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Abstract

Work in experimental psycholinguistics has shown that the processing of coor-
dinate structures is facilitated when the two conjuncts share the same syntactic
structure (Frazier, Munn, & Clifton, 2000). In the present paper, weargue that this
parallelism effect is a specific case of the more general phenomenon of syntactic
priming—the tendency to repeat recently used syntactic structures. We show that
there is a significant tendency for structural repetition in corpora, and that this ten-
dency is not limited to syntactic environments involving coordination, though it is
greater in these environments. We present two different implementations of asyn-
tactic priming mechanism in a probabilistic parsing model and test their predictions
against experimental data on NP parallelism in English. Based on these results, we
argue that a general purpose priming mechanism is preferred over a special mecha-
nism limited to coordination. Finally, we show how notions of activation and decay
from ACT-R can be incorporated in the model, enabling it to account for a set of
experimental data on sentential parallelism in German.
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1. Introduction

Over the last two decades, the psycholinguistic literature has provided a wealth of experi-
mental evidence forsyntactic priming, an effect in which processing facilitation is observed when
syntactic structures are re-used. Most work on syntactic priming has been concerned with sentence
production (e.g., Bock, 1986; Pickering & Branigan, 1998). Such studies typically show that people
prefer to produce sentences using syntactic structures that have recently been processed.

There has been less experimental work investigating the effect of syntactic priming on lan-
guage comprehension. Work on comprehension priming has shown that, under certain conditions,
the processing of a target sentence is faster when that target sentenceincludes a structure repeated
from the prime. Branigan, Pickering, Liversedge, Stewart, and Urbach (1995) showed this effect in
whole-sentence reading times for garden path sentences, while Ledoux,Traxler, and Swaab (2007)
have more recently shown similar effects using Event Related Potentials. Moreover, work using
a picture matching paradigm (Branigan, Pickering, & McLean, 2005) hasshown evidence for the
priming for prepositional phrase attachments.

A phenomenon closely related to syntactic priming in comprehension is the so-called paral-
lelism effectdemonstrated by Frazier et al. (2000): speakers processes coordinated structures more
quickly when the second conjunct repeats the syntactic structure of the first conjunct. The paral-
lelism preference inNP coordination can be illustrated using Frazier et al.’s (2000) Experiment 3,
which recorded subjects’ eye-movements while they read sentences like (1):

(1) a. Terry wrote a long novel andashortpoem during her sabbatical.
b. Terry wrote a novel andashortpoem during her sabbatical.

Total reading times for the underlined region were faster in (1-a), whereshort poemis coordinated
with a syntactically parallel noun phrase (a long novel), compared to (1-b), where it is coordinated
with a syntactically non-parallel phrase.

In this paper, we will contrast two alternative accounts of the parallelism effect. According to
one account, the parallelism effect is simply an instance of a pervasive syntactic priming mechanism
in human parsing. This priming account predicts that parallelism effects should be obtainable even
in the absence of syntactic environments involving coordination.

According to the alternative account, the parallelism effect is due to a specializedcopy mech-
anism, which is applied in coordination and related environments. One such mechanism iscopy-α,
proposed by Frazier and Clifton (2001). Unlike priming, this mechanism is highly specialized and
only applies in certain syntactic contexts involving coordination. When the second conjunct is en-
countered, instead of building new structure, the language processor simply copies the structure of
the first conjunct to provide a template into which the input of the second conjunct is mapped. Fra-
zier and Clifton (2001) originally intendedcopy-α to apply in a highly restricted range of contexts,
particularly in cases where the scope of the left conjunct is unambiguouslymarked. An example are
gapping structures, where parallelism effects are well documented (Carlson, 2002). However, it is
clear that a mechanism likecopy-α could potentially provide an account for parallelism phenom-
ena if allowed to apply to coordination more generally. This is because in a parallel coordination
environment, the linguistic input of the second conjunct matches the copied structure, while in a
non-parallel case it does not, yielding faster reading times for parallel structures. If the copying
account is correct, then we would expect parallelism effects to be restricted to coordinate structures
and would not apply in other contexts.
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There is some experimental evidence that bears on the issues outlined above. In addition to
testing items involving coordination like (1) above, Frazier et al. (2000) alsoreport an experiment
in which they manipulated the syntactic parallelism of two noun phrases separated by a verb (as ina
(strange) man noticed a tall woman). Unlike the coordination case in (1), no parallelism advantage
was observed in this experiment. Taken together, the two experiments appear to favor an account in
which parallelism effects are indeed restricted to coordination, as would bepredicted by a model
based on a copy mechanism. However, the results should be interpreted withcaution, because the
coordination experiment, which showed the parallelism effect (Frazier etal.’s (2000) Experiment 3)
used a very sensitive eye-tracking technique, while the non-coordination experiment, which showed
no such effect (Frazier et al.’s (2000) Experiment 4) used the less sensitive technique of self-paced
reading.

Apel, Knöferle, and Crocker (2007) described two experiments in German, whichhad a sim-
ilar design to the Frazier et al. (2000) experiments summarized above. Like Frazier et al. (2000),
they found evidence for parallelism when the two relevant noun phraseswere coordinated (their
Experiment 1), but not when they were subject and object of the same verb (their Experiment 2).
However, although both of Apel et al.’s (2007) experiments used eye-tracking, their conclusion re-
lies on a cross-experiment comparison. Moreover, the non-coordinating contexts considered by both
Frazier et al. (2000) and Apel et al. (2007) used sentences in which the relevant noun phrases dif-
fered in grammatical function (e.g.,a (strange) man noticed a tall woman), while two coordinated
phrases share the same grammatical function by definition. This may have affected the size of the
parallelism effect.

The aim of the present paper is to compare the two accounts outlined above using a series of
corpus studies and computational simulations. The basis for our modeling studies is a probabilistic
parser similar to those proposed by Jurafsky (1996) and Crocker andBrants (2000). We integrate
both the priming account and the copying account of parallelism into this parser, and then evaluate
the predictions of the resulting models against reading time patterns such as those obtained by
Frazier et al. (2000). Apart from accounting for the parallelism effect, our model simulates two
important aspects of human parsing: (i) it is broad-coverage (rather than only covering specific
experimental items) and (ii) it processes sentences incrementally.

This paper is structured as follows. In Section 2, we provide evidence for parallelism effects
in corpus data. We first explain how we measure parallelism, and then present two corpus studies
that demonstrate the existence of a parallelism effect in coordinate structures and in non-coordinate
structures, both within and between sentences. These corpus results are a crucial prerequisite for our
modeling effort, as the probabilistic parsing model that we present is trainedon corpus data. Such a
model is only able to exhibit a parallelism preference if such a preferenceexists in its training data,
i.e., the syntactically annotated corpora we explore in Section 2.

In Section 3, we present probabilistic models that are designed to accountfor the parallelism
effect. We first present a formalization of the priming and copying accounts of parallelism and
integrate them into an incremental probabilistic parser. We then evaluate this parser against reading
time patterns in Frazier et al.’s (2000) parallelism experiments. Based on a consideration of the role
of distance in priming, we then develop more cognitively plausible parallelism model in Section 4
inspired by Anderson et al.’s (2004) ACT-R framework. This model is again evaluated against the
experimental items of Frazier et al. (2000). To show the generality of the model across languages
and syntactic structures, we also test this new model against the experimental items of Kn̈oferle and
Crocker (2006) which cover parallelism in sentential coordination in German. We conclude with a
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general discussion in Section 5.

2. Corpus Studies

2.1. Adaptation

Psycholinguistic studies have shown that priming affects both production (Bock, 1986) and
comprehension (Branigan et al., 2005). The importance of comprehension priming at the lexical
level has also been noted by the speech recognition community (Kuhn & Mori,1990), who use so-
called caching language models to improve the performance of speech comprehension software. The
concept of caching language models is quite simple: a cache of recently seen words is maintained,
and the probability of words in the cache is higher than those outside the cache.

While the performance of caching language models is judged by their success in improving
speech recognition accuracy, it is also possible to use an abstract measure to diagnose their efficacy
more closely. Church (2000) introduces such a diagnostic for lexical priming: adaptation probabil-
ities. Adaptation probabilities provide a method to separate the general problem of priming from a
particular implementation (i.e., caching models). They measure the amount of priming that occurs
for a given construction, and therefore provide an upper limit for the performance of models such
as caching models.

Adaptation is based upon three concepts. First is theprior, which serves as a baseline. The
prior measures the probability of a word appearing, ignoring the presence or absence of a prime.
Second is thepositive adaptation, which is the probability of a word appearing given that it has been
primed. Third is thenegative adaptation, the probability of a word appearing given it has not been
primed.

In Church’s case, the prior and adaptation probabilities are defined as follows. If a corpus is
divided into individual documents, then each document is then split in half. We refer to the first half
as the prime (half) and to the second half as the target (half).1 If π is a random variable denoting
the appearance of a word in the prime half, andτ is a random variable denoting the appearance of a
word w in the target half, then we define the prior probabilityPPrior(w) as:

PPrior(w) = P(τ = w) (1)

= P(τ = w|π = w)P(π = w)+P(τ = w|π 6= w)P(π 6= w)

Intuitively, PPrior(w) is the probability thatw occurs in the target, independently of whether it has
occurred in the prime. As indicated in equation (1), this can be computed by summing the relevant
conditional probabilities: the probability thatw occurs in the target given that it has occurred in the
prime, and the probability thatw occurs in the target given that it has not occurred in the prime.
According to the rule of total probability, each conditional probability has to be multiplied by the
independent probability of the conditioning variable (P(π = w) andP(π 6= w), respectively).

