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Abstract
This paper provides a critical assessment of the Gradual Learning Algorithm (GLA) for
probabilistic optimality-theoretic grammars proposed by Boersma and Hayes (2001). After
a short introduction to the problem of grammar learning in OT, we discuss the limitations
of the standard solution to this problem (the Constraint Demotion Algorithm by Tesar and
Smolensky (1998)), and outline how the GLA attempts to overcome these limitations. We
point out a number of serious shortcomings with the GLA approach: (a) A methodological
problem is that the GLA has not been tested on unseen data, which is standard practice in
research on computational language learning. (b) We provide counterexamples, i.e., data
sets that the GLA is not able to learn. Examples of this type actually occur in experimental
data that the GLA should be able to model. This sheds serious doubt on the correctness and
convergence of the GLA. (c) Essential algorithmic properties of the GLA (correctness and
convergence) have not been proven formally. This makes it very hard to assess the validity
of the algorithm. (d) We argue that by modeling frequency distributions in the grammar,
the GLA conflates the notions of competence and performance. This leads to serious con-
ceptual problems, as OT crucially relies on the competence/performance distinction.

Keywords: Optimality Theory, probabilistic grammars, language acquisition, corpus fre-
quencies, degrees of grammaticality, competence/performance
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1. Learnability and Optimality Theory: Problems and Solutions

A generative grammar is empirically inadequate (and some would say theoretically un-
interesting) unless it is provably learnable. Of course, it is not necessary to provide such a
proof for every theoretical grammar postulated. Rather, any generative linguistic framework
must have an associated learning theory which states how grammars couched in this framework
can be learned. One reason that Optimality Theory (OT; Prince and Smolensky 1993) has proven
so influential in such a short time is that it was developed hand in hand with a learning algo-
rithm for optimality-theoretic grammars: the Constraint Demotion Algorithm (CDA; Tesar and
Smolensky 1996, 1998, 2000).1

Tesar and Smolensky claim that the CDA is able to learn every totally ordered constraint
hierarchy (i.e., OT grammar) provided it is supplied with suitable training data. Such an algo-
rithmic claim has to be backed up by a rigorous demonstration that the algorithm works in the
general case, which means thatproofsof the algorithm’s correctness and convergence have to
be given. A learning algorithm is correct if it computes the correct grammar provided it is sup-
plied with suitable training data. An algorithm converges if it yields a result on every training
set (rather than oscillating indefinitely on certain sets).

Tesar and Smolensky (1998: 257–265) provide proofs of the CDA’s formal properties:
they show that it always learns the correct grammar if given suitable training data and that it
will converge on any consistent training set. This means that Tesar and Smolensky are able to
provide a generative framework—OT—with an associated learning theory—the CDA. In other
words, OT grammarswith totally ordered constraint hierarchiesare provably learnable. Let us
call such grammarsStandard Optimality Theory(SOT) grammars.

Although learnability is a necessary condition for a grammar’s empirical adequacy, it is
obviously not a sufficient condition: the grammar still has to get the linguistic facts right, i.e., it
has to be descriptively adequate. There are two crucial properties of linguistic competence that
SOT grammars have trouble representing: one is free variation (i.e., optionality) and ambiguity,
the other is gradient grammaticality (both will be discussed in more detail in Section 2). These
two representational problems of SOT are inherited by Tesar and Smolensky’s learning theory,
which cannot deal with free variation and ambiguity, and is not designed to handle gradient
grammaticality. In addition, the CDA lacks robustness, i.e., it cannot deal with noisy data: errors
in the training set can mean that the algorithm fails to learn the correct grammar (see Section 2
below).

In order to deal with these deficiencies of SOT and its associated learning theory, Boersma
and Hayes (2001) have proposed a modified version of OT, which we will callProbabilistic Op-
timality Theory(POT). POT comes with an associated learning algorithm, the Gradual Learning
Algorithm (GLA), and is claimed to solve the problems that plague SOT: (a) it can model free
variation and ambiguity, (b) it can account for gradient grammaticality, and (c) it is robust, i.e.,
it can learn from data that contains errors.2

1We are aware that there are other proposals for OT learning in the literature, such as Pulleyblank and Turkel
(2000) and Hale and Reiss (1998). However, we will take CDA as the standard of comparison for Boersma and
Hayes’s (2001) Gradual Learning Algorithm because the CDA is only minimally different and is also the most well
known OT learning algorithm.

2Previous incarnations of the POT framework are presented by Hayes (2000), Hayes and MacEachern (1998),
and Boersma (1997, 1998, 2000), who also describes various antecedents of the GLA.
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Table 1: Example for Ilokano metathesis variation

/taPo-en/ C1 . . . Cn

☞ taP.wen
☞ taw.Pen

...

In the present paper, however, we will present a set of problems with the GLA. More
specifically, we will argue that:

(a) The GLA has not been tested on unseen data, hence it is unclear if it is able to generalize.
(b) There are data sets which the GLA cannot learn.
(c) Boersma and Hayes (2001) offer no proof of correctness and convergence for the GLA.
(d) The GLA model conflates grammaticality and corpus frequency in a way that is not com-

patible with standard assumptions about competence and performance.

We will conclude that the GLA (at least in the form presented in Boersma and Hayes 2001) is
seriously deficient, and will have to be modified if problems (a)–(d) are to be resolved.

