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Abstract
The role of task has received special attention in visual cognition research because it can
provide causal explanations of goal-directed eye-movement responses. The dependency
between visual attention and task suggests that eye-movements can be used to classify the
task being performed. A recent study by Greene, Liu, and Wolfe (2012), however, fails
to achieve accurate classification of visual tasks based on eye-movement features. In the
present study, we hypothesize that tasks can be successfully classified when they differ with
the respect to the involvement of other cognitive domains such as language processing. We
extract the eye-movement features used by Greene et. al., as well as additional features,
from the data of three different tasks: visual search, object naming, and scene description.
First, we demonstrate that eye-movement responses make it possible to characterize the
goals of these tasks. Then, we train three different types of classifiers and predict the task
participants performed with an accuracy well above chance (a maximum of 88% for visual
search). An analysis of the relative importance of features for classification accuracy reveals
that just one feature, i.e., initiation time, is sufficient for above-chance performance (a
maximum of 79% accuracy in object naming). Crucially, this feature is independent of task
duration, which differs systematically across the three tasks we investigate. Overall, the
best task classification performance is obtained with a set of seven features that include
both spatial information (e.g., entropy of attention allocation) and temporal components
(e.g., total fixation on objects) of the eye-movement record. This result confirms the task-
dependent allocation of visual attention, and extends previous work by showing that task
classification is possible when tasks differ in the cognitive processes involved (purely visual
tasks such as search vs. communicative tasks such as scene description).

Keywords: Task classification; eye-movement features; active vision; visual attention; com-
municative tasks.

Introduction

Visual attention actively serves the cognitive system in a wide range of different tasks and
everyday activities. Each task entails a well-defined sequence of steps to be accomplished. In order
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to inform this process, specific task-related information has to be extracted by the visual system
from the visual percept.

The role of task on visual attention has attracted the interest of vision researchers from very
early on. Buswell (1935) was the first one to investigate eye movements on complex scenes, and to
show that expertise in a certain task (being an artist or not) influences the associated eye-movement
responses. A few decades later, Yarbus’s (1967) confirmed that indeed task plays a key role in the
eye-movement patterns observed. Different task instructions such as “estimate the material circum-
stances of the family shown in the picture” vs. “give the ages of the people shown in the picture”
resulted in qualitatively different eye-movement trajectories, often referred to as scan paths (Noton
& Stark, 1971) or scan patterns (Henderson, 2003).

The key message of this seminal work was that eye-movement patterns provide evidence
about a possible causal model of the task being performed. Thus, it should be possible to infer the
underlying attentional mechanisms by comparing eye-movement patterns across tasks.

More recent work in visual cognition is motivated by the aim of understanding the visual
system in ecologically valid real-world tasks, such as making a tea or washing hands; sport activ-
ities, such as playing table tennis or driving; as well as, in computer simulated, virtual scenarios
(Ballard, Hayhoe, & Pelz, 1995; Land & Furneaux, 1997; Land, Mennie, & Rusted, 1999; Land
& McLeod, 2000; Pelz & Canosa, 2001; Land & Hayhoe, 2001; Rothkopf, Ballard, & Hayhoe,
2007; Ballard & Hayhoe, 2009; Hagemann, Schorer, Cañal-Bruland, Lotz, & Strauss, 2010). This
research has demonstrated that eye-movement responses are launched preferentially to task-relevant
objects during precisely time-locked stages of the task, e.g., looking at the spout of a kettle when
pouring, during a tea-making task (Land et al., 1999). The memorability of attended information
has also been shown to depend on its task relevance. Triesch, Ballard, Hayhoe, and Sullivan (2003),
for example, showed that participants became aware of changes occurring to an attended object only
when such object was relevant, at that particular moment, for the task.

Effects of task have also been observed in other visual activities such as search or memo-
rization (Tatler, Baddeley, & Vincent, 2006; Castelhano, Mack, & Henderson, 2009; Mills, Holling-
worth, Van der Stigchel, Hoffman, & Dodd, 2011), where photo-realistic 2D scenes were mainly
used as contexts. Castelhano et al. (2009), for example, compared several measures, such as the area
of the scene inspected, for eye movement data collected during a visual search task (find a MUG in
a kitchen scene) and during a memorization task (memorize the scene in preparation for a later re-
call). They found significant differences between the two tasks, e.g., more regions of the scene were
inspected during memorization than during search. In a memorization task, participants attempt to
inspect as many objects as possible within the preview time with the aim of maximizing the number
of items that could be recalled; whereas in a search task, participants focus on contextually relevant
regions of the scene to maximize the likelihood of finding the target object (see also Castelhano &
Heaven, 2010 and Malcolm & Henderson, 2010 for evidence of top-down contextual-target guid-
ance in visual search). Moreover, also in purely visual tasks, the task-relevance of scene information
exerts direct control on eye-movement responses, for example, on the duration of the first fixation
(Glaholt & Reingold, 2012) (see, however, Salverda & Altmann, 2011, where task-irrelevant in-
formation is also shown to impact fixation duration). The influence of direct cognitive control on
visual attention is a strong indicator that task differences should be observed in the associated eye-
movement pattern.

The causal dependence of task and eye-movement responses extends also to other cognitive
activities, such as reading. Research in this area has clearly shown that eye-movement responses are
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strongly modulated by linguistic properties of the text, such as word frequency (Inhoff & Rayner,
1986), and more general task demands, such as silent reading vs. reading aloud. Moreover, eye-
movement pattern in reading significantly differ from those observed during scene perception. The
average length of a saccade is, for example, longer in scene perception than in reading (see Rayner,
2009, for a review on the topic).

Task is therefore a major factor that needs to be considered when interpreting eye-movement
responses. In fact, by understanding the properties of a task and its underlying goals, we should
be able to accurately estimate which objects (or words) are attended, and when should this happen
during the task (Ballard & Hayhoe, 2009). If this is correct, then the inverse inference should also be
possible: eye-movement responses should be informative of the task being performed. In particular,
the statistics of eye-movement responses should be predictive of the task.

A recent study by Greene et al. (2012) addressed this question by explicitly testing whether
the task performed by the participants can be accurately determined from the associated eye-
movement information (see also Henderson, Shinkareva, Wang, & Olejarczyk, 2013 for another
example of eye-movement based task classification). This study followed up on work by DeAngelus
and Pelz (2009), in which Yarbus’s qualitative findings were successfully replicated and more strin-
gently quantified, using modern eye-tracking technology, a larger set of participants (25 instead of
just one), and by comparing task differences with and without self-termination (three minutes of
fixed viewing per scene).