The positive adaptation probabilityP+(w) and the negative adaptationP−(w) can then be
defined as follows:

P+(w) = P(τ = w|π = w) (2)

P−(w) = P(τ = w|π 6= w) (3)

1Our terminology differs from that of Church, who uses ‘history’ to describe the first half, and ‘test’ to describe the
second. Our terms avoid the ambiguity of the phrase ‘test set’ and coincide with the common usage in the psycholinguistic
literature.
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In other words,P+(w) is the conditional probability that the wordw occurs in the target, given that
it also occurred in the prime. Conversely,P−(w) is the probability thatw occurs in the target, given
that it did not occur in the prime.

In the case of lexical priming, Church observes thatP+ ≫ PPrior > P−. In fact, even in cases
whenPPrior is quite small,P+ may be higher than 0.8. Intuitively, a positive adaptation which is
higher than the prior entails that a word is likely to reappear in the target given that it has already
appeared in the prime. In order to obtain corpus evidence for priming, we need to demonstrate
that the adaptation probabilities for syntactic constructions behave similarly to those for lexical
items, showing positive adaptationP+ greater than the prior. AsP− must become smaller thanPPrior

wheneverP+ is larger thanPPrior , we only report the positive adaptationP+ and the priorPPrior .

2.2. Estimation

There are several methods available for estimating the prior and adaptation probabilities from
corpora. The most straightforward approach is to compute the maximum likelihood empirical distri-
bution, which can be achieved by simply counting the number of times a wordw occurs (or fails to
occur) in the prime and target positions in the corpus. However, this approach has two shortcomings
which preclude us from using it here.

First, the existing literature on priming in corpora (e.g., Gries, 2005; Szmrecsanyi, 2005;
Reitter, Moore, & Keller, 2006; Jaeger, 2006a, 2006b; Jaeger & Snider, 2007) reports that a variety
of factors can influence priming, including the distance between prime and target, the type and genre
of the corpus, and whether prime and target are uttered by the same speaker. Previous work has used
multiple regression methods to study priming in corpora; this approach is particularly useful when
several factors are confounded, as regression makes it possible to quantify the relative contribution
of each factor.

A second argument against a simple maximum likelihood approach emerges when we want
to carry out statistical significance tests based on the word counts obtained from the corpus. Such
tests often require that the occurrence of a wordwi is independent of the occurrence of another word
w j . However, this independence assumption is trivially false in our case: ifwi occurs in a certain
context, then we know thatw j does not occur in that context. This implies thatP(τ = w|π = wi) and
P(τ = w|π = w j) are not statistically independent (ifwi andw j are in the same context), therefore
we are not able to apply independent statistical tests to these two probabilities (or the underlying
corpus counts).

Both these shortcomings can be overcome by using multinomial logistic regression to esti-
mate prior and adaptation probabilities. In multinomial logistic regression, aresponse variableis
defined as a function of a set ofpredictor variables. The response variable is multinomial, i.e., it is
drawn from a set of discrete categories (in contrast to binary logistic regression, where the response
variable can take on only two different values). The predictor variablescan either be categorical
or continuous. In the case of measuring Church-like lexical adaptation, each possible word corre-
sponds to a category, and the response variable describes the occurrence of wordw j in the target
position, while the predictor variable describes the occurrence of wordwi in the prime position. In
the priming case,wi = w j , in the non-priming case,wi 6= w j .

A multinomial logistic regression model includes a parameter vectorβ for each predictor
variable. In the case of lexical adaptation, this means that there is a parameter βi for each word
wi which may occur in the priming position. One of the values of the predictor variable (the value
w0) serves as the reference category, which is assumed to have a parameter estimate of 0. After
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parameter fitting, we have an estimated valueβ̂ for the parameter vector, and the positive adaptation
probability can then be computed according to the following formula:

P̂+(τ = wi) =
exp(Xβ̂i)

1+∑ j exp(Xβ̂ j)
(4)

Here,X is a vector in which thei-th element takes on the value 1 ifπ = wi , and the value 0 oth-
erwise. Note in particular that we can straightforwardly include predictor variables other than the
prime word in our regression model; technically, this corresponds to addingextra parameters toβ
and their corresponding explanatory variables toX; mathematically, this amounts to computing the
conditional probabilityP(τ = wi |π = wi ,σ), whereσ is an additional predictor variable.

The negative adaptation is estimated in the same way as the positive adaption. The prior is
estimated as follows, based on the definition in equation (1):

P̂Prior(wi) = P̂+(τ = wi)P̂(π = wi)+ P̂−(τ = wi)P̂(π 6= wi) (5)

WhereP̂(π = wi) andP̂(π 6= wi) can be estimated directly from the corpus using maximum likeli-
hood estimation, and the positive and negative adaptation terms are estimated using the regression
coefficients.

Multinomial logistic regression makes it possible to compute prior and adaptation probabili-
ties while solving both of the problems with maximum likelihood estimation noted above. First, we
can freely include additional predictor variables if we want to determine the influence of possible
confounding variables on priming. Second, statistical significance tests can now be performed for
each predictor variable in the regression, without requiring independence between the categories
that a variable can take.

There is one potentially confounding variable in Studies 1 and 2 that we needto pay par-
ticular attention to. This is the general tendency of speakers to order syntactic phrases such that
short phrases precede long phrases (Hawkins, 1994). This short-before-long preference, sometimes
known as Behagel’s law, is also attested in corpus data on coordination (Levy, 2002). The short-
before-long preference can potentially amplify the parallelism effect. Forexample, consider a case
in which the first conjunct consists of a relatively long phrase. Here, Behagel’s law would predict
that the second conjunct should also be long (in fact, it should be even longer than the first). As-
suming that long constituents tend to be generated by a certain specific set ofrules, this would mean
that the two conjuncts would have an above-chance tendency to be parallel in structure, and this
tendency could be attributable to Behagel’s law alone.

Studies 1 and 2 have the aim of validating our approach, and laying the ground for our mod-
eling work in Studies 3–5. We will use Church adaptation probabilities estimated using multinomial
regression to investigate parallelism effects within coordination (Study 1) and outside coordination
(Study 2), both within sentences and between sentences. It is important to show that adaptation ef-
fects exist in corpus data before we can build a model that learns the adaptation of syntactic rules
from corpus frequencies. Our studies build on previous corpus-based work which demonstrated par-
allelism in coordination (Levy, 2002; Cooper & Hale, 2005), as well as between-sentence priming
effects. Gries (2005), Szmrecsanyi (2005), Jaeger (2006a, 2006b), and Jaeger and Snider (2007)
investigated priming in corpora for cases of structural choice (e.g., between a dative object and a
PP object or between active and passive constructions). These results have been generalized by
Reitter et al. (2006), who showed that arbitrary rules in a corpus can besubject to priming.
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2.3. Study 1: Parallelism in Coordination

In this section, we test the hypothesis that coordinated noun phrases in a corpus are more
likely to be structurally parallel than we would expect by chance. We show how Church’s adapta-
tion probabilities, as defined in the previous section, can be used to measuresyntactic parallelism
in coordinate structures. We restrict our study to the constructions used inFrazier et al.’s (2000) ex-
periments, all of which involve two coordinatedNPs. This ensures that a direct comparison between
our corpus results and the experimental findings is possible.

2.3.1. Method

This study was carried out on the English Penn Treebank (Release 2, annotated in Treebank II
style; Marcus et al., 1994), a collection of documents which have been annotated with parse trees
by automatically parsing and then manually correcting the parses. This treebank comprises multiple
parts drawn from distinct text types. To ensure that our results are notlimited to a particular genre,
we used two parts of the treebank: the Wall Street Journal (WSJ) corpus of newspaper text and the
Brown corpus of written text balanced across genres. In both cases,we used the entire corpus for
our experiments.

In the Penn Treebank,NP coordination is annotated using the ruleNP → NP1 CC NP2 where
CC represents a coordinator such asand. The application of the adaptation metric introduced in
Section 2.1 to such a rule is straightforward: we pickNP1 as the primeπ andNP2 as the targetτ.
We restrict our investigation to the following syntactic rules:

SBAR An NP with a relative clause, i.e.,NP → NP SBAR.

PP An NP with a PP modifier, i.e.,NP → NP PP.

N An NP with a single noun, i.e.,NP → N.

Det N An NP with a determiner and a noun, i.e.,NP → Det N.

Det Adj N An NP with a determiner, an adjective, and a noun, i.e.,NP → Det Adj N.

Our study focuses onNP → Det Adj N andNP → Det N as these are the rules used in the items of
Frazier et al. (2000);NP → N is a more frequent variant;NP → NP PP andNP → NP SBAR were
added as they are the two most commonNP rules that include non-terminals on the right-hand side.

To count the relative number of occurrences of each prime and target pair, we iterate through
each parsed sentences in the corpus. Each time the expansionNP → NP1 CC NP2 occurs in a tree,
we check if one (or both) of theNP daughters of this expansion matches one of the five rules listed
above. Each of these five rules constitutes a category of the response and predictor variables in the
multinomial logistic regression (see Section 2.2); we also use an additional category ‘other’ that
comprises all others rules. This category serves as the reference category for the regression.

As noted in Section 2.1, a possible confound for a corpus study of parallelism is Behagel’s
law, which states that there is a preference to order short phrases before long ones. We deal with this
confound by including an additional predictor in the multinomial regression: the indicator variable
σ takes the valueσ = 1 if the first conjunct is shorter than the right conjunct, andσ = 0 if this
is not the case. The regression vectorX is then augmented to include this indicator variable, and
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an additional parameter is likewise added to the parameter vectorβ to accommodate the short-
before-long predictor variable. In addition to the main effect of short-before-long, we also include
a predictor that represents the interaction between adaption and short-before-long.