2. Free Variation, Ambiguity, Gradience, and Robustness

2.1. Free variation and Ambiguity

Free variation and ambiguity are formally the same in OT (Asudeh 2001). Each is a case
of one input corresponding to multiple outputs, the former in the production direction and the
latter in the comprehension direction. First let us consider free variation. As an example, take
the Ilokano3 metathesis variation that Boersma and Hayes (2001) discuss, following Hayes and
Abad (1989). In Ilokano /Po/ can be realized as either [Pw] or [wP], under certain conditions
(Boersma and Hayes 2001: 55–59). For example, /taPo-en/ is realized as either [taP.wen] or
[taw.Pen]. It seems straightforward to represent this in an OT tableau, abstracting away from the
actual constraints involved, as illustrated in Table 1. We have one input to production, /taPo-en/,
and two outputs, the two winners [taP.wen] and [taw.Pen].

Next let us consider ambiguity, taking Germanic final devoicing as an example. We can
give a rough characterization of this as word-final obstruents being realized as [−voiced]. So
/læb/ would be realized as [læp]. But, /læp/ would also be realized as [læp]. The form [læp] is
ambiguous, having two possible underlying forms. This is clearly formally the same problem as
optionality in OT: we have one input to comprehension, and two outputs, the two winners /læp/
and /læb/.

It is obvious why SOT has trouble representing optionality and ambiguity (recall from
Section 1 that SOT as defined by Prince and Smolensky 1993 assumes strict ranking of all

3Ilokano is an Austronesian language, spoken principally in the Philippines, with roughly eight million speakers
(data from Ethnologue,http : //www.ethnologue.com/).
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constraints). In the cases we have considered, there have been two winners, but each SOT com-
petition, hasoneoptimal candidate corresponding to one winning output. SOT can, in principle,
produce multiple outputs, but only if there are candidates with identical constraint violation
profiles, a situation that is extremely rare for a grammar with a realistic number of constraints.
However, the Constraint Demotion Algorithm was not designed to handle optionality and ambi-
guity (Tesar and Smolensky 1998: 249–251). This means that grammars which model optional-
ity or ambiguity using multiple winners are not learnable with the CDA, as Boersma and Hayes
(2001) demonstrate.

The simplest solution to the problem of free variation is to make the constraint hierarchy
a partial order instead of a total order (Anttila 1997a,b): in this setting, some constraints are
tied for their rank in the ordering. The partial ordering can be resolved to varying total orders,
and each of the orders produces a different winner. The POT/GLA framework constitutes a
probabilistic implementation of this idea, as will be explained in more detail in Section 3.

2.2. Gradient Grammaticality

There is a growing body of evidence showing that grammaticality is a gradient notion,
rather than a categorical one (for a review see Sch¨utze 1996). A number of experimental studies
demonstrate that speakers can reliably make gradient well-formedness distinctions, in morphol-
ogy and phonology (Hayes 1997, 2000; Hayes and MacEachern 1998; Keller and Alexopoulou
2001) and in syntax (Bard et al. 1996; Cowart 1997; Keller 2000a,b; Keller and Asudeh 2001;
McDaniel and Cowart 1999; Sorace 1993a,b, 2000). Gradient well-formedness is clearly a fea-
ture of native speakers’ knowledge of language, and as such should be accounted for by linguis-
tic theory.

SOT, however, is not designed to handle gradient well-formedness: for every input, there
is exactly one winning candidate, which is grammatical; all other candidates are ungrammatical.
This means that SOT can only model categorical well-formedness judgments (it shares this
feature with most other generative theories, e.g., Bresnan 2001; Chomsky 1981, 1995; Pollard
and Sag 1994). The CDA is designed as a learning algorithm for SOT, and hence inherits this
limitation, i.e., it can only learn grammars that make categorical well-formedness distinctions.

There are two proposals for extensions of OT that can handle gradient grammaticality
(Keller 2000b; Müller 1999). Both approaches are based on a distinction between two types
of constraints, one of which triggers categorical grammaticality, while the other one triggers
gradient well-formedness. However, neither of these approaches addresses the issues of free
variation, ambiguity, and robustness.

2.3. Robustness

In developing the CDA, Tesar and Smolensky (1998) rely on an important idealization.
They assume that the learning algorithm has access to training data that reflects the grammar
perfectly, i.e., that is free of erroneous examples. The CDA is guaranteed to converge on the
correct grammar only under this idealization.

A real world language learner, however, has to cope with noise in the training data, such as
slips of the tongue or distorted and incomplete utterances. As Boersma and Hayes (2001) show,
the CDA does not work well in the face of noisy training data—a single erroneous training
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example can trigger drastic changes in the learner’s grammar, possibly leading to a situation
where the whole constraint hierarchy has to be relearned. The GLA is designed to overcome
this limitation: it is robust against noise in the training data, i.e., a small proportion of erroneous
examples will not affect its learning behavior.

3. Probabilistic Optimality Theory and the Gradual Learning
Algorithm

Boersma and Hayes (2001) propose a probabilistic variant of Optimality Theory (POT)
that is claimed to overcome the problems with SOT discussed in the previous section. It is
designed to account for corpus frequencies (thus modeling free variation) and gradient ac-
ceptability judgments (thus accounting for degrees of grammaticality). Furthermore, POT is
equipped with a learning algorithm that is robust, i.e., that can deal with noise in the training
data. The POT framework has been applied in phonology (Boersma 1997, 1998, 2000; Boersma
and Hayes 2001; Boersma and Levelt 2000; Hayes 2000; Hayes and MacEachern 1998), mor-
phology (Boersma and Hayes 2001; Hayes 1997), and syntax (Asudeh 2001; Bresnan et al.
2001; Dingare 2001; Koontz-Garboden 2001).

