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Abstract

Work in experimental psycholinguistics has shown that the processingast c
dinate structures is facilitated when the two conjuncts share the same syntactic
structure (Frazier, Munn, & Clifton, 2000). In the present paperavggie that this
parallelism effect is a specific case of the more general phenomengmtaictc
priming—the tendency to repeat recently used syntactic structures. Wetkhb
there is a significant tendency for structural repetition in corpora, asicthis ten-
dency is not limited to syntactic environments involving coordination, though it is
greater in these environments. We present two different implementationsyof a
tactic priming mechanism in a probabilistic parsing model and test their predictions
against experimental data on NP parallelism in English. Based on theds, resu
argue that a general purpose priming mechanism is preferred ovecebmecha-
nism limited to coordination. Finally, we show how notions of activation andyleca
from ACT-R can be incorporated in the model, enabling it to account fat ®afs
experimental data on sentential parallelism in German.
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1. Introduction

Over the last two decades, the psycholinguistic literature has providedlshved experi-
mental evidence fosyntactic primingan effect in which processing facilitation is observed when
syntactic structures are re-used. Most work on syntactic priming hasdmeerned with sentence
production (e.g., Bock, 1986; Pickering & Branigan, 1998). Suchissugpically show that people
prefer to produce sentences using syntactic structures that havlydmeen processed.

There has been less experimental work investigating the effect of signpaicning on lan-
guage comprehension. Work on comprehension priming has shown tllat, certain conditions,
the processing of a target sentence is faster when that target seimelndes a structure repeated
from the prime. Branigan, Pickering, Liversedge, Stewart, and Urla895) showed this effect in
whole-sentence reading times for garden path sentences, while Léldauber, and Swaab (2007)
have more recently shown similar effects using Event Related Potentialg@oMar work using
a picture matching paradigm (Branigan, Pickering, & McLean, 2005)shasvn evidence for the
priming for prepositional phrase attachments.

A phenomenon closely related to syntactic priming in comprehension is thdled+saral-
lelism effecdemonstrated by Frazier et al. (2000): speakers processes cterdstructures more
quickly when the second conjunct repeats the syntactic structure of ghedinjunct. The paral-
lelism preference ilNP coordination can be illustrated using Frazier et al.’s (2000) Experiment 3,
which recorded subjects’ eye-movements while they read sentences)tike (1

QD a. Terry wrote a long novel araishortpoem during her sabbatical.
b. Terry wrote a novel and shortpoem during her sabbatical.

Total reading times for the underlined region were faster in (1-a), wéleoet poenis coordinated
with a syntactically parallel noun phraszlpng novel, compared to (1-b), where it is coordinated
with a syntactically non-parallel phrase.

In this paper, we will contrast two alternative accounts of the paralleli$actefAccording to
one account, the parallelism effect is simply an instance of a pervasitactiz priming mechanism
in human parsing. This priming account predicts that parallelism effectddbe obtainable even
in the absence of syntactic environments involving coordination.

According to the alternative account, the parallelism effect is due to aadized copy mech-
anism which is applied in coordination and related environments. One such nisghetopy«,
proposed by Frazier and Clifton (2001). Unlike priming, this mechanism islygpecialized and
only applies in certain syntactic contexts involving coordination. When thenskconjunct is en-
countered, instead of building new structure, the language processgay £opies the structure of
the first conjunct to provide a template into which the input of the second ohig mapped. Fra-
zier and Clifton (2001) originally intendezbpy+€ to apply in a highly restricted range of contexts,
particularly in cases where the scope of the left conjunct is unambigumasked. An example are
gapping structures, where parallelism effects are well documentetb@@aR002). However, it is
clear that a mechanism likeopy-a could potentially provide an account for parallelism phenom-
ena if allowed to apply to coordination more generally. This is because inallgdaroordination
environment, the linguistic input of the second conjunct matches the copiedwst, while in a
non-parallel case it does not, yielding faster reading times for parallettates. If the copying
account is correct, then we would expect parallelism effects to be ttesttizc coordinate structures
and would not apply in other contexts.
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There is some experimental evidence that bears on the issues outlined abaudition to
testing items involving coordination like (1) above, Frazier et al. (2000) @port an experiment
in which they manipulated the syntactic parallelism of two noun phrases segpésaa verb (as ia
(strange) man noticed a tall womparnlike the coordination case in (1), no parallelism advantage
was observed in this experiment. Taken together, the two experiments apgaor an account in
which parallelism effects are indeed restricted to coordination, as woupitdzcted by a model
based on a copy mechanism. However, the results should be interpretechwiithn, because the
coordination experiment, which showed the parallelism effect (Frazar'e(2000) Experiment 3)
used a very sensitive eye-tracking technique, while the non-coordiratjgeriment, which showed
no such effect (Frazier et al.’s (2000) Experiment 4) used the lewsitise technique of self-paced
reading.

Apel, Knoferle, and Crocker (2007) described two experiments in German, vlaigla sim-
ilar design to the Frazier et al. (2000) experiments summarized above. takéeFet al. (2000),
they found evidence for parallelism when the two relevant noun phrases coordinated (their
Experiment 1), but not when they were subject and object of the sarbgtheir Experiment 2).
However, although both of Apel et al.’s (2007) experiments used eykitrg, their conclusion re-
lies on a cross-experiment comparison. Moreover, the non-coordjaimexts considered by both
Frazier et al. (2000) and Apel et al. (2007) used sentences in whicielvant noun phrases dif-
fered in grammatical function (e.@,(strange) man noticed a tall womgnwhile two coordinated
phrases share the same grammatical function by definition. This may haetedfthe size of the
parallelism effect.

The aim of the present paper is to compare the two accounts outlined adiogeaseries of
corpus studies and computational simulations. The basis for our modelirigssisié probabilistic
parser similar to those proposed by Jurafsky (1996) and CrockeBeartts (2000). We integrate
both the priming account and the copying account of parallelism into thiepansd then evaluate
the predictions of the resulting models against reading time patterns suchsasabtined by
Frazier et al. (2000). Apart from accounting for the parallelism éffear model simulates two
important aspects of human parsing: (i) it is broad-coverage (rathardhly covering specific
experimental items) and (ii) it processes sentences incrementally.

This paper is structured as follows. In Section 2, we provide evidengeafallelism effects
in corpus data. We first explain how we measure parallelism, and themptesecorpus studies
that demonstrate the existence of a parallelism effect in coordinate se#si@nd in non-coordinate
structures, both within and between sentences. These corpus resaltsracial prerequisite for our
modeling effort, as the probabilistic parsing model that we present is tramedrpus data. Such a
model is only able to exhibit a parallelism preference if such a preferexises in its training data,
i.e., the syntactically annotated corpora we explore in Section 2.

In Section 3, we present probabilistic models that are designed to adootim parallelism
effect. We first present a formalization of the priming and copying acsoah parallelism and
integrate them into an incremental probabilistic parser. We then evaluate th&s pgainst reading
time patterns in Frazier et al.’s (2000) parallelism experiments. Based amsaleoation of the role
of distance in priming, we then develop more cognitively plausible parallelismeimnd&ection 4
inspired by Anderson et al.’s (2004) ACT-R framework. This model siagvaluated against the
experimental items of Frazier et al. (2000). To show the generality of theehamioss languages
and syntactic structures, we also test this new model against the expetiitensaof Krferle and
Crocker (2006) which cover parallelism in sentential coordination in Geriée conclude with a
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general discussion in Section 5.

2. Corpus Studies
2.1. Adaptation

Psycholinguistic studies have shown that priming affects both productiock(B986) and
comprehension (Branigan et al., 2005). The importance of compremepsining at the lexical
level has also been noted by the speech recognition community (Kuhn & M@@), who use so-
called caching language models to improve the performance of speechetmnpion software. The
concept of caching language models is quite simple: a cache of recentlyseds is maintained,
and the probability of words in the cache is higher than those outside the.cach

While the performance of caching language models is judged by their suicciesproving
speech recognition accuracy, it is also possible to use an abstractrentmdiagnose their efficacy
more closely. Church (2000) introduces such a diagnostic for lexigalipy: adaptation probabil-
ities. Adaptation probabilities provide a method to separate the general probleriming from a
particular implementation (i.e., caching models). They measure the amount of gtinanoccurs
for a given construction, and therefore provide an upper limit for théop@ance of models such
as caching models.

Adaptation is based upon three concepts. First igptiar, which serves as a baseline. The
prior measures the probability of a word appearing, ignoring the presenabsence of a prime.
Second is theositive adaptatiopwhich is the probability of a word appearing given that it has been
primed. Third is thenegative adaptatiorthe probability of a word appearing given it has not been
primed.

In Church’s case, the prior and adaptation probabilities are definemllaw$. If a corpus is
divided into individual documents, then each document is then split in halfefér to the first half
as the prime (half) and to the second half as the target (h#fifitis a random variable denoting
the appearance of a word in the prime half, ansla random variable denoting the appearance of a
word w in the target half, then we define the prior probabifyior (W) as:

Perior(W) = P(T=w) 1)
= P(1=w|mt=w)P(11= W) 4 P(T = W|TT# W) P(Tt# W)

Intuitively, Prrior (W) is the probability thatv occurs in the target, independently of whether it has
occurred in the prime. As indicated in equation (1), this can be computednmsg the relevant
conditional probabilities: the probability thatoccurs in the target given that it has occurred in the
prime, and the probability thav occurs in the target given that it has not occurred in the prime.
According to the rule of total probability, each conditional probability haseartultiplied by the
independent probability of the conditioning variabR = w) andP(11# w), respectively).