The addition of the interaction term makes the computation of the prior and adaptation prob-
abilities slightly more complicated. The prior can now be computed according to thefollowing
formula:

PPrior(w) = P(τ = w|π = w,σ = 0)P(π = w,σ = 0)+ (6)

P(τ = w|π 6= w,σ = 0)P(π 6= w,σ = 0)+

P(τ = w|π = w,σ = 1)P(π = w,σ = 1)+

P(τ = w|π 6= w,σ = 1)P(π 6= w,σ = 1)

The positive adaptation probability must likewise include both cases or short-before-long and long-
before-short:

P̂+(τ = wi) = P(τ = w|π = w,σ = 0)P(π = w,σ = 0)+ (7)

P(τ = w|π = w,σ = 1)P(π = w,σ = 1)

In addition, we compute two additional probabilities, the first of which is a priorfor cases where the
short phrase precedes the long one (which we will refer to as the short-before-long prior). This is
the probability of seeing a rule in the second conjunct (regardless if it occurred in the first conjunct
or not) in cases where short rules precede long rules:

PShort(w) = P(τ = w|π = w,σ = 1)P(π = w,σ = 1)+ (8)

P(τ = w|π 6= w,σ = 1)P(π 6= w,σ = 1)

The second probability isP(τ = w|π = w,σ = 1), the probability of priming given that the prime is
shorter than the target (i.e.,σ = 1). This probability, which in the regression directly corresponds
to the coefficient of the interaction between the predictors adaptation and short-before-long, will be
referred to as the short-before-long adaptation probability.

Based on the parameter estimates of the multinomial logistic regression, we computea total
of 14 probability values for each corpus. We report the prior probabilityand positive adaptation
probability for all rules; as Behagel’s Law only confounds the adaptationof complex rules, we
report the short-before-long prior and the short-before-long adaptation probabilities only for these
rules (noun phrases of typePP andSBAR).

Our main hypothesis is that the adaptation probability is higher than the prior probability in
a given corpus. A stronger hypothesis is that the short-before-long adaptation probability as defined
above is also higher than the short-before-long prior probability, i.e., thatthe parallelism preference
holds even in cases that match the preferred phrase order in coordinatestructure (i.e., the shorter
conjunct precedes the longer one). To test these hypotheses, we perform χ2 tests which compare
the log-likelihood difference between a model that includes the relevant predictor and a model
without that predictor. We report whether the following predictors are significant: the main effect
of adaptation (corresponding toP(τ = w|π = w)), the main effect of short-before-long, and the
interaction of adaptation and short-before-long (corresponding toP(τ = w|π = w,σ = 1)).
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Figure 1. Prior, adaptation, and short-before-long prior and adaptation for coordinate structures in the Brown
corpus

Predictor χ2 df Probability

Adaptation 4055 25 p < 0.0001
Short-before-long 2726 5 p < 0.0001
Interaction 201 25 p < 0.0001

Table 1: Summary of the log-likelihoodχ2 statistics for the predictors in the multinomial regression for
coordinate structures in the Brown corpus
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Figure 2. Prior, adaptation, and short-before-long prior and adaptation for coordinate structures in the WSJ
corpus
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Predictor χ2 df Probability

Adaptation 1686 25 p < 0.0001
Short-before-long 1002 5 p < 0.0001
Interaction 146 25 p < 0.0001

Table 2: Summary of the log-likelihoodχ2 statistics for the predictors in the multinomial regression for
coordinate structures in the WSJ corpus

2.3.2. Results

The probabilities computed using multinomial regression are shown in Figure 1 for the Brown
corpus and Figure 2 for the Wall Street Journal corpus. The results of the significance tests are given
in Table 1 for Brown and in Table 2 for WSJ. Each figure shows the prior probability (Prior) and
the adaptation probability (Adapt) for all five constructions: single common noun (N), determiner
and noun (Det N), determiner, adjective, and noun (Det Adj N), NP with PP modifier (PP), NP with
relative clause (SBAR). In addition, the figures show the short-before-long prior probability (Short
Prior) and short-before-long adaptation probability (Short Adapt) forPP andSBAR categories.

For both corpora, we observe a strong adaptation effect: the adaptationprobability is consis-
tently higher than the prior probability across all five rules. According to thelog-likelihoodχ2 tests
(see Tables 1 and 2), there was a highly significant effect of adaptationin both corpora.

Turning to the short-before-long adaptation probabilities, we note that these also are con-
sistently higher than the short-before-long prior probabilities in both corpora for the rulesPP and
SBAR. Short-before-long probabilities cannot be computed for the rulesN, Det N, andDet Adj N,
as they are of fixed length (one, two, and three words respectively), due to the fact that they only
contain pre-terminals on the right-hand side. The log-likelihoodχ2 tests also show a significant
interaction of adaptation and short-before-long, consistent with the observation that there is more
adaptation in the short-before-long case (see Figures 1 and Figures 2). There is also a main effect
of short-before-long, which confirms that there is a short-before-long preference, but this is not the
focus of the present study.

2.3.3. Discussion

The main conclusion we draw is that the parallelism effect in corpora mirrorsthe one found
experimentally by Frazier et al. (2000), if we assume higher probabilities are correlated with easier
human processing. This conclusion is important, as the experiments of Frazier et al. (2000) only
provided evidence for parallelism incomprehensiondata. Corpus data, however, areproductiondata,
which means that our findings provide an important generalization of Frazier et al.’s experimental
findings. Furthermore, we were able to show that the parallelism effect in corpora persists even if
the preference for short phrases to precede long ones is taking into account.

2.4. Study 2: Parallelism in Non-coordinated Structures

The results in the previous section showed that the parallelism effect found experimentally by
Frazier et al. (2000) is also present in corpus data. As discussed in Section 1, there are two possible
explanation for the effect: one in terms of a construction-specific copyingmechanism, and one in
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Figure 3. Prior, adaptation, and short-before-long prior and adaptation for within-sentence priming in the
Brown corpus

Predictor χ2 df Probability

Adaptation 13782 25 p < 0.0001
Short-before-long 239732 5 p < 0.0001
Interaction 49226 25 p < 0.0001

Table 3: Summary of the log-likelihoodχ2 statistics for the predictors in the multinomial regression for
within-sentence priming in the Brown corpus
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Figure 4. Prior, adaptation, and short-before-long short-before-long prior and adaptation for within-sentence
priming in the WSJ corpus
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Predictor χ2 df Probability

Adaptation 37612 25 p < 0.0001
Short-before-long 447652 5 p < 0.0001
Interaction 64112 25 p < 0.0001

Table 4: Summary of the log-likelihoodχ2 statistics for the predictors in the multinomial regression for
within-sentence priming in the WSJ corpus
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Figure 5. Prior, adaptation, and short-before-long prior and adaptation for between-sentence priming in the
Brown corpus

Predictor χ2 df Probability

Adaptation 21952 25 p < 0.0001
Short-before-long 699252 5 p < 0.0001
Interaction 55943 25 p < 0.0001

Table 5: Summary of the log-likelihoodχ2 statistics for the predictors in the multinomial regression for
between-sentence priming in the Brown corpus

Predictor χ2 df Probability

Adaptation 49657 25 p < 0.0001
Short-before-long 918087 5 p < 0.0001
Interaction 86643 25 p < 0.0001

Table 6: Summary of the log-likelihoodχ2 statistics for the predictors in the multinomial regression for
between-sentence priming in the WSJ corpus
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Figure 6. Prior, adaptation, and short-before-long prior and adaptation for between-sentence priming in the
WSJ corpus

terms of a generalized syntactic priming effect. In the first case, we predict that the parallelism
effect is restricted to coordinate structures, while in the second case, weexpect that parallelism
(a) is independent of coordination, i.e., also applies to non-coordinate structures, and (b) occurs in
the wider discourse, i.e., not only within sentences but also between sentences. The purpose of the
present corpus study is to test these two predictions.

2.4.1. Method

The method used was the same as in Study 1 (see Section 2.3.1), with the exception that
the prime and the target are no longer restricted to being the first and second conjunct in a co-
ordinate structure. We investigated two levels of granularity:within-sentence parallelismoccurs
when the primeNP and the targetNP appear within the same sentence, but stand in an arbitrary
structural relationship. CoordinateNPs were excluded from this analysis, so as to make sure that
any parallelism effects are not confounded by coordination parallelism as established in Study 1.
For between-sentence parallelism, the primeNP occurs in the sentence immediately preceding the
sentence containing the targetNP.

The data for both types of parallelism analysis was gathered as follows. Any NP in the corpus
was considered a targetNP if it was preceded by anotherNP in the relevant context (for within-
sentence parallelism, the context was the same sentence, for between-sentence parallelism, it was
the preceding sentence). If there was more than one possible primeNP (because the target was
preceded by more than oneNP in the context), then the closestNP was used as the prime. In the
case of ties, the dominatingNP was chosen to accurately account forPP andSBAR priming (i.e. in
in the case of a noun with a relative clause, the entireNP will be chosen over the object of the
relative clause). TheNP pairs gathered this way could either constitute positive examples (bothNPs
instantiate the same rule) or negative example (they do not instantiate the same rule). As in Study 1,
the NPs were grouped into six categories: the five NP rules listed in Section 2.3.1, and ‘other’ for
all other NP rules. A multinomial logistic regression model was then fit on this dataset.
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2.4.2. Results

The results for the within-sentence analysis for non-coordinate structures are graphed in Fig-
ures 3 and 4 for the Brown and WSJ corpus, respectively. The resultsof the statistical tests are
given in Tables 3 and 4. We find that there is a parallelism effect in both corpora acrossNP types.
The adaptation probabilities are higher than the prior probabilities, except for two cases:SBAR
rules in Brown, andPP rules in WSJ. However, even in these cases, the short-before-long adap-
tation is higher than the short-before-long prior, which indicates that thereis a parallelism effect
for structures in which the short phrase precedes the long one. Furthermore, the log-likelihoodχ2

tests show significant effects of adaptation for both corpora, as well assignificant main effects of
short-before-long, and a significant interaction of adaptation and short-before-long.