Participants in Greene et al.’s (2012) study were asked to perform four types of visual tasks
(memorize the picture, determine the decade the picture was taken in, determine people’s wealth and
social context); the study used black and white historical scenes selected from the Time Life archive
on Google (http://images.google.com/hosted/life). From the eye-movement data collected
during the different tasks for each individual trial, Greene et al. extracted seven distinct features
(e.g., area of the scene fixated), reported also in previous studies (Einhäuser, Spain, & Perona, 2008;
Castelhano et al., 2009; Mills et al., 2011). This set of features was used to train different regression-
based classifiers (e.g., support vector machines) in order to automatically determine which of the
four tasks was performed in a given trial.

Surprisingly, Greene et al.’s results show that none of the classifiers they utilized was able to
detect the task performed using eye-movement features with an accuracy above chance. This result
seems at odds with DeAngelus and Pelz (2009), where task differences were clearly observed (e.g.,
the distance of scan-path trajectories between tasks was significantly larger than between observers).
More generally, the result of Greene et al. (2012) undermines previous claims about task-dependent
allocation of visual attention, and challenges the widespread assumption that each task gives rise to
a distinct pattern of eye-movement responses.

However, the fact that Greene et al. (2012) did not observe task-specific patterns of eye-
movement might not mean that such task differences do not exist, but rather that the tasks performed
by Green et al.’s participants were not distinct enough to produce separable patterns of visual atten-
tion. One, mostly technical, explanation for the null result of Greene’s study might be that all tasks
had a fixed termination time (10 seconds per trial). The fixed viewing time might have flattened
any implicit temporal variability between tasks. This hypothesis can be deduced from the study of
DeAngelus and Pelz (2009), where it is clear that different tasks trigger different self-termination
times. However, if this is the only explanation of the null result, then it should be impossible to
accurately classify tasks using eye-movement features that are insensitive to self-termination, such
as initiation time (i.e., the time it takes to launch the first eye-movement) or the average length of a
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saccade.
Another, perhaps stronger, alternative hypothesis for the null result is that all tasks performed

in Greene et al. (2012) demanded only visual processing, and did not require the involvement of
other cognitive modalities (e.g., language processing). Thus, it seems likely that similar strategies of
attention allocation are adopted when participants perform similar visual tasks. Greene et al.’s results
therefore leave open the possibility that eye-movement patterns become distinctive when tasks differ
substantially with respect to the cognitive processes they involve. This hypothesis would also better
align with literature on natural gaze control during real-world tasks, where visual attention always
occurs jointly with motor actions, and attention allocation strongly depends on the task goals (e.g.,
Pelz & Canosa, 2001). Visual attention does not only co-occur with motor actions, but it also often
co-occurs with language, in tasks such as describing the function of a device or giving directions
on a map. Thus, we can hypothesize that reliable task differences can be observed between eye-
movement patterns for purely visual tasks (e.g., visual search) and communicative tasks (scene
description), which require the concurrent processing of visual and linguistic information.

Psycholinguistic research on linguistic tasks situated in visual scenes has, in fact, convinc-
ingly demonstrated that the allocation of visual attention and the processing of linguistic infor-
mation are mutually interdependent: the mention of a visual referent occurs time-locked with fix-
ations on the relevant object in a scene, both in language comprehension and language produc-
tion (e.g., Tanenhaus, Eberhard, & Sedivy, 1995; Griffin & Bock, 2000; Gleitman, January, Nappa,
& Trueswell, 2007). In scene description tasks, for instance, the time-locking of speech and eye-
movements means that sentence similarity correlates with the similarity of the associated scan pat-
terns (Coco & Keller, 2012). This suggests that eye-movement responses carry detailed information
about the task that is performed; in fact, Coco and Keller (2012) show that it is possible, with ac-
curacy above chance, to determine which sentence was spoken based on the scan pattern that was
followed when speaking it.

The aim of the present study is to demonstrate that different tasks are characterized by distinct
pattern of eye-movement responses, and that the accurate classification of tasks is possible, provided
that the tasks differ substantially with respect to the cognitive processes involved in accomplishing
them. In particular, we compare a visual search task with object naming and scene description tasks,
both of which require the concurrent processing of visual and linguistic information. The three
tasks considered vary by the amount of cross-modal processing involved: (1) search is expected to
mostly require visual processing, (2) naming also demands the activation of linguistic information
(the names of objects need to be retrieved and uttered), while (3) description requires visual and
linguistic processing to be integrated fully, as sentences and scan patterns correlate closely (Coco
& Keller, 2012). This key difference is predicted to lead to distinct eye-movement patterns, which
would make it possible to classify all three tasks with an accuracy greater than chance. However,
we also predict classification accuracy to degrade when more cross-modal processing is required. In
that case, eye-movement features need to be used in conjunction with linguistic features to achieve
good task classification performance.

The Present Study

We conducted three eye-tracking experiments involving visual search, object naming, and
scene description; each task was performed by a different group of participants. From the eye-
movement data of each trial, we extracted the seven features used by Greene et al. (2012) (we will
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refer to these features as GF), as well as other eye-movement features (referred as OF); these will
be explained in more detail in the section Features below.

We compare how visual search, object naming, and scene description affect eye-movements
using linear-mixed effect modeling. This analysis allows us to infer how the goals of a given task
determine which objects need to be attended to perform the task, thus explaining why different
eye-movement patters emerge across tasks.

We then train three different types of regression models (multinomial regression, least-square
angle regression, and support vector machines) on the eye-movement features in order to automat-
ically classify the task used. When training the classifiers, we use either only GF, only OF, or all
features. We test the accuracy of the classification models using a ten-fold cross-validation proce-
dure. The results show that all models, using all three feature sets, are able to predict the task with
an accuracy well above chance.

Moreover, in order to test whether certain features are more predictive than other, and to in-
vestigate how many features are needed to obtain a classification accuracy above chance, we run
a step-wise forward model-building procedure in which features are ordered by their classification
performance (best first) over the ten cross-validation folds. We track how classification accuracy
changes as a function of the features used, and find that already a single feature is enough to distin-
guish among tasks above chance.