The positive adaptation probabilify, (w) and the negative adaptatiéh (w) can then be
defined as follows:

Pi(w) =P(T=w|Tt=wW) 2

P_ (W) = P(T = W|Tt# W) 3

1our terminology differs from that of Church, who uses ‘history’ to chifse the first half, and ‘test’ to describe the
second. Our terms avoid the ambiguity of the phrase ‘test set’ and ceindild the common usage in the psycholinguistic
literature.
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In other words P, (w) is the conditional probability that the womd occurs in the target, given that
it also occurred in the prime. Converse®, (w) is the probability thatv occurs in the target, given
that it did not occur in the prime.

In the case of lexical priming, Church observes tRat> Pprior > P_. In fact, even in cases
when Prior IS quite small,P, may be higher than.8. Intuitively, a positive adaptation which is
higher than the prior entails that a word is likely to reappear in the targeh dghet it has already
appeared in the prime. In order to obtain corpus evidence for priming,eee to demonstrate
that the adaptation probabilities for syntactic constructions behave similarlyose ttor lexical
items, showing positive adaptati®h greater than the prior. AR must become smaller thdyior
whenevelP, is larger tharPeior, We only report the positive adaptati® and the prioPeyiqr .

2.2. Estimation

There are several methods available for estimating the prior and adaptattmabgities from
corpora. The most straightforward approach is to compute the maximum likeldnmpirical distri-
bution, which can be achieved by simply counting the number of times awoigturs (or fails to
occur) in the prime and target positions in the corpus. However, this apptteas two shortcomings
which preclude us from using it here.

First, the existing literature on priming in corpora (e.g., Gries, 2005; Szmang¢s2005;
Reitter, Moore, & Keller, 2006; Jaeger, 2006a, 2006b; Jaeger &Bkd07) reports that a variety
of factors can influence priming, including the distance between prime aget tére type and genre
of the corpus, and whether prime and target are uttered by the samesptakious work has used
multiple regression methods to study priming in corpora; this approach is garticuseful when
several factors are confounded, as regression makes it possihlantifyg the relative contribution
of each factor.

A second argument against a simple maximum likelihood approach emergasmehgant
to carry out statistical significance tests based on the word counts obtaimedhfe corpus. Such
tests often require that the occurrence of a werds independent of the occurrence of another word
wj. However, this independence assumption is trivially false in our case:otcurs in a certain
context, then we know that; does not occur in that context. This implies tRat = w|rt=w;) and
P(tT = w|rt=w;) are not statistically independent (if andw; are in the same context), therefore
we are not able to apply independent statistical tests to these two probabditige (Underlying
corpus counts).

Both these shortcomings can be overcome by using multinomial logistic regréesasti-
mate prior and adaptation probabilities. In multinomial logistic regressigasponse variablés
defined as a function of a set pffedictor variables The response variable is multinomial, i.e., itis
drawn from a set of discrete categories (in contrast to binary logistiessgpn, where the response
variable can take on only two different values). The predictor variatdgseither be categorical
or continuous. In the case of measuring Church-like lexical adaptatimh, gossible word corre-
sponds to a category, and the response variable describes theenceuof wordw; in the target
position, while the predictor variable describes the occurrence of wpna the prime position. In
the priming casew; = wj, in the non-priming casay; # w;.

A multinomial logistic regression model includes a parameter vettor each predictor
variable. In the case of lexical adaptation, this means that there is a pardgdnéie each word
w; which may occur in the priming position. One of the values of the predictor Marighe value
Wp) serves as the reference category, which is assumed to have a parastiebate of 0. After
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parameter fitting, we have an estimated veﬁder the parameter vector, and the positive adaptation
probability can then be computed according to the following formula:

Pr(t=w)= exp(Xfii)A
" ! 1+ zjexp(XBj)

Here, X is a vector in which thé-th element takes on the value 1rif= w;, and the value 0 oth-
erwise. Note in particular that we can straightforwardly include predicamiables other than the
prime word in our regression model; technically, this corresponds to adding parameters tf
and their corresponding explanatory variableXtanathematically, this amounts to computing the
conditional probabilityP(t = wi|Tt= w;, 0), whereo is an additional predictor variable.

The negative adaptation is estimated in the same way as the positive adapéquridrhis
estimated as follows, based on the definition in equation (1):

(4)

Porior (Wi) = Py (T = wi)P(Tt=w;) 4+ P (T = W) P(TT# W) (5)

WhereP(mt=w;) andP(11# w;) can be estimated directly from the corpus using maximum likeli-
hood estimation, and the positive and negative adaptation terms are estimatgthagegression
coefficients.

Multinomial logistic regression makes it possible to compute prior and adaptatibalpili-
ties while solving both of the problems with maximum likelihood estimation noted abagg, e
can freely include additional predictor variables if we want to determine ttheéeimce of possible
confounding variables on priming. Second, statistical significance testsaa be performed for
each predictor variable in the regression, without requiring indepaedbatween the categories
that a variable can take.

There is one potentially confounding variable in Studies 1 and 2 that we togealy par-
ticular attention to. This is the general tendency of speakers to orderctignphirases such that
short phrases precede long phrases (Hawkins, 1994). Thissiore-long preference, sometimes
known as Behagel’s law, is also attested in corpus data on coordinatiog, (2@02). The short-
before-long preference can potentially amplify the parallelism effectelkample, consider a case
in which the first conjunct consists of a relatively long phrase. HerbdaBel's law would predict
that the second conjunct should also be long (in fact, it should be evgeridman the first). As-
suming that long constituents tend to be generated by a certain specificgespthis would mean
that the two conjuncts would have an above-chance tendency to be parafiricture, and this
tendency could be attributable to Behagel's law alone.

Studies 1 and 2 have the aim of validating our approach, and laying thedyfouour mod-
eling work in Studies 3-5. We will use Church adaptation probabilities estimatad multinomial
regression to investigate parallelism effects within coordination (Studyd patside coordination
(Study 2), both within sentences and between sentences. It is importdravidisat adaptation ef-
fects exist in corpus data before we can build a model that learns théatidaf syntactic rules
from corpus frequencies. Our studies build on previous corpusebasrk which demonstrated par-
allelism in coordination (Levy, 2002; Cooper & Hale, 2005), as well asben-sentence priming
effects. Gries (2005), Szmrecsanyi (2005), Jaeger (2006&b208nd Jaeger and Snider (2007)
investigated priming in corpora for cases of structural choice (e.g., leetwelative object and a
PP object or between active and passive constructions). These reauktsbieen generalized by
Reitter et al. (2006), who showed that arbitrary rules in a corpus caulject to priming.
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2.3. Study 1: Parallelism in Coordination

In this section, we test the hypothesis that coordinated noun phrasesimpus @re more
likely to be structurally parallel than we would expect by chance. We staw®hurch’s adapta-
tion probabilities, as defined in the previous section, can be used to megstaetic parallelism
in coordinate structures. We restrict our study to the constructions ugeddier et al.’s (2000) ex-
periments, all of which involve two coordinatétPs. This ensures that a direct comparison between
our corpus results and the experimental findings is possible.

2.3.1. Method

This study was carried out on the English Penn Treebank (Release®atad in Treebank Il
style; Marcus et al., 1994), a collection of documents which have beeamatad with parse trees
by automatically parsing and then manually correcting the parses. Thistieetamprises multiple
parts drawn from distinct text types. To ensure that our results arknmiteed to a particular genre,
we used two parts of the treebank: the Wall Street Journal (WSJ) sofpuewspaper text and the
Brown corpus of written text balanced across genres. In both casegsed the entire corpus for
our experiments.

In the Penn TreebankiP coordination is annotated using the ride — NP1 CC NP, where
CC represents a coordinator suchasd The application of the adaptation metric introduced in
Section 2.1 to such a rule is straightforward: we pik; as the primatandNP; as the target.
We restrict our investigation to the following syntactic rules:

SBAR An NP with a relative clause, i.eNP — NP SBAR.

PP An NP with aPP modifier, i.e.,NP — NP PP.

N An NP with a single noun, i.e\\P — N.

Det N An NP with a determiner and a noun, i.&lP — Det N.

Det Adj N An NP with a determiner, an adjective, and a noun, N&,— Det Adj N.

Our study focuses oNP — Det Adj N andNP — Det N as these are the rules used in the items of
Frazier et al. (2000)NP — N is a more frequent varianjP — NP PP andNP — NP SBAR were
added as they are the two most commnrules that include non-terminals on the right-hand side.

To count the relative number of occurrences of each prime and teagetye iterate through
each parsed sentences in the corpus. Each time the expatisienNP1 CC NP, occurs in a tree,
we check if one (or both) of theP daughters of this expansion matches one of the five rules listed
above. Each of these five rules constitutes a category of the respmhgeealictor variables in the
multinomial logistic regression (see Section 2.2); we also use an additiongbcatether’ that
comprises all others rules. This category serves as the referengemater the regression.

As noted in Section 2.1, a possible confound for a corpus study of paalles Behagel's
law, which states that there is a preference to order short phrasee baiig ones. We deal with this
confound by including an additional predictor in the multinomial regressianirttlicator variable
o takes the value = 1 if the first conjunct is shorter than the right conjunct, ane- O if this
is not the case. The regression vecXors then augmented to include this indicator variable, and
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an additional parameter is likewise added to the parameter vfctoraccommodate the short-
before-long predictor variable. In addition to the main effect of shoftteelong, we also include
a predictor that represents the interaction between adaption and sfarg-lmng.