A parallelism effect was also found in the between-sentence analysis, asshown by Figures 5
and 6, with the corresponding statistical tests summarized in Tables 5 and 6. Inboth corpora and
for all structures, we found that the adaptation probability was higher thanthe prior probability. In
addition, the short-before-long adaptation was higher than the short-before-long prior, confirming
the finding that the parallelism effect persists when the short-before-long preference for phrases
is taken into account. (Recall that only theSBAR and PP noun phrases can differ in length, so
short-before-long probabilities are only available for these rule types.)

2.4.3. Discussion

This experiment demonstrated that the parallelism effect is not restricted to coordinate struc-
tures. Rather, we found that it holds across the board: forNPs that occur in the same sentence (and
are not part of a coordinate structure) as well as forNPs that occur in adjacent sentences. Just as
for coordination, we found that this effect persists if we only consider pairs of NPs that respect
the short-before-long preference. However, this study also indicatedthat the parallelism effect is
weaker in within-sentence and between-sentence configurations compared to in coordination: The
differences between the prior probabilities and the adaptation probabilities are markedly smaller
than those uncovered for parallelism in coordinate structure. (Note that Figures 1 and 2 range from
0 to 1 on the x-axis, while Figures 3–6 range from 0 to 0.25.)

The fact that parallelism is a pervasive phenomenon, rather than being limited to coordinate
structures, is compatible with the claim that it is an instance of a general syntactic priming mecha-
nism, which has been an established feature of accounts of the human sentence production system
for a while (e.g., Bock, 1986). This runs counter to claims by Frazier et al.(2000), who argue
that parallelism only occurs in coordinate structures. (It is important to bear in mind, however, that
Frazier et al. only make explicit claims about comprehension, not about production.)

The question of the relationship between comprehension and production data is an interest-
ing one. One way of looking at a comprehension-based priming mechanism may be in terms of a
more general sensitivity of comprehenders towards distributional information. According to such a
hypothesis, processing should easier if the current input is more predictable given previous expe-
rience (Reali & Christiansen, 2007). The corpus studies described here and in previous work have
shown that similar structures do tend to appear near to each other more oftenthan would be ex-
pected by chance. If comprehenders are sensitive to this fact, then this could be the basis for the
priming effect. This is an attractive hypothesis, as it requires no additionalmechanism other than
prediction, and provides a very general explanation that is potentially ableto unify parallelism and
priming effects with experience-based sentence processing in general,as advocated, for instance, by
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constraint-based lexicalist models (MacDonald, Pearlmutter, & Seidenberg, 1994) or by the tuning
hypothesis (Mitchell, Cuetos, Corley, & Brysbaert, 1996). The probabilistic model we will propose
in the remainder of this paper is one possible instantiation of such an experience-based approach.

3. Modeling Studies

3.1. Priming Models

In Section 2, we provided corpus evidence for syntactic parallelism at varying levels of gran-
ularity. Focusing onNP rules, we found the parallelism effect in coordinate structures, but alsoin
non-coordinate structures, and between adjacent sentences. Thesecorpus results form an important
basis for the modeling studies to be presented in the rest of this paper. Our modeling approach uses
a probabilistic parser, which obtains probabilities from corpus data. Therefore, we first needed to
ascertain that the corpus data includes evidence for parallelism. If there was no parallelism in the
training data of our model, it would be unlikely that the model would be able to account for the
parallelism effect.

Having verified that parallelism is present in the corpus data, in this section we will propose
a set of models designed to capture the priming hypothesis and the copy hypothesis of parallelism,
respectively. To keep the models as simple as possible, each formulation is based on an unlexicalized
probabilistic context-free grammar (PCFG), which also serves as a baseline for evaluating more
sophisticated models. In this section, we describe the baseline, the copy model, and the priming
model in turn. We will also discuss the design of the probabilistic parser usedto evaluate the models.

3.1.1. Baseline Model

PCFGs serve as a suitable baseline for our modeling efforts as they have anumber of com-
pelling and well-understood properties. For instance, PCFGs make a probabilistic independence
assumption which closely corresponds to the context-free assumption: each rule used in a parse is
conditionally independent of other rules, given its parent. This independence assumption makes it
relatively simple to estimate the probability of context-free rules. The probabilityof a ruleN → ζ is
estimated as:

P̂(ζ|N) =
c(N → ζ)

c(N)
(9)

Where the functionc(·) counts the number of times a rule or the left-hand side of a rule occurs in a
training corpus.

3.1.2. Copy Model

The first model we introduce is a probabilistic variant of Frazier and Clifton’s (2001) copying
mechanism: it models parallelism only in coordination. This is achieved by assuming that the default
operation upon observing a coordinator (assumed to be anything marked up with a CC tag in the
corpus, e.g.,and) is to copy the full subtree of the preceding coordinate sister. The copying operation
is depicted in Figure 7: upon reading theand, the parser attempts to copy the subtree fora novelto
the secondNP a book.

Obviously, copying has an impact on how the parser works (see Section 3.1.5 for details).
However, in a probabilistic setting, our primary interest is to model the copy operation by alter-
ing probabilities compared to a standard PCFG. Intuitively, the characteristicwe desire is a higher
probability when the conjuncts are identical. More formally, ifPPCFG(t) is the probability of a tree
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novel a bookTerry
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a novel and a bookTerry wrote

andwrote a
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Figure 7. The Copy Model copies entire subtrees upon observing a coordinator

t according to a standard PCFG andPCopy(t) is the probability of copying the treet, then if two
the subtreest1 andt2 are parallel, we can say thatPCopy(t2) > PPCFG(t2). For simplicity’s sake, we
assume thatPCopy(t) is a parameter which can be estimated from the training corpus.

A naive probability assignment would decide between copying with probabilityPCopy(t2)
or analyzing the subtree rule-by-rule with the probability(1−PCopy(t2)) ·PPCFG(t2). However, the
PCFG distribution assigns some probability to all trees, including a tree which is equivalent tot2
‘by chance’. The probability thatt1 andt2 are equal ‘by chance’ isPPCFG(t1). We must therefore
properly account for the probability of these chance derivations. Thisis done by formalizing the
notion that identical subtrees could be due to either a copying operation or by chance, giving the
following probability for identical trees:

PCopy(t2)+PPCFG(t1) (10)

Similarly, the probability of a non-identical tree is:

1−PPCFG(t1)− pCopy

1−PPCFG(t1)
·PPCFG(t2) (11)

This accounts for both a copy mismatch and a PCFG derivation mismatch, and assures the probabil-
ities still sum to one. These definitions for the probabilities of parallel and non-parallel coordinate
sisters therefore form the basis of the Copy model.

Estimation. We saw in Section 2.3 that the parallelism effect can be observed in corpus data.
We make use of this fact to estimate the non-PCFG parameter of the Copy model,P̂Copy (the PCFG
parameters are estimated in the same way as for a standard PCFG, as explained above). While we
cannot observe copying directly because of the ‘chance’ derivations, we can use Equations (10)
and (11) above to derive a likelihood equation, which can then be maximized using a numerical
method. A common approach to numerical optimization is the gradient ascent algorithm (Press,
Teukolsky, Vetterling, & Flannery, 1988), which requires a gradient of the likelihood (i.e., the partial
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derivative of the likelihood with respect toPCopy). If we letcident be the number of trees in the corpus
which are identical, and ifj counts through the non-identical trees (andt j1 is the first conjunct of the
j-th non-identical tree in the corpus), then the gradient of the log-likelihoodequation (with respect
to PCopy) is:

▽ =
cident

PCopy
−∑

j

1−PPCFG(t j1)

1−PCopy−PPCFG(t j1)
(12)

This equation is then fed to the gradient ascent algorithm, producing an estimate P̂Copy which max-
imizes the likelihood of the training corpus. This approach ensures that the copy parameter̂PCopy

is set to the optimal value, i.e., the value that results in the best fit with the training data, and thus
maximizes our chance of correctly accounting for the parallelism effect.

3.1.3. Between Model

While the Copy model limits itself to parallelism in coordination, the next two models sim-
ulate structural priming in general. Both are similar in design, and are based on a simple insight:
we can condition a PCFG rule expansion on whether the rule occurred in some previous context.
If Prime is a binary-valued random variable denoting if a rule occurred in the context, then we can
define an adaptation probability for PCFG rules as:

P̂(ζ|N,Prime) =
c(N → ζ,Prime)

c(N,Prime)
(13)

This is an instantiation of Church’s (2000) adaptation probability, used in a similar fashion as in
our corpus studies in Section 2. Our aim here is not to show that certain factors are significant
predictors; rather, we want to estimate the parameters of a model that simulatesthe parallelism
effect by incrementally predicting sentence probabilities. Therefore, unlike in the corpus studies,
we do not need to carry out hypothesis testing and we can simply use the empirical distribution to
estimate our parameters, rather than relying on multinomial logistic regression.

For our first model, the context is the previous sentence. Thus, the modelcan be said to
capture the degree to which rule use is primed between sentences. We henceforth refer to this as the
Between model. Each rule acts once as a target (i.e., the event of interest) and once as a prime.

3.1.4. Within Model

Just as the Between model conditions on rules from the previous sentence, the Within sen-
tence model conditions on rules from earlier in the current sentence. Each rule acts once as a target,
and possibly several times as a prime (for each subsequent rule in the sentence). A rule is consid-
ered ‘used’ once the parser passes the word on the leftmost corner ofthe rule. Because the Within
model is finer grained than the Between model, it should be able to capture the parallelism effect in
coordination. In other words, this model could explain parallelism in coordination as an instance of
a more general priming effect.