We conclude the study by demonstrating that eye-movement features insensitive to self-
termination, such as initiation time and saccade length, are sufficient to classify the tasks well above
chance. This additional analysis rules out the possibility that fixed termination is what caused the
null-result observed by Greene et al. (2012) study, hence suggesting that tasks can be accurately
classified as long as they substantially differ in the types of cognitive processes needed to perform
them.

Tasks

Visual Search. Participants were asked to count how many instances (between one and
three) of a target object are present in the scene.1 The target object was cued prior to scene onset
for 750 ms, using a word naming the object, displayed in the center of the screen. The target object
was either animate or inanimate (each half of the time). Participants could freely inspect the scene,
without any time constraints, and then self-terminate the trial by pressing a response button to indi-
cate the number of targets seen. Once every four trials, a comprehension question about the number
of target objects present in the scene was asked. This dataset was published by Dziemianko, Keller,
and Coco (2009).

Scene Description. The same scenes and the same target objects were used as in the vi-
sual search task, but now participants were asked to generate a spoken description of the target
object. The target object was cued in the same way (a word naming the object was displayed for
750 ms prior to scene onset). Again, participants could freely inspect the scene, without any time
constraints; once they had finished speaking, they pressed a response button to trigger the next trial.
This dataset was published by Coco and Keller (2012).

Object Naming. The same scenes as in the previous two tasks were used, but now no cue
was presented to participants. Instead, participants were asked to name at least five objects in the
scene by speaking words describing them. Participants had 1,500 ms preview of the scene after

1We only use the two targets condition to allow full comparability between the different experimental datasets.

5



Figure 1. An example of a scene used in the different tasks: low clutter condition on the left, high
clutter condition on the right. The cued target objects were GIRL and TEDDY. The face is blank-
out to protect the identity of the photographed character. The image is an original created with
PhotoshopC2 using components that are in the public domain sources (e.g., Flickr)

which a beep was played to prompt them to start naming. The scene was visually available during
the whole trial, i.e., for preview and naming. Again, they were under no time pressure, and had to
press a response button to proceed to the next trial. This dataset was collected as filler trials in Coco,
Malcolm, and Keller’s (2013) study.

Materials

We created 24 photo-realistic scenes drawn from six different indoor scenarios (e.g., bath-
room, bedroom), four scenes per scenario, using Photoshop (see Figure 1 for an example scene 2).
Scene clutter was manipulated: there were two versions of each scene, with either low clutter or
high clutter, as estimated using the Feature Congestion measure of Rosenholtz, Li, and Nakano
(2007). Note that the clutter manipulation was part of the original studies that generated our data
sets (Dziemianko et al., 2009; Coco & Keller, 2012); it is not of relevance for the present study.
However, in order to make sure that classification performances are consistent in both version of the
scene, we train and test the classifiers on scenes split by clutter (high and low), and show that the
classification results are consistent between the two sets.

The cued object used in the visual search and scene description task was either animate (GIRL

in this example) or inanimate (TEDDY in this example). The cue was always referentially ambiguous
in respect with the scene: in this case, two GIRLS and two TEDDIES are depicted. (Again, this feature
was of interest in the studies that originated the data, but will be ignored in the following.) A Latin
square design was used to make sure that each scene was only seen in one of the four conditions
(cue either animate or inanimate; clutter either low or high) by each participant.

We use LabelMe (Russell, Torralba, Murphy, & Freeman, 2008) to fully annotate each scene
with the objects it is made of. Objects at the border of the scene where annotated using background

2The images are all original created with PhotoshopC2 using components that are in the public domain sources (e.g.,
Flickr)
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generic labels, such as wall or floor.3 Low cluttered scenes had a mean density of 3.10± 0.22
and mean number of objects 27.42± 9.93; whereas in high cluttered scenes, the mean density is
3.90± 0.24, and the number of objects 28.65± 11.30. We map x-y fixation coordinate s onto the
corresponding objects. However, as objects can be nested, e.g., the TEDDY polygon is embedded
into the GIRL polygon, we use the size of the object in pixels square to assign the fixation to the
smallest object, i.e., TEDDY in this working example. This makes sure that features at fixation are
not redundantly computed over nested objects.

Participants

Seventy-four (25 each for search and description, 24 for naming) native speakers of English,
all students of the University of Edinburgh, gave informed consent to take part to the experiments,
and were each paid five pounds.

Apparatus and Procedure

An EyeLink II head-mounted eye-tracker was used to monitor participants’ eye-movements
with a sampling rate of 500 Hz. Images were presented on a 21” multiscan monitor at a resolution
of 1024 x 768 pixels. Participants sat between 60 and 70 cm from the computer screen, which
subtend a of approximately 20◦ of visual angle. A nine-point randomized calibration was performed
at the beginning of the experiment, and repeated half-way through the experimental session. Drift
correction was performed at the beginning of each trial. The tasks were explained to participants
using written instructions; the experiment took about 30 minutes to complete.

Features

The full dataset contains a total of 1,756 unique trials, which are divided across the three
tasks as following: search (580), description (600), naming (576). Approximately 3% (20 trials) of
the visual search data was lost due to machine error.

From the eye-movement data of each trial, we extract the seven features used by Greene
et al. (2012): (1) number of fixations, (2) mean fixation duration, (3) mean saccade amplitude,
and (4) percent of image covered by fixations assuming a 1◦ circle around the fixation position
(Einhäuser et al., 2008; Castelhano et al., 2009; Mills et al., 2011). As two fixations can fall in close
proximity of each other, the areas of the two circles may overlap. In this case, we subtract the area
of the intersection. Following Greene et al. (2012), we also calculated the proportion of dwell time
on (5) faces, (6) bodies, and (7) objects, i.e., any other region annotated in the scene which was not
a human.

In addition to the Greene et al. (2012) feature set (GF), we extracted another set of fifteen
features (OF): (1) latency of first fixation, (2) first fixation duration, (3) mean fixation duration,
(4) total gaze duration on faces, bodies and objects (four features for three different regions, i.e., 12
features in total), (5) the initiation time, which is the time spent after scene onset before the first
saccade is launched (a measure used by Malcolm & Henderson, 2009), (6) mean saliency at the
fixation location, and (7) the entropy of the attentional landscape.

