WP p = 0.2
who WP→ who p = 0.8

Figure 2. Example derivation of prefixThe reporter whoand rules from a probabilistic context free grammar
(PCFG) that would be needed in order to calculate its prefix probability.

of the previous word influences reading time at the present word, presumably due to spill-over
effects and, to a smaller extent, that the following word influences reading timeon the current word,
which is interpreted as a parafoveal preview effect. Oculomotor variables include previous fixation
(indicating whether or not the previous word has been fixated), launch distance (how many character
intervene between the current fixation and the previous fixation), and landing position (which letter
in the word the fixation landed on).

Together with variation between readers, these low-level variables account for a sizable pro-
portion of the variance in the eye-movement record. There are also a number of well-known corre-
lations between the independent variables: short words are usually morefrequent than long words,
the fixation landing position depends on word length, etc.

Recently, it has also been shown that information about the sequential context of a word can
influence reading times. In particular, McDonald and Shillcock (2003b) present data extracted from
an eye-tracking corpus (a smaller corpus than the Dundee Corpus usedhere) that show that forward
and backward transitional probabilities are predictive of first fixation and first pass durations: the
higher the transitional probability, the shorter the fixation time.

By forward transitional probabilityMcDonald and Shillcock (2003b) refer to the conditional
probability of a word given the previous wordP(wk|wk−1). This captures the predictability of the
current word given a one-word context. For example, the probability ofthe word in given that
the previous word wasinterestedis higher than the probability ofin if the last word wasdog.
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Thebackward transitional probabilityis the conditional probability of a word given the next word
P(wk|wk+1). This provides an estimate of how predictable the current word is given thenext word,
e.g., of how probable it is to seeinterestedor dogcurrently, given the next word isin. A possible
interpretation of why material that is further back in the text can benefit the current word and lead to
shorter reading times for words with high backward transitional probabilitiesare preview effects and
backward saccades. These corpus results are backed up by resultsdemonstrating the role of forward
transitional probabilities in controlled reading experiments (McDonald & Shillcock, 2003a; but see
Frisson, Rayner, & Pickering, 2006, who equate transitional probabilityand Cloze predictability).

It is interesting to note that the forward transitional probabilityP(wk|wk−1) is a simple form
of surprisal, viz., one that takes into account only the previous wordwk−1, rather than the whole
prefixw1 · · ·wk−1 (see Equation (4)). Another difference is that forward transitional probabilities are
estimated using word bigrams, while surprisal is typically estimated using syntactically generated
probabilities, based on Equations (5) and (6). We will return to this issue in the context of our
discussion of surprisal in the Dundee Corpus in Section 5.

In the current paper, we are interested primarily in syntactic processing effects such as the
ones captured by DLT integration cost and surprisal. We therefore need to make sure that these
metrics account for variance in the eye-movement recorded that is not captured by the low-level
linguistic and oculomotor variables discussed above. Technically, this can be achieved by running
hierarchical mixed effect models which include both the low-level and the high-level variables as
predictors, as well as partitioning out subject variance. This will be detailed in Section 3.1.2.

3. Experiment 1: Integration Cost

The aim of this experiment is to provide a broad-coverage test of Gibson’s DLT by inves-
tigating whether integration cost is a significant predictor of eye-tracking measures obtained on a
corpus of naturally occurring, contextualized text.

3.1. Method

3.1.1. Data

For our data analysis, we used the English portion of the Dundee Corpus (Kennedy & Pynte,
2005), an English language eye-tracking corpus based on texts fromThe Independentnewspaper.
The corpus contains 20 texts, each comprising approximately the same numberof words, split into
40 five-line screens. The corpus consists of 51,502 tokens3 and 9,776 types in total. It is annotated
with the eye-movement records of 10 English native speakers, who eachread the whole corpus, and
answered a set of comprehension questions after each text. These eye-tracking data were acquired
using a Dr. Boise eye-tracker, which recorded the movements of the righteye with a sampling rate
of 1 ms and a spatial accuracy of 0.25 characters. (See Kennedy & Pynte, 2005, for further details
on the Dundee Corpus.)

Before carrying out our analyses, we excluded all cases in which the word was the first or
last one of the line, and also all cases where the word was followed by a any kind of punctuation.
This eliminates wrap-up effects that occur at line breaks or at the end of sentences. Furthermore, we
excluded all words that were in a region of four or more adjacent wordsthat had not been fixated,

3The token number refers to tokens as tokenized in the Dundee Corpus for presentation to the participants, i.e., punc-
tuation marks are attached to the words. If words and punctuation marks are counted separately, then there are a bit more
than 56k words in the corpus.
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since such regions were either not read by the participant or subject to data loss due to tracking
errors. This left us with 385,467 words.

The fixation sequence obtained from the eye-tracking experiments can beanalyzed by com-
puting a range of eye-tracking measures (see Rayner, 1998, for an overview). The most commonly
used ones are first fixation duration, first pass duration, and total reading time.First fixation dura-
tion is the length of the first fixation that lands on a region. This measure is often assumed to reflect
lexical access, but also oculomotor processes and visual properties of the region.First pass duration
(also known asgaze duration) is the sum of all fixations on a region between first entering the region
and first leaving it. This measure is thought to be indicative of early syntacticand semantic process-
ing (as well as lexical access). Thetotal reading timeof a region is the sum of all fixations on a
region, including refixations of the region after it was left. This measure is assumed to be indicative
of textual integration processes (as well as lexical and syntactic/semantic processing).

For the regression analyses reported in this article, we only included thosewords which had
a non-zero reading time for a given measure (i.e., only those words that were not skipped). For first
fixation duration and first pass duration, we thus had 200,684 data points,and 240,157 data points
in the total duration analyses.4 The reader is referred to the Appendix for details regarding data
preprocessing.

3.1.2. Statistical Analysis

The statistical analyses in this paper were carried out using linear mixed effects models (Pin-
heiro & Bates, 2000). These models can be thought of as a generalizationof linear regression that
allows the inclusion of random factors (such as participants or items) as wellas fixed factors. The
fixed factors can be discrete (such as whether the previous word was fixated) or continuous (such as
word frequency). More specifically, we used hierarchical linear mixedeffects models, which make
it possible to partition the variance to be accounted for into a number of levels;participants were
entered as a separate level in the model, following Richter’s (2006) recommendations for the treat-
ment of reading time data (this is a generalization of an approach initially proposed by Lorch &
Myers, 1990; for alternative proposals using mixed models, see Baayen, Davidson, & Bates, 2008).

A separate mixed effects model was computed for each of the three dependent variables
(first fixation duration, first pass duration, and total reading time). The following low-level predictor
variables were entered into each of the models: word length in characters,log-transformed word
frequency, forward transitional probability, backward transitional probability, word position in the
sentence, whether the previous word was fixated or not, launch distance, and fixation landing posi-
tion. In addition, one or more predictor variables were included that represented the target measure,
i.e., integration cost or surprisal.

Minimal models were obtained by entering all predictors and all possible binary interactions
between them into the model and then simplifying the model using the Akaike Information Criterion
(AIC). The AIC is a measure that optimizes model fit by taking into account theamount of variance
explained as well as the number of degrees of freedom. This procedureensures that a model is ob-
tained which achieves the greatest fit to the data with the minimum number of predictor variables.
In the remainder of the paper, we will give the coefficients and significance levels for those predic-
tors that remain in the minimal model. All of these coefficients are statistically significant, with the
possible exception of main effects, which are only removed from the minimal model if there is no

4By data point we mean the word reading times according to the relevant measure.
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significant interaction that depends on them.