3.1.5. Parser

Reading time experiments, including the parallelism studies of Frazier et al. (2000), measure
the time taken to read sentences on a word-by-word basis. Slower reading times are assumed to
indicate processing difficulty, and faster reading times (as is the case with parallel structures) are
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assumed to indicate processing ease, and the location of the effect (whichword or words it occurs
on) can be used to draw conclusions about the nature of the difficulty.

As our main aim is to build a psycholinguistic model of structural repetition, the most impor-
tant feature of the parsing model is to build structures incrementally, i.e., on a word-by-word basis.
In order to achieve incrementality, we need a parser which has the prefix property, i.e., it is able to
assign probabilities to arbitrary left-most substrings of the input string.

We use an Earley-style probabilistic parser, which has these properties and outputs the most
probable parses (Stolcke, 1995). Furthermore, we make a number of modifications to the gram-
mar to speed up parsing time. The treebank trees contain annotations for grammatical functions
(i.e., subject, object, different types of modifier) and co-indexed empty nodes denoting long-distance
dependencies, both of which we removed.

The Earley algorithm requires a modification to support the Copy model. We implemented
a copying mechanism that activates any time the parser comes across aCC tag in the input string,
indicating a coordinate structure, as shown in Figure 7. Before copying,though, the parser looks
ahead to check if the part-of-speech tags after theCC are equivalent to those inside first conjunct.
In the example in Figure 7, the copy operation succeeds because the tags of theNPs ‘a book’ and ‘a
novel’ are bothDet N.

Mathematically, the copying operation is guaranteed to return the most probable parse be-
cause an incremental parser is guaranteed to know the most likely parse ofthe first conjunct by the
time it reaches the coordinator.

The Baseline and Within models also require a change to the parser. In particular, they require
a cache or history of recently used rules. This raises a dilemma: whenevera parsing error occurs,
the accuracy of the contextual history is compromised. However, the experimental items used were
simple enough that no parsing errors occurred. Thus, it was always possible to fill the cache using
rules from the best incremental parse so far.2

3.2. Study 3: Modeling Parallelism Experiments

The purpose of this study is to evaluate the models described in the previous section by using
them to simulate the results of a reading time experiment on syntactic parallelism. We will test the
hypothesis that our models can correctly predict the pattern of results found in the experiment study.
We will restrict ourselves to evaluating the qualitative pattern of results, rather than modeling the
reading times directly.

Frazier et al. (2000) reported a series of experiments that examined the parallelism prefer-
ence in reading. In their Experiment 3, they monitored subjects’ eye-movements while they read
sentences like (2):

(2) a. Terry wrote a long novel andashortpoem during her sabbatical.
b. Terry wrote a novel andashortpoem during her sabbatical.

They found that total reading times were faster on the phrasea short poemin (2-a), where the
coordinated noun phrases are parallel in structure, compared with in (2-b), where they are not.

2In unrestricted text, where parsing errors are more common, alternative strategies are required. One possibility is to
use an accurate lexicalized parser. A second possibility arises if an ‘oracle’ can suggest the correct parse in advance: then
the cache may be filled with the correct rules suggested by the oracle.
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The probabilistic models presented here do not directly make predictions about total reading
times as reported by Frazier et al.. Therefore, alinking hypothesisis required to link the predictions
of the model (e.g., in the form of probabilities) to experimentally observed behavior (e.g., in the form
of processing difficulty). The literature on probabilistic modeling contains a number of different
linking hypotheses. For example, one possibility is to use an incremental parser with beam search
(e.g., ann-best approach). Processing difficulty is predicted at points in the inputstring where the
current best parse is replaced by an alternative derivation, and garden-pathing occurs when the
ultimately correct parse has dropped out of the beam (Jurafsky, 1996; Crocker & Brants, 2000).
However, this approach is only suited to ambiguous structures.

An alternative is to keep track of all derivations, and predict difficulty if there is a change
in the probability distributions computed by the parser. One way of conceptualizing this is Hale’s
(2001) notion of surprisal. Intuitively, surprisal measures the changein probability mass as structural
predictions are disconfirmed when a new word is processed. If the new word disconfirms predictions
with a large probability mass (high surprisal), then high processing complexityis predicted, corre-
sponding to increased processing difficulty. If the new word only disconfirms predictions with a low
probability mass (low surprisal), then we expect low processing complexity and reduced processing
difficulty. Technically, the surprisalSk at input wordwk corresponds to the difference between the
logarithm of the prefix probabilities of wordwk−1 andwk (for a detailed derivation, see Levy, 2008):

Sk = logP(w1 · · ·wk)− logP(w1 · · ·wk−1) (14)

The standard definition of surprisal given in Equation (14) is useful for investigating word-by-word
reading time effects. In the present parallelism studies, however, we areinterested in capturing read-
ing time differences in regions containing several words. Therefore, we introduce a more general
notion of surprisal computed over anmword region spanning fromwk+1 to wk+m+1:

Sk...k+m = logP(w1 · · ·wk+m)− logP(w1 · · ·wk−1) (15)

Subsequent uses of ‘surprisal’ will refer to this region-based surprisal quantity, and the term ‘word
surprisal’ will be reserved for the traditional word-by-word measure.Both word surprisal and region
surprisal have the useful property that they can be easily computed from the prefix probabilities
returned by our parser.

In addition to surprisal, we also compute a simpler metric: we calculate the probability of
the best parse of the whole sentence (Stolcke, 1995). Low probabilities are assumed to correspond
to high processing difficulty, and high probabilities predict low processingdifficulty. As we use
log-transformed sentence probabilities, this metric hypothesizes a log-linear relationship between
model probability and processing difficulty.

3.2.1. Method

The item set we used for evaluation was adapted from that of Frazier et al. The original
two relevant conditions of their experiment (see (2-a) and (2-b)) differ in terms of length. This
results in a confound in the PCFG-based framework, because longer sentences tend to result in
lower probabilities (as the parses tend to involve more rules). To control for such length differences,
we adapted the materials by adding two extra conditions in which the relation between syntactic
parallelism and length was reversed. This resulted in the following four conditions:
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Model para: (3-a) non-para: (3-b) non-para: (3-c) para: (3-d) (3-a)−(3-b) (3-c)−(3-d)

Baseline −0.34 −0.48 −0.62 −0.74 0.14 0.12
Within −0.30 −0.51 −0.53 −0.30 0.20 −0.20
Copy −0.52 −0.83 −0.27 −0.31 0.32 0.04

Table 7: Mean log surprisal values for items based on Frazieret al. (2000)

(3) a. Det Adj N andDet Adj N (parallel)
Terry wrote a long novel andashortpoem during her sabbatical.

b. Det N andDet Adj N (non-parallel)
Terry wrote a novel andashortpoem during her sabbatical.

c. Det Adj N andDet N (non-parallel)
Terry wrote a long novel andapoem during her sabbatical.

d. Det N andDet N (parallel)
Terry wrote a novel andapoem during her sabbatical.

In order to account for Frazier et al.’s parallelism effect a probabilistic model should predict a greater
difference in probability between (3-a) and (3-b) than between (3-c) and (3-d) (i.e., for the reading
times holds: (3-a)−(3-b) > (3-c)−(3-d)). This effect will not be confounded with length, because
the relation between length and parallelism is reversed between (3-a), (3-b) and (3-c), (3-d). In order
to obtain a more extensive evaluation set for our models, we added eight itemsto the original Frazier
et al. materials, resulting in a new set of 24 items similar to (3).3

The models we evaluated were the Baseline, the Within and the Copy models, trained as
described in Section 3.1. We tested these three PCFG-based models on all 24experimental sentences
across four conditions. Each sentence was input as a sequence of correct part-of-speech tags, and
the surprisal of the sentence as well as the probability of the best parse was computed.

Note that we do not attempt to predict reading time data directly. Rather, our model predic-
tions are evaluated against reading times averaged over experimental conditions. This means that
we predict qualitative patterns in the data, rather than obtaining a quantitativemeasure of model fit,
such asR2. Qualitative evaluation is standard practice in the psycholinguistic modeling literature. It
is also important to note that reading times are contaminated by non-syntactic factors such as word
length and word frequency (Rayner, 1998) that parsing models are not designed to account for.

3.2.2. Results and Discussion

Table 7 shows the mean log surprisal values estimated by the models for the four experimental
conditions, along with the differences between parallel and non-parallelconditions. Table 8 presents
the mean log probabilities of the best parse in the same way.

3To ensure the new materials and conditions did not alter the parallelism effect, we carried out a preliminary eye-
tracking study based on an identical design to the modeling study (see (3)), with 36 participants. The interaction predicted
by parallelism ((3-a)−(3-b) > (3-c)−(3-d)) was obtained in probability of regression from the region immediately fol-
lowing the second conjunct (during her sabbatical) and also in second-pass reading times on a region consisting ofand
followed by the second conjunct (e.g.,and a short poem).
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Model para: (3-a) non-para: (3-b) non-para: (3-c) para: (3-d) (3-a)−(3-b) (3-c)−(3-d)

Baseline −33.47 −32.37 −32.37 −31.27 −1.10 −1.10
Within −33.28 −31.67 −31.70 −29.92 −1.61 −1.78
Copy −16.18 −27.22 −26.91 −15.87 11.04 −11.04

Table 8: Mean log probability values for the best parse for items based on Frazier et al. (2000)

The results indicate that both the Within and the Copy model predict a parallelismadvantage.
We used a Wilcoxon signed rank test to establish if the difference in surprisal and probability values
were statistically different for the parallel and the non-parallel conditions, i.e., we compared the
values for (3-a)−(3-b) with those for (3-c)−(3-d).4 In the surprisal case, significant results were
obtained for both the Within model (N = 24, Z = 2.55, p < .01, one-tailed) and the Copy model
(N = 24, Z = 3.87, p < .001, one-tailed). Using the probability of the best parse, a statistically
significant difference was again found for both the Within (N = 24,Z = 1.67, p < .05, one-tailed)
and the Copy model (N = 24,Z = 4.27, p < .001, one-tailed).