The POT model stipulates a continuous scale ofconstraint strictness. Optimality-
theoretic constraints are annotated with numerical strictness values; if a constraintC1 has a
higher strictness value that a constraintC2, thenC1 outranksC2. Boersma and Hayes (2001) as-
sumeprobabilistic constraint evaluation, which means that at evaluation time, a small amount
of random noise is added to the strictness value of a constraint. As a consequence,rerankingsof
constraints are possible if the amount of noise added to the strictness values exceeds the distance
between the constraints on the strictness scale.

For instance, assume that two constraintsC1 andC2 are rankedC1 � C2, selecting the
structureS1 as optimal for a given input. Under Boersma and Hayes’s (2001) approach, a rerank-
ing of C1 andC2 can occur at evaluation time, resulting in the opposite rankingC2 �C1. This
reranking might result in an alternative optimal candidateS2. The probability of the reranking
that makesS2 optimal depends on the distance betweenC1 andC2 on the strictness scale (and
on the amount of noise added to the strictness values). The reranking probability is assumed to
predict the corpus frequency ofS2, and thus account for free variation. The more probable the
rerankingC2 �C1, the higher the corpus frequency ofS2; if the rankingsC1 �C2 andC2 �C1

are equally probable, thenS1 andS2 have the same corpus frequency, i.e., we have a case of true
optionality. Furthermore, Boersma and Hayes (2001) assume that corpus frequency and degree
of grammaticality are directly related: “intermediate well-formedness judgments often result
from grammatically encodable patterns in the learning data that are rare, but not vanishingly so,
with the degree of ill-formedness related monotonically to the rarity of the pattern” (Boersma
and Hayes 2001: 73). This means that POT also provides a model of gradient grammaticality
(see Section 4.4 for a critique of this assumption).

The POT framework comes with its own learning theory in the form of the Gradual Learn-
ing Algorithm (GLA; Boersma 1998, 2000; Boersma and Hayes 2001). This algorithm is a gen-
eralization of Tesar and Smolensky’s Constraint Demotion Algorithm: it performs constraint
promotion as well as demotion. Note that both the CDA and the GLA assume as training data a
corpus of parsed examples, i.e., they have access not only to the surface strings, but also to the
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underlying structures of the training examples.4

More specifically, the GLA works as follows. It starts with a grammarG, in which ini-
tially the constraints are ranked arbitrarily, i.e., they have random strictness values. If the GLA
encounters a training exampleS, it will compute the corresponding structureS′ currently gen-
erated by the grammarG. If SandS′ are not identical, then learning takes place; the constraint
hierarchy ofG has to be adjusted such that it makesS optimal, instead ofS′. (The example
S is attested in the training set, hence it has to win over the unattested competitorS′.) In or-
der to achieve this adjustment, the GLA first performsmark cancellation, i.e., it disregards all
constraint violations that are incurred both byS andS′. On the remaining uncancelled marks,
the algorithm performs the following steps to adjust constraint strictness: (a) it decreases (by a
small amount) the strictness values of all constraints that are violated bySbut not byS′; (b) it
increases (by a small amount) the strictness values of all constraints that are violated byS′ but
not byS.

This procedure will gradually adjust the strictness values of the constraints inG, resulting
ultimately in the correct constraint hierarchy (given that enough training data is available). Just
like the CDA, the GLA performs constraint reranking, but it does so gradually; one training
example is not sufficient to change the ranking of a given constraint, as it only triggers small
changes in constraint strictness. This means that the GLA is robust: a small number of incorrect
training examples will not disturb the learning process—the effect of the noise is outweighed
by the effect of the correct training examples, which can be assumed to form the majority of the
training data.

Crucially, Boersma and Hayes (2001) claim that the GLA converges on afrequency-
matchinggrammar. If two formsS1 and S2 both occur in the training set, then the resulting
grammar will also generate both forms. In particular, the probabilities that the grammar assigns
to S1 andS2 will correspond to the frequencies of the two forms in the training data. This means
that the GLA offers an account of free variation, and also of gradient grammaticality (under the
assumption that corpus frequency and degree of grammaticality are directly related).

4. Problems with the Gradual Learning Algorithm

4.1. Testing on Unseen Data

Boersma and Hayes (2001) test the POT/GLA model on three data sets: (a) frequency
data for Ilokano reduplication and metathesis, (b) frequency data for Finnish genitive plurals,
and (c) acceptability judgment data for the distribution of English light and dark /l/. For each of
the data sets, a good model fit is achieved, i.e., the algorithm learns a grammar that generates
frequency distributions that closely match those in the training data (as shown by a low average
error rate).

Achieving a good fit on the training data is a first step in testing a learning algorithm.
The next step is to then test the algorithm on unseen data. A learning algorithm is useful only
if it achieves a low error rate on both the training data and on unseen test data. The parameters
of the algorithm are determined using the training data, and then the algorithm is applied to

4This in itself is a problematic assumption, but we will grant it for the sake of argument. For criticisms, which
have largely been ignored in the OT community, see Turkel (1994) and Hale and Reiss (1998).



PROBABILISTIC LEARNING AND OT 7

the test data, while holding the parameters constant. Testing on unseen data makes it possible
to assess the ability of the algorithm to generalize. Such tests are standard practice in machine
learning (e.g., Mitchell 1997) and computational linguistics (e.g., Manning and Sch¨utze 1999).
Also, in the literature on models of human language acquisition, testing on unseen data is rou-
tinely carried out to validate a proposed learning algorithm (e.g., Gillis et al. 2000; Westermann
1998).5

However, no tests on unseen data are reported for the GLA by Boersma and Hayes (2001).
This is a serious shortcoming, as the absence of such tests leaves open the possibility that the
algorithmoverfitsthe data, i.e., that it achieves a good fit on the training set, but is unable to
generalize to unseen data. Note that the problem of overfitting is potentially quite serious for
Boersma and Hayes (2001). In their model of light vs. dark /l/, six free parameters (viz., the
strictness values of the six constraints in the model) are used to fit seven data points (viz., the
seven mean acceptability rating that are being modeled). Overfitting seems very likely in this
situation.