For the mean saliency measure, we computed a saliency map of each scene using the model
developed by Torralba, Oliva, Castelhano, and Henderson (2006),4 and mapped each x-y fixation po-

3In Greene et al. (2012), objects are defined as any “discrete artifact” not making up the boundary of the scene.
4We used only the saliency part of the model, not the context part.
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sition onto the saliency value at that location. We then took the mean saliency value of the fixations
in the trial. To calculate the entropy measure, we first computed attentional landscapes by fitting
2D Gaussians on the x-y coordinates of each fixation, with the height of the Gaussian weighted by
fixation duration, and a radius of 1◦ of visual angle (roughly 27 pixels), to approximate the size of
the fovea (e.g., Pomplun, Ritter, & Velichkvosky, 1996; Henderson, 2003). The entropy of the map
was then calculated as ∑x,y p(Lx,y) log2 p(Lx,y), where p(Lx,y) is the normalized fixation probability
at point (x,y) in the landscape L. Conceptually, entropy measures the spread of information and the
“uncertainty” we have about it. Thus, the higher the entropy, the more spread out fixations in the
scene are, i.e., the more distinct locations have been attended.

Methods for Analysis and Classification

First, we investigate how tasks differ in their associated eye-movement features, and derive a
causal task-based interpretation for it. In particular, we examine all GF features and in the OF feature
set, we focus on initiation time, saliency, and entropy, which are not region specific. We build a linear
mixed-effects model for each feature as a function of Task (Search, Naming, or Description) using
the R package lme4 (Bates, Maechler, & Bolker, 2011). As Task is a three level, categorical variable,
we need to create a contrast coding, and choose one of the factor as a reference level. This factor
can then be used to compare with the other two levels. We choose Naming as the reference level, as
it is the simplest linguistic task, and contrast it with Search and Description. In building our models,
we follow Barr, Levy, Scheepers, and Tily (2013), and choose a maximal-random structure, where
each random variable of the design (e.g., Participants), is introduced as intercept, and as slope on the
predictors of interest (e.g., Search vs Naming). The random variables of our design are Participants
(74) and Scenes (48, as we have 24 scenes in two conditions of visual clutter). We report tables
with the coefficients of the predictors, their standard error; significance is provided by computing
p-values using the function pvals.fnc from the languageR package (Baayen, Davidson, & Bates,
2008).

Then, we use all sets of features described above to train three different types of classifiers, all
implemented in R. We trained: (1) a multinomial log-linear neural networks model (MM; multinom
function in R’s nnet package, Venables & Ripley, 2002), a generalized linear model with penalized
maximum likelihood, where the regularization path is computed for the least angle (LASSO; glmnet
in R’s glmnet package, Friedman, Hastie, & Tibshirani, 2010) and a support vector machine (SVM;
ksvm in R’s kernlab package, Chang & Lin, 2011). Note that we used the default setting for all
three different models (higher classification accuracy could presumably be achieved by parameters
tuning).

The classifiers were trained and tested using ten-fold cross-validation, where the model is
trained on 90% of the data, and then tested in the remaining 10%; this process is repeated 10 times
so that each fold functions as test data exactly one. This is a way to avoid overfitting the training
data, while still making maximal use of a small data set. We train the classifiers on the data di-
vided by clutter condition (low, high). This makes sure that we treat the two sets of related images
independently.

We measure the accuracy of the classifiers using F-score, which is the geometric mean of
precision and recall and is defined as F = 2 · P·R

P+R . Precision (P) is the number of correctly classified
instances over the total number of instances labeled as belonging to the class, defined as t p

t p+ f p .
Here, t p is the number of true positives (i.e., instances of the class that were correctly identified as

8



such) and f p is the number of false positives (i.e., instances that were labeled as members of the
class, even though they belong to a different class). Recall (R) is the number of correctly classified
instances over the total number of instances in that class, defined as t p

t p+ f n , where f n is the number
of false negatives, i.e., the number of instances that were labeled as non-members of the class,
even though they belong to the class. It is important to consider both precision and recall, as a
high precision can be achieved simply by under-predicting the class, and being right most of the
time when a prediction is made. However, in this case recall will be low. The inverse is true for a
classifier that over-predicts a class; in this case recall will be high, but precision will be low.

Note also that precisions and recall (and thus F-score) are relative to a given class; as we have
three classes, we report a separate F-score value for each of them. Furthermore, we report results
using three different set of features: GF alone, OF alone, and all features. We run this classification
on all the data, and make sure that data belonging to a scene in a certain clutter condition (high and
low) is used either for training or testing, and use a t-test to determine whether a larger feature set
leads to a significant improvement in F-score.

For comparability with Greene et al.’s (2012) study, we also calculate the accuracy of the
classifiers when trained to predict which image was viewed (here, we collapse the clutter condition
and consider only 24 scenes). Again following Greene et al.’s (2012), we also train the classifiers to
predict which participant generated the data (74 participants).

Moreover, in order to provide a more detailed analysis of the impact of the features on
classification performance, we use the classifier which gave us the best performance (SVM) and
test: (1) how many features are needed to achieve a classification performance above chance, and
(2) which features are important for discriminating between tasks. For the first analysis, we use a
step-wise forward model-building procedure, where at each step we add the feature that maximizes
F-score classification performance, and track changes in F-score as more features are included. We
repeat this procedure over the ten folds, and then plot the mean F-score obtained when each new fea-
ture is added. In the second analysis, we perform the same step-wise model-building procedure, but
evaluate whether the model with the added feature is significantly better than the one without it. If
there is no significant improvement on the F-score, we retain the model without that feature. Again,
we repeat this procedure over the ten folds and retain the feature set of the final model obtained
for each fold. We report the frequency of observing a certain feature in the final feature set over
the ten folds over ten iterations (100 final feature sets in total; the folds are randomly re-generated
at every iteration to make sure that the data is homogeneously sampled). This measure gives us a
rough estimate of how important a feature is for discriminating among tasks.

We conclude the result section by looking at whether features which are either independent
of self-termination, such as initiation time, or purely spatial, such as mean saccade amplitude, are
sufficient to obtain accurate classification performance. This test is there to make sure that it is
not only the temporal component of the eye-movement data that enables us to accurately classify
tasks. The temporal features (e.g., the number of fixations) are affected by self-determination, i.e.,
by whether the participant is able to terminate the task, or whether the task is of fixed length. (Recall
that all our tasks used self-termination.)

Results and Discussion

We start by examining the patterns observed for the different eye-movement features in each
task. Then, we move on to the results obtained using these features when perform task classification.
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Figure 2. Mean values for the features proposed by Greene et al. (2012). Each feature is plotted
in a separate panel for the three different tasks: Naming (N), Description (D), and Search (S). The
error bars indicate the standard error. The unit for all eye-movement measures is the millisecond
or proportions. The exceptions are mean saccade amplitude, which is in pixels, and area fixated (in
percent).