The qualitative pattern of results is therefore the same for both models: the Within and the
Copy model both predict that parallel structures are easier to process than non-parallel ones. How-
ever, there are quantitative differences between the surprisal and thebest-parse implementations
of the models. In the surprisal case, the parallelism effect for the Within model is larger than the
parallelism effect for the Copy model. This difference is significant (N = 24, Z = 2.93, p < .01,
one-tailed). In the case of the best-parse implementation, we observe the opposite pattern: the Copy
model predicts a significantly larger parallelism advantage than the Within model(N = 24,Z = 4.27,
p < .001, one-tailed).

The Baseline model was not evaluated statistically, because by definition it predicts a constant
value for (3-a)−(3-b) and (3-c)−(3-d) across all items (there are small differences due to floating
point underflow). This is simply a consequence of the PCFG independence assumption, coupled
with fact that the four conditions of each experimental item differ only in the occurrences of two
NP rules.

Overall, the results show that the approach taken here can be successfully applied to model
experimental data. Moreover, the effect is robust to parameter changes: we found a significant par-
allelism effect for both the Within and the Copy model, in both the surprisal andthe best-parse
implementation. It is perhaps not surprising that the Copy model shows a parallelism advantage for
the Frazier et al. (2000) items, as this model was explicitly designed to preferstructurally parallel
conjuncts. The more interesting result is the parallelism effect we found for the Within model, which
shows that such an effect can arise from a more general probabilistic priming mechanism. We also
found that the surprisal implementation of the Within model predicts a larger parallelism effect than
the best-parse implementation (relative to the Copy model, see Tables 7 and 8).This indicates that
using all available parses (as in the surprisal case) amplifies the effect of syntactic repetition, per-
haps because it takes into account repetition effects in all possible syntactic structures that the parser

4The Wilcoxon signed rank test can be thought of as a non-parametric version to the pairedt-test for repeated mea-
surements on a single sample. The test was used because it does not require strong assumptions about the distribution of
the log probabilities.
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tall woman when ...Hilda noticed a strange man and a
−3.42

−3.44

−3.46
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Figure 8. The log probability of the ruleNP → Det Adj N while reading a sentence, according to the Decay
model. The probability of a rule changes gradually while reading: a small spike upon successfully detecting
a use, a slow decay otherwise

considers, rather than only in the most probable structure (as in the best parse implementation).
In spite of this difference in effect size, we can conclude, however, that best-parse probabili-

ties are a good approximation of surprisal values for the sentences under consideration, while being
much simpler to compute. We therefore focus on best-parse probabilities forthe remainder of the
paper.

4. Modeling Priming and Decay

4.1. A Model of Priming inspired by ACT-R

The Within and Between priming models introduced in Sections 2 and 3 make the assumption
that priming is based upon a binary decision: a target item is either primed or not. Moreover, the
model ‘forgets’ what was primed once it finishes processing the target region, i.e., no learning
occurs. As we saw in Section 3.2, these modeling assumptions were sufficient to model a set of
standard experimental data. However, Section 2 showed that the parallelism effect applies to a range
of different levels of granularity. Using a single binary decision makes it impossible to build a model
which can simultaneously account for priming at multiple levels of granularity. In this section, we
introduce the Decay model, which is able to account for priming without making an arbitrary choice
about the size of the priming region.

The structure of this model is inspired by two observations. First, we foundin Section 2 that
priming effects were smaller as the size of the priming region increased (fromcoordinate struc-
tures to arbitrary structures within sentences, to arbitrary structures between sentences). Second,
a number of authors (e.g., Gries, 2005; Szmrecsanyi, 2005; Reitter et al.,2006) found in corpus
studies that the strength of priming decays over time (but not Jaeger, 2006b and Jaeger & Snider,
2007, who controlled for speaker differences). Intuitively, these twoeffects are related: by selecting
a larger priming region, we effectively increase the time between the onset of the prime and onset
of the target. Therefore, by accounting for decay effects, it may be possible to remove the arbitrary
choice of the size of the priming region from our model. Given that we are assuming that prim-
ing is due to a general cognitive mechanism, it is a logical next step to model decay effects using
a general, integrated cognitive architecture. We will therefore build on concepts from the ACT-R
framework, which has been successfully used to account for a wide range of experimental data on
human cognition (Anderson, 1983; Anderson et al., 2004).
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The ACT-R system has two main elements: a planner and a model of memory whichplaces
a cost on accesses to declarative memory (where declarative facts, also called ‘chunks’, are stored)
and on procedural memory (which contains information on how to carry outplanning actions). The
Decay model uses the ACT-R memory system to store grammar rules but we eschew the planner,
instead continuing to use the incremental Earley parser of previous experiments.

Following earlier work on parsing with ACT-R (Lewis & Vasishth, 2005), weassume that
grammar rules are stored in procedural memory. Lewis and Vasishth (2005) fully commit to the
ACT-R architecture, implementing their incremental parser in the ACT-R planning system and
therefore storing partially constructed parses in declarative memory. Instead, we will assume that
the Decay model uses the same underlying chart parser presented in Section 3.1.5 instead of a plan-
ning system. This means we make no particular claims about the memory cost of accessing partially
constructed parses.5

A goal of the full ACT-R architecture is to model the time course of cognitive behavior.
Our restricted ACT-R-inspired simulation, though, is limited to modeling theprobability of certain
memory accesses, and, via our linking hypothesis, we only make qualitative predictions about pro-
cessing difficulty. This restriction is motivated by the desire to maintain the underlying architecture
and approach developed for the Within and Copy models, which was successfully evaluated in the
previous section.

In ACT-R, the probability of memory access depends upon recency information both for
declarative chunks, and, following the work of Lovett (1998), for production rules. The probability
of a production rule (or more specifically, the probability of successfully applying a production rule)
depends on the number of past successes and failures of that rule. Lovett (1998) argues that the times
of these successes and failures should be taken into account. For our ACT-R-inspired Decay model,
a ‘success’ will be a successful application of a ruleN → ζ, and a ‘failure’ will be an application of
any other rule with the same left-hand sideN. As we will see below, this choice of success or failure
makes the Decay model a simple generalization of a PCFG.

Successes are counted in a similar manner to primed rules in the Between model: after each
word, we compute the most probable parse, and compute the set of rules used in this parse. Any
new rules (compared to the set from the previous word) is considered to be a success at this word.6

ACT-R assumes that the probability of declarative chunks is based upon their activation, and
that this activation directly influences the time taken to retrieve chunks from long-term memory into
buffers, where they can be acted upon. There is no such direct influence of the probability of success
on the time to retrieve or act on a production rule. However, there is a clear,if indirect influence
on time: if the rule required for producing a parse has a high probability, theexpected number of
incorrect rules attempted will be low, leading to the prediction of lower processing difficulty; on
the other hand, if the required rule has a low probability, the expected number of incorrect rules
attempted will be high, leading to a prediction of high processing difficulty. Thisis no different than
the intuition behind the linking hypothesis of Section 3.2, where we assumed thatlow probability
(or high surprisal) corresponds to high processing difficult. The novelty of the Decay model is that
the time sensitivity of production rules now affects the calculated probabilities.

5This assumption is reasonable on our low-memory load items, but may be untenable for parsing high-memory load
constructions such as object relative clauses.

6If a structure is ambiguous and requires reanalysis, we make the assumption that the initial incorrect analysis acts as
a prime. However, because the items of the parallelism experiment are unambiguous, this assumption has no effect for
our data set.
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4.1.1. Parametrizing the Model

Recall that in a probabilistic context-free grammar the probability of a grammar rule N → ζ
is estimated as follows:

P̂(ζ|N) =
c(N → ζ)

c(N)
(16)

As before, the functionc(·) counts the number of times the event occurs. The Lovett model postu-
lates that the probability of a certain production rule being picked is:

P̂ =
∑i∈Successest

d
i

∑i∈Successest
d
i +∑ j∈Failurest

d
j

(17)

Here,d is the decay constant,Successesis the set of successful rule applications,Failures is the set
of unsuccessful rule applications, andti is time at which rule applicationi occurred. As described be-
low, this time parameter can estimated from a corpus. Following convention in the ACT-R literature
(see Lewis & Vasishth, 2005), we setd to 0.5.

As noted above, the model uses a notion of success and failure appropriate for use with a
probabilistic context-free grammar: a success is an application of a ruleN → ζ, and a failure is all
other rule applications with the same left-hand sideN. The standard ACT-R model defines successes
and failures in terms of a higher-level task. In our case, the task is findingthe best way to rewrite an
N to get a correct parse. Using this choice for success and failure, we can rewrite the probability of
a rule as:

P̂(ζ|N) =
∑i∈Successest

d
i

∑i∈Successest
d
i +∑ j∈Failurest

d
j

(18)

For example, if the ruleNP → Det Adj N is used to parse the tag sequenceDet Adj N, then this rule
will get a success at timeti while all otherNP rules get a failure. Notice that if the parameterd is set
to 0, all the exponentiated time parameterstd

i are set to 1, giving the maximum likelihood estimator
for a PCFG in equation (16), which is what we used as our Baseline model. In other words, our
Decay model has a standard PCFG as a special case.