In the following, we will briefly discuss how the problem of overfitting could be addressed
in the context of a POT-based learning algorithm. First, we will briefly review a set of standard
crossvalidation techniques from the machine learning literature (Mitchell 1997).

Held-Out Data. This approach involves randomly splitting the data set into two sets, the
training set that is used to estimate the parameters of the model, and the test set that is used to
test the model. Then the model fit is computed on both the test set and the training set; a good
model fit on the test set indicates that the model is able to generalize to unseen data, i.e., does
not overfit the training data. The disadvantage of the held-out data approach is that a fairly large
data set has to be used; the test set should be about 10% of the overall data set; if the data set is
too small, no meaningful results can be achieved when testing the model.

k-fold Crossvalidation. This approach is a generalization of the held-out data approach.
The data set is randomly partitioned ink subsets. The model is tested on one of these subsets,
after having been trained on the remainingk− 1 subsets. This procedure is repeatedk times
such that each of the subset serves once as the test set andk− 1 times as part of the training
set. Based on the training and testing results, average values for the model fit can be computed.
Thek-fold crossvalidation approach has the advantage of also being applicable to fairly small
data sets, as in effect the whole data set is used for testing. In addition, we obtain average values
for the model fit on the training and the test data, i.e., confidence intervals can be computed.
Typically, a value ofk = 10 is used in the literature.

Leave One Out.This method is an instance ofk-fold crossvalidation wherek is set to the
size of the data set. This means that the model is trained on all items of the training set, leaving
out only one item, on which the model is then tested. This procedure is repeatedk times and the
average model fit is computed. The advantage of leave one out is that it is even more suitable
for small data sets than standardk-fold crossvalidation. An obvious disadvantage is that a large
number of training and test runs have to be carried out.

Which of these three tests for overfitting will be chosen for a given learning task largely
depends on the amount of data available. The data sets on which Boersma and Hayes (2001)

5Note that testing on unseen data is unnecessary for Tesar and Smolensky’s CDA. As this algorithm presupposes
idealized training data (see Section 2), the error rate on both the training and testing data will be zero.
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Table 2: Data set that the GLA cannot learn (hypothetical frequencies or acceptability scores)

/input/ C3 C1 C2 Freq./Accept.
S1 * 3
S2 * * 2
S3 * 1

test the GLA are all fairly small: the Ilokano reduplication data set consists of 29 data points
(Boersma and Hayes 2001: (22)), the Finnish plural data set comprises 44 data points (Boersma
and Hayes 2001: (30)), and there are seven data points for the distribution of English /l/
(Boersma and Hayes 2001: (35)). This means that the only test for overfitting that can be ex-
pected to yield reliable results on these data is the leave one out procedure. In this setting, the
GLA would be trained on all data points but one, and the resulting grammar would be tested as
to its ability to correctly predict this missing data point. This procedure would then be repeated
for all data points, and the average model fit computed.

In principle, the number of data points available for training and testing could be in-
creased by testing on tokens (i.e., on corpus instances of a given training example) instead of
on types. However, this option is only available for the Finish plural data, as this is the only
phenomenon discussed by Boersma and Hayes (2001) for which actual corpus data are avail-
able. For the Ilokano and English data, Boersma and Hayes (2001) have to resort to simulating
corpus evidence. In the first case, they assume that all optional forms are equally distributed
in the corpus, in the second case, they assume an exponential relationship between degrees of
acceptability and corpus frequencies.

4.2. Counterexamples

In this section, we will provide two types of counterexamples that illustrate that there
are acceptability or frequency patterns that the GLA is not able to learn. We will also refer to
experimental results and frequency data that instantiate these patterns, showing that they are not
just hypothetical counterexamples, but constitute a serious problem for the GLA. These data
cover both phonology and syntax, and include acceptability as well as frequency data.

The first counterexample involves harmonic bounding. Assume two structuresS1 andS2

in the same candidate set, which both incur a violation of the constraintC1. The structureS2

incurs an additional violation of the constraintC2, andS1 andS2 incur no other violations (or
incur the same violations). Now assume a third structureS3 that only incurs a violation of the
constraintC3. Assume further thatS2 is less grammatical (or less frequent) thanS1. Let S3 be
less grammatical (or less frequent) thanS2.

This configuration is illustrated in Table 2. The GLA is not able to learn such a data set:
there is no reranking under whichS2 is optimal, asS2 incurs the same violations asS1, plus
an additional violation ofC2. HenceS1 will always win overS2, no matter which constraint
rerankings we assume. Under a GLA approach, the degree of grammaticality (or frequency) of
a structure depends on how likely it is for this structure to be optimal.S2 can never be optimal,
it is a “perpetual loser” and therefore is predicted to be categorically ungrammatical (or of
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frequency zero).S3, on the other hand, is not a perpetual loser, as there are rerankings which
make it optimal (e.g.,C1 � C3 andC2 � C3). This means that a situation whereS3 is less
grammatical (or less frequent) thanS2 cannot be modeled by the GLA.

Configurations such as this one can be found in the experimental literature on gradient
grammaticality. An example is provided by Keller; Keller’s (2000a; 2000b) study of word order
variation in German.6 Table 3 lists experimentally elicited acceptability scores for subordinate
clauses, varying the relative order of the subject NP (S, nominative case), the object NP (O, ac-
cusative case), and the verb (V). One of the NPs is pronominalized, as indicated by the feature
[pro].