The addition of the interaction term makes the computation of the prior and sidagteob-
abilities slightly more complicated. The prior can now be computed according téolioging
formula:

Perior (W) = P(T=w|mt=w,0=0)P(t=w,0=0)+ (6)
P(t=wnt#w,0=0)P(n#w,0=0)+
Pt=wn=wo=1P(m=w,0=1)+
Pt=wn#wo=1)P(M#wao=1)

The positive adaptation probability must likewise include both cases or batote-long and long-
before-short:
P.(t=w) = Pt=wn=w,0=0)P(t=w,0=0)+ (7)
P(t=w|t=w,0=1)P(m=w,0=1)

In addition, we compute two additional probabilities, the first of which is a docases where the
short phrase precedes the long one (which we will refer to as the Bafmote-long prior). This is
the probability of seeing a rule in the second conjunct (regardless if itroet in the first conjunct
or not) in cases where short rules precede long rules:

Pshor(W) = P(T=wm=w0=1)P(m=wo=1)+ ®
P(t=w|mt#w,0o=1P(m#w0=1)

The second probability iB(t = w|t=w,0 = 1), the probability of priming given that the prime is
shorter than the target (i.e5,= 1). This probability, which in the regression directly corresponds
to the coefficient of the interaction between the predictors adaptation ands#fore-long, will be
referred to as the short-before-long adaptation probability.

Based on the parameter estimates of the multinomial logistic regression, we cantptaé
of 14 probability values for each corpus. We report the prior probabélitgd positive adaptation
probability for all rules; as Behagel's Law only confounds the adaptatfooomplex rules, we
report the short-before-long prior and the short-before-long tadiam probabilities only for these
rules (noun phrases of tyg® andSBAR).

Our main hypothesis is that the adaptation probability is higher than the pribabiliy in
a given corpus. A stronger hypothesis is that the short-before-ldagtation probability as defined
above is also higher than the short-before-long prior probability, i.e. ttiegtarallelism preference
holds even in cases that match the preferred phrase order in coordinatture (i.e., the shorter
conjunct precedes the longer one). To test these hypotheses, foepgf tests which compare
the log-likelihood difference between a model that includes the relevauliqgtor and a model
without that predictor. We report whether the following predictors areiigant: the main effect
of adaptation (corresponding @t = w|Tt= w)), the main effect of short-before-long, and the
interaction of adaptation and short-before-long (correspondiffte= w|rt=w,0 = 1)).
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Figure 1 Prior, adaptation, and short-before-long prior and aakémt for coordinate structures in the Brown
corpus

Predictor x?> df Probability
Adaptation 4055 25 p<0.0001
Short-before-long 2726 5 p < 0.0001
Interaction 201 25 p<0.0001

Table 1: Summary of the log-likelihoog? statistics for the predictors in the multinomial regressfor
coordinate structures in the Brown corpus
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Figure 2 Prior, adaptation, and short-before-long prior and aatémt for coordinate structures in the WSJ
corpus
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Predictor x? df Probability
Adaptation 1686 25 p < 0.0001
Short-before-long 1002 5 p < 0.0001
Interaction 146 25 p<0.0001

Table 2: Summary of the log-likelihoog? statistics for the predictors in the multinomial regressfor
coordinate structures in the WSJ corpus

2.3.2. Results

The probabilities computed using multinomial regression are shown in FigoréHef Brown
corpus and Figure 2 for the Wall Street Journal corpus. The redithe gignificance tests are given
in Table 1 for Brown and in Table 2 for WSJ. Each figure shows the probability (Prior) and
the adaptation probability (Adapt) for all five constructions: single commamri{), determiner
and noun Det N), determiner, adjective, and noubef Adj N), NP with PP modifier (PP), NP with
relative clause$BAR). In addition, the figures show the short-before-long prior probabiftyqft
Prior) and short-before-long adaptation probability (Short AdaptpPfoandSBAR categories.

For both corpora, we observe a strong adaptation effect: the adappatibability is consis-
tently higher than the prior probability across all five rules. According tdaldikelinood? tests
(see Tables 1 and 2), there was a highly significant effect of adaptathooth corpora.

Turning to the short-before-long adaptation probabilities, we note thae thise are con-
sistently higher than the short-before-long prior probabilities in both qarfar the rulesPP and
SBAR. Short-before-long probabilities cannot be computed for the mileBet N, andDet Adj N,
as they are of fixed length (one, two, and three words respectivalg)ialthe fact that they only
contain pre-terminals on the right-hand side. The log-likelihgddests also show a significant
interaction of adaptation and short-before-long, consistent with thenaigm that there is more
adaptation in the short-before-long case (see Figures 1 and FigurEse2g is also a main effect
of short-before-long, which confirms that there is a short-beforg-fmeference, but this is not the
focus of the present study.

2.3.3. Discussion

The main conclusion we draw is that the parallelism effect in corpora mithesne found
experimentally by Frazier et al. (2000), if we assume higher probabilitees@related with easier
human processing. This conclusion is important, as the experiments of ireazike (2000) only
provided evidence for parallelism @omprehensiodata. Corpus data, however, areductiondata,
which means that our findings provide an important generalization of Fraized.'s experimental
findings. Furthermore, we were able to show that the parallelism effedrpoca persists even if
the preference for short phrases to precede long ones is taking rdarsc

2.4. Study 2: Parallelism in Non-coordinated Structures

The results in the previous section showed that the parallelism effed yerimentally by
Frazier et al. (2000) is also present in corpus data. As discussedtioisg, there are two possible
explanation for the effect. one in terms of a construction-specific copyieghanism, and one in
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Figure 3 Prior, adaptation, and short-before-long prior and aatégm for within-sentence priming in the
Brown corpus

Predictor X2 df  Probability
Adaptation 13782 25 p< 0.0001
Short-before-long 239732 5p < 0.0001
Interaction 49226 25 p < 0.0001

Table 3: Summary of the log-likelihoog? statistics for the predictors in the multinomial regressfor
within-sentence priming in the Brown corpus
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Figure 4 Prior, adaptation, and short-before-long short-befores prior and adaptation for within-sentence
priming in the WSJ corpus
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Predictor X2 df  Probability
Adaptation 37612 25 p< 0.0001
Short-before-long 447652 5p < 0.0001
Interaction 64112 25 p< 0.0001

Table 4: Summary of the log-likelihoog? statistics for the predictors in the multinomial regressfor
within-sentence priming in the WSJ corpus
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Figure 5 Prior, adaptation, and short-before-long prior and aatég for between-sentence priming in the
Brown corpus

Predictor X2 df  Probability
Adaptation 21952 25 p< 0.0001
Short-before-long 699252 5p < 0.0001
Interaction 55943 25 p < 0.0001

Table 5: Summary of the log-likelihoog? statistics for the predictors in the multinomial regressfor
between-sentence priming in the Brown corpus

Predictor X2 df  Probability
Adaptation 49657 25 p< 0.0001
Short-before-long 918087 5p < 0.0001
Interaction 86643 25 p< 0.0001

Table 6: Summary of the log-likelihoog? statistics for the predictors in the multinomial regressfor
between-sentence priming in the WSJ corpus
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Figure 6. Prior, adaptation, and short-before-long prior and aalég for between-sentence priming in the
WSJ corpus

terms of a generalized syntactic priming effect. In the first case, we prawgit the parallelism

effect is restricted to coordinate structures, while in the second casexpext that parallelism
(a) is independent of coordination, i.e., also applies to non-coordinatestes, and (b) occurs in
the wider discourse, i.e., not only within sentences but also between sestidine purpose of the
present corpus study is to test these two predictions.

2.4.1. Method

The method used was the same as in Study 1 (see Section 2.3.1), with the extigutio
the prime and the target are no longer restricted to being the first anddseoojunct in a co-
ordinate structure. We investigated two levels of granulasitithin-sentence parallelisroccurs
when the primeNP and the targeNP appear within the same sentence, but stand in an arbitrary
structural relationship. Coordinat¢Ps were excluded from this analysis, so as to make sure that
any parallelism effects are not confounded by coordination parallelssestablished in Study 1.
For between-sentence parallelisthe primeNP occurs in the sentence immediately preceding the
sentence containing the targep.

The data for both types of parallelism analysis was gathered as followS\Rin the corpus
was considered a targstP if it was preceded by anoth&P in the relevant context (for within-
sentence parallelism, the context was the same sentence, for betweeantasgarllelism, it was
the preceding sentence). If there was more than one possible pifiibecause the target was
preceded by more than o in the context), then the closesP was used as the prime. In the
case of ties, the dominatingP was chosen to accurately account f&r andSBAR priming (i.e. in
in the case of a noun with a relative clause, the emtirewill be chosen over the object of the
relative clause). ThRP pairs gathered this way could either constitute positive examples Kieth
instantiate the same rule) or negative example (they do not instantiate the $amAasiuin Study 1,
the NPs were grouped into six categories: the five NP rules listed in Sectidn arfl ‘other’ for
all other NP rules. A multinomial logistic regression model was then fit on thissita
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2.4.2. Results

The results for the within-sentence analysis for non-coordinate stescaue graphed in Fig-
ures 3 and 4 for the Brown and WSJ corpus, respectively. The resutte statistical tests are
given in Tables 3 and 4. We find that there is a parallelism effect in botbocaracrosfP types.
The adaptation probabilities are higher than the prior probabilities, exoeftvb casesSBAR
rules in Brown, andPP rules in WSJ. However, even in these cases, the short-before-lamg ad
tation is higher than the short-before-long prior, which indicates that tiseaeparallelism effect
for structures in which the short phrase precedes the long one. Furdhe, the log-likelihood(?
tests show significant effects of adaptation for both corpora, as weigagficant main effects of
short-before-long, and a significant interaction of adaptation and-blefore-long.

A parallelism effect was also found in the between-sentence analysikpas by Figures 5
and 6, with the corresponding statistical tests summarized in Tables 5 andb@thiworpora and
for all structures, we found that the adaptation probability was highertti@prior probability. In
addition, the short-before-long adaptation was higher than the shantebleing prior, confirming
the finding that the parallelism effect persists when the short-befogepoaference for phrases
is taken into account. (Recall that only t88AR and PP noun phrases can differ in length, so
short-before-long probabilities are only available for these rule types.)