Features Mediating Tasks Variability

In Figure 2, we plot mean and standard error for GF, the set of features proposed by Greene
et al. (2012), for our three different tasks.

Figure 2 plots the mean values for the seven features computed by Green et al. for our three
tasks. Table 1 gives the estimates of coefficients obtained by the linear mixed-effects model. The
results show that the three tasks produce distinct patterns for each feature. In particular, we find
that the number of fixations is significantly higher for object naming than for description and visual
search (lowest). In a naming task, many objects are evaluated as potential naming targets, whereas
in search, only objects that are contextually relevant to the search will be inspected. The description
task is situated somewhere in between these two extremes: only objects that will be mentioned
or that are contextually related to them are fixated. Importantly, these strategies are also reflected
in the mean saccade amplitude: saccades during object naming are short, as objects that in close
proximity are evaluated, compared to saccades in visual search, where large sections of the scene
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Table 1
Coefficients of linear-mixed effects models with maximal random structure (intercept and slopes on
Participants and Scenes). Each feature is modeled as a function of Task, which is contrast coded
with Naming as a reference level for Description and Search.

Intercept Description vs. Naming Search vs. Naming
Features β SE p β SE p β SE p
Number of Fixation 26.85 0.99 0.0001 -1.89 2.90 0.1 -26 2.38 0.0001
Area Fixated 3.52 0.11 0.0001 -0.75 0.30 0.0001 -2.62 0.28 0.0001
Mean Saccade Amplitude 175.04 2.58 0.0001 -21.52 6.64 0.0001 80.12 7.23 0.0001
Mean Gaze Duration 250.65 4.06 0.0001 -17.51 10.9 0.003 -57.81 10.65 0.0001
Dwell Body 0.19 0.004 0.0001 0.07 0.01 0.0001 -0.02 0.01 0.02
Dwell Face 0.11 0.003 0.0001 0.02 0.01 0.04 0.02 0.01 0.01
Dwell Object 0.69 0.005 0.0001 -0.09 0.01 0.0001 0 0.0 0.9
Initiation Time 312.01 8.05 0.0001 97.39 21.33 0.0001 63.79 21.51 0.0001
Saliency 247.41 0.75 0.0001 5.70 2.16 0.005 1.18 2.15 0.5
Entropy 11.47 0.02 0.0001 -0.19 0.06 0.0001 -0.38 0.06 0.0001

are covered. Interestingly, we find that saccades during scene description are shorter than during
naming. Descriptive sentences have often a simple subject-verb-object structure, e.g., the girl is
hugging a teddy. Visually, this implies fixating the agent, determining the action performed, and
then fixating the object of the action. This visual information tends to be spatially proximal.

We also find that mean gaze duration is longer in naming and description compared to search.
A communicative task requires the processing of both linguistic and visual information, so gazes
are longer when the information from both modalities needs to be evaluated for each object. Fur-
thermore, we also observe a significant difference in the mean gaze duration between naming and
description: fixations are longer in naming than in description. This is presumably due to the fact
that a naming task demands a more focused retrieval of lexical material associated to the visual
object to be mentioned, than in a description task where instead dependencies among other objects
(semantic relationships, syntactic correspondences) need to be established.

When looking at the dwell time in the different regions, we find that the description task
is the one in which most attention is allocated to humans (i.e., faces and especially bodies). As
mentioned above, a description often entails that an action is verbalized, hence attention is allocated
to the animate agent and to the action he/she is performing. This result corroborates the pattern we
observed in mean saccade amplitude. In the search task, however, the recognition of an animate
agent involves viewing his/her face, but not much attention needs to be spend on inspecting the
body (see Table 1). This contrasts with naming, the task in which most of the attention is allocated
to objects in the background that can be recognized and named: an animate agent is easy to name
and hence does not require much attention. This difference is, however, significant only with respect
to a description task. Search and naming do not significantly differ in their dwell time on objects.

We will discuss the remaining three features more thoroughly (initiation time, saliency, and
entropy), as they are not region specific.5 These three features can be visualized in Figure 3, where

5We do not present analyses for all features as most of them would not contribute substantially to a theoretical under-
standing of differences between tasks.
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Figure 3. Mean values for the additional features that were computed. Each feature is plotted in a
separate panel for the three different tasks: Naming (N), Description (D), and Search (S). The error
bars indicate the standard error. The unit for all eye-movement measures is the millisecond, with the
exception of saliency (the mean value of saliency of the image, at the fixation location, as returned
by the model of Torralba et al. (2006)) and entropy.

we plot the mean and standard errors for the set of additional features considered in this study (OF).
We find that initiation time is longer in description and search, compared to naming. This

is an interesting result, as it shows that the processing of the cue, taking place in description and
search but not in naming, increases the time required to launch the first eye-movement. Presumably
the cue needs to be integrated with the scene gist to inform the first eye-movement. When looking at
saliency, we find that naming is the task that relies least on fixations in high saliency areas, especially
compared to the description task. As the task is to name as many objects as possible, visual attention
is presumably allocated to objects that are easy to recognize, rather than to objects that are salient
in the scene. Finally, when looking at entropy of the attentional landscapes, we observe a pattern
similar to both area of scene fixated and number of fixations (refer to Figure 2). Naming results in
larger entropy than search and description, as the scene needs to be explored more widely in order
to identify as many objects as possible.

Overall, we find that each task is defined by a characteristic pattern of eye-movement re-
sponses. A visual search task is characterized by long exploratory saccades, relatively short fixations
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Table 2
Mean F-score classification performance for each task (object naming, scene description and vi-
sual search), computed over ten folds of the eye-movement using different sets of eye-movement
features: Greene et al.’s (2012) features (GF), other features (OF), and all features (All). F-scores
are reported for three different classifiers: least-angle regression (LASSO), multinomial logistic re-
gression (MM), and support-vector machine (SVM). Boldface indicates the best F-scores achieved
for each task and classifier.