The data in Table 3 can be accounted for by a simple set of linear precedence constraints:
VERB specifies that the verb has to be in final position, NOM specifies that nominative NPs
have to precede non-nominative NPs, while PRO states that pronouns have to precede full NPs.
Another linear precedence constraint is DAT, requiring that dative NPs precede accusative NPs
(this constraint will become relevant later on). This set of constraints provides an intuitive,
straightforward account of word order preferences in the German subordinate clause. It is largely
uncontroversial in the theoretical literature, which is evidenced by the fact that a number of
authors assume essentially the same set of constraints (Choi 1996; Jacobs 1988; Keller 2000a,b;
Müller 1999; Uszkoreit 1987).

Under this account, the structures in Table 3 incur one violation of NOM, a combined
violation of NOM and PRO, and one violation of VERB, respectively. The relative acceptability
values match the ones in the counterexample in Table 2. This means that we have a case of
an experimentally attested acceptability pattern that cannot be learned by the GLA.7 Given the
uncontroversial status of the word order constraints in this example, we would certainly expect
the GLA to be able to learn the corresponding acceptability scores.8

A related problem with the GLA concerns effects from cumulative constraint violations
(cumulative violations are a special case of harmonic bounding). Consider the constraint set in
Table 4, where the winning candidate isS1, incurring a single violation ofC2. If a rerankingC2 �
C1 occurs, thenS4, incurring a single violation ofC1, will win. However, there is no reranking
that can makeS2 or S3 optimal, as these candidate have the same violation profile asS1, but
incur multiple violations ofC2. The structuresS2 andS3 are “perpetual losers” and are expected
to be categorically ungrammatical (or of frequency zero). This means that the GLA predicts
that there should be no cumulative effects from multiple constraint violations: all structures that

6Although Boersma and Hayes do not explicitly claim that the GLA is applicable to syntax, there is no reason to
believe that it should not be. The GLA is a learning algorithm for OT, which is not in itself a theory of phonology
or morphology. Given that syntactic analyses can be couched in OT (for some recent examples see Legendre et al.
2001; Sells 2001), the GLA should be able to learn syntactic OT grammars. In addition, there has been recent work
in syntax that specifically uses Boersma and Hayes’s (2001) POT/GLA model (Asudeh 2001; Bresnan et al. 2001;
Dingare 2001; Koontz-Garboden 2001).

7Note that Table 3 assumes that all the structures are in the same candidate set (i.e., they compete with each
other). This is of course an assumption that could be challenged on theoretical grounds. However, in the POT/GLA
framework, differences in degree of grammaticality or frequency canonly be predicted for structures that are in the
same candidate set. This means that the data in Table 3 is problematic for POT/GLA, even if we drop this assumption.

8It is important to note that by means of examples such as the one in Table 3, we can only refute theconjunction
of a given linguistic analysis and a given learning algorithm. Even though the constraint set assumed in our word
order example is uncontroversial in the literature, it seems conceivable that an alternative analysis of the word order
data could be provided. If this analysis avoids harmonic bounding, then it could make the data learnable for the GLA.
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Table 3: Data set that the GLA cannot learn (log-transformed mean acceptability scores for word order
in German, Keller 2000b, Experiment 10)

/S, O, V/ VERB NOM PRO Acceptability
O[pro,acc] S[nom] V * .2412
O[acc] S[pro,nom] V * * −.0887
V S[pro,nom] O[acc] * −.1861

Table 4: Data set with cumulative constraints violations (hypothetical frequencies or acceptability scores)

/input/ C1 C2 Freq./Accept.
S1 * 4
S2 ** 3
S3 *** 2
S4 * 1

incur more than one violation of a given constraint will be equally ungrammatical (provided
they are minimal pairs, i.e., they share the same constraint profile on all other constraints).

Cumulative effects are attested in actual linguistic data, they are not just theoretical con-
structs, and thus pose a real problem for the GLA. We illustrate this point with reference to
Guy and Boberg’s (1997) frequency data for coronal stop deletion in English (see Guy 1997
for a detailed discussion). The assumption is that the deletion of a coronal stop is governed by
the Generalized Obligatory Contour Principle (OCP), which can be formulated as *[αF] [αF]:
feature sharing with the preceding segment is disallowed. Guy and Boberg (1997) show that the
frequency with which the deletion of a coronal stop occurs depends on the number of features
that are shared with the preceding segment (see Table 5). In other words, they observe a cumu-
lative effect triggered by the generalized OCP: the more OCP violations a structure incurs, the
lower the frequency of retention of the coronal stop. This situation can be easily mapped on the
cumulative example that we discussed earlier: compare Table 4 and Table 6 (note that we have
converted relative deletion frequencies to relative retention frequencies to illustrate our point).
This means that the GLA is not to able to learn Guy and Boberg’s (1997) frequency data.9

Cumulative effects not only occur in frequency data such as the one presented by Guy and
Boberg (1997), but also in acceptability data, as demonstrated by Keller (2000b) for word order
variation in German. Table 7 lists experimentally elicited acceptability scores for permutations

9Again, it is possible to challenge the assumption that the cases in Table 4 should all be in the same competition
(see also Footnote 7). However, even if they are not, the POT/GLA model makes the wrong prediction, as it would
predict that every output is equally grammatical, if they are the sole winners of their competitions. This is contrary
to the data presented by Guy and Boberg (1997). In other words, the POT/GLA model can only predict the differing
frequencies of the various pre-coronal segments if they are in the same competition, but if they are in the same
competition, then the grammar is not learnable. The reader is referred to Guy 1997 for a more detailed discussion of
this data, and its implications for various OT-based models of corpus frequencies.
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Table 5: Preceding segment effect on coronal stop deletion in English (Guy and Boberg 1997, cited in
Guy 1997)