Standard ACT-R uses the activation of procedural rules as an intermediate step toward calcu-
lating time course information. However, the model presented here does notmake any time course
predictions. This choice was made due to our focus on syntactic processing behavior: obviously,
time is also spent doing semantic, pragmatic and discourse inferences, whichwe do not attempt to
model. Although this simplifies the model, it does pose a problem. One of the model parameters,
ti , is expressed in units of time, and cannot be observed directly in the corpus. To overcome this
difficulty, we assume each word uniformly takes 500 ms to read. This is meant as an approximation
of the average total reading time of a word.7 Because the previous occurrence of a constituent can be
several sentences away, we expect that local inaccuracies will average out over a sufficiently large
training corpus.

7This value is arbitrary, but could be made precise using eye-tracking corpora which provide estimates for word read-
ing times in continuous text (e.g., Kennedy & Pynte, 2005). Any constant value would produce the same modeling result.
In general, frequency and length effects on reading time are well documented (Rayner, 1998) and could be incorporated
into the model.
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Model para: (3-a) non-para: (3-b) non-para: (3-c) para: (3-d) (3-a)−(3-b) (3-c)−(3-d)

Baseline −33.47 −32.37 −32.37 −31.27 −1.10 −1.10
Within −33.28 −31.67 −31.70 −29.92 −1.61 −1.78
Copy −16.18 −27.22 −26.91 −15.87 11.04 −11.04

Decay −39.27 −38.14 −38.02 −36.86 −1.13 −1.16

Table 9: Mean log probability estimates for the best parse for items based on Frazier et al (2000)

4.2. Study 4: Modeling Parallelism Experiments using the Decay Model

The purpose of this experiment is to evaluate the ACT-R-inspired Decay model described in
the previous section. Our hypothesis is that adding decay to the model, while increasing its cogni-
tive realism, does not impair the model’s ability to predict the pattern of results in experiments of
syntactic parallelism.

4.2.1. Method

As in Study 3, we estimated the model probabilities using the WSJ corpus. Similar to the
Within model, parameter estimation requires traversing the rules in the same orderthe parser does,
here to get accurate statistics for the time parameter.

4.2.2. Results and Discussion

Following the method of Study 3, we test the model on the extended set of experimental stim-
uli based on Frazier et al. (2000). As described in Section 3.2, we use 24 items in four conditions,
and compute the probability of the best parse for the sentences in each conditions (see (3) in Sec-
tion 3.2 for example sentences). The hypothesis of interest is again that thedifference between (3-a)
and (3-b) is greater than the difference between (3-c) and (3-d).

The results for the Decay model are shown in Table 9, with the results of the Baseline, Within,
and Copy model from Study 3 as comparison. We find that the Decay model gives a significant
parallelism effect using the Wilcoxon signed rank test (N = 24, Z = 4.27, p < .001, one-tailed).
Like the Within model, the effect size is quite small, as a general mechanism is used to predict the
parallelism effect, rather than a specialized one as in the Copy model.

However, the Within model and the Decay model do not make identical predictions. The
differences between the two models become clear upon closer examination ofthe experimental
items. Some of the materials have aDet N as the subject, for instanceThe nurse checked a young
woman and a patient before going home. In this example, the Within model will predict a speedup
for a patienteven though Frazier et al. (2000) would not consider it to be a parallel sentence. In such
cases, the Decay model predicts some facilitation at the targetNP, but the effect is weaker because
of the greater distance from the target to the subjectNP. This example illustrates how the Decay
model benefits from the fact that it incorporates decay and therefore captures the granularity of
the priming effect more accurately. This contrasts with the coarse-grainedbinary primed/unprimed
distinction made by the Within model. We will return to this observation in the next section.
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Moreover, the Decay model is more cognitively plausible than the Within model because it is
grounded in research on cognitive architectures: we were able to re-use model parameters proposed
in the ACT-R literature (such as the decay parameter) without resorting to stipulation or parameter
tuning.

4.3. Study 5: The Parallelism Effect in German Sentence Coordination

Sections 3.2 and 4.1 introduced models which were able to simulate Experiment 3 of Frazier
et al. (2000). The Frazier et al. experimental items are limited to English noun phrases. This raises
the question whether our models generalize to other constructions and to other languages. The
purpose of the present study is to address this questions by modeling additional experimental data,
viz., Knöferle and Crocker’s (2006) experiment on parallelism in German sentence coordination.
Our hypothesis is that both the Copy model and the Decay model will be able to account for the
German data.

Knöferle and Crocker’s (2006) items take advantage of German word order. Declarative sen-
tences normally have an subject-verb-object (SVO) order, such as (4-a). A temporal modifier can
appear before the object, as illustrated in (4-b). However, word orderis flexible in German. The
temporal modifier may be focused by bringing it to the front of the sentence,a process known
as topicalization. The topicalized version of the last sentence is (4-c). We will refer to this as an
VSO (verb-subject-object) orsubject-firstorder. A more marked word order would be topicalized
verb-object-subject (VOS), as in (4-d). We will refer to such sentences as VOS orobject-first.

(4) a. Der Geiger lobte den Sänger.
‘The violinist complimented the singer.’

b. Der Geiger lobte vor ein paar Minuten den Sänger.
‘The violinist complimented the singer several minutes ago.’

c. Vor ein paar Minuten lobte der Geiger den Sänger.
‘Several minutes ago, the violinist complimented the singer.’

d. Vor ein paar Minuten lobte den Sänger der Geiger.
‘Several minutes ago, it was the singer that the violinist complimented.’

In the experiment of Kn̈oferle and Crocker, each item contains two coordinated sentences, each of
which is either subject-first or object-first. The experiment uses a 2×2 design: either subject-first or
object-first in the first conjunct with either subject-first or object-first inthe second conjunct. This
leads to two parallel and two non-parallel conditions, as shown in (5) below. (In reality, Kn̈oferle
and Crocker’s (2006) items contain a spillover region which we removed, as explained below.)

(5) a. Vor ein paar Minuten lobte der Geiger den Sänger und in diesem Augenblick preist der
Trommler den Dichter.
‘Several minutes ago, the violinist complimented the singer and at this moment the
drummer is praising the poet.’

b. Vor ein paar Minuten lobte den Sänger der Geiger und in diesem Augenblick preist der
Trommler den Dichter.
‘Several minutes ago, it was the singer that the violinist complimented and at thismo-
ment the drummer is praising the poet.’

c. Vor ein paar Minuten lobte der Geiger den Sänger und in diesem Augenblick preist den
Dichter der Trommler.
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(a) A verb phrase (‘sold the man a dog’) as it appears in the
corpus
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verkauft

NP-Dat
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NP-Akk

einen Hund
(b) Transforming the verb to include valence information

Figure 9. Transforming verbs to account for transitivity

‘Several minutes ago, the violinist complimented the singer and at this moment it is
poet that the drummer is praising.’

d. Vor ein paar Minuten lobte den Sänger der Geiger und in diesem Augenblick preist den
Dichter der Trommler.
‘Several minutes ago, it was the singer that the violinist complimented and at thismo-
ment it is the poet the drummer is praising.’

The object-first condition is rare and generally considered marked in the psycholinguistic literature
on German. We will therefore refer to conditions (5-b) and (5-d), where the object-first clause is
in the second conjunct, as the marked condition. The alternative conditions,(5-a) and (5-c), are
henceforth referred to as unmarked. We refer to conditions (5-a) and(5-d), which have the same
order of subject and object as the parallel conditions. Likewise, (5-b)and (5-c), which have a dif-
ferent order, are the non-parallel conditions. Knöferle and Crocker (2006) found that, overall, the
unmarked (subject-first) conjunct was faster to read, but this markedness effect was dominated by
a parallelism effect. In other words, the marked parallel conditions had a lower reading time than
the marked non-parallel condition. In the following we will investigate if our models are able to
replicate this result.

4.3.1. Method

This study was largely set up in a manner similar to Studies 3 and 4 on English data. As the
present study aims to analyze German data, it was necessary to train the parser on German text.
Therefore, the Tiger corpus (Brants, Dipper, Hansen, Lezius, & Smith, 2002) of German newspaper
text was used in lieu of the the Wall Street Journal corpus used in earlier studies. Of the models
which have been presented in earlier studies, only the Copy and Decay models are used here (there
is no need to test the Within model as it is subsumed by the Decay model).

Modeling the data of Kn̈oferle and Crocker (2006) poses a challenge to the computational
models, for several reasons. First, as noted above, these data containa spillover region. This region
is problematic as it creates an attachment ambiguity: it may attach low to the second conjunct or
high to the main clause. While the ambiguity apparently causes few problems for human subjects, it
proves difficult for an automatic parser to analyze unambiguously. We therefore decided to remove
the spillover region from the original items for the present modeling study. Aswe emphasized in
Section 3.2, the purpose of our modeling studies is to account for qualitativepatterns in the data,
rather than modeling individual reading times. Therefore, we have no wayof predicting spillover
effects using the current approach.
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Figure 10. Transforming noun phrases to account for case
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Vorfeld (‘next week’) as it appears in the
corpus
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(b) Transforming the sentence to overtly
include a Vorfeld (VF) production

Figure 11. Transforming trees to include topological field information

An additional challenge posed to the parser is that the verbs in the experimental items are
ditransitive, and the accusative and nominative objects need to be disambiguated by their articles.
Reading a grammar directly from the Tiger treebank does not encode this information, but both sub-
categorization information (Baldewein & Keller, 2004) and case information (Dubey, 2004) can be
encoded in the grammar by way of treebank transformations. These unambiguous transformations
create a grammar in which verb andNP nodes are enriched with the relevant information, and are
exemplified in Figure 9 and Figure 10, respectively.