3.1.3. Implementation

Non-syntactic Predictors. The non-syntactic predictors used were word length in charac-
ters (WORDLENGTH), word position in the sentence (SENTENCEPOSITION), whether the pre-
vious word was fixated (PREVIOUSWORDFIXATED ), the distance between the previous fixa-
tion and the current fixation (LAUNCHDISTANCE), and the position of the character on which
the eye lands in the word (LANDINGPOSITION). These values can be read off directly from
the Dundee Corpus. The predictors logarithmic word frequency (WORDFREQUENCY), loga-
rithmic word frequency of the previous word (PREVIOUSWORDFREQUENCY), forward transi-
tional probability (FORWARDTRANSITIONALPROBABILITY ), and backward transitional probabil-
ity (BACKWARDTRANSITIONALPROBABILITY ) need to be estimated from a training corpus. We
used the British National Corpus (BNC) (Burnard, 1995) and estimated unigram and bigram proba-
bilities using the CMU-Cambridge Language Modeling Toolkit (Clarkson & Rosenfeld, 1997). For
the bigram model, many of the bigrams from the Dundee Corpus were not observed in the BNC
training data. To avoid having to assign a bigram zero probability just because it did not occur in the
training data, we smoothed the bigram probabilities, i.e., some of the probability mass of the seen
events was redistributed to unseen events. We used the Witten-Bell smoothingmethod (Witten &
Bell, 1991), which is predefined in the CMU Toolkit.

Integration Cost. It is not feasible to manually compute values for the predictor integration
cost (INTEGRATIONCOST) for the whole Dundee Corpus, given its size. We therefore relied on
automatic methods which can handle a large amount of data (but are potentially error-prone). We
parsed the corpus with an automatic parser and implemented a function that uses these parses to
assign integration cost values to the words in the corpus. The parser used was Minipar (Lin, 1998),
a broad-coverage dependency parser for English. Minipar is efficient and has good accuracy: an
evaluation with the SUSANNE corpus (Sampson, 1995) shows that it achieves about 89% precision
and 79% recall on dependencies (Lin, 1998) on SUSANNE. A dependency parser was chosen be-
cause the dependency relationships that it returns are exactly what we need to calculate integration
costs (see Figure 1 for an example).

In our implementation, integration costs are composed of the cost of (a) constructing a dis-
course referent and (b) the number of discourse referents that occur between a head and its de-
pendent, excluding the head and the dependent themselves. This requires discourse referents to be
identified in the corpus; we used the approximation that all words that have anominal or verbal part
of speech are discourse referents. Using part of speech tags assigned by the parser also allows us to
differentiate between auxiliaries, modals and full verbs, and to automatically identify nouns that are
parts of compound nouns.

It is important to note that two versions of integration cost exist in the literature: one based on
Gibson’s (2000) DLT, and the earlier version based on Gibson’s (1998) syntactic prediction locality
theory, a predecessor of DLT. The difference between the two versions only concerns nouns; in
this paper, we assume the Gibson (2000) version of integration cost (though we conducted some
experiments with the 1998 version, see Section 4.3). DLT has later been extended and revised to
provide a more extensive account of noun phrases (e.g., Warren & Gibson, 2002), but this revised
version of DLT has not been formalized, and thus would be hard to implementwithout making
additional assumptions.
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We evaluated our integration cost implementation using a short text that had been hand-
annotated with integration cost values. This evaluation gives us an estimate ofhow well our auto-
matic annotation tool performs. We found that the integration cost values assigned automatically to
the 764 words in the evaluation text were correct 83% of the time. Further analysis revealed that
the automatically assigned integration cost values were significantly correlated with the manually
assigned ones (Pearson’sr = 0.697,p < 0.001). This result needs to be regarded as a lower bound.
Unlike the Dundee Corpus, the evaluation text was not a newspaper text. Rather, it was a manually
constructed story created in order to contain sentences with high integrationcost. The sentences in
the evaluation text are often long and complicated, and therefore hard to analyze with our automatic
tool. Mean integration cost in the evaluation text was 0.7, while in the Dundee Corpus it was 0.55.

3.2. Results

In Experiments 1 and 2, we will only consider results for first pass durations in detail. The
results for first fixation durations and total times are broadly similar, and will only be discussed
briefly. We will return to this in Experiment 3, which provides a comparison ofthe results for the
three eye-tracking measures for a model that contains all the predictors used in this paper (see
Section 5.3).

Tables 1 and 2 show the coefficients and significance levels obtained when running hierar-
chical linear mixed effects models on first pass durations extracted from the Dundee Corpus. Both
models include all the non-syntactic predictors and integration cost, and were computed over all
words in the corpus. The difference between them is that in Table 1, all predictors were included as
main effects only, i.e., no interactions between predictors were included. The interactions between
predictors also have explanatory power, but it is informative to first consider a mixed effect model
without these interactions. We use this simpler model to explain how to interpret mixed effects mod-
els; many of the previously established findings in the reading literature are confirmed by our data.
Table 1 shows an intercept of approximately 275 ms. This can be regardedas the base reading time
of a word, to which the value for each predictor multiplied by the coefficient for that predictor is
added to obtain the predicted reading time for that word.

For example, the coefficient of WORDLENGTH is approximately 15 ms, which means that
for each letter of the word, an additional 15 ms are added to the word’s predicted reading time.
The fact that the coefficient of WORDLENGTH is positive means that longer words have longer
reading times, a basic finding in the reading literature. We also observed a negative coefficient for
logarithmic word frequency (WORDFREQUENCY), which means that more frequent words are read
faster than less frequent words.

We also find that the presence of a fixation on the previous word (PREVIOUSWORDFIXATED )
reduces reading time by 25 ms, i.e., fixation time is longer when the previous wordwas skipped.
There is also an effect of landing position (LANDINGPOSITION), whose negative coefficient indi-
cates that reading time decreases with increasing landing positions, at a rateof approximately 10 ms
per character. It has been claimed that readers speed up while they movethrough a sentence (Fer-
reira & Henderson, 1993). Our data support this, since we obtain a smallnegative coefficient for the
position of the word within the sentence (SENTENCEPOSITION), which means later words are read
faster. There was no significant effect of launch distance (LAUNCHDISTANCE), which probably
indicates that any variation in reading time due to launch distance is already explained by PREVI-
OUSWORDFIXATED and LANDINGPOSITION. (Recall that non-significant predictors are removed
by our model fitting procedure, that is why LAUNCHDISTANCE does not appear in Table 1.)
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Predictor Coefficient Significance
(INTERCEPT) 275.25 ***
WORDLENGTH 14.69 ***
WORDFREQUENCY −12.16 ***
PREVIOUSWORDFREQUENCY −5.76 ***
PREVIOUSWORDFIXATED −24.65 ***
LANDINGPOSITION −9.99 ***
SENTENCEPOSITION −0.23 ***
FORWARDTRANSITIONALPROBABILITY −0.54 *
BACKWARDTRANSITIONALPROBABILITY 3.41 ***
INTEGRATIONCOST −2.28 ***

* p < 0.05, ** p < 0.01, *** p < 0.001

Table 1: First pass durations for all words in the Dundee Corpus: coefficients and their significance levels for
a model that includes all predictors only as main effects.

For forward transitional probability (FORWARDTRANSITIONALPROBABILITY ), we ob-
served a negative coefficient, which means that words with high transitional probability are read
faster, in line with McDonald and Shillcock’s (2003b) results. However, while McDonald and Shill-
cock (2003b) also find a negative coefficient for backward transitional probability, while in our data
BACKWARDTRANSITIONALPROBABILITY shows a small positive coefficient, which means that
words with higher backwards transitional probability show slightly higher reading times.

While the coefficients for the non-syntactic predictors have plausible interpretations that
are consistent with the previous literature on reading, the result for the integration cost predictor
(INTEGRATIONCOST) is disappointing: we obtained a significant negative coefficient, which means
that higher integration cost leads to shorter reading time, contrary to the prediction of DLT.