Deletion
Preceding Segment N %
All features shared with target
/t,d/ [+cor,−son,−cont] – (categorial absence)
Two features shared with target
/s,z,S,Z/ [+cor,−son] 276 49
/p,b,k,g/ [+son,−cont] 136 37
/n/ [+cor,−cont] 337 46
One feature shared with target
/f,v/ [+son] 45 29
/l/ [+cor] 182 32
/m,N/ [+cont] 9 11
No feature shared with target
/r/ – 86 7
vowels – – (nearly categorial retention)

Table 6: Data set with cumulative constraints violations (relative frequencies for coronal stop retention,
Guy and Boberg 1997)

Preceding Segment*[ αF] [αF] Frequency
/t,d/ *** 0

/s,z,S,Z/ ** 51
/p,b,k,g/ ** 63

/n/ ** 54
/f,v/ * 71
/l/ * 68

/m,N/ * 89
/r/ 93

vowels 100
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Table 7: Data set with cumulative constraints violations (log-transformed mean acceptability scores for
word order in German, Keller 2000b, Experiment 6)

/S, O, I, V/ NOM DAT Acceptability
O[acc] I[dat] S[nom] V ** * −.2736
I[dat] O[acc] S[nom] V ** −.2667
O[acc] S[nom] I[dat] V * * −.2038
I[dat] S[nom] O[acc] V * −.0716
S[nom] O[acc] I[dat] V * .0994
S[nom] I[dat] O[acc] V .2083

of subject (S), object (O), and indirect object (I) in subordinate clauses with ditransitive verbs.
This acceptability pattern can be accounted for straightforwardly using the constraints NOM

(nominative precedes non-nominative) and DAT (dative precedes accusative) (Choi 1996; Jacobs
1988; Keller 2000a,b; M¨uller 1999; Uszkoreit 1987).

The word order data in Table 7 combine the properties of the counterexamples in Ta-
bles 2 and 4. On the one hand, we find cumulative effects (as in Table 4): the structure
I[dat] O[acc] S[nom] V incurs a double violation of NOM, and is less acceptable than the struc-
ture I[dat] S[nom] O[acc] V, which only incurs a single violation of NOM. On the other hand,
the data in Table 7 provide another example for the problems with harmonic bounding that the
GLA faces. The structure O[acc] S[nom] I[dat] V incurs a combined violation of NOM and DAT,
which means that it will always lose against I[dat] S[nom] O[acc] V or S[nom] O[acc] I[dat] V,
the structures which only incurs single violations of NOM and DAT, respectively. This means
that O[acc] S[nom] I[dat] V is a “perpetual loser”: it can never be optimal and thus is predicted
to be maximally ungrammatical by POT. However, as Table 7 shows, there are a number of
structures in this candidate set that are more ungrammatical than O[acc] S[nom] I[dat] V.

Neither the cumulativity effect nor the harmonic bounding effect can be accommodated
by Boersma and Hayes’s (2001) model, which means that the GLA is unable to learn the data
set in Table 7.

4.3. Formal Properties

Boersma and Hayes (2001) fail to provide a formal proof of correctness for the GLA,
which means that it is not clear that the GLA always generates a correct set of strictness values
if supplied with adequate training data. It is not trivial to show the correctness of the GLA, as
it is part of a class of possible learning algorithms for POT, not all of which are suitable for
learning frequency data. An example is the Minimal Gradual Learning Algorithm, a variant of
the GLA originally proposed by Boersma (1997), which Boersma (1998) later showed to be
incorrect.

Note that Boersma (2000: 517–518) provides a short discussion of the correctness of the
GLA and a reference to Boersma 1998. In Boersma 1998, however, only a sketch of a proof is
given and the author concedes that “[w]e have made plausible, though not yet rigorously proved,
that the maximal symmetrized gradual learning algorithm [the GLA] is capable of learning any
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Table 8: Learning behavior of the GLA on the data set in Table 4 (examplesS1, S2, S4)

Example Freq. Prob. evaluation Change in strictness
S1 4 (a) C1 �C2 no change

(b) C2 �C1 C1+, C2−
S2 3 (c) C1 �C2 C2−

(d) C2 �C1 C1+, C2−
S4 1 (e) C1 �C2 C1−, C2+

(f) C2 �C1 no change

stochastically evaluating OT grammar” (Boersma 1998: 345). Hence a rigorous proof of the
correctness of the GLA has yet to be provided.10

Another problem is that the convergence properties of the GLA are unknown. This leaves
open the possibility that there are data sets on which the GLA will not converge or not produce a
meaningful set of constraint ranks. Convergence is a crucial property of a learning algorithm that
should be investigated formally. Boersma and Hayes (2001) fail to provide the relevant proof.

In Section 4.2 we presented counterexamples that the GLA cannot learn. In addition, the
GLA also never stops trying to learn these examples, i.e., it fails to converge on data sets such as
the ones in Tables 2 and 4. We will illustrate this point with reference to cumulative constraint
violations. It is sufficient to consider the training examplesS1, S2, andS4 in Table 4.

Assume that the learner encounters the exampleS1. The probabilistic evaluation compo-
nent will produce either the constraint orderingC1 �C2 orC2 �C1. If the ordering isC1 �C2,
then no changes in strictness will occur, as the training exampleS1 is already optimal. If the
ordering isC2 �C1, then the GLA will compareS1 to the winning competitorS4 and decrease
the strictness ofC2 (violated by the training exampleS1) and increase the strictness ofC1 (vio-
lated by the competitorS4). No change of strictness is triggered byS2, asS1 wins overS2. The
learning behavior for all three training examples is summarized in Table 8, where the notation
Cn+ denotes an increase, andCn− denotes a decrease in the strictness ofCn.