LASSO MM SVM
Scene Clutter Task GF OF All GF OF All GF OF All

High
Naming .77 .81 .82 .8 .81 .84 .81 .85 .86
Description .61 .65 .66 .65 .67 .71 .68 .71 .74
Search .8 .79 .82 .81 .81 .83 .82 .8 .83

Low
Naming .75 .8 .8 .77 .82 .83 .79 .86 .86
Description .64 .66 .67 .66 .69 .74 .67 .76 .77
Search .86 .85 .86 .86 .86 .88 .87 .85 .88

to verify the object fixated against the cue, and a focused distribution of fixation on areas contextu-
ally relevant to it. In contrast, an object naming task is characterized by shorter saccades but longer
fixations, as the linguistic information associated with the object fixated is also evaluated, and re-
trieved if the object is mentioned. A naming task also triggers a spread-out distribution of attention
over the scene, as different objects could be candidates for naming.

Even if both object naming and scene description are communicative tasks, they generate
distinct eye-movement patterns. During scene description, saccades are shorter than in naming,
while fixations are longer and more focused on animate objects, their bodies, and the objects they
interact with. A sentence requires not only that the linguistic labels of the visual objects are retrieved,
but also that dependencies between objects are evaluated, selected, and structured into a message.
The deeper involvement of language processing mechanisms in scene description could imply a
poorer classification performance compared to visual search and object naming. By using only
features of visual attention to train the models, we fail to capture features that related to ongoing
linguistic processing.

In summary, the large, and statistically significant, differences observed across task on the
associated eye-movement features strongly suggest that it should be possible to classify tasks accu-
rately based on these features.

Predicting the Task using Eye-movement Features

In Table 2, we report the performance in terms of F-score for the three classifiers using differ-
ent sets of features trained on two distinct datasets, which are separated by the clutter of the scene.
We obtain classification performance above chance (i.e., 0.33, given that there are three tasks) using
any of the classifiers in both high and low cluttered scenes. We achieve the highest accuracy of 0.88
on the visual search task with an SVM classifier in low cluttered scenes, and the lowest accuracy of
0.61 on scene description with the LASSO classifier in high cluttered scenes. In terms of the impact
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Table 3
Percentage of misclassified trials using an SVM classifier trained on all features. The columns indi-
cate the correct class in the test set, the rows indicate the class predicted by the classifier. For in-
stance, the Search–Correct, Description–Predicted gives the percentage of visual search instances
misclassified as scene description instances.

Search–Correct Description–Correct Naming–Correct

Search–Predicted 0 12 5
Description–Predicted 8 0 8
Naming–Predicted 2 13 0

of the features set,6 we find that there is no significant improvement using GF (F = 0.76 averaged
over all three tasks) compared to OF (average F = 0.78): t(177) =−1.43, p = 0.1. However, using
All features (average F = 0.81) gives a significant improvement over both GF: t(177) = −4.18,
p = 0.0001; and over OF: t(177) =−2.79, p = 0.005.

When evaluating the performance of the different classifiers when all features are used, we
find no significant difference between LASSO (average F = 0.78) and MM (average F = 0.81):
t(57) = −1.42, p = 0.1. However, SVM (average F = 0.84) outperforms LASSO: t(53) = 3.07,
p = 0.003, but not MM: t(56) = 1.68, p = 0.09. When comparing classification performance across
the tasks using classifiers trained on all features, we find that scene description (average F = 0.73) is
classified significantly less accurately than both visual search (average F = 0.86): t(47) =−11.53,
p < 0.0001, and naming task (average F = 0.84): t(55) = −9.01, p < 0.0001. The difference be-
tween the classification accuracy for search and naming is only marginal: t(52) =−1.75, p < 0.08.

The results observed in our classification analysis are consistent with your mixed-model anal-
ysis if the eye-movement features in the previous section. Each task generates a distinctive eye-
movement signature, which makes it possible to detect the task from eye-movement information.
Nevertheless, Greene et al. (2012) found the opposite result, viz., they were not able to classify
tasks based on eye-movement features. The crucial difference between their study and our study is
presumably the nature of the tasks given to participants: Greene et al. used four purely visual tasks
(memorize the picture, determine the decade the picture was taken in, determine people’s wealth
and social context). We, on the other hand, used one purely visual task (visual search) and two
communicative tasks (scene description and object naming). In communicative tasks, additional
cognitive modalities are needed to achieve the tasks goals. Communicative tasks situated in a vi-
sual context demand an inspection strategy which is also informed by language processing. Thus,
searching for targets happens in the service of planning, encoding, and articulating linguistic output.
The necessary guidance is simpler in naming than in description, as the target does not need to be
contextualized; this is reflected in the fact that scene description is the most difficult task to classify
(see Table 2).

Interestingly, when we look at the percentages of misclassified trials and their distribution
across different tasks, we find that visual search is typically misclassified as scene description (see
Table 3). It seems plausible that the fact that they are both cued paradigms, and both focus on a
specific target object, triggers relatively similar eye-movement patterns. Object naming, in contrast,

6As the classification results are very similar for high and low cluttered condition, we measure the impact of the
features on the models trained using a single dataset.
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Figure 4. Mean F-score classification performance (y-axis) as a function of the features used (x-
axis). Features are selected one at a time using a forward step-wise procedure, which includes fea-
tures based on their impact on classification performance (best first). Error bars show the standard
error for the F-score obtained from ten-fold cross-validation.

is typically misclassified as scene description, which suggests that communicative tasks tend to
share more features, and hence they are more often misclassified as each other.

In summary, we find differences in classification performance by task, by feature set, and by
type of classifier, but overall, our results convincingly show that tasks can be accurately discrimi-
nated by using the associated eye-movement information.

For comparability with Greene et al., 2012, we also conducted two analyses in which we
trained the same three classifiers to predict the participants and the images viewed. Using the GF
feature set with the multinomial log-linear neural networks model (MM) classifier, we obtained
an above-chance classification performance on both participants, viz., 0.12 (where chance is 1/74
= 0.013) and images, viz., 0.14 (where chance is 1/24 = 0.04).7 This result indicates that eye-
movements carry detailed information about both viewers and scenes; but also, that classification
is substantially worse than on tasks, where we achieve a classification accuracy of almost 90% for

7Choosing a LASSO classifier results in images classification performance close to chance, with an accuracy of 0.05.
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Figure 5. Bar-plot showing the frequency of inclusion of each feature during forward step-wise
model selection over ten iterations and ten folds (100 feature sets in total).

visual search.
In the next section, we conclude the study by presenting three more analyses, which provide

answers for three questions about classifying tasks given eye-movement information: (1) How many
features do we need to achieve a classification performance above chance? (2) Which features are
most predictive of the task being performed? (3) Can we accurately classify tasks using features
which are independent of the fact that our tasks used self-termination?