2.4.3. Discussion

This experiment demonstrated that the parallelism effect is not restrictestdinate struc-
tures. Rather, we found that it holds across the boardi\fs that occur in the same sentence (and
are not part of a coordinate structure) as well asNBs that occur in adjacent sentences. Just as
for coordination, we found that this effect persists if we only considerspof NPs that respect
the short-before-long preference. However, this study also indidatadhe parallelism effect is
weaker in within-sentence and between-sentence configurations amhtpan coordination: The
differences between the prior probabilities and the adaptation probabilitesiarkedly smaller
than those uncovered for parallelism in coordinate structure. (Note ihpatds 1 and 2 range from
0 to 1 on the x-axis, while Figures 3—6 range from 0 1890)

The fact that parallelism is a pervasive phenomenon, rather than beingdlitnitaordinate
structures, is compatible with the claim that it is an instance of a general sigrieming mecha-
nism, which has been an established feature of accounts of the humamcsgmteduction system
for a while (e.g., Bock, 1986). This runs counter to claims by Frazier ef28l00), who argue
that parallelism only occurs in coordinate structures. (It is important toibeaind, however, that
Frazier et al. only make explicit claims about comprehension, not aboduption.)

The question of the relationship between comprehension and productersdm interest-
ing one. One way of looking at a comprehension-based priming mechanigrberia terms of a
more general sensitivity of comprehenders towards distributional inflammaAccording to such a
hypothesis, processing should easier if the current input is more pabtiiagiven previous expe-
rience (Reali & Christiansen, 2007). The corpus studies descrilredalnel in previous work have
shown that similar structures do tend to appear near to each other mordtaftemwould be ex-
pected by chance. If comprehenders are sensitive to this fact, therotlits lme the basis for the
priming effect. This is an attractive hypothesis, as it requires no additrmeahanism other than
prediction, and provides a very general explanation that is potentiallytalbieify parallelism and
priming effects with experience-based sentence processing in geaseaalyocated, for instance, by
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constraint-based lexicalist models (MacDonald, Pearlmutter, & Seidernt29dg) or by the tuning
hypothesis (Mitchell, Cuetos, Corley, & Brysbaert, 1996). The proistib model we will propose
in the remainder of this paper is one possible instantiation of such an expefi@sed approach.

3. Modeling Studies
3.1. Priming Models

In Section 2, we provided corpus evidence for syntactic parallelismrgingalevels of gran-
ularity. Focusing orNP rules, we found the parallelism effect in coordinate structures, butialso
non-coordinate structures, and between adjacent sentences.congse results form an important
basis for the modeling studies to be presented in the rest of this paper. @atingoapproach uses
a probabilistic parser, which obtains probabilities from corpus data.eftwer, we first needed to
ascertain that the corpus data includes evidence for parallelism. If treeseavparallelism in the
training data of our model, it would be unlikely that the model would be able towatdfor the
parallelism effect.

Having verified that parallelism is present in the corpus data, in this secgomilvpropose
a set of models designed to capture the priming hypothesis and the cophésigsof parallelism,
respectively. To keep the models as simple as possible, each formulatieeddiaan unlexicalized
probabilistic context-free grammar (PCFG), which also serves as a bagfefirvaluating more
sophisticated models. In this section, we describe the baseline, the copy, mmudi¢he priming
model in turn. We will also discuss the design of the probabilistic parsertosadluate the models.

3.1.1. Baseline Model

PCFGs serve as a suitable baseline for our modeling efforts as they Inawveteer of com-
pelling and well-understood properties. For instance, PCFGs make alplistic independence
assumption which closely corresponds to the context-free assumptidnri@aaised in a parse is
conditionally independent of other rules, given its parent. This indegrselassumption makes it
relatively simple to estimate the probability of context-free rules. The probabfligyruleN — C is
estimated as:
c¢(N— Q)

c(N)

Where the functiore(-) counts the number of times a rule or the left-hand side of a rule occurs in a
training corpus.

P(IN) = @)

3.1.2. Copy Model

The first model we introduce is a probabilistic variant of Frazier and Clt(2001) copying
mechanism: it models parallelism only in coordination. This is achieved by asgtinaitthe default
operation upon observing a coordinator (assumed to be anything mapkedhua CC tag in the
corpus, e.g.and) is to copy the full subtree of the preceding coordinate sister. The cgygaration
is depicted in Figure 7: upon reading thed the parser attempts to copy the subtreesfoiovelto
the secondNP a book

Obviously, copying has an impact on how the parser works (see Secfidh f8r details).
However, in a probabilistic setting, our primary interest is to model the cogyatipn by alter-
ing probabilities compared to a standard PCFG. Intuitively, the charactesistitesire is a higher
probability when the conjuncts are identical. More formallyRiteg(t) is the probability of a tree
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NP
e
NP CcC

Terry wrote a novel and a book

NP
el e
NP CC NP

Terry wrote a novel and a bool

Figure 7. The Copy Model copies entire subtrees upon observing alewaior

t according to a standard PCFG aRghpy(t) is the probability of copying the treg then if two
the subtrees; andt; are parallel, we can say thBgopy(t2) > Prcra(t2). For simplicity’s sake, we
assume thalcopy(t) is a parameter which can be estimated from the training corpus.

A naive probability assignment would decide between copying with probalbiity(t>)
or analyzing the subtree rule-by-rule with the probability— Pcopy(t2)) - Prcra(t2). However, the
PCFG distribution assigns some probability to all trees, including a tree whidjuisadent tot,
‘by chance’. The probability thay andt, are equal ‘by chance’ iBrcra(t1). We must therefore
properly account for the probability of these chance derivations. iBhi®ne by formalizing the
notion that identical subtrees could be due to either a copying operation ardmce, giving the
following probability for identical trees:

Pcopy(t2) + Prcra(ty) (10)

Similarly, the probability of a non-identical tree is:

1—Pocra(t1) — Pcopy
1—Pecro(ty) Prora(tz) ()

This accounts for both a copy mismatch and a PCFG derivation mismatch,samdshe probabil-
ities still sum to one. These definitions for the probabilities of parallel andpawallel coordinate
sisters therefore form the basis of the Copy model.

Estimation We saw in Section 2.3 that the parallelism effect can be observed incdgta.
We make use of this fact to estimate the non-PCFG parameter of the Copy M@(Ihe PCFG
parameters are estimated in the same way as for a standard PCFG, as dxqdtave). While we
cannot observe copying directly because of the ‘chance’ derivatiae can use Equations (10)
and (11) above to derive a likelihood equation, which can then be maximigad a numerical
method. A common approach to numerical optimization is the gradient ascenittaig@Press,
Teukolsky, Vetterling, & Flannery, 1988), which requires a gradiétiie likelihood (i.e., the partial
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derivative of the likelihood with respect Bqpy). If we letCigent be the number of trees in the corpus
which are identical, and if counts through the non-identical trees (@pds the first conjunct of the
j-th non-identical tree in the corpus), then the gradient of the log-likelitempdation (with respect
to Pcopy) is:

_ Cident 1—Pecral(tj,)
I:’Copy Z 1- IDCopy_ PPCFG(tjl)

(12)

This equation is then fed to the gradient ascent algorithm, producing an Esf?@ag,which max-
imizes the likelihood of the training corpus. This approach ensures thabmenarameteﬁc(,py
is set to the optimal value, i.e., the value that results in the best fit with the traiatag @hd thus
maximizes our chance of correctly accounting for the parallelism effect.

3.1.3. Between Model

While the Copy model limits itself to parallelism in coordination, the next two models sim-
ulate structural priming in general. Both are similar in design, and are basadsonple insight:
we can condition a PCFG rule expansion on whether the rule occurredria peevious context.
If Primeis a binary-valued random variable denoting if a rule occurred in the xgriteen we can
define an adaptation probability for PCFG rules as:

c(N — ¢,Prime)
c(N,Prime)

P(C|N,Prime) = (13)
This is an instantiation of Church’s (2000) adaptation probability, used im#as fashion as in
our corpus studies in Section 2. Our aim here is not to show that certaordaare significant
predictors; rather, we want to estimate the parameters of a model that sinthlatparallelism
effect by incrementally predicting sentence probabilities. Thereforikeum the corpus studies,
we do not need to carry out hypothesis testing and we can simply use theaainglistribution to
estimate our parameters, rather than relying on multinomial logistic regression.

For our first model, the context is the previous sentence. Thus, the maddbe said to
capture the degree to which rule use is primed between sentences. Véédndniefer to this as the
Between model. Each rule acts once as a target (i.e., the event of inteisti@e as a prime.

3.1.4. Within Model

Just as the Between model conditions on rules from the previous sentkad#ithin sen-
tence model conditions on rules from earlier in the current sentench.rikecacts once as a target,
and possibly several times as a prime (for each subsequent rule in teassn A rule is consid-
ered ‘used’ once the parser passes the word on the leftmost cortie nfle. Because the Within
model is finer grained than the Between model, it should be able to capturartiielfism effect in
coordination. In other words, this model could explain parallelism in coattin as an instance of
a more general priming effect.

3.1.5. Parser

Reading time experiments, including the parallelism studies of Frazier et BDY\20easure
the time taken to read sentences on a word-by-word basis. Slower readirggaimassumed to
indicate processing difficulty, and faster reading times (as is the case wilegbatructures) are
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assumed to indicate processing ease, and the location of the effect (wdnidtor words it occurs
on) can be used to draw conclusions about the nature of the difficulty.