Table 8 makes clear why the GLA fails to converge on a training set that contains the
examplesS1, S2, andS4. Assume that we start off with equal strictness values forC1 andC2. As
S1 is the most frequent training example, the situation that occurs most often is (b). The situa-
tion (e) occurs less frequently, due to the lower frequency ofS4. This means that the strictness
values ofC1 andC2 drift apart, leading to the rankingC1 �C2. In the limit, the GLA will find
the optimal distance between the strictness ofC1 andC2, i.e, the distance that corresponds to the
relative frequency ofS1 andS4.

At the same time, however, the training exampleS2 will continue to decrease the strict-
ness value ofC2, no matter whether the probabilistic evaluation leads to the rankingC1 � C2

(situation (c)) or toC2 �C1 (situation (d)).11 This decrease cannot be compensated for by the

10Note also that the sketch of a proof in Boersma 1998 and Boersma 2000 makes two simplifying assumptions:
(a) candidate sets are finite, and (b) constraints can only be violated once. This means that the sketch does not extend
straightforwardly to a full proof.

11A note on situation (c): the GLA performs mark cancellation before it adjusts strictness values (see Section 3).
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training exampleS4, which increases the strictness ofC2, but occurs less frequently thanS2. The
consequence is a continuous downdrift ofC2, which also triggers a downdrift ofC1, as the train-
ing examplesS1 andS4 cause the GLA to try to find the optimal distance betweenC1 andC2,
based on the relative frequencies ofS1 andS4. This means that the GLA will keep on reducing
the strictness values ofC1 andC2, no matter how long training continues.

The failure of the GLA to converge on training sets like the one in Table 4 (and the one
in Table 2) can also be verified empirically using Praat, a software package that implements
the GLA (Boersma 1999). When confronted with a training set that contains the configuration
in Table 4, Praat will produce a continuous downdrift of the strictness values ofC1 andC2, as
described above, confirming the GLA’s failure to converge on such data sets.

4.4. Gradience and Frequency

Boersma and Hayes (2001: 73) assume that “intermediate well-formedness judgments of-
ten result from grammatically encodable patterns in the learning data that are rare, but not van-
ishingly so, with the degree of ill-formedness related monotonically to the rarity of the pattern.”
Their assumption of a direct relationship between well-formedness and frequency is further wit-
nessed by equations they provide relating the two (Boersma and Hayes 2001: 82). However,
the assumption that gradient grammaticality and corpus frequency are monotonically related
and therefore can be treated in the same probabilistic model is far from uncontroversial. This
topic has received considerable coverage in the computational linguistics and corpus linguistics
literature.12

For instance, Keller (2000b) argues that the degree of grammaticality of a structure and
its frequency of occurrence in a corpus are two distinct concepts, and cannot both be modeled
in the same probabilistic framework (as Boersma and Hayes propose). This argument is based
on data sparseness: a language consists of an infinite set of structures, hence there will always
be structures that are grammatical, but have a low frequency (or fail to occur at all) in a finite
corpus. This means that a probabilistic model that is trained on corpus frequencies cannot also
be expected to account for gradient grammaticality: the absence of a given structure from a
corpus cannot serve as evidence that it is ungrammatical.

A related point is put forward by Abney (1996), who states that “[w]e must also distin-
guish degrees of grammaticality, and indeed, global goodness, from the probability of producing
a sentence. Measures of goodness and probability are mathematically similar enhancements to
algebraic grammars, but goodness alone does not determine probability. For example, for an
infinite language, probability must ultimately decrease with length, though arbitrarily long sen-
tences may be perfectly good” (Abney 1996: 14).13 A related point is made by Culy (1998), who

This means that oneC2 violation incurred both byS1 and byS2 will be canceled, leaving oneC2 violation atS2, and
none atS1. This situation then leads to a demotion ofC2, as it is violated by the loserS2, but not by the winnerS1.

12While it is true that Boersma and Hayes only claim that intermediate well-formedness “often” results from
rare grammatically encodable events, meaning that there can presumably be other factors giving rise to gradient
grammaticality, their solution for these putatively often-arising cases is a monotonic relationship between gradience
and frequency; it is with the latter claim that we take issue.

13An example for Abney’s (1996) point about length and probability are recursive rules in a probabilistic context-
free grammar. If the length of a sentence is increased by adding material using a recursive rule (e.g., by adding
an adjective using the rule N′ −→ Adj N′) then this will necessarily decrease the probability of the sentence: in a
probabilistic context-free grammar, the probability of a sentence is computed as the product of the probabilities of
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argues that the frequency distribution of a construction does not bear on the question of whether
it is grammatical or not.

Evidence for Abney’s (1996) and Culy’s (1998) claims can be found in the psycholinguis-
tic literature. A number of corpus studies have investigated verb sucategorization frequencies,
i.e., the frequency with which a verb occurs with a given subcategorization frame in a corpus
(Lapata et al. 2001; Merlo 1994; Roland and Jurafsky 1998). As an example consider the verb
realize, which allows both an NP and a sentence frame:

(1) a. The athlete realized her goals.
b. The athlete realized her goals were out of reach.