The same significant predictors were obtained when we ran mixed effect models for first
fixation duration and in total reading times (we omit the tables here), with one exception: for first
fixations, there was no effect of word length and no effect of integration cost.

One potential explanation for the lack of an effect of integration cost may be the fact that
(following Gibson), we assumed identity as our integration cost function, i.e.,I(n) = n. It is possible
that there is a logarithmic relationship between integration cost and reading time (e.g., similar to that
between frequency and reading time). We tested this by re-running the analysis reported in Table 1
with the integration cost function I(n) = log(n+1). However, again a significant negative coefficient
for INTEGRATIONCOST was obtained (though model fit improved slightly).

We now return to Table 2, which lists the results for a mixed effects model that includes all
predictors as main effects and all binary interactions between predictors,and was optimized by re-
moving all predictors that do not improve model fit (see Section 3.1.2). The results are broadly
similar to those obtained using main effects only, with the exception that launch distances is
now a significant, negative predictor. However, we find significant interaction in this model which
makes the coefficients harder to interpret. For example, contrary to expectation, frequency now
has a positive coefficient. This needs to be interpreted in the context of thenegative coefficient of
WORDLENGTH:WORDFREQUENCY, the interaction between word length and frequency.

This interaction means that short, frequent words have longer reading times (positive co-
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Predictor Coefficient Significance
(INTERCEPT) 168.06 ***
WORDLENGTH 29.64 ***
WORDFREQUENCY 7.54 ***
PREVIOUSWORDFREQUENCY −5.67 ***
PREVIOUSWORDFIXATED −25.62 ***
LANDINGPOSITION 1.92 ***
LAUNCHDISTANCE −1.35 ***
SENTENCEPOSITION −0.21 ***
FORWARDTRANSITIONALPROBABILITY −2.00 ***
BACKWARDTRANSITIONALPROBABILITY 2.14 ***
INTEGRATIONCOST −2.01 ***
WORDLENGTH:WORDFREQUENCY −3.87 ***
WORDLENGTH:LANDINGPOSITION −1.71 ***

* p < 0.05, ** p < 0.01, *** p < 0.001

Table 2: First pass durations for all words in the Dundee Corpus: coefficients and their significance levels for
a model that includes all predictors as main effects and all binary interactions, minimized using the AIC.

efficient of WORDFREQUENCY) than less frequent words with equal length.5 Examples include
abbreviations, or expressions such a$5. Among longer words, more frequent ones are read faster,
as expected (negative coefficient of WORDLENGTH:WORDFREQUENCY). Similarly, we observe a
significant negative coefficient for the interaction of word length and landing position. The inter-
pretation is analogous to that of the WORDLENGTH:WORDFREQUENCY interaction: the positive
effect of landing position on reading time is reversed for longer words.

Crucially, the coefficient for integration cost is negative also in the model that includes all pre-
dictors an all binary interactions. Again, this runs against the DLT prediction that higher integration
cost should lead to higher reading times.

When we fitted mixed models for first fixation times and total times, we again found the same
pattern of results as for first pass time, with the exception that the INTEGRATIONCOST effect was
not significant in first fixations.

3.3. Discussion

In this experiment, we fitted mixed effect models on the reading times for all words in the
Dundee Corpus, and found that integration cost is a significant negative predictor of reading time,
i.e., that higher integration cost values correspond to shorter reading times, contrary to the prediction
of DLT. This result can be explained by the fact that DLT only provides apartial definition of
syntactic processing complexity: integration costs are only assigned to nouns and verbs. All other
words have an integration cost of zero, while there are very few nounsor verbs with an integration
cost of zero (only non-head nouns in compounds).

We therefore further investigated the relationship between reading time and integration cost.
We re-ran the mixed effects model in Table 2 on all words in the corpus and included integration

5More precisely, the coefficient of frequency becomes negative forwords with two letters or more, ascf +2clf < 0,
wherecf andclf are the coefficients of WORDFREQUENCYand WORDLENGTH:WORDFREQUENCY, respectively.
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cost as a factor, i.e., as a discrete predictor. When the DLT predictions are entered into the regression
as categorical values, separate coefficients are estimated for each integration cost value.

These separate coefficients allow us to assess the influence of words withan integration cost
of zero: the negative overall coefficient for integration cost as a continuous variable may be due
to the fact that words with integration cost 0 are problematic, because not all of them may be
covered by the theory. Therefore it is interesting to see whether there is an overall positive trend
for words that are assigned an integration cost. Figure 3 plots integration cost values against their
model coefficients and shows a general trend of higher integration costvalues corresponding to
greater coefficients (i.e., increased reading times), as predicted by DLT.The figure also shows that
the coefficients for integration cost values one to nine are negative, i.e., the reading times for words
with these integration cost values is shorter than the reading time for words withzero integration cost
(which the model takes as the base value and assigns a coefficient of zero). This finding indicates
that words with integration cost 0 can still generate difficulty, but that this difficulty is not captured
by DLT, which only makes predictions for nouns and verbs. This result also means that the current
coverage of DLT is clearly not sufficient for naturally occurring text. Most words in the corpus have
integration cost values between zero and nine.6 This explains why we found an overall negative
coefficient of integration cost in Table 2 (where INTEGRATIONCOST was entered as a continuous
predictor), even though higher integration cost values generally correspond to higher reading times
in Figure 3.

Figure 3. Coefficients for the factor integration cost in a mixed effects model on the words in the Dundee
Corpus.

As Figure 3 shows, the average residual reading time of words with zero integration cost is
higher than those of words with slightly higher integration cost. Since DLT traditionally only makes

6In fact, the largest influence on the regression coefficient comes from words with integration cost 0 (approx. 125,000
fixated words) and integration cost 1 (approx. 84,000 fixated words).
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predictions for verbs and nouns, it would be interesting to find out at what other word types a sim-
ilar cost might be incurred. To test whether some types of words take longer to read than others
after factoring out low level effects, we computed residual reading times on the Dundee Corpus
by building a mixed effects model that contains all the non-syntactic predictors, and subtracted the
reading times predicted by this model for the observed reading times. We analyzed these data by
partitioning them according to the words’ parts of speech (POS). We found that adjectives, preposi-
tions, sentence adjectives, and expletives have mean residual readingtimes larger than zero, which
means they are read slower than would be expected according to word length, frequency, and the
other non-syntactic predictors. The data suggests that it could be interesting to extend DLT in a way
that makes it possible to also assign an integration cost to those word categories.

4. Experiment 2: Integration Cost for Verbs and Nouns

In Experiment 1, we obtained a negative coefficient for integration costwhen we fitted a
mixed effects model to predict reading times for all words in the Dundee Corpus. We concluded
that this finding is due to the fact that DLT does not make integration cost predictions for words
other than verbs and nouns. In the present experiment, we will explore this link further by providing
a detailed analysis of integration costs for nouns and verbs.

4.1. Method

Data, statistical analysis, and implementation used were the same as in Experiment1.

4.2. Results

Again, we will only consider results for first pass durations in detail; the reader is referred to
Experiment 3 (see Section 5.3) for a more detailed comparison of results forfirst fixation durations,
first past times, and total times.

Nouns. We first fitted a mixed effects model for the first pass durations for all thenouns in the
Dundee Corpus (49,761 data points for the early measures, 57,569 data points for total durations)
that included all predictors as main effects and all binary interactions, minimized using the AIC.
Integration cost was not a significant, positive predictor of reading time in this model.