As our main aim is to build a psycholinguistic model of structural repetition, the mmmsor-
tant feature of the parsing model is to build structures incrementally, i.e., @rdby-word basis.
In order to achieve incrementality, we need a parser which has the prefienty, i.e., it is able to
assign probabilities to arbitrary left-most substrings of the input string.

We use an Earley-style probabilistic parser, which has these propamiesugputs the most
probable parses (Stolcke, 1995). Furthermore, we make a number dficatidns to the gram-
mar to speed up parsing time. The treebank trees contain annotations ffumngtigal functions
(i.e., subject, object, different types of modifier) and co-indexed emptgsidenoting long-distance
dependencies, both of which we removed.

The Earley algorithm requires a modification to support the Copy model. We ingpited
a copying mechanism that activates any time the parser comes act@stag in the input string,
indicating a coordinate structure, as shown in Figure 7. Before copthiogigh, the parser looks
ahead to check if the part-of-speech tags afterd@eare equivalent to those inside first conjunct.
In the example in Figure 7, the copy operation succeeds because théttagses ‘a book’ and ‘a
novel’ are bothDet N.

Mathematically, the copying operation is guaranteed to return the most peopaitse be-
cause an incremental parser is guaranteed to know the most likely palsefwét conjunct by the
time it reaches the coordinator.

The Baseline and Within models also require a change to the parser. Infartibey require
a cache or history of recently used rules. This raises a dilemma: wheagasing error occurs,
the accuracy of the contextual history is compromised. However, theimg@al items used were
simple enough that no parsing errors occurred. Thus, it was alwasslge to fill the cache using
rules from the best incremental parse sc’far.

3.2. Study 3: Modeling Parallelism Experiments

The purpose of this study is to evaluate the models described in the pregiisndy using
them to simulate the results of a reading time experiment on syntactic parallelismilMéstthe
hypothesis that our models can correctly predict the pattern of resulid fauhe experiment study.
We will restrict ourselves to evaluating the qualitative pattern of resultserdtian modeling the
reading times directly.

Frazier et al. (2000) reported a series of experiments that examined rdi&efsm prefer-
ence in reading. In their Experiment 3, they monitored subjects’ eye-mausmile they read
sentences like (2):

(2) a. Terrywrote along novel aralshortpoem during her sabbatical.
b. Terry wrote a novel and shortpoem during her sabbatical.

They found that total reading times were faster on the phaashort poenin (2-a), where the
coordinated noun phrases are parallel in structure, compared witha)) {@ere they are not.

2|n unrestricted text, where parsing errors are more common, alteensttiategies are required. One possibility is to
use an accurate lexicalized parser. A second possibility arises if ariébcan suggest the correct parse in advance: then
the cache may be filled with the correct rules suggested by the oracle.
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The probabilistic models presented here do not directly make predictions taival reading
times as reported by Frazier et al.. Thereforbnking hypothesiss required to link the predictions
of the model (e.g., in the form of probabilities) to experimentally observedwieh(e.g., in the form
of processing difficulty). The literature on probabilistic modeling containsialyer of different
linking hypotheses. For example, one possibility is to use an incrementairpeith beam search
(e.g., ann-best approach). Processing difficulty is predicted at points in the stpag where the
current best parse is replaced by an alternative derivation, amtemgguathing occurs when the
ultimately correct parse has dropped out of the beam (Jurafsky,; T9®@ker & Brants, 2000).
However, this approach is only suited to ambiguous structures.

An alternative is to keep track of all derivations, and predict difficulty gréhis a change
in the probability distributions computed by the parser. One way of condé&ptgathis is Hale's
(2001) notion of surprisal. Intuitively, surprisal measures the changebability mass as structural
predictions are disconfirmed when a new word is processed. If the wesvdisconfirms predictions
with a large probability mass (high surprisal), then high processing compliexisedicted, corre-
sponding to increased processing difficulty. If the new word only diigos predictions with a low
probability mass (low surprisal), then we expect low processing complexityeduced processing
difficulty. Technically, the surprisefl at input wordwy corresponds to the difference between the
logarithm of the prefix probabilities of wond 1 andwy (for a detailed derivation, see Levy, 2008):

S =logP(wy - --wy) —logP(ws - - - Wk_1) (14)

The standard definition of surprisal given in Equation (14) is usefuhfeestigating word-by-word
reading time effects. In the present parallelism studies, however, virtarested in capturing read-
ing time differences in regions containing several words. Therefoeeimivoduce a more general
notion of surprisal computed over amword region spanning fromv, 1 10 Wi m1:

Sc.kym = l0gP(W1 - - - Wi, m) — l0gP(Wy - - - Wi 1) (15)

Subsequent uses of ‘surprisal’ will refer to this region-based gajpquantity, and the term ‘word
surprisal’ will be reserved for the traditional word-by-word measBm@th word surprisal and region
surprisal have the useful property that they can be easily computedtfre prefix probabilities
returned by our parser.

In addition to surprisal, we also compute a simpler metric: we calculate the plibbab
the best parse of the whole sentence (Stolcke, 1995). Low probabilidesaumed to correspond
to high processing difficulty, and high probabilities predict low processiifficulty. As we use
log-transformed sentence probabilities, this metric hypothesizes a log-lielegionship between
model probability and processing difficulty.

3.2.1. Method

The item set we used for evaluation was adapted from that of Frazidr €he original
two relevant conditions of their experiment (see (2-a) and (2-b)) rdiffderms of length. This
results in a confound in the PCFG-based framework, because longnses tend to result in
lower probabilities (as the parses tend to involve more rules). To contrelfth length differences,
we adapted the materials by adding two extra conditions in which the relation dresyatactic
parallelism and length was reversed. This resulted in the following fouditions:
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Model para: (3-a) non-para: (3-b) non-para: (3-¢c) parad)3-(3-a)-(3-b) (3-c)}-(3-d)

Baseline —0.34 —0.48 —0.62 —-0.74 014 012
Within —-0.30 —-0.51 —0.53 —-0.30 020 —-0.20
Copy —0.52 —-0.83 —0.27 -0.31 032 004

Table 7: Mean log surprisal values for items based on Fragial. (2000)

(3) a. DetAdjNandDet Adj N (parallel)
Terry wrote a long novel andshortpoem during her sabbatical.
b. DetN andDet Adj N (non-parallel)
Terry wrote a novel and shortpoem during her sabbatical.
c. Det Adj N andDet N (non-parallel)
Terry wrote a long novel andpoem during her sabbatical.
d. DetN andDet N (parallel)
Terry wrote a novel and poem during her sabbatical.

In order to account for Frazier et al.’s parallelism effect a probahilieodel should predict a greater
difference in probability between (3-a) and (3-b) than between (3wd)&-d) (i.e., for the reading
times holds: (3-a)(3-b) > (3-c)—(3-d)). This effect will not be confounded with length, because
the relation between length and parallelism is reversed between (31@)a(®t (3-c), (3-d). In order
to obtain a more extensive evaluation set for our models, we added eightéé¢nesoriginal Frazier
et al. materials, resulting in a new set of 24 items similar to*(3).

The models we evaluated were the Baseline, the Within and the Copy modeledtesn
described in Section 3.1. We tested these three PCFG-based models aexakkBhental sentences
across four conditions. Each sentence was input as a sequenceext gart-of-speech tags, and
the surprisal of the sentence as well as the probability of the best passeomputed.

Note that we do not attempt to predict reading time data directly. Rather, ouslmpotlic-
tions are evaluated against reading times averaged over experimendiiatn This means that
we predict qualitative patterns in the data, rather than obtaining a quantita¢izeure of model fit,
such aR?. Qualitative evaluation is standard practice in the psycholinguistic modelingliterat
is also important to note that reading times are contaminated by non-syntatwics fagch as word
length and word frequency (Rayner, 1998) that parsing models aes@ned to account for.

3.2.2. Results and Discussion

Table 7 shows the mean log surprisal values estimated by the models for tleef@unmental
conditions, along with the differences between parallel and non-pacaltelitions. Table 8 presents
the mean log probabilities of the best parse in the same way.

3To ensure the new materials and conditions did not alter the parallelisnt,affecarried out a preliminary eye-
tracking study based on an identical design to the modeling study (se@i{B)B6 participants. The interaction predicted
by parallelism ((3-a) (3-b) > (3-¢)—(3-d)) was obtained in probability of regression from the region immelyidiod-
lowing the second conjunctigring her sabbaticgland also in second-pass reading times on a region consistewgdof
followed by the second conjunct (e.gnd a short poem
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Model para: (3-a) non-para: (3-b) non-para: (3-¢c) parad)3-(3-a)-(3-b) (3-c)}-(3-d)

Baseline —3347 —-32.37 —-32.37 —-3127 —1.10 —-1.10
Within —33.28 —3167 —31.70 —2992 —-1.61 —-1.78
Copy —-16.18 —27.22 —2691 —15.87 1104 —-11.04

Table 8: Mean log probability values for the best parse famis based on Frazier et al. (2000)

The results indicate that both the Within and the Copy model predict a paralketigamtage.
We used a Wilcoxon signed rank test to establish if the difference in sakpnsl probability values
were statistically different for the parallel and the non-parallel conditiars, we compared the
values for (3-a)-(3-b) with those for (3-c)(3-d) In the surprisal case, significant results were
obtained for both the Within modeN(= 24, Z = 2.55, p < .01, one-tailed) and the Copy model
(N =24,Z =387, p< .001, one-tailed). Using the probability of the best parse, a statistically
significant difference was again found for both the Withih=€ 24,Z = 1.67, p < .05, one-tailed)
and the Copy modeN = 24,Z = 4.27, p < .001, one-tailed).