Feature Analysis

In Figure 4, we plot how F-score changes as a function of the features used. We find that al-
ready with just one feature, the classifier is able to detect which task is performed with an accuracy
above chance. Classification performance does not monotonically increase with the number of fea-
tures added. Rather, we observe that accuracy peaks at eight features, and then reduces slightly as
more features are included. This is likely to indicate that the classifier suffers from data sparseness
when it has to use a larger feature set.

When we perform step-wise selection, we evaluate whether the inclusion of a new feature
improves the classification performance; if it does not, then we retain the model without the ad-
ditional feature (refer to the section Methods for Analysis and Classification for details). Over 100
runs (ten iterations for ten folds), the final feature sets we obtain contained an average of 7.66±1.93
features, which confirms the trend observed in Figure 4. The mean F-score performance over the
100 runs is 0.87± 0.02. In order to test whether more features implies a higher classification per-
formance, we run a linear model in which the dependent measure is the F-score obtained and the
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Figure 6. Scatter-plot of Tasks as a function of Mean Saccade Amplitude (pixels), and Initiation
Time (ms). The observations are represented as full dots, while the predicted values are represented
as asterisks. The three different tasks are color coded as: Description (green), Naming (red), Search
(blue). The colored contours represent the SVM classification distributions for the three tasks.

predictor is the size of the associated feature set. We find that F-score slightly improve if the feature
set is larger (βsize = 0.001), but this improvement is not statistically significant (in a one-way Anova,
F(1,98) = 2.37, p = 0.1). This clearly indicates that not all features have the same importance for
discriminating between tasks.

In Figure 5, we plot how frequently a feature is selected to be in the final feature set. We find
that the most discriminative feature is the initiation time, i.e., the time to program the first saccade
after scene onset. As discussed in the section Features Mediating Tasks Variability above, both
visual search and scene description are cued. Initiation time indicates the time needed to integrate
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the cue with the gist of the scene, and plan the first saccade based on this. Thus, initiation is longer
for search and especially scene description compared to naming (see Figure 3). Integration time
therefore constitutes a major discriminant factor for distinguishing between non-cued task such as
naming and cued tasks such as description and search.

The second- and third-best features are the number of fixations and the entropy of the at-
tentional landscape, i.e., features capturing the spatial distribution of visual attention. Just behind
this, we find mean saccade amplitude, which reflects the exploration strategies employed to perform
the task. Temporal features, such as the total number of fixations on objects, object dwell time,
and mean gaze duration, also perform well, each being selected more than 50% of the time. This
indicates that tasks can be differentiated in both the temporal and the spatial allocation of visual
attention. It is interesting to note, moreover, that the mean visual saliency of fixations is selected
only 17% percent of the time. This suggests that bottom-up scene information is accessed in similar
ways for our three different tasks, hence might not be a key discriminant feature in the classification.

The final test regards the question of self-termination, and the possibility that high classifi-
cation performance could be driven by features related to the amount of viewing time, such as the
total number of fixations. We train an SVM classifiers with only two features: initiation time and
mean saccade amplitude. The first feature reflects the cuing aspect of the task; the second one, the
spatial span covered as the scene is explored.

We achieve a classification accuracy of 0.79 for object naming, 0.65 for visual search, and
0.63 for scene description. This result is visualized in Figure 6, where we show a scatter-plot of tasks
as a function of mean saccade amplitude and initiation time, where the full dots are observations
and the asterisks the predicted values from the SVM. We find that the naming cluster is more clearly
defined, compared to visual search and scene description, and this explains why we find the highest
classification accuracy here. Moreover, if we drop one feature, and train the classifier with either
mean saccade amplitude or initiation time, we still have an accuracy above chance, i.e., 0.33. With
initiation time only, we achieve an accuracy of 0.78, for object naming, 0.51 for scene description,
and 0.45 for visual search.

Theoretically, this result demonstrates that tasks do not differ only in terms of their implicit
timing, as set by self-termination, but also terms of other features germane of the task, such as
whether prior information has to be integrated (cuing or not); or in terms of strategies used to
sample the visual percept, such as the distance covered during a saccade. These task-driven routines
contribute to the optimal completion of the task, e.g., long saccades during search, or serve other
cognitive processes that are concurrently active, e.g., smaller saccades during language processing.

General Discussion

Since very early research in visual cognition, task has played a pivotal role in formulating
causal explanations for the different eye-movement responses observed.

First Buswell (1935), and then a few decades later Yarbus (1967) in his influential chapter
“Eye-Movements during Complex Object Perception” have discussed the role of expertise, task in-
structions, and object knowledge in the allocation of visual attention. The qualitative analyses of
scan-path trajectories during different visual tasks presented in these studies have suggested that
eye-movement information includes a evidence of the task performed. Hence, scan-paths observed
in different tasks should differ. If a task entails different goals, then the underlying cognitive pro-
cesses should differ, and the scan-paths should reflect this difference.
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This idea has been extensively explored in subsequent research, where visual attention was
mainly investigated in the context of real-world tasks (Ballard et al., 1995; Land & Furneaux, 1997;
Pelz & Canosa, 2001; Land & Hayhoe, 2001; Ballard & Hayhoe, 2009). This research demonstrates
that task indeed drives eye-movement responses. In particular, eye-movements are pro-actively em-
ployed to anticipate useful task information, e.g., looking at the spout and the kettle before pouring
(Land & Furneaux, 1997). Moreover, when performing a sequence of tasks, e.g., “wash hands” vs.
“fill a cup” and then “wash hands”, can modulate the pattern of fixation observed for the same task
(“wash hands” in this case, see Pelz & Canosa, 2001). The memorability of information attended to
is time-locked to precise phases of the task. Changes occurring on an attended objects, for example,
are detected only if the object was important for the specific action being concurrently performed
(Triesch et al., 2003).

The effect of tasks extends also to other visual tasks, such as search for a target or memoriza-
tion of a scene. The amount of area inspected, for example, was found to be wider in memorization
than in search (Castelhano et al., 2009). Memorization benefits from a wider sampling of the scene
compared to visual search, which instead focuses on precise segments of the scene, especially when
animate objects are the search targets (Torralba et al., 2006; Fletcher-Watson, Findlay, Leekam,
& Benson, 2008; Coco & Keller, 2009). Task effects on visual attention are also manifested dur-
ing other cognitive activities, such as reading (aloud versus silent); and, in turn, eye-movement in
reading significantly differ from those observed in scene perception (Rayner, 2009).