When the data set was restricted further, viz., to nouns with non-zero integration cost (45,038
and 51,613 data points respectively), a significant, positive coefficientfor integration cost was ob-
tained. Furthermore, we found that model fit improves slightly when using thelogarithmic integra-
tion cost function I(n) = log(n + 1) compared to when using a linear one. The coefficients of this
model are listed in Table 3. The significant positive coefficient for integration cost in this model
means that nouns with higher integration cost take longer to read.

We fitted mixed models for first fixation durations and total times, and found the same set
of significant predictors, with the following exceptions: for first fixations, there was no signifi-
cant effect of WORDLENGTH, and the effect of INTEGRATIONCOST was small, and there were no
significant interactions. For total times, INTEGRATIONCOST narrowly failed to reach significance
(p = 0.07).

We further investigated why the effect of integration cost on nouns was only present if nouns
with zero integration cost were excluded. This is particularly puzzling as it israre that nouns re-
ceive an integration cost of zero; there is only way for this to happen in thecorpus: the first word
of noun-noun compounds and pronouns. We re-ran the model in Table 3, but included pronouns (an
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Predictor Coefficient Significance
(INTERCEPT) 128.24 ***
WORDLENGTH 30.90 ***
WORDFREQUENCY 14.50 ***
PREVIOUSWORDFIXATED −18.05 ***
LANDINGPOSITION −4.18 ***
LAUNCHDISTANCE −1.91 ***
SENTENCEPOSITION −0.12 *
FORWARDTRANSITIONALPROBABILITY −3.27 ***
BACKWARDTRANSITIONALPROBABILITY 3.96 ***
log(INTEGRATIONCOST) 5.86 *
WORDLENGTH:WORDFREQUENCY −4.98 ***
WORDLENGTH:LANDINGPOSITION −1.02 ***

* p < 0.05, ** p < 0.01, *** p < 0.001

Table 3: First pass durations for nouns (with non-zero integration cost) in the Dundee Corpus: coefficients
and their significance levels for a model that includes all predictors as main effects and all binary interaction,
minimized using AIC.

additional 4,840 data points for the early measures, 6,108 data points for total durations), despite
their integration cost of zero. Again, a significant, positive coefficient of integration cost was ob-
tained. First parts of compounds were relatively frequent in the Dundeecorpus: there were 7,121
data points for total durations and 6,118 data points for the early measures;a large proportion of
these cases consisted of proper names (such people’s names or titles).

Verbs. Just as for nouns, we fitted a mixed effects model for the first pass durations for all the
verbs in the Dundee Corpus (the model again included all main effects and all binary interactions).
No significant, positive coefficient for integration cost was obtained in thismodel. We re-ran the
model with verbs that exhibit a non-zero integration cost, and with a logarithmicinstead of a linear
integration cost function. Again, integration cost was not a significant, positive predictor of reading
time.

We then fitted a model that included the part of speech of the verb as a predictor. The rationale
behind this is that verb reading time differs by part of speech, e.g., inflected verbs are read more
slowly than infinitives. This model only included verbs with non-zero integration costs and used
a logarithmic integration cost function. We found that integration cost was a significant, positive
predictor of reading time (though the size of the coefficient was smaller than for nouns).

In order to further investigate the integration cost effect that we found for verbs, we computed
residual reading times for this data set (see Section 3.3). On the residuals,we then fitted a model
that includes a predictor that indicates the part of speech of the dependent that is integrated at a
given verb (or sequence of parts of speech if multiple dependents are integrated). The coefficients
in this model indicate which dependents lead to higher or lower integration costs, see Table 4. We
observe that, as predicted by DLT, the integration of nouns (parts of speech NN, NNP, NNS) or
adverbs (part of speech RB) leads to longer reading times, unless thereis also an auxiliary (AUX)
that occurs before the verb. The auxiliary thus seems to facilitate integrationof nouns at the verb.
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Dependents Coefficient Significance N
PRP-AUX-NN −81.45 ** 15
PRP-AUX −76.24 ** 13
NNP-AUX-AUX −62.41 ** 21
RP −62.34 * 12
NNP-AUX −59.52 * 17
PRP-MD −56.44 * 17
NNS-AUX-AUX −35.65 * 57
NNS-MD-AUX −30.75 ** 110
PRP-AUX-PR-PAUX −29.72 *** 184
NN-MD-AUX −25.35 ** 153
PRP-AUX −22.64 *** 700
PRP-AUX-RB −21.75 * 133
AUXG −20.26 * 121
NNP-AUX −19.05 ** 301
TO-PRP −16.97 *** 723
NNP 12.01 ** 1372
NN-RB 22.26 * 127
AUX-NNP 66.11 * 15
VBP 67.69 * 10
RB 75.88 ** 15
NN-NNS 76.43 *** 25
PRP-MD-PRP-MD-JJ 105.4 * 65

Table 4: First pass durations for verbs (with non-zero integration cost) in the Dundee Corpus: coefficients for
the verbal dependents and their significance levels for a model fitted on residual reading times. Abbreviations
in the table refer to part of speech tags used by the Penn Treebank annotation: AUX: auxiliary, PRP: personal
pronoun, NN: singular or mass noun, NNP: proper noun, singular, RP: particle, MD: modal, NNS: plural
noun, RB: adverb, AUXG: auxiliary present participle, TO: prepositionto, JJ: adjective, VBP: non-third
person singular present verb.

4.3. Discussion

In Experiment 1, we saw that DLT integration cost does not constitute a broad-coverage
theory of syntactic complexity, in the sense that integration cost failed to emerge as a significant,
positive predictor of reading time on the whole of the Dundee Corpus. We hypothesized that this is
due to the fact that DLT only makes partial integration cost predictions, viz.,for nouns and verbs
only. In the present experiment, we investigated this further by analyzing the performance of DLT
on verbs and nouns in more detail.

We showed that integration cost is a significant, positive predictor of reading time on nouns
with a non-zero integration cost, and thus supports the hypothesis in DLT. However, this result
reflects only effects on a small amount of the data: In its standard form (Gibson, 2000), DLT does
not make very interesting predictions for nouns. By default, all nouns have an integration cost of one,
because a discourse referent is built. The only cases in which nouns can receive an integration cost
of greater than one are in constructions such asrequest for permission, wherepermissionis analyzed
as the head of the NP, genitive constructions likethe Nation’s criminals, and copula constructions.
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In the latter, nouns are considered to be the head of the phrase and integrate the verbbe. This means
that the integration cost for the noun depends on the number of discoursereferents intervening
between the noun andbe.

We also investigated the two cases in which DLT assigns an integration cost ofzero to nouns.
The first case is pronouns, which DLT assumes to constitute old discoursereferents, not incurring a
cost. We extended our model by including pronouns (as the only nouns withzero integration cost),
and still found that integration cost was a significant, positive predictor, which provides evidence for
the DLT assumption that pronouns carry zero integration cost. The second case of zero integration
cost is noun-noun compounds, for which DLT assume that the first nounincurs no integration cost.
However, when we fitted a model on all nouns (including the ones with zero integration cost), we
failed to obtain a significant coefficient for integration cost. This indicates that the DLT assumption
of cost-freeness for the first noun of a noun-noun compounds is incorrect. Rather, we have to as-
sume that a discourse referent is already being established when the first noun in the compound is
encountered, i.e., this noun should incurs a non-zero cost.

At this point, it becomes important which version of DLT is used to compute integration cost
values. In contrast to the Gibson (2000) version used in this paper, the Gibson (1998) version of
DLT assigns higher integration costs to nouns that occur after their head noun. In order to test how
crucial this assumption is, we implemented the 1998 version and conducted the same experiments
as with the 2000 version, but this failed to yield an improved fit on our data set.

In addition to looking at nouns, we also investigated the relationship between reading times
and integration cost for verbs and were able to show that integration costis a significant positive
predictor of verb reading times. However, the coefficient was small compared to that found for
nouns; also, this result was only obtained for a model that includes the parts of speech of the verbs
as an additional predictor. This indicates that integration cost only has a small overall effect on
reading time for verbs, and that this effect is variable across parts of speech.