The qualitative pattern of results is therefore the same for both models: then\&iid the
Copy model both predict that parallel structures are easier to procasstim-parallel ones. How-
ever, there are quantitative differences between the surprisal anoetiigoarse implementations
of the models. In the surprisal case, the parallelism effect for the Withiretriedarger than the
parallelism effect for the Copy model. This difference is significaht 24, Z = 2.93, p < .01,
one-tailed). In the case of the best-parse implementation, we observepibsiteppattern: the Copy
model predicts a significantly larger parallelism advantage than the Within rildeeR4,Z = 4.27,

p < .001, one-tailed).

The Baseline model was not evaluated statistically, because by definitiedit{sra constant
value for (3-a)}-(3-b) and (3-c)-(3-d) across all items (there are small differences due to floating
point underflow). This is simply a consequence of the PCFG indepeadessumption, coupled
with fact that the four conditions of each experimental item differ only in tbeuarences of two
NP rules.

Overall, the results show that the approach taken here can be sudigesgplied to model
experimental data. Moreover, the effect is robust to parameter chawggound a significant par-
allelism effect for both the Within and the Copy model, in both the surprisalthadest-parse
implementation. It is perhaps not surprising that the Copy model showsligiam advantage for
the Frazier et al. (2000) items, as this model was explicitly designed to mteteturally parallel
conjuncts. The more interesting result is the parallelism effect we fourtdddNithin model, which
shows that such an effect can arise from a more general probabilistioyg mechanism. We also
found that the surprisal implementation of the Within model predicts a largatglsm effect than
the best-parse implementation (relative to the Copy model, see Tables 7 ainis8pdicates that
using all available parses (as in the surprisal case) amplifies the effeghtactic repetition, per-
haps because it takes into account repetition effects in all possible 8gistagctures that the parser

4The Wilcoxon signed rank test can be thought of as a non-parametsiomeo the paired-test for repeated mea-
surements on a single sample. The test was used because it doeguiretsgong assumptions about the distribution of
the log probabilities.
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3 42_Hilda noticed a strange man and a talll woman when

-3.44]-
-3.46—
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Figure 8 The log probability of the rul&lP — Det Adj N while reading a sentence, according to the Decay
model. The probability of a rule changes gradually whilediag: a small spike upon successfully detecting
a use, a slow decay otherwise

considers, rather than only in the most probable structure (as in thedrsstimplementation).

In spite of this difference in effect size, we can conclude, howevat libst-parse probabili-
ties are a good approximation of surprisal values for the sentencesaomgderation, while being
much simpler to compute. We therefore focus on best-parse probabilititssfoemainder of the
paper.

4. Modeling Priming and Decay
4.1. A Model of Priming inspired by ACT-R

The Within and Between priming models introduced in Sections 2 and 3 make the@smn
that priming is based upon a binary decision: a target item is either primedt.oMooeover, the
model ‘forgets’ what was primed once it finishes processing the taeggom, i.e., no learning
occurs. As we saw in Section 3.2, these modeling assumptions were stffcigrodel a set of
standard experimental data. However, Section 2 showed that the pamabéiést applies to a range
of different levels of granularity. Using a single binary decision makes ibissfble to build a model
which can simultaneously account for priming at multiple levels of granulantyhis section, we
introduce the Decay model, which is able to account for priming without makiraglaitrary choice
about the size of the priming region.

The structure of this model is inspired by two observations. First, we fauection 2 that
priming effects were smaller as the size of the priming region increased @omrdinate struc-
tures to arbitrary structures within sentences, to arbitrary structuresebataentences). Second,
a number of authors (e.g., Gries, 2005; Szmrecsanyi, 2005; Reitter 20@6) found in corpus
studies that the strength of priming decays over time (but not Jaegerb 20@bJaeger & Snider,
2007, who controlled for speaker differences). Intuitively, thesedff@cts are related: by selecting
a larger priming region, we effectively increase the time between the oh#ied prime and onset
of the target. Therefore, by accounting for decay effects, it may keiple to remove the arbitrary
choice of the size of the priming region from our model. Given that we asaramg that prim-
ing is due to a general cognitive mechanism, it is a logical next step to moday @dfects using
a general, integrated cognitive architecture. We will therefore build orcets from the ACT-R
framework, which has been successfully used to account for a widge raf experimental data on
human cognition (Anderson, 1983; Anderson et al., 2004).
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The ACT-R system has two main elements: a planner and a model of memory plhaes
a cost on accesses to declarative memory (where declarative faotsallésd ‘chunks’, are stored)
and on procedural memory (which contains information on how to carrplamining actions). The
Decay model uses the ACT-R memory system to store grammar rules but henetfie planner,
instead continuing to use the incremental Earley parser of previousieqrgs.

Following earlier work on parsing with ACT-R (Lewis & Vasishth, 2005), agsume that
grammar rules are stored in procedural memory. Lewis and Vasishth Y2006 commit to the
ACT-R architecture, implementing their incremental parser in the ACT-R plgnsystem and
therefore storing partially constructed parses in declarative memotgadswe will assume that
the Decay model uses the same underlying chart parser presentediamSet.5 instead of a plan-
ning system. This means we make no particular claims about the memory cosés$iag partially
constructed parses.

A goal of the full ACT-R architecture is to model the time course of cognitiebavior.
Our restricted ACT-R-inspired simulation, though, is limited to modelingpfmdability of certain
memory accesses, and, via our linking hypothesis, we only make qualitagigicions about pro-
cessing difficulty. This restriction is motivated by the desire to maintain the lyiigarchitecture
and approach developed for the Within and Copy models, which wasssiattg evaluated in the
previous section.

In ACT-R, the probability of memory access depends upon recencyniaficon both for
declarative chunks, and, following the work of Lovett (1998), favgarction rules. The probability
of a production rule (or more specifically, the probability of successfudlylyeing a production rule)
depends on the number of past successes and failures of that nabét (1998) argues that the times
of these successes and failures should be taken into account. FoOE@tRAnspired Decay model,
a ‘'success’ will be a successful application of a Mle- ¢, and a ‘failure’ will be an application of
any other rule with the same left-hand sieAs we will see below, this choice of success or failure
makes the Decay model a simple generalization of a PCFG.

Successes are counted in a similar manner to primed rules in the Between nitedelaeh
word, we compute the most probable parse, and compute the set of ratkénuhis parse. Any
new rules (compared to the set from the previous word) is consideresldshccess at this wofd.

ACT-R assumes that the probability of declarative chunks is based upwrattivation, and
that this activation directly influences the time taken to retrieve chunks frogitierm memory into
buffers, where they can be acted upon. There is no such directricéuaf the probability of success
on the time to retrieve or act on a production rule. However, there is a deéadirect influence
on time: if the rule required for producing a parse has a high probabilityexipected number of
incorrect rules attempted will be low, leading to the prediction of lower praiogsdifficulty; on
the other hand, if the required rule has a low probability, the expected ruohitiecorrect rules
attempted will be high, leading to a prediction of high processing difficulty. iBm® different than
the intuition behind the linking hypothesis of Section 3.2, where we assumebbiharobability
(or high surprisal) corresponds to high processing difficult. The itpwd the Decay model is that
the time sensitivity of production rules now affects the calculated probabilities.

5This assumption is reasonable on our low-memory load items, but maygtbeable for parsing high-memory load
constructions such as object relative clauses.

6)f a structure is ambiguous and requires reanalysis, we make the pssorhat the initial incorrect analysis acts as
a prime. However, because the items of the parallelism experiment arehiguous, this assumption has no effect for
our data set.
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4.1.1. Parametrizing the Model

Recall that in a probabilistic context-free grammar the probability of a gramotaN— ¢
is estimated as follows:
c(N—1Q)

PaIN) =~

(16)

As before, the functior(-) counts the number of times the event occurs. The Lovett model postu-
lates that the probability of a certain production rule being picked is:

FA’ — ZieSuccessetsTd (17)
ZieSuccesse%d + ZjeFailurestJd

Here,d is the decay constarffuccesseis the set of successful rule applicatioRajluresis the set
of unsuccessful rule applications, an time at which rule applicationoccurred. As described be-
low, this time parameter can estimated from a corpus. Following convention inGReRAiterature
(see Lewis & Vasishth, 2005), we sito 0.5.

As noted above, the model uses a notion of success and failure appedpr use with a
probabilistic context-free grammar: a success is an application of &rwled, and a failure is all
other rule applications with the same left-hand $\dd he standard ACT-R model defines successes
and failures in terms of a higher-level task. In our case, the task is firldengest way to rewrite an
N to get a correct parse. Using this choice for success and failureamveewrite the probability of
arule as:

. d
|5(Z|N) o Z|eSuccesset$ (18)

- d d
ZieSuccesseT:i + ZjeFaiIurestj

For example, if the rul&lP — Det Adj N is used to parse the tag sequebee Adj N, then this rule
will get a success at timtewhile all otherNP rules get a failure. Notice that if the paramedéds set

to 0, all the exponentiated time parametérare set to 1, giving the maximum likelihood estimator
for a PCFG in equation (16), which is what we used as our Baseline madethér words, our
Decay model has a standard PCFG as a special case.

Standard ACT-R uses the activation of procedural rules as an intertaatig toward calcu-
lating time course information. However, the model presented here doesaketany time course
predictions. This choice was made due to our focus on syntactic progdssivavior: obviously,
time is also spent doing semantic, pragmatic and discourse inferences,wéibh not attempt to
model. Although this simplifies the model, it does pose a problem. One of the madeheters,
t;, is expressed in units of time, and cannot be observed directly in thexofpwovercome this
difficulty, we assume each word uniformly takes 500 ms to read. This is meamt @approximation
of the average total reading time of a wdrBecause the previous occurrence of a constituent can be
several sentences away, we expect that local inaccuracies wilgeveut over a sufficiently large
training corpus.