Taken together, prior research strongly suggest a mapping between eye-movements and tasks,
and hence it should be possible to determine which task was performed by an observer given his/her
eye-movement pattern.

Greene et al. (2012) tested precisely this hypothesis and found, contrary to expectations, that
it was not possible to use eye-movement features to classify the task performed with an accuracy
above chance. This study followed up from DeAngelus and Pelz (2009), where the original Yarbus’s
(1967) study was successfully replicated, and significant differences across tasks were found. In
DeAngelus and Pelz (2009), however, an important aspect that contributed to the differences ob-
served, might have been the spontaneous self-termination of the participants. Tasks were completed
at different times, and this influenced the associated eye-movement responses, e.g., total number of
fixations. Thus, the fixed viewing time in Greene et al. (2012) could have flattened the variability
observed in the eye-movement responses, hence making classification impossible.

The alternative hypothesis we propose is that the differences in eye-movement patterns across
tasks were not large enough in Greene et al.’s study to be detected accurately. In particular, as there
was no involvement of other cognitive processes, beside visual attention; the different visual tasks
might have had a common underlying pattern; hence making it difficult to separate them during
classification. Task differences can be expected to be particularly prominent when visual attention
is concurrently deployed with motor actions, as discussed in the Introduction. Thus we hypothesized
that tasks need to be more distinct in their underlying goals and cognitive processes, for differences
in eye-movement responses to emerge.

In our study, we tested this hypothesis, and assumed that relevant differences would be ob-
served when comparing purely visual tasks (e.g., visual search) with communicative tasks (e.g.,
object naming and scene description), in which visual and linguistic information are processed con-
currently (Cooper, 1974; Tanenhaus et al., 1995). Prior work on language processing situated in a
visual context has convincingly demonstrated that visual responses are time-locked with linguis-
tic processes during language comprehension (e.g., Altmann & Kamide, 1999; Spivey-Knowlton,
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Tanenhaus, Eberhard, & Sedivy, 2002 and production (e.g., Griffin & Bock, 2000; Gleitman et
al., 2007. Moreover, visual and linguistic responses are so closely intertwined that it is possible to
retrieve the correct sentence based on the associated scan-pattern with an accuracy above chance
(Coco & Keller, 2012). If eye-movements carry detailed information about a sentence being heard
or spoken, then they should also carry discriminant information about the task performed.

In the present study we tested this claim using eye-movement data collected in three different
tasks: visual search, object naming, and scene description. From the eye-movements of each trial,
we extracted the seven features used by Greene et al. (2012), and an additional 15 new features,
which we included into the analysis to widen the range of eye-movement properties investigated.

A linear-mixed effect modeling analyses showed that tasks significantly differ in a wide range
of eye-movement responses, including ones that depend on the time to complete the task (e.g., total
number of fixations) and ones that do not (e.g., initiation time). In particular, each task is charac-
terized by a distinctive eye-movement pattern: visual search requires long exploratory saccades to
quickly sample of the visual scene, along with short fixation durations to verify the object identity
against the cued target. During object naming, saccades are much shorter, to quickly attend as many
objects as possible, while fixations are longer, to retrieve and activate lexical information associated
to the fixated object. Scene description also has its characteristic pattern, where saccades are shorter
than search, but longer than naming. During scene description, objects, mostly related to the sen-
tence being produced, are attended, whereas in naming all objects are possible naming candidates.
Fixations are longer than during search, which highlights the involvement of language processing,
but they are shorter than during naming. Structuring a sentence requires a deeper involvement of
language processing mechanisms, which presumably reduces the amount of attentional resources
available for processing specific objects.

The large differences observed suggest that an automatic classification of tasks using eye-
movement features should be possible. Therefore, we trained three different classifiers, a least-angle
regression classifier, a multinomial logistic model, and a support vector machine, with three different
sets of features (Greene et al.’s features, our additional features, and both) and demonstrated that we
can classify tasks using each of these features set with an accuracy well above chance (a maximum
F-score of .88 was achieved). In a nutshell, we show that tasks are associated with distinctive eye-
movement patterns, and that these patterns can be successfully used to perform task classification.

This evidence for task-specific eye-movement patterns provides broad support for the active
vision hypothesis, according to which task goals play a fundamental role in the allocation of visual
attention. However, not all tasks can be easily classified by relying on eye-movement information. In
our analysis, we found that the most difficult task to classify was scene description, and speculated
that in order to achieve higher accuracy in this task, we might need to include linguistic features
of the sentences produced in the training data. If the eye-movement information is dependent on
concurrently processed information (such as linguistic information), then it would be insufficient to
correctly characterize the observed task.

We also conducted three additional analyses to identify: (1) how many features are needed to
achieve maximal classification performance, (2) which of the 22 features we considered were most
useful for classification, and (3) whether features independent of self-termination, such as initiation
time and mean saccade amplitude, are sufficient to discriminate tasks above chance.

We found that already just one feature is able to classify the tasks with an accuracy above
chance, and that maximum performance was achieved with seven to eight features. When looking
at which features were most important, we found that initiation time, i.e., the time to launch the first
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eye-movement, the number of fixations, the mean saccade amplitude, the total amount of fixation on
objects and the entropy of the attentional landscape were selected in the best-performing more than
50% of the time. Interestingly, these are measures covering both spatial aspects (i.e., the amount of
the scene inspected) and temporal aspects (i.e., the time spent looking) of visual attention. The best
performing feature overall was initiation time, as it allows the classifier to distinguish between cued
and non-cued tasks. We concluded that when the task is cued, the cue needs to be integrated with
the visual percept of the scene (such as the gist), delaying the programming of the first saccade.
This effect is more prominent for description than for search; in description, the cued target does
not just need to be located in the scene, but also verbally contextualized within the scene. Finally,
we showed that features that are independent of self-termination, such as initiation time and mean
saccade amplitude, are also able to accurately classify the tasks. This result casts doubts on the
hypothesis that the null result of Greene et al. was due to their use of fixed viewing times.

Our results open new intriguing questions regarding when different tasks show distinct pattern
of eye-movements on different tasks (as some tasks clearly do not, as per Greene et al., 2012).
Future research should investigate, more specifically, how the involvement of non-visual cognitive
processes, language in our study, can influence the pattern of eye-movements observed, and the
accuracy of task classification.
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