A third transformation, based on German topological field theory, is also necessary due to
the flat annotation style of the Tiger corpus. We explicitly add aVorfeld(first position) phrase to the
grammar, as shown in Figure 11. This corresponds to the part of a sentence preceding the verb. In an
untopicalized declarative sentence, the subject is in the Vorfeld. In topicalized sentences, such as the
Knöferle and Crocker (2006) items, the Vorfeld contains the topic. This transformation is necessary
because the annotation style of the Tiger corpus would otherwise make it difficult to model any kind
of word-order priming. We have hypothesized priming occurs on the levelof syntactic rules, and
the Tiger corpus uses a flat annotation style for sentences. So, if the topicin the prime and target
conjuncts are of different grammatical categories, a naive model would predict no priming. This is
averted by putting the topic in a category of its own, which is an uncontroversial assumption not
only in topological field theory (used here), but also in X-bar theory, which would posit a covert
complementizer whose specifier contains the topic.

The choice of applying or not applying this third transformation corresponds to an instance
of the Grain problem (Mitchell et al., 1996) with two different choices of grain size for estimating
syntactic frequencies. Without the transformation, we are making the assumption that both conjuncts
must be equivalent on the coarse-grained sentential level hypothesized by the Tiger annotators. By
applying the transformation, we allow a finer-grained parallelism effect which is somewhat more
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Model para: (5-a) non-para: (5-b) non-para: (5-c) para: (5-d) (5-a)−(5-b) (5-c)−(5-d)

Baseline −41.87 −43.00 −42.76 −43.94 1.14 1.18
Copy −41.85 −42.99 −42.74 −43.92 1.14 1.18
Decay −40.82 −42.98 −42.57 −43.46 2.16 0.89

Table 10: Mean log probability estimates for the Knöferle and Crocker (2006) items

independent of particular annotation strategies.
The Grain problem also appears in Frazier and Clifton’s (2001) Copy hypothesis. What ex-

actly is meant by ‘copying’? As Frazier and Clifton do not claim otherwise, we have assumed that
the entire structure is copied. It is possible that Frazier et al. did intend fortheir Copy hypothesis
to operate at a more fine-grained level, but they did not specify how this might be done. Therefore,
we do not make any modification to the Copy model for this experiment (of course, there is also no
change to the Decay model, either).

Just as in the modeling studies presented on the Frazier et al. (2000) items, we measure the
probability difference between pairs of parallel and non-parallel conditions. In this case, we mea-
sure (5-a)−(5-b) compared to (5-c)−(5-d). If there is no statistical difference between the quantities,
we conclude there is no parallelism effect. On the other hand, we may conclude there is a parallelism
effect if the former is greater than the latter.

4.3.2. Results and Discussion

The results are shown in Table 10. All three models were able to parse the experimen-
tal materials unambiguously. We performed a Wilcoxon signed rank test on thedifference be-
tween (5-a)−(5-b) and (5-c)−(5-d). We found no significant difference between the two condi-
tions for the Copy model. However, the Decay model gave a statistically significant result (N = 32,
Z = 1.72, p < .05).

This finding provides support for the hypothesis that the Decay model generalizes to other
structural configurations and to a new language. An interesting fact about Knöferle and Crocker’s
(2006) materials is that the marked VOS word order occurs quite infrequently in the Tiger corpus,
and never occurs twice in the same sentence (coordinated or not). This fact does not affect the Copy
or Decay models: the Copy operation does not inspect the rules other thanto check that they are
identical, and the Decay model dynamically updates rules probabilities depending on context. How-
ever, the Within model strongly depends upon observing particular rules repeatedly, and therefore it
would fail to deliver any parse at all if the rules have never been observed repeating.

Moreover, the results here show that our straightforward implementation ofthe Copy model
does not easily generalize beyond NP experiments. A key problem is that Knöferle and Crocker’s
parallel condition contained sentences which had marginally different structures: while the NP word
orders were parallel, each conjunct contained a modifier which in many cases did not have paral-
lel structure. The non-parallel modifiers resulted in the Copy model ignoring such conjuncts as
candidates to be copied. A more precise statement of the Copy hypothesis is required to model
clause-level parallelism in general. In particular, the Copy model faces agrain problem, which will
need to be addressed in future work.
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5. General Discussion

We began this paper by showing howadaptation probabilitiescan be defined as a measure
of structural repetition. Using multinomial logistic regression, we demonstrated that there is a ro-
bust, pervasive effect of parallelism for a variety of noun phrase types. We found this tendency for
structural repetition in two different corpora of written English. We showed that the effect occurs
in a number of contexts: coordinateNPs (Study 1), non-coordinateNPs within the same sentence
(Study 2), andNPs in two adjacent sentences (Study 2). We were also able to show that the par-
allelism effect persists in complex noun phrases (those containing aPP or anSBAR), even if the
preference for short phrases to precede long ones is taken into account. Taken together, the findings
of Studies 1 and 2 strongly suggest that the parallelism effect is an instance of a general process-
ing mechanism, such as syntactic priming (Bock, 1986), rather than specificto coordination, as
suggested by (Frazier et al., 2000). Frazier et al. (2000) base their claim on the failure to find a par-
allelism effect between the subject and the objectNP in the same sentence. This is not sufficient to
argue against a priming explanation for the parallelism effect, as our results for within and between
sentence priming show.

We also observed marked differences in the effect sizes of Study 1 andStudy 2: we found that
the parallelism effect is strongest for coordinate structures, and weaker for non-coordinate structures
within the same sentence and in adjacent sentences. There are a number ofpossible explanations
for this difference. Priming has been argued to be subject to distance-based decay (e.g., Gries,
2005; Szmrecsanyi, 2005; Reitter et al., 2006). This may be a relevant factor as prime and target
are relatively close together in coordination (only separated by one word), while the mean distance
between prime and target is larger for priming in non-coordinate structureswithin the same sentence,
and even larger for priming between sentences.

Previous experimental work has found parallelism effects only in comprehension data. The
present work demonstrates that parallelism effects also occur in production data, replicating the
results of previous corpus studies (Levy, 2002; Cooper & Hale, 2005). This raises the interesting
question of the relationship between the two data types. It has been hypothesized that the human
language processing system is tuned to mirror the probability distributions in its environment, in-
cluding the probabilities of syntactic structures (Mitchell et al., 1996). If thistuning hypothesisis
correct, then the parallelism effect in comprehension data can be explained as an adaptation of the
human parser to the prevalence of parallel structures in its environment (as approximated by corpus
data), as found in the present set of studies.

Note that the results in this paper not only have an impact on theoretical issues regarding
human sentence processing, but also on engineering problems in naturallanguage processing, such
as probabilistic parsing. To avoid sparse data problems, probabilistic parsing models make strong
independence assumptions; in particular, they generally assume that sentences are independent of
each other. This is partly due to the fact it is difficult to parametrize the many possible dependencies
which may occur between adjacent sentences. However, in this paper, we show that structure re-
use is one possible way in which the independence assumption is broken. A simple and principled
approach to handling structure re-use is to use adaptation probabilities forprobabilistic grammar
rules, analogous to cache probabilities used in caching language models (Rosenfeld, Wasserman,
Cai, & Zhu, 1999; Kuhn & Mori, 1990), which is what we proposed in this paper.

The use of adaptation probabilities leads directly to the second contribution ofthis paper,
which is to show that an incremental parser can simulate syntactic parallelism effects in human
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parsing by incorporating a probabilistic account of rule re-use. Frazier et al. (2000) argued that the
best account of the parallelism advantage was a model in which parallelism islimited to particular
structural configurations such as coordination. To test this hypothesis,we explored a probabilistic
variant of Frazier and Clifton’s (2001)copy-α mechanism, along with two more general models
based on within- and between-sentence priming. Although the copy mechanism provided a stronger
parallelism effect when we used it to simulate the patterns in the human reading timedata, the ef-
fect was also successfully simulated by a general within-sentence priming model. On the basis of
Occam’s razor, we therefore argue that it is preferable to assume a simpler and more general mech-
anism, and that the copy mechanism is not needed. We explored also an alternative implementation
of our models which uses Hale’s (2001) surprisal to predict processing difficulty. We found that the
parallelism effect can be captured both by the surprisal implementation and by a more straightfor-
ward implementation that uses the probability of the best parse as a measure ofprocessing difficulty.

All the models we proposed offer a broad-coverage account of humanparsing, not just a
limited model of a hand-selected set of examples. This is in line with recent developments in the
literature on probabilistic models of human language processing, which has seen a shift of focus
away from construction-specific models to broad-coverage models (Crocker & Brants, 2000; Hale,
2001; Pad́o, Keller, & Crocker, 2006; Pad́o, Crocker, & Keller, 2006).

The third and final contribution of the present paper is the development anACT-R-inspired
Decay model of syntactic priming. This model is based on the observation in theliterature that
the strength of the priming effect shows an exponential decay with the temporal distance between
the prime and the target. The Decay model of priming incorporates a decay ofrule probabilities
inspired by ACT-R’s model of procedural memory, and is able to offer a more realistic account of
priming that should be able to cover a wider range of parallelism phenomena.We validated this by
training the Decay model on a different language (German) and testing it ona new data set that
includes sentential coordination rather than NP coordination. We also found that the Copy model in
its current form is not able to account for the German parallelism data.

In the research reported in this paper, we have adopted a simple model based on an unlexical-
ized PCFG. In future research, we intend to explore the consequencesof introducing lexicalization
into the parser. This is particularly interesting from the point of view of psycholinguistic modeling,
because there are well known interactions between lexical repetition and syntactic priming, which
require lexicalization for a proper treatment. Another area for future work is the implementation of a
more cognitively realistic version of our model that predicts reading times directly, e.g., by making
us of ACT-R real-time capabilities. Such a model could then also be applied to reading time data for
domains other than NP parallelism.
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