"This value is arbitrary, but could be made precise using eye-trackiqmp@which provide estimates for word read-
ing times in continuous text (e.g., Kennedy & Pynte, 2005). Any cohstdne would produce the same modeling result.
In general, frequency and length effects on reading time are wellmeoted (Rayner, 1998) and could be incorporated
into the model.
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Model para: (3-a) non-para: (3-b) non-para: (3-¢c) parad)3-(3-a)-(3-b) (3-c)}-(3-d)

Baseline —3347 —-32.37 —-32.37 —-3127 —1.10 —-1.10
Within —33.28 —3167 —31.70 —2992 —-1.61 —-1.78
Copy —-16.18 —27.22 —2691 —15.87 1104 —-11.04
Decay —-39.27 —38.14 —3802 —36.86 -1.13 —-1.16

Table 9: Mean log probability estimates for the best parséd¢ms based on Frazier et al (2000)

4.2. Study 4: Modeling Parallelism Experiments using thedyeModel

The purpose of this experiment is to evaluate the ACT-R-inspired Decaglrdedcribed in
the previous section. Our hypothesis is that adding decay to the model, wirdaging its cogni-
tive realism, does not impair the model’s ability to predict the pattern of resultspgarenents of
syntactic parallelism.

4.2.1. Method

As in Study 3, we estimated the model probabilities using the WSJ corpus. Similag to th
Within model, parameter estimation requires traversing the rules in the samdlwedqerser does,
here to get accurate statistics for the time parameter.

4.2.2. Results and Discussion

Following the method of Study 3, we test the model on the extended set afrerpéal stim-
uli based on Frazier et al. (2000). As described in Section 3.2, wedigerfs in four conditions,
and compute the probability of the best parse for the sentences in eatitiam(see (3) in Sec-
tion 3.2 for example sentences). The hypothesis of interest is again tithffénence between (3-a)
and (3-b) is greater than the difference between (3-c) and (3-d).

The results for the Decay model are shown in Table 9, with the results ofabeliBe, Within,
and Copy model from Study 3 as comparison. We find that the Decay modsl g significant
parallelism effect using the Wilcoxon signed rank tedt=f 24, Z = 4.27, p < .001, one-tailed).
Like the Within model, the effect size is quite small, as a general mechanismddaipezdict the
parallelism effect, rather than a specialized one as in the Copy model.

However, the Within model and the Decay model do not make identical praaictithe
differences between the two models become clear upon closer examinatibe experimental
items. Some of the materials havéat N as the subject, for instandéhe nurse checked a young
woman and a patient before going hone this example, the Within model will predict a speedup
for a patienteven though Frazier et al. (2000) would not consider it to be a paralééace. In such
cases, the Decay model predicts some facilitation at the thRjdbut the effect is weaker because
of the greater distance from the target to the subjget This example illustrates how the Decay
model benefits from the fact that it incorporates decay and therefpires the granularity of
the priming effect more accurately. This contrasts with the coarse-grainady primed/unprimed
distinction made by the Within model. We will return to this observation in the netitosec
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Moreover, the Decay model is more cognitively plausible than the Within masteldse it is
grounded in research on cognitive architectures: we were able teereandel parameters proposed
in the ACT-R literature (such as the decay parameter) without resorting tdagign or parameter
tuning.

4.3. Study 5: The Parallelism Effect in German Sentence Quatidn

Sections 3.2 and 4.1 introduced models which were able to simulate Experimieate&ier
et al. (2000). The Frazier et al. experimental items are limited to English nio@as@s. This raises
the question whether our models generalize to other constructions and tolantbaages. The
purpose of the present study is to address this questions by modeling aalditiperimental data,
viz., Knoferle and Crocker’s (2006) experiment on parallelism in German seateoordination.
Our hypothesis is that both the Copy model and the Decay model will be abtedoira for the
German data.

Knoferle and Crocker’s (2006) items take advantage of German word. @delarative sen-
tences normally have an subject-verb-object (SVO) order, such-as @ temporal modifier can
appear before the object, as illustrated in (4-b). However, word dsdéexible in German. The
temporal modifier may be focused by bringing it to the front of the sentemgqepcess known
as topicalization. The topicalized version of the last sentence is (4-c). Weeter to this as an
VSO (verb-subject-object) aubject-firstorder. A more marked word order would be topicalized
verb-object-subject (VOS), as in (4-d). We will refer to such sergeras VOS oobject-first

4) a. Der Geiger lobte denagger.

‘The violinist complimented the singer.’

b. Der Geiger lobte vor ein paar Minuten dearfger.
‘The violinist complimented the singer several minutes ago.’

c. Vor ein paar Minuten lobte der Geiger dearfger.
‘Several minutes ago, the violinist complimented the singer.’

d. Vor ein paar Minuten lobte deraSger der Geiger.
‘Several minutes ago, it was the singer that the violinist complimented.

In the experiment of Kaferle and Crocker, each item contains two coordinated sentencéspkeac
which is either subject-first or object-first. The experiment uses & Besign: either subject-first or
object-first in the first conjunct with either subject-first or object-firstlie second conjunct. This
leads to two parallel and two non-parallel conditions, as shown in (5) béloweality, Knbferle
and Crocker’s (2006) items contain a spillover region which we remowedxplained below.)

(5) a. \Vorein paar Minuten lobte der Geiger deim8er und in diesem Augenblick preist der

Trommler den Dichter.
‘Several minutes ago, the violinist complimented the singer and at this moment the
drummer is praising the poet.’

b. Vor ein paar Minuten lobte deré8ger der Geiger und in diesem Augenblick preist der
Trommler den Dichter.
‘Several minutes ago, it was the singer that the violinist complimented and abthis
ment the drummer is praising the poet.

c. Vor ein paar Minuten lobte der Geiger dearfger und in diesem Augenblick preist den
Dichter der Trommler.
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VP VP
V NP-Dat NP-Akk V-Dat-Akk NP-Dat NP-Akk
\ \
verkauft dem Mann einen Hund verkauft dem Mann einen Hund

(@) A verb phrase (‘sold the man a dog’) as it appears in the (b) Transforming the verb to include valence information

corpus

Figure 9 Transforming verbs to account for transitivity

‘Several minutes ago, the violinist complimented the singer and at this moment it is
poet that the drummer is praising.’

d. Vor ein paar Minuten lobte derager der Geiger und in diesem Augenblick preist den
Dichter der Trommler.
‘Several minutes ago, it was the singer that the violinist complimented and ahthis
ment it is the poet the drummer is praising.’

The object-first condition is rare and generally considered marked insyehplinguistic literature
on German. We will therefore refer to conditions (5-b) and (5-d), wihe object-first clause is
in the second conjunct, as the marked condition. The alternative condi{®@a3,and (5-c), are
henceforth referred to as unmarked. We refer to conditions (5-a)%uakl, which have the same
order of subject and object as the parallel conditions. Likewise, @ad)(5-c), which have a dif-
ferent order, are the non-parallel conditions.tfearle and Crocker (2006) found that, overall, the
unmarked (subject-first) conjunct was faster to read, but this marksdeféect was dominated by
a parallelism effect. In other words, the marked parallel conditions haderleading time than
the marked non-parallel condition. In the following we will investigate if our elsecare able to
replicate this result.

4.3.1. Method

This study was largely set up in a manner similar to Studies 3 and 4 on EnglishAdatze
present study aims to analyze German data, it was necessary to train ske gaiGerman text.
Therefore, the Tiger corpus (Brants, Dipper, Hansen, Lezius, & S2@b2) of German newspaper
text was used in lieu of the the Wall Street Journal corpus used in edrtlidies. Of the models
which have been presented in earlier studies, only the Copy and Decaaaod used here (there
is no need to test the Within model as it is subsumed by the Decay model).

Modeling the data of Kaferle and Crocker (2006) poses a challenge to the computational
models, for several reasons. First, as noted above, these data @spdliover region. This region
is problematic as it creates an attachment ambiguity: it may attach low to the semgndat or
high to the main clause. While the ambiguity apparently causes few problemsfarhsubjects, it
proves difficult for an automatic parser to analyze unambiguously. Weftrerdecided to remove
the spillover region from the original items for the present modeling studywé&&mphasized in
Section 3.2, the purpose of our modeling studies is to account for qualifziterns in the data,
rather than modeling individual reading times. Therefore, we have nooivayedicting spillover
effects using the current approach.
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NP-Dat NP-Dat
N /\
Det N Det-Dat N
de‘m I\/Ie‘mn de‘zm Ma‘mn
(a) A dative noun phrase (‘the (b) A transformed accusative noun
man’) as it appears in the corpus phrase

Figure 10 Transforming noun phrases to account for case

S S
NP ces VF e
A ‘
Nachste Woche NP
(a) A sentence with a constituent in the T~
Vorfeld (‘next week’) as it appears in the Nachste Woche
corpus (b) Transforming the sentence to overtly

include a Vorfeld (VF) production

Figure 11 Transforming trees to include topological field infornoeti

An additional challenge posed to the parser is that the verbs in the exp&iniems are
ditransitive, and the accusative and nominative objects need to be disateligpyatheir articles.
Reading a grammar directly from the Tiger treebank does not encode thisiation, but both sub-
categorization information (Baldewein & Keller, 2004) and case informatinrbgy, 2004) can be
encoded in the grammar by way of treebank transformations. These unarabigansformations
create a grammar in which verb ang® nodes are enriched with the relevant information, and are
exemplified in Figure 9 and Figure 10, respectively.