It can be shown that the subcategorization frequencies of a verb influence how the verb is pro-
cessed. In the case of locally ambiguous input (such as (1) up toher goals), the human sentence
processor will prefer the reading that matches the verb frame with the highest corpus frequency.
In example (1), this would mean that the processor prefers the S reading forrealize, given that
realizeoccurs more frequently with the S frame (as indicated by Lapata et al.’s (2001) frame
frequency data for the British National Corpus).14

While this type of frequency information has been shown to influence the online be-
havior of the human sentence processor, it is not standardly assumed that it has an effect on
grammaticality. Few linguists will want to assume that a verb is less grammatical with a certain
subcategorization frame just because this frame is less frequent in the corpus. In our example,
this assumption would mean that sentences involvingrealizewith an NP complement are less
grammatical than sentences involvingrealizewith an S complement, clearly a counterintuitive
result.

In our view, the right way of conceptualizing the difference between frequency and gra-
dient grammaticality follows from basic assumptions about competence and performance advo-
cated by Chomsky (1965, 1981, 1995) and many others (for a review see Sch¨utze 1996). The
frequency of occurrence of a structure has to do with how the speaker processes this structure,
and is therefore a performance phenomenon. The degree of grammaticality of a structure, on
the other hand, has to do with the speaker’s knowledge of language, and therefore is part of
linguistic competence.

The model that Boersma and Hayes (2001) propose departs from these standard assump-
tions, a fact that the authors fail to comment on. The key difference in Boersma and Hayes’s
(2001) approach lies in modeling frequency in a competence grammar: their model assumes
that in cases of optionality, the grammar not only delivers the options, but also predicts their
frequency of occurrence.15 However, if the grammar is a specification of linguistic competence
then there will be many performance factors affecting theobservedoccurrences of a structure
generated by the grammar. These include processing factors (e.g., constraints on speech percep-
tion and articulation), general cognitive factors (e.g., memory limitations and fatigue), and extra-
linguistic factors (e.g., speech style and politeness). In fact, given the competence/performance

all the rules applied in generating the sentence.
14In the example at hand, the disambiguation preference of the human parser is also influenced by other factors,

including the plausibility of the postverbal NP as an object of the verb (Pickering et al. 2000), and the tendency of
the verb to omit the complementizerthat (Trueswell et al. 1993).

15This assumption is shared by Anttila (1997a,b) and Bresnan et al. (2001).
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distinction, a grammar that predicts corpus frequencies is almostguaranteedto be incorrect, be-
cause the frequencies produced by the grammar (although they match those in the corpus) will
be affected by performance considerations and will fail to match the corpus frequencies once
these performance factors are taken into account.

But suppose we were to simply give up the competence/performance distinction and put
all relevant performance factors in the grammar. Then the grammar could predict actual frequen-
cies, because there are no further factors affecting its outputs. Thus all constraints on perception,
articulation, memory, fatigue, style, and politeness interact with grammatical constraints. What
would this mean for the claims of OT with respect to factorial typology, lexicon optimization,
lack of rule conspiracies, and so on?

For factorial typology, for instance, we would arrive at predictions that are clearly coun-
terintuitive. Surely speakers with distinct native languages have cognitive abilities in common
and these cannot be reranked to yield their different languages. It is probably safe to assume that
the difference between Swedish and Norwegian does not arise because of memory differences
between the speakers of Swedish and Norwegian, for example.

Or consider lexicon optimization: the underlying form (i.e., input to GEN) that is lexi-
cally stored for a given morpheme is the one that is most harmonic across grammatical con-
texts (Prince and Smolensky 1993). Suppose that there are some performance constraints in
the constraint hierarchy. Alternatively, suppose that some performance factors are modeled by
constraint reranking (Boersma 2000). In either case there will be more distinct outputs to con-
sider (for example, the drunk output is likely different from the polite output). Since lexicon
optimization considers inputs for thesameoutput, and there are more different outputs to con-
sider, this will lead to a spurious proliferation of lexical items. In effect, there would not only be
performance-related outputs, there would also be performance-related inputs, stored lexically.

These examples from factorial typology and lexicon optimization show that Optimality
Theory in particularneedsthe competence/performance distinction just to make sense. It is
therefore not possible for the GLA model to give this distinction up entirely, and thus its claims
about predicting frequencies are erroneous.

5. Conclusion

The picture we end up with is the following. We have two versions of Optimality
Theory—Standard Optimality Theory and Probabilistic Optimality Theory—and learning al-
gorithms for the kinds of grammars that each specifies—the CDA and the GLA, respectively.
Standard Optimality Theory with its CDA has proofs of correctness and convergence. But this
model has no account of optionality, ambiguity, or gradient grammaticality: the grammars can-
not represent these phenomena satisfactorily and the learning algorithm cannot learn minimally
modified OT grammars that can represent these phenomena (using partial constraint hierarchies,
see Anttila 1997a,b). Also, the CDA is not robust, i.e., it cannot deal with errors in the training
data.

Probabilistic Optimality Theory and the GLA offer a treatment of optionality and ambigu-
ity, as demonstrated for phonology and morphology by Boersma and Hayes (2001) and others,
and for syntax by Asudeh (2001), Bresnan et al. (2001), Dingare (2001), and Koontz-Garboden
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(2001).16 In addition, the GLA is a robust learning algorithm, thus offering a crucial advantage
over the CDA. However, claims for its empirical adequacy are premature, as its learning behav-
ior has not been verified using tests on unseen data (see Section 4.1). Also, there are no formal
proofs of the correctness and convergence of the CDA (see Section 4.3). In fact, in Section 4.2
we presented counterexamples that the GLA cannot learn, showing that it is incorrect (it cannot
learn an example it should learn) and fails to converge (it also never stops trying).

While the POT/GLA model offers a promising approach to optionality and ambiguity
in OT, its treatment of gradient grammaticality is conceptually flawed, as are its predictions of
corpus frequencies. This was demonstrated in Section 4.4 based on standard assumptions about
competence and performance.
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