As verb integration cost is at the heart of DLT (which predicts only limited variation in noun
integration cost, see above), we investigated this result further. We fitted amodel on the residual
reading times that included the parts of speech of the dependents to be integrated at the verb as
a predictor. This analysis revealed the following pattern (see Table 4): positive coefficients were
obtained for the integration of nominal dependents (indicating that this integration leads to increase
reading time), while negative coefficients were obtained for the integration of auxiliaries (which
means that this integration decreases reading time). In this context, it is interesting to note that
Warren and Gibson (2002) found a reading time effect for auxiliaries. Auxiliaries following definite
NPs were read more slowly than auxiliaries following pronouns. This resultin consistent with our
findings in the Dundee Corpus, i.e., that auxiliaries, and not just main verbs, show integration cost
effects. However, Warren and Gibson (2002) interpret their finding as a spillover effect.

5. Experiment 3: Surprisal

Experiments 1 and 2 indicate that there is evidence that DLT integration cost isa predictor of
reading time in the Dundee Corpus. However, DLT cannot be regarded as a broad coverage model,
as we found integration cost effects only if we limited our models to verbs and nouns with non-zero
reading times. The present experiment has the aim of evaluating surprisalas an alternative model
of syntactic processing complexity. Unlike DLT, surprisal is designed to make predictions for all
words in a corpus, on the basis of a probabilistic grammar. We will test two versions of surprisal
(lexicalized and unlexicalized), and compare them against non-syntactic probabilistic predictors of
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reading time (forward and backward transitional probability). Finally, we will also investigate a
possible relationship between surprisal and integration cost.

5.1. Method

Data and statistical analysis were the same as in Experiments 1 and 2. For calculating the sur-
prisal values for the words in our corpus, we parsed the Dundee Corpus with an incremental parser
which returns a prefix probability for each word in the corpus, i.e., the probability in Equation (5).
We can then use Equation (6) to obtain the surprisal value for a wordwk+1: we subtract the loga-
rithmic prefix probability forwk+1 from the logarithmic prefix probability forwk. The parser used
was Roark’s (2001) incremental top-down parser. This is a probabilisticparser trained on the Penn
Treebank (Marcus, Santorini, & Marcinkiewicz, 1993), a corpus of English text manually annotated
with phrase structure trees. Only the Wall Street Journal section of the Penn Treebank was used for
training. The parser achieves a broad coverage of English text and is highly accurate, with a preci-
sion and recall of 85.7% for labeled brackets reported by Roark (2001). As the Dundee Corpus also
consists of newspaper text comparable to the Wall Street Journal text theparser was trained on, we
can expect a similar performance on the Dundee Corpus.

We estimated surprisal in two different ways. The first version was fully lexicalized, i.e., it
takes into account the exact words of a string when calculating structuraland lexical probabilities.
This lexicalized version was obtained using the default configuration of theRoark parser. The sec-
ond version was unlexicalized, i.e., only used the structural probabilities. The unlexicalized model
does not take into account word frequency or the probability of a word being assigned a specific
POS tag (i.e., there are no lexical rules of typeV → wrote). This structural version of surprisal helps
us to factor out frequency effects, but is also limiting in that no subcategorization information is
available to the model for calculating structural probabilities, as this informationis contained in
the lexical rules. To use the Roark parser for calculating an unlexicalizedversion of surprisal, we
replaced each word by its own part-of-speech tag and trained the parser on the POS tag sequences.
This eliminates the effect of word frequencies.

5.2. Results

Table 5 shows the coefficients and significance levels obtained when running a mixed effects
model on first pass durations in the Dundee Corpus. As in Experiment 1, this model was computed
over all words in the corpus, and included all non-linguistic predictors aswell as lexicalized surprisal
(LEXICALIZED SURPRISAL), unlexicalized surprisal (UNLEXICALIZED SURPRISAL), and forward
and backward transitional probability

Table 5 shows unlexicalized surprisal is a significant, positive predictorsof reading time (high
surprisal leads to longer reading time). The coefficient for UNLEXICALIZED SURPRISAL is small,
but this has to be interpreted in the context of the range of this predictor: thevalues for unlexicalized
surprisal range from 0.04 to 18.1, with a mean surprisal of 2.45.

Lexicalized surprisal (LEXICALIZED SURPRISAL) does not figure in Table 5, which means
that it was not a significant predictor of reading time, and was eliminated fromthe model during
model selection. However, forward transitional probability was a significant negative predictor of
reading time (higher probability means lower reading time), and backward transitional probability
has a positive coefficient. As detailed in Section 2.3, forward transitional probability can be regarded
as a simple form of surprisal that only takes into account the immediate context(the preceding
word). This indicates that lexicalized surprisal does not explain any variance in the eye-movement
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Predictor Coefficient Significance
(INTERCEPT) 135.67 ***
WORDLENGTH 29.77 ***
WORDFREQUENCY 8.57 ***
PREVIOUSWORDFIXATED −17.70 ***
LANDINGPOSITION 1.13 **
LAUNCHDISTANCE −1.63 ***
SENTENCEPOSITION −0.20 ***
FORWARDTRANSITIONALPROBABILITY −1.60 ***
BACKWARDTRANSITIONALPROBABILITY 2.06 ***
UNLEXICALIZED SURPRISAL 1.03 ***
WORDLENGTH:WORDFREQUENCY −4.01 ***
WORDLENGTH:LANDINGPOSITION −1.66 ***

* p < 0.05, ** p < 0.01, *** p < 0.001

Table 5: First pass durations for all words in the Dundee Corpus: coefficients and their significance levels for
a model that includes all predictors as main effects, and allbinary interaction, minimized using the AIC.

record over and above what is explained by forward transitional probability and unlexicalized sur-
prisal.

We also fitted mixed effect models for first fixation durations and total times, which also
showed an effect of unlexicalized surprisal, and the absence of lexicalized surprisal. Also the other
significant factors listed in Table 5 were significant for first fixations andtotal times, except for
fact that the interaction of WORDLENGTH and LANDINGPOSITION was not significant for first
fixations; also all effect sizes were much smaller for this measure.

5.3. Discussion

This experiment showed that surprisal can function as a broad-coverage model of syntactic
processing complexity: we found that unlexicalized surprisal was a significant, positive predictors
of reading time on arbitrary words in the Dundee Corpus. This sets surprisal apart from integration
cost, which does not make predictions for all words in the corpus, and for which we only obtained
significant effects on verbs and nouns.

We failed to find a corresponding effect for lexicalized surprisal. This indicates that forward
transitional probability and structural surprisal taken together are betterpredictors of reading times
in the Dundee Corpus than lexicalized surprisal, which combines these two components. Forward
transitional probability can be regarded as a simple approximation of surprisal (see Section 2.3),
and our results indicate that this approximation is sufficient, at least when it comes to predicting the
reading times in the corpus.

Unlexicalized surprisal, on the other hand, takes structural probabilities into account, but dis-
regards lexical probabilities, and therefore is a significant predictor ofreading time, even if forward
transitional probability is also entered into the model. We conclude that structural surprisal is able
to explain a component in the reading time data that neither lexicalized surprisal,nor transitional
probabilities, nor any of the other non-syntactic predictors can explain. This is evidence for Hale’s
(2001) and Levy’s (2008) hypothesis that the incremental disconfirmation of syntactic hypotheses
by the parser can explain processing complexity.
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This raises the more general question of overlap between the various measures of syntactic
processing complexity investigated in this paper. To address this issue, we computed correlations
between integration cost and the different incarnations of surprisal (lexicalized and unlexicalized
surprisal, forward and backward transitional probabilities), and wordfrequency. The result is given
in Table 6; all correlations are statistically significant except for the pair WORDFREQUENCY–
UNLEXICALIZED SURPRISAL (even small correlations are significant due to the large number of
observations). As expected, forward and backward transitional probability are highly correlated.
Furthermore, the lexicalized measures (lexicalized surprisal and transitional probabilities) are highly
correlated with word frequency. The high correlation between lexicalizedsurprisal and forward tran-
sitional probability confirms the intuition that these two measures are in fact bothincarnations of
surprisal, but of a different level of granularity. On the other hand, structural surprisal is not sig-
nificantly correlated with the other measures, including word frequency (though there is a weak
correlation with lexicalized surprisal). This confirms that unlexicalized surprisal really captures
structural probability effects, without taking lexical probabilities into account. Crucially, Table 6
also shows that integration cost is orthogonal to surprisal and the other frequency-based predictors:
there is no strong correlation between INTEGRATIONCOST and any of the other predictors. This
is supporting evidence for our hypothesis that both DLT and surprisal capture relevant aspects of
processing difficulty, but that these aspects are complementary, since DLT describes difficulty in-
curred through memory load effects and reactivating previous material to integrate it into the current
context, whereas surprisal captures the predictability of the context andchanges in the maintained
interpretations.

This finding holds even if we compute correlations only for the verbs in the Dundee Corpus
(not shown in the table): the correlation between integration cost and unlexicalized surprisal is ap-
proximately 0.05 for verbs, while the correlation between integration cost and lexicalizedsurprisal
is approximately 0.01 for verbs. This confirms that integration cost and surprisal are orthogonal: if
there was a relationship between them, it should manifest itself on verbs, as verbs are the words
with the largest variation in integration cost (compared to nouns, which mostly have an integration
cost of one, and the other words in the corpus, which have an integrationcost of zero; see also
Section 4.3).

Finally, we fitted a mixed effects model that includes lexicalized and unlexicalized surprisal,
forward and backward transitional probability, as well as integration cost. To illustrate the differ-
ences between various eye-movement measures, we fitted separate models for first pass duration
(the measure discussed so far), and additionally first fixation time, and totaltime.7 The results are
given in Table 7. We will first discuss first pass times, which showed that integration cost, unlex-
icalized surprisal, lexicalized surprisal, as well as forward and backward transitional probability
are all significant predictors of reading time. However, the coefficient of integration cost was neg-
ative, confirming that integration cost is not a broad-coverage predictor of reading time (as shown
in Experiment 1). Furthermore, LEXICALIZED SURPRISAL, while significant, has a small negative
coefficient, meaning that words with higher lexicalized surprisal show longer reading times. This
is compatible with the model in Table 5, which failed to find a significant effect ofunlexicalized
surprisal.

Turning to the results for first fixation times (see Table 7), we again found asignificant neg-

7Note that these models are based on different subsets of the data, sincethe data sets include all words that have
non-zero reading time. This means that total times have more data points (inaddition to first pass and first fixations all
those that were not fixated in first pass, but at some later pass.
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INTEGR WORD LEX UNLEX FORWTRANS

COST FREQ SURPRIS SURPRIS PROB

WORDFREQUENCY −0.25
LEXSURPRISAL 0.17 −0.57
UNLEXSURPRISAL −0.07 0.04 0.36
FORWTRANSPROB −0.20 0.62 −0.66 −0.10
BACKTRANSPROB −0.26 0.62 −0.53 0.04 0.68

Table 6: Correlation coefficients (Pearson’sr) between the predictors, for fixated words (N = 237,163).

ative effect of forward transitional probability, and a significant positive effect of backward transi-
tional probability. Unlexicalized surprisal was a positive predictor of reading time, while integration
cost and lexicalized surprisal were removed by the model selection procedure because they were
non-significant. As in the previous experiments, the coefficients for firstfixation times were smaller
than the ones for first pass times.

The results for total time (see also Table 7) replicated the results for first pass; again forward
and backward transitional probability, integration cost, and lexicalized andunlexicalized surprisal
were significant predictors. The coefficients for integration cost and surprisal were negative, also
replicating the findings for first pass times.

First Fix First Pass Total Time
Predictor Coef Sig Coef Sig Coef Sig
(INTERCEPT) 193.25 *** 143.17 *** 196.15 ***
WORDLENGTH 1.74 *** 29 .54 *** 23 .73 ***
WORDFREQUENCY −2.57 *** 7 .05 *** 4 .49 ***
PREVIOUSWORDFIXATED −6.42 *** −17.72 *** −27.51 ***
LANDINGPOSITION rem – 1.23 ** n/a –
LAUNCHDISTANCE −1.81 *** −1.62 *** n/a –
SENTENCEPOSITION −0.05 *** −0.20 *** −0.26 ***
FORWARDTRANSITIONALPROBABILITY −2.06 *** −2.14 *** −2.45 ***
BACKWARDTRANSITIONALPROBABILITY 0.45 ** 1.55 *** 1 .55 **
log(INTEGRATIONCOST) rem – −5.37 *** −6.99 ***
LEXICALIZED SURPRISAL rem – −0.73 *** −1.16 ***
UNLEXICALIZED SURPRISAL 0.39 *** 1 .39 *** 2 .18 ***
WORDLENGTH:WORDFREQUENCY −0.47 *** −3.86 *** −4.15 ***
WORDLENGTH:LANDINGPOSITION rem – −1.67 *** 0 .13 –

* p < 0.05, ** p < 0.01, *** p < 0.001

Table 7: First fixation times, first pass durations, and totaltime for all words in the Dundee Corpus coeffi-
cients and their significance levels for a model that includes both surprisal and integration cost as predictors,
minimized using the AIC. Predictors marked “n/a” are not applicable for this measure; Predictors marked
“rem” were removed from the regression because they did not significantly reduce the AIC.
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6. General Discussion

In this paper, we evaluated two theories of syntactic processing complexity against reading
time data extracted from a large eye-tracking corpus: Gibson’s (1998, 2000) Dependency Locality
Theory (DLT) and Hale’s (2001) surprisal. We selected these two approaches for our investigation
because they make complementary theoretical assumptions: DLT’s integrationcost captures the
cost incurred when a head has to be integrated with the dependents that precede it. Surprisal, on the
other hand, accounts for the cost that results when the current word isnot predicted by the preceding
context.

This paper evaluated integration cost and surprisal using a broad coverage approach, i.e., we
investigated whether the two theories provide accurate predictions for arbitrary words in naturalistic,
contextualized text (as opposed to artificially constructed experimental materials, presented out of
context and repeated many times). For this investigation we used the reading timedata in the Dundee
corpus, a large corpus of newspaper text annotated with eye-movementdata.

We found that DLT’s integration cost was not able to provide reading time predictions for
the Dundee corpus as a whole. This was largely due to the fact that DLT only assigns integration
cost values to verbs and nouns; this means that the majority of words in the corpus have an inte-
gration cost of zero. However, we were able to show that integration cost is a significant predictor
of reading time if the verbs and nouns in the corpus are analyzed separately. We also identified
limitations of DLT’s treatment of nouns. One example is the assumption that the first noun in noun-
noun compounds carries zero integration cost. This is incompatible with our results, which indicate
that the integration cost should be spread over the whole compound. Furthermore, we observed that
DLT only makes a restricted range of predictions for nouns: with few exceptions, all head nouns
are assigned an integration cost of one. Arguably, this limits the power of thetheory in explaining
reading time data for noun phrases in a corpus, which are often complex. This problem could be
address by extending DLT along the lines suggested by Warren and Gibson (2002). They provided
evidence that processing complexity at the verb varies with the referentialproperties of the NP to
be integrated, as expressed by the NP’s position on the Givenness Hierarchy (Gundel, Hedberg, &
Zacharski, 1993). They find that complexity increases from pronounsto names to definite NPs to
indefinite NPs. Warren and Gibson (2002) suggest that a continuous integration cost metric needs
to be developed that takes the givenness status of the integrated NP into account. This would result
in a wider range of integration cost values for the nouns in the Dundee Corpus, potentially making
it possible to explain more variance in the reading time record.

When we tested DLT predictions against the verbs in the Dundee corpus, we found evidence
that the integration cost definition for auxiliaries needs to be revised: verbs that integrate an auxiliary
and a nominal dependent exhibit a reduced integration cost compared to verbs that only integrate a
nominal dependent. This result has an interesting implication for DLT. On the one hand it confirms
the DLT assumption that an integration cost is incurred at the verb when nominal dependents are
integrated. On the other hand, it shows that this does not extend to cases where an auxiliary precedes
the main verb. A possible explanation is that the relevant integration cost is not incurred at the main
verb, but at the auxiliary itself, which integrates nominal dependents and thus incurs a non-zero
integration cost (DLT assume that auxiliaries are cost-free). When the auxiliary is then integrated
with the main verb, it facilitates integration (hence the negative coefficient), as the main work of
the integration of the nominal dependents has already happened at the auxiliary. Note that this
assumption is compatible with syntactic theories such as Head-driven PhraseStructure Grammar
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(Pollard & Sag, 1994), which assume that auxiliaries inherit the subcategorization frame of the main
verb, and that dependents are unified (integrated) into the subcategorization frame at the auxiliary.

At this point, it is worth considering a more radical departure from DLT’s assumptions. Inte-
gration cost is standardly defined in terms of the number of discourse referents intervening between
a head and its dependents, but alternatives have been proposed in the literature. For example, Alex-
opoulou and Keller (2007) show that two types of extraction fromwh-phrases can differ in process-
ing complexity, even though they involve the same number of intervening discourse referents. Based
on this result, they argue that the number of intervening syntactic heads (rather than discourse refer-
ents) is the crucial factor for determining integration cost. This is a hypothesis that could be tested
against the Dundee Corpus. A head-based definition of integration costwould results in different
complexity predictions for a large number of words in the corpus, possibly resulting in a better fit
with the reading time data. We leave this as an issue for future research.

In the second part of this paper, we evaluated the predictions of Hale’s (2001) surprisal mea-
sure on the Dundee corpus. We computed surprisal in two ways: lexicalized surprisal was estimated
using a probabilistic parser that utilizes lexical (word-based) probabilitiesas well as structural (rule-
based) probabilities. Unlexicalized surprisal was estimated using a parserthat only has access to
structural probabilities. We found that only structural surprisal was a significantly positive predictor
of reading times. This finding can be explained by the fact that lexicalized surprisal is highly cor-
related with word frequency and transitional probability (transitional probability can be seen as a
simple approximation of lexicalized surprisal). Therefore, lexicalized surprisal fails to explain any
additional variance in the eye-movement record. Unlexicalized surprisal,however, is uncorrelated
with word frequency and transitional probability and is able accounts for apart of the variance in
reading time that no other predictor captures. This result shows that unlexicalized surprisal is a good
candidate for a broad-coverage model of syntactic processing complexity; it generates accurate nu-
merical predictions for all types of words in the corpus, not just for nouns and verbs, as integration
cost does.

Our findings regarding lexicalized surprisal indicate that a fully lexicalizedparsing model
does not offer an advantage over an unlexicalized one. However, thisdoes not mean that there is
no role for lexical information in modeling reading times. The experimental literature offers broad
evidence for the fact that sentence processing relies on lexical information, such as subcategorization
frame frequencies (e.g., Garnsey, Pearlmutter, Myers, & Lotocky, 1997; Trueswell, Tanenhaus, &
Kello, 1993) and thematic role preferences (e.g., Garnsey et al., 1997; Pickering, Traxler, & Crocker,
2000). Recent probabilistic models of human sentence processing have attempted to integrate such
information with the structural probabilities generated by a parser (Narayanan & Jurafsky, 2002;
Pad́o, 2007). It seems likely that these models (which are effectively unlexicalized model augmented
with a limited form of lexical information) would yield a more accurate account ofreading times in
the Dundee Corpus.

Our surprisal results are corroborated by Ferrara Boston, Hale, Kliegl, Patil, and Vasishth’s
(2008) work using the Potsdam Sentence Corpus. They found that unlexicalized surprisal is a sig-
nificant predictor of reading times, even though the Potsdam Sentence Corpus differs in a number
of ways from the Dundee corpus: it uses a different language (German) and it consists of uncon-
nected sentences, which were manually constructed for experimental purposes, rather than taken
from naturally occurring text. Also, it is smaller in terms of items (144 sentences), but larger in
terms of participants (272 participants) than the Dundee corpus. It is therefore encouraging that our
results are consistent with Ferrara Boston et al.’s (2008), in spite of these corpus differences. Ferrara
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Boston et al. (2008) did not test lexicalized surprisal or integration coston their data set, but they
compared two versions of unlexicalized surprisal, estimated either using a context-free grammar
(i.e., in the same way as in the present paper), or using a dependency grammar. In both cases, the
surprisal estimates were a significant predictor of reading times.

The analyses reported in this paper were carried out on first-pass reading times computed
from the Dundee corpus. We also investigated another early measure (first fixation durations) and a
late measure (total times). The results for these two measures are very similar tothe ones for first
pass, except that first pass showed no effect of integration cost, even if verbs are considered sepa-
rately. Unlexicalized surprisal, on the other hand, was a significant predictor in all three measures.
This finding could indicate that integration cost is associated with later processes in comprehension
(that do not manifest themselves in first fixations), while surprisal is associated with both early and
late processes (including lexical access, which is often thought to be reflected in first fixation times).
This result is corroborated by Ferrara Boston et al. (2008), who alsoreport that unlexicalized sur-
prisal is a significant predictor for all the eye-tracking measures they tested (their analysis involved
eight different measures).

Another central finding of the present paper was the fact that surprisal and integration cost are
uncorrelated, both for arbitrary words in the corpus, and for verbs (for which DLT makes the bulk of
its predictions). This result suggests that a complete theory of sentence processing complexity needs
to include two mechanisms: a backward-looking one as proposed by DLT, and a forward-looking
one as proposed by surprisal. When a new word is processed it incurstwo types of processing cost:
the cost of integrating material that has been processed previously with thenew word, and the cost
of discarding alternative syntactic predictions that are not compatible with thenew word. The first
type of cost corresponds to locality effects that have been observed extensively in the literature
(see Gibson, 1998 for an overview). The second type of cost corresponds to anti-locality effects
which have been reported recently (Konieczny, 2000; Vasishth & Lewis, 2006). In order to capture
both types of cost (and yield broad-coverage results on an eye-tracking corpus), we need to develop
a unified model that encompasses both the prediction of upcoming material andthe subsequent
verification and integration processes (for a first step towards such a model see Demberg & Keller,
2008).

Another point to consider is the fact that the predictions of both DLT and surprisal depend
on the grammar formalism that they are operating on. In DLT, syntactic structures (head–dependent
relations) determine the amount of integration cost that is incurred by a given sequence of words.
While there are many clear cases of what constitutes the head, the dependent and the relation be-
tween them can be subject to debate in the linguistic literature. In the current paper, we assumed that
the dependency structures output by Minipar form the basis of the integration cost computations (see
Section 3.1.3). Minipar uses one particular codification of dependency grammar (Sampson, 1995),
and it is therefore conceivable that our results would change if we computed integration cost using
a parser that makes a different set of representational assumptions.

It is important to note that surprisal also requires representational assumptions. The definition
of surprisal in Equation (4) does not mention syntactic structures explicitly.However, in order to
compute the conditional probability in this equation, prefix probabilities have to be obtained, which
requires summing over all possible analyses of a string. The number and type of these analyses
will differ between grammatical frameworks, which entails that representational assumptions do
play a role for surprisal. In the present paper, we only investigated the predictions of one type of
syntactic representations, viz., those of Roark’s (2001) parser, which generates Penn Treebank-style
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structures. It is possible that other syntactic models will yield different surprisal estimates and fit the
reading time data more closely, or model different aspects of the data. (Thishas been investigated
by Ferrara Boston et al., 2008, who compare dependency and phrase-structure versions of surprisal,
as detailed above.)

Apart from its theoretical contribution, this paper also makes a methodological contribution.
To our knowledge, this is the first time that theories of sentence processinghave been tested on
broad-coverage data extracted from an eye-tracking corpus.8 We believe that our corpus-based ap-
proach constitutes an important new method for evaluating models of sentenceprocessing. Such
models are currently tested exclusively on data obtained for isolated, artificially constructed sen-
tences in controlled lab experiments. The validity of the models can be enhanced considerably if we
are able to show that they scale up to model reading data from an eye-tracking corpus, which con-
tains naturally occurring, contextualized sentences. Furthermore, the use of eye-tracking corpora
has the advantage of convenience and flexibility: it makes it possible to studyarbitrary syntactic
constructions, provided that they occur sufficiently frequently in the corpus. There is no need to run
a new experiment for every construction or every hypothesis to be investigated.

While the corpus-based approach has great potential, there are limitations as well. The fact
that naturally occurring sentences are used means that it is much more difficult to control for con-
founding factors. In the present paper, we have attempted to include all potentially confounding
factors as co-variates in mixed effects models, thus controlling for the influence of these factors.
However, it is possible that there are some confounds that we have failedto identify, and therefore
they could introduce artifacts in our models. In an experimental setting, the experimenter will often
construct materials so that they are matched across conditions, i.e., the sentences only differ in the
aspects that the experimenter wants to manipulate, an are identical in all other ways. This reduces
the possibility that there are confounding factors that have not been taken into account. Another
limitation of the corpus-based approach is data sparseness. No corpus can be so big that it contains
all syntactic structures that an experimenter might want to get data on. For example, if we want to
investigate prepositional phrase attachment, then there is a good chance that there are enough rele-
vant sentences in the Dundee Corpus. If we want to investigate reducedrelative clauses, on the other
hand, then probably there are not enough tokens. This situation is even worse if we want to study
structures that are ungrammatical or cause serious processing disruption (such as multiple center
embeddings). These probably do not occur in the corpus at all. To summarize, experimental data
and corpus data have complementary strengths and weaknesses, and should be used in conjunction
to maximize the evidence for or against a given theoretical position.
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Appendix: Technical Details in Processing the Dundee Corpus

Skipping

The Dundee corpus has a relatively high skipping rate: 45% for first pass reading and 35% for
total reading times. This is higher than previously reported numbers, e.g., Brysbaert and Vitu (1998)
found a skipping rate of only just over one third in first pass reading. Therefore, many words have
a reading time value 0. If we included these data points into our regressions,they would heavily
influence the data. This is particularly problematic since the meaning of skippinga word is not the
same as the meaning of a very short fixation (closed to 0 ms). Therefore, all the regressions in this
article were run on fixated words only, and skipping was dealt with in a separate, logistic regression,
which included a binary response variable that specified whether a wordwas fixated or not. We here
only reported the regressions on fixated words because they are more informative.

Track Losses

The rate of track losses is relatively high in the corpus. We define a track loss as a sequence
of four adjacent words that are not fixated. Out of the half a million tracked words (approx. 50,000
words× 10 participants), 7.3% of the data points are invalid due to track losses. We remove them
for the regression analyses because the large proportion of track losses otherwise could lead to
substantial distortion of the results, in particular for estimating skipping and refixation probabilities.

Spill-Over

Spill-over effects are delays on the target word caused by processingdifficulty in the preced-
ing work. We try to capture spill-over effects by including the frequency of the previous word, a flag
that indicates whether the previous word was fixated or not, and launch distance as predictors in our
models.

Issues Specific to Corpus Data

Newspaper text contains many types of words that are usually not present in specifically de-
signed psycholinguistic experiment items, such as numbers and special characters. We found these
words to require special treatment. For example, in our frequency statistics(which we estimated
based on word occurrences in the British National Corpus (BNC), afterstripping off punctuation),
we found an unexpectedly high number of short words with low frequencies (in general we expect
that length is negatively correlated with word frequency). We also foundthat these low frequency
words were skipped with higher probability than expected, and receivedfewer fixations. This in-
dicated that some words were assigned to an inappropriate frequency class. We dealt with this
problem by excluding all words that contain numbers, special characters such as punctuation and
hyphens, and acronyms (words with more than one capital letter). The variation in the word length
of rare words is then considerably lower, and both skipping probability and fixation numbers be-
come monotonous functions, with the rare words skipped least often and fixated (and regressed to)
most often.

An alternative treatment of the problematic words would be to change their frequency as-
signments. For instance, a psycholinguistic reason for changing the frequency of digits would be
that they are probably considered as a class of signs in the human processor and therefore should
be annotated with their class frequency. Compounds with hyphens on the other hand should not be
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annotated with the frequency for the whole compound, as there is evidencein the literature on com-
pound reading that the reading durations of compounds are primarily dependent on the frequency
of the first part of the compound (Juhasz, Starr, Inhoff, & Placke, 2003).

Alignment of Tokenizations

Tokenization in the Dundee corpus is often different from the tokenizationused by the
parsers. Therefore, it is necessary to realign the parsed text with the Dundee corpus segmentation.
If a word in the Dundee corpus corresponds to multiple words in the parsedversion, we have to
combine the theories’ predictions for those two words into a single prediction for that token, or split
up the Dundee token into two bits. We here decided to combine the predictions for two different
words into a single value and use the Dundee corpus tokenization.

For both surprisal and integration cost, we decided to combine predictions by summarization
(instead of, e.g., computing the average). Surprisal captures the amountof probability mass of anal-
yses that are not compatible with the current input given the prefix. Two words which are one token
in the Dundee corpus (likewe’ll) carry the same information as two separate adjacent tokens (we
and’ll , and thus rule out the same structures, such that the surprisal ofwe’ll is exactly the same as
the surprisal ofweplus the surprisal if’ll (see Equation (7)).

Sk+1 +Sk+2 = − logP(wk+1|w1 · · ·wk)+− logP(wk+2|w1 · · ·wk+1)(7)

= −
logP(w1 · · ·wk+1)

P(w1 · · ·wk)
−

logP(w1 · · ·wk+2)

P(w1 · · ·wk+1)

= − logP(w1 · · ·wk+1)+ logP(w1 · · ·wk)−

logP(w1 · · ·wk+2)+ logP(w1 · · ·wk+1)

= logP(w1 · · ·wk)− logP(w1 · · ·wk+2)

= − log
P(w1 · · ·wk+2)

P(w1 · · ·wk)

= − logP(wk+1,wk+2|w1 · · ·wk)

= Sk+1,k+2

Similarly, we also decided to add up integration costs, because the relevant quantity is the combined
integration cost of the two components, which means that averaging would not be an appropriate
measure.
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Figure 4. The first column shows word length distributions, skippingprobability and numbers of fixation
on a word for words of different frequency classes. The second column matches the plots from the first
column, but the data set of the second column excludes all words with symbols that are not characters, such
as numbers, punctuation, compounds with a hyphen or specialsigns.