A third transformation, based on German topological field theory, is alsessacy due to
the flat annotation style of the Tiger corpus. We explicitly addeteld (first position) phrase to the
grammar, as shown in Figure 11. This corresponds to the part of a sergesteding the verb. In an
untopicalized declarative sentence, the subjectis in the Vorfeld. In igadasentences, such as the
Knoferle and Crocker (2006) items, the Vorfeld contains the topic. Thisfwemsition is necessary
because the annotation style of the Tiger corpus would otherwise makedutiifé model any kind
of word-order priming. We have hypothesized priming occurs on the lgfveyntactic rules, and
the Tiger corpus uses a flat annotation style for sentences. So, if thendpie prime and target
conjuncts are of different grammatical categories, a naive model waaltigh no priming. This is
averted by putting the topic in a category of its own, which is an uncontrialexssumption not
only in topological field theory (used here), but also in X-bar theonyictvlwould posit a covert
complementizer whose specifier contains the topic.

The choice of applying or not applying this third transformation corredpdn an instance
of the Grain problem (Mitchell et al., 1996) with two different choices digrsize for estimating
syntactic frequencies. Without the transformation, we are making the aisartiat both conjuncts
must be equivalent on the coarse-grained sentential level hypottidsizbe Tiger annotators. By
applying the transformation, we allow a finer-grained parallelism effeéthvis somewhat more
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Model para: (5-a) non-para: (5-b) non-para: (5-c) parad)5-(5-a)-(5-b) (5-c)}-(5-d)

Baseline —41.87 —43.00 —42.76 —4394 114 118
Copy —41.85 —42.99 —42.74 —4392 114 118
Decay —40.82 —42.98 —4257 —43.46 216 089

Table 10: Mean log probability estimates for thedferle and Crocker (2006) items

independent of particular annotation strategies.

The Grain problem also appears in Frazier and Clifton’s (2001) Copytiesis. What ex-
actly is meant by ‘copying’? As Frazier and Clifton do not claim otherwise have assumed that
the entire structure is copied. It is possible that Frazier et al. did intenthéar Copy hypothesis
to operate at a more fine-grained level, but they did not specify how thistinggtone. Therefore,
we do not make any modification to the Copy model for this experiment (okegtinere is also no
change to the Decay model, either).

Just as in the modeling studies presented on the Frazier et al. (2000) itemsasure the
probability difference between pairs of parallel and non-parallel itimms. In this case, we mea-
sure (5-a}(5-b) compared to (5-€)(5-d). If there is no statistical difference between the quantities,
we conclude there is no parallelism effect. On the other hand, we may dertiere is a parallelism
effect if the former is greater than the latter.

4.3.2. Results and Discussion

The results are shown in Table 10. All three models were able to parse pegiraen-
tal materials unambiguously. We performed a Wilcoxon signed rank test odiffieeence be-
tween (5-a)(5-b) and (5-¢c}-(5-d). We found no significant difference between the two condi-
tions for the Copy model. However, the Decay model gave a statistically smmifiesult N = 32,
Z=172,p<.05).

This finding provides support for the hypothesis that the Decay modwrgkzes to other
structural configurations and to a new language. An interesting factt &wferle and Crocker’s
(2006) materials is that the marked VOS word order occurs quite infréfyuarthe Tiger corpus,
and never occurs twice in the same sentence (coordinated or not). ¢hioés not affect the Copy
or Decay models: the Copy operation does not inspect the rules othetotithieck that they are
identical, and the Decay model dynamically updates rules probabilities degesdcontext. How-
ever, the Within model strongly depends upon observing particular refpesatedly, and therefore it
would fail to deliver any parse at all if the rules have never been gbdaepeating.

Moreover, the results here show that our straightforward implementatitred€opy model
does not easily generalize beyond NP experiments. A key problem is tiidie#e and Crocker’s
parallel condition contained sentences which had marginally differertstas: while the NP word
orders were parallel, each conjunct contained a modifier which in mamgs aid not have paral-
lel structure. The non-parallel modifiers resulted in the Copy model iggasiuch conjuncts as
candidates to be copied. A more precise statement of the Copy hypothesigliedeto model
clause-level parallelism in general. In particular, the Copy model fageaia problem, which will
need to be addressed in future work.
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5. General Discussion

We began this paper by showing h@adaptation probabilitiecan be defined as a measure
of structural repetition. Using multinomial logistic regression, we demonstratddhbre is a ro-
bust, pervasive effect of parallelism for a variety of noun phrasedyjVe found this tendency for
structural repetition in two different corpora of written English. We shdwleat the effect occurs
in a number of contexts: coordinat#s (Study 1), non-coordinatePs within the same sentence
(Study 2), andNPs in two adjacent sentences (Study 2). We were also able to show thatrthe pa
allelism effect persists in complex noun phrases (those containffy@ an SBAR), even if the
preference for short phrases to precede long ones is taken intordc®aken together, the findings
of Studies 1 and 2 strongly suggest that the parallelism effect is an iestdracgeneral process-
ing mechanism, such as syntactic priming (Bock, 1986), rather than specif@ordination, as
suggested by (Frazier et al., 2000). Frazier et al. (2000) base taiir on the failure to find a par-
allelism effect between the subject and the obj¢etin the same sentence. This is not sufficient to
argue against a priming explanation for the parallelism effect, as outsdsuwithin and between
sentence priming show.

We also observed marked differences in the effect sizes of Study Stadg 2: we found that
the parallelism effect is strongest for coordinate structures, andevéaknon-coordinate structures
within the same sentence and in adjacent sentences. There are a nurpbssibfe explanations
for this difference. Priming has been argued to be subject to distarsestlmecay (e.g., Gries,
2005; Szmrecsanyi, 2005; Reitter et al., 2006). This may be a relewant fas prime and target
are relatively close together in coordination (only separated by one)wehie the mean distance
between prime and target is larger for priming in non-coordinate struciites the same sentence,
and even larger for priming between sentences.

Previous experimental work has found parallelism effects only in conemstbn data. The
present work demonstrates that parallelism effects also occur in grodwtata, replicating the
results of previous corpus studies (Levy, 2002; Cooper & Hale, ROls raises the interesting
guestion of the relationship between the two data types. It has been hyigetih¢hat the human
language processing system is tuned to mirror the probability distributions invitoement, in-
cluding the probabilities of syntactic structures (Mitchell et al., 1996). If thisng hypothesiss
correct, then the parallelism effect in comprehension data can be expsnen adaptation of the
human parser to the prevalence of parallel structures in its environngeapfaoximated by corpus
data), as found in the present set of studies.

Note that the results in this paper not only have an impact on theoreticakissgarding
human sentence processing, but also on engineering problems in tatgrage processing, such
as probabilistic parsing. To avoid sparse data problems, probabilistimngar®dels make strong
independence assumptions; in particular, they generally assume thatcesnéee independent of
each other. This is partly due to the fact it is difficult to parametrize the massilple dependencies
which may occur between adjacent sentences. However, in this papeshow that structure re-
use is one possible way in which the independence assumption is brokenpke snd principled
approach to handling structure re-use is to use adaptation probabilitipsoloabilistic grammar
rules, analogous to cache probabilities used in caching language modskenfBld, Wasserman,
Cai, & Zhu, 1999; Kuhn & Mori, 1990), which is what we proposed in thaper.

The use of adaptation probabilities leads directly to the second contributitiisopaper,
which is to show that an incremental parser can simulate syntactic parallelisotseih human
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parsing by incorporating a probabilistic account of rule re-use. Fratiel. (2000) argued that the
best account of the parallelism advantage was a model in which parallellsmitesd to particular
structural configurations such as coordination. To test this hypothesiexplored a probabilistic
variant of Frazier and Clifton’s (20019opy-« mechanism, along with two more general models
based on within- and between-sentence priming. Although the copy mechprusided a stronger
parallelism effect when we used it to simulate the patterns in the human readinddtmehe ef-
fect was also successfully simulated by a general within-sentence primingl.n@ the basis of
Occam'’s razor, we therefore argue that it is preferable to assume a semplenore general mech-
anism, and that the copy mechanism is not needed. We explored also aatalesimplementation
of our models which uses Hale’s (2001) surprisal to predict procgssfficulty. We found that the
parallelism effect can be captured both by the surprisal implementationyaadriore straightfor-
ward implementation that uses the probability of the best parse as a meaptoeasfsing difficulty.

All the models we proposed offer a broad-coverage account of hypagsing, not just a
limited model of a hand-selected set of examples. This is in line with recentogenents in the
literature on probabilistic models of human language processing, whicheleasasshift of focus
away from construction-specific models to broad-coverage modelsk€rd. Brants, 2000; Hale,
2001; Pad, Keller, & Crocker, 2006; Pad Crocker, & Keller, 2006).

The third and final contribution of the present paper is the developmeAC3arR-inspired
Decay model of syntactic priming. This model is based on the observation ilitdheture that
the strength of the priming effect shows an exponential decay with the tairgistance between
the prime and the target. The Decay model of priming incorporates a deaajegbrobabilities
inspired by ACT-R’s model of procedural memory, and is able to offer aemealistic account of
priming that should be able to cover a wider range of parallelism phenorémsgalidated this by
training the Decay model on a different language (German) and testingatrmw data set that
includes sentential coordination rather than NP coordination. We alsd thahthe Copy model in
its current form is not able to account for the German parallelism data.

In the research reported in this paper, we have adopted a simple modébmesse unlexical-
ized PCFG. In future research, we intend to explore the consequehicesducing lexicalization
into the parser. This is particularly interesting from the point of view of pgjiaguistic modeling,
because there are well known interactions between lexical repetitionyatactc priming, which
require lexicalization for a proper treatment. Another area for futureugathe implementation of a
more cognitively realistic version of our model that predicts reading timestiijre.g., by making
us of ACT-R real-time capabilities. Such a model could then also be applieddmgetime data for
domains other than NP parallelism